Tensor completion and tensor estimation

Andrea Montanari and Nike Sun

Stanford University and UC Berkeley

June 25, 2017

When did I first meet David?

2005: MSRI?

2007? 'There are some interesting mathematical things happening'

When did I first meet David?

2005: MSRI?

2007? 'There are some interesting mathematical things happening'

When did I first meet David?

2005: MSRI?

2007? 'There are some interesting mathematical things happening'

Tensor estimation: General question

Unknown tensor

$$
\begin{aligned}
& \boldsymbol{X} \in \mathbb{R}^{d_{1}} \otimes \cdots \otimes \mathbb{R}^{d_{k}} \\
& \boldsymbol{X}=\left(X_{i_{1}, \ldots, i_{k}}\right)_{i_{1} \leq d_{1}, \ldots, i_{k} \leq d_{k}}
\end{aligned}
$$

Estimate \boldsymbol{X} from noisy/incomplete observations

To symplify notations...

- $d_{1}=d_{2}=\cdots=d_{k} \equiv d$
- Tensors will be symmetric, e.g.:

$$
X_{i_{1} \cdot i_{2}, i_{3}}=X_{i_{2}, i_{1}, i_{3}}=X_{i_{1}, i_{3}, i_{2}}=\ldots
$$

- Results generalize.

Two concrete models:

Model \#1: Spiked tensors

$$
\begin{aligned}
\boldsymbol{Y} & =\boldsymbol{X}+\boldsymbol{W} \\
& =\lambda \boldsymbol{v}_{0}^{\otimes k}+\boldsymbol{W}
\end{aligned}
$$

Signal: $v_{0} \in \mathrm{~S}^{d-1} \equiv\left\{x \in \mathbb{R}^{d}:\|x\|_{2}=1\right\}$.
Noise: $\left(W_{i_{1}, i_{2}, \ldots, i_{k}}\right)_{i_{1}<i_{2}<\cdots<i_{k}} \sim_{i i d} \mathrm{~N}(0,1 / n)$ SNR: λ

Model \#1: Spiked tensors

$$
\begin{aligned}
\boldsymbol{Y} & =\boldsymbol{X}+\boldsymbol{W} \\
& =\lambda \boldsymbol{v}_{0}^{\otimes k}+\boldsymbol{W}
\end{aligned}
$$

Signal: $v_{0} \in \mathrm{~S}^{d-1} \equiv\left\{x \in \mathbb{R}^{d}:\|x\|_{2}=1\right\}$.
Noise: $\left(W_{i_{1}, i_{2}, \ldots, i_{k}}\right)_{i_{1}<i_{2}<\cdots<i_{k}} \sim_{i i d} \mathrm{~N}(0,1 / n)$ SNR: λ

Given \boldsymbol{Y}, estimate \boldsymbol{v}_{0}
[Montanari, Richard, 2015]

Model \#1: Spiked tensors

$k=1$ (sequence model):

$$
y_{i}=\lambda v_{0, i}+w_{i}
$$

$k=2($ spiked matrix model) $)$

$$
Y_{i j}=\lambda v_{0, i} v_{0, j}+W_{i j}
$$

$k=3$ (spiked matrix model):

$$
Y_{i j l}=\lambda v_{0, i} v_{0, i} v_{0, l}+W_{i j l}
$$

Model \#2: Tensor completion

$$
\boldsymbol{X}=\sum_{\ell=1}^{r} \boldsymbol{v}_{\ell}^{\otimes k}
$$

Observed entries $E \subseteq[d]^{k} \equiv\{1, \ldots, d\}^{k}$

$$
\Pi_{E}(\boldsymbol{X})_{i_{1}, \ldots, i_{k}}= \begin{cases}X_{i_{1}, \ldots, i_{k}} & \text { if }\left(i_{1}, \ldots, i_{k}\right) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Given $\boldsymbol{Y}=\Pi_{E}(\boldsymbol{X})$, estimate \boldsymbol{X}.

Model \#2: Tensor completion

$$
\boldsymbol{X}=\sum_{\ell=1}^{r} \boldsymbol{v}_{\ell}^{\otimes k}
$$

Observed entries $E \subseteq[d]^{k} \equiv\{1, \ldots, d\}^{k}$

$$
\Pi_{E}(\boldsymbol{X})_{i_{1}, \ldots, i_{k}}= \begin{cases}X_{i_{1}, \ldots, i_{k}} & \text { if }\left(i_{1}, \ldots, i_{k}\right) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Given $\boldsymbol{Y}=\Pi_{E}(\boldsymbol{X})$, estimate \boldsymbol{X}.

Outline

(1) Why?
(2) Tensor completion
(3) Overcomplete tensors
(4) Spiked tensor model (a.k.a. tensor PCA)
(5) Conclusion
arXiv:1612.07866, CPAM arXiv:1411.1076, NIPS

Why?

A cartoon application (not realistic!)

Image denoising

Image denoising

Idea (not necessarily a good one): View \boldsymbol{X} as a 28×28 matrix

Singular values:

[Dozens of references]

Singular value thresholding

Noisy image $Y \in \mathbb{R}^{28 \times 28}$

$$
\boldsymbol{Y}=\sum_{\ell=1}^{28} \sigma_{\ell} \boldsymbol{u}_{\ell} \boldsymbol{v}_{\ell}^{\top}
$$

Denoised image

$$
\boldsymbol{Y}=\sum_{\ell=1}^{r_{*}} \sigma_{\ell} \boldsymbol{u}_{\ell} \boldsymbol{v}_{\ell}^{\top}
$$

[...; Candés, Sing-Long, Trzasko 2013; Donoho, Gavish 2014; Chatterjee 2015 ...]

Noisy
Denoised

How well does it work?

$$
\sigma=100
$$

How well does it work?

$$
\sigma=100
$$

In reality we have many similar images

- $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{n} \in \mathbb{R}^{d \times d}$
- Can we leverage similarities between images?

Idea

1. Stack images in a tensor:

$$
\boldsymbol{X}=\left[\boldsymbol{X}_{1}\left|\boldsymbol{X}_{2}\right| \cdots \mid \boldsymbol{X}_{n}\right] \in \mathbb{R}^{d} \otimes \mathbb{R}^{d} \otimes \mathbb{R}^{n}
$$

2. Do tensor denoising

A better application

4.3 /5 Fabulous		
Score breakdown (from 3 reviews)	Average rating for:	
$5.0 \rightleftharpoons$ (2)	Cleanliness	4.3
$4.0 \longmapsto(0)$	Service	4.5
$3.0 \longrightarrow$ (1)	Comfort	4.3
$2.0 \rightleftharpoons(0)$	Condition	4.1
$1.0 \rightleftharpoons(0)$	Neighborhood	4.0

Collaborative filtering:
Users \times Hotel \times Keyword

Tensor completion

Model

- Unknown tensor $\boldsymbol{X} \in\left(\mathbb{R}^{d}\right)^{\otimes k}$:

$$
\boldsymbol{X}=\sum_{\ell=1}^{r} \boldsymbol{v}_{\ell}^{\otimes k}
$$

- Entries $E \subseteq[d]^{k},|E|=n$ uniformly random
- Observations

$$
\boldsymbol{Y}=\Pi_{E}(\boldsymbol{X})
$$

Number of parameters $\approx r d$

Model

- Unknown tensor $\boldsymbol{X} \in\left(\mathbb{R}^{d}\right)^{\otimes k}$:

$$
\boldsymbol{X}=\sum_{\ell=1}^{r} \boldsymbol{v}_{\ell}^{\otimes k}
$$

- Entries $E \subseteq[d]^{k},|E|=n$ uniformly random
- Observations

$$
\boldsymbol{Y}=\Pi_{E}(\boldsymbol{X})
$$

Number of parameters $\approx r d$

What do we know about matrices? $(k=2)$

Theorem (Gross 2011)

If $\mathbb{X} \in \mathbb{m}^{d_{1} \times d_{2}}$, and $\boldsymbol{I}^{1} \operatorname{man}^{\mathbf{k}}(\mathbb{X}) \leq r$ with factors factors are
' μ-incoherent', then we can reconstruct X exactly from

$$
n \geq C(\mu) r\left(d_{1} \vee d_{2}\right)\left(\log \left(d_{1} \vee d_{2}\right)\right)^{2}
$$

random entries. This is achieved by nuclear norm minimization.
[Candés, Recht, 2009; Candés, Tao, 2010; Keshavan, Montanari, Oh, 2010; Recht 2011; ...]

What do we know about matrices? $(k=2)$

Theorem (Gross 2011)

If $\boldsymbol{X} \in \mathbb{R}^{d_{1} \times d_{2}}$, and $\operatorname{rank}(\boldsymbol{X}) \leq r$ with factors factors are ' μ-incoherent', then we can reconstruct \boldsymbol{X} exactly from

$$
n \geq C(\mu) r\left(d_{1} \vee d_{2}\right)\left(\log \left(d_{1} \vee d_{2}\right)\right)^{2}
$$

random entries. This is achieved by nuclear norm minimization.
[Candés, Recht, 2009; Candés, Tao, 2010; Keshavan, Montanari, Oh, 2010; Recht 2011; ...]

Let us try to redo the same with tensors!

- Number of unknown parameters $\approx r d$
- For $r=O(1)$ and nice factors, maximum likelihood succeds for

$$
n \geq C r d \log d
$$

[Do not know a reference]

- Generalizations of nuclear norm

$$
n \geq C\left(r_{\boxplus}^{k-1} \vee r_{\boxplus}^{(k-1) / 2} d^{1 / 2}\right) d(\log d)^{2}
$$

[Yuan, Zhang, 2015; 2016]

Let us try to redo the same with tensors!

- Number of unknown parameters $\approx r d$
- For $r=O(1)$ and nice factors, maximum likelihood succeds for

$$
n \geq C r d \log d
$$

[Do not know a reference]

- Generalizations of nuclear norm

$$
n \geq C\left(r_{\boxplus}^{k-1} \vee r_{\boxplus}^{(k-1) / 2} d^{1 / 2}\right) d(\log d)^{2}
$$

[Yuan, Zhang, 2015; 2016]

Let us try to redo the same with tensors!

- Number of unknown parameters $\approx r d$
- For $r=O(1)$ and nice factors, maximum likelihood succeds for

$$
n \geq C r d \log d
$$

[Do not know a reference]

- Generalizations of nuclear norm

[Yuan, Zhang, 2015; 2016]

Evaluating tensor nuclear norm is NP-hard!

Let us try to redo the same with tensors!

- Number of unknown parameters $\approx r d$
- For $r=O(1)$ and nice factors, maximum likelihood succeds for

$$
n \geq C r d \log d
$$

[Do not know a reference]

- Generalizations of nuclear norm

$$
n \geq C\left(r_{\boxplus}^{k-1} \vee r_{\boxplus}^{(k-1) / 2} d^{1 / 2}\right) d(\log d)^{2}
$$

[Yuan, Zhang, 2015; 2016]

Evaluating tensor nuclear norm is NP-hard!

Let us try to redo the same with tensors!

- Number of unknown parameters $\approx r d$
- For $r=O(1)$ and nice factors, maximum likelihood succeds for

$$
n \geq C r d \log d
$$

[Do not know a reference]

- Generalizations of nuclear norm

$$
n \geq C\left(r_{\boxplus}^{k-1} \vee r_{\boxplus}^{(k-1) / 2} d^{1 / 2}\right) d(\log d)^{2}
$$

[Yuan, Zhang, 2015; 2016]

Evaluating tensor nuclear norm is NP-hard!

Idea $\# 1$: What about reducing to $k=2$?
$k=a+b$

$$
\begin{aligned}
& \text { unfold }^{a \times b}:\left(\mathbb{R}^{d}\right)^{\otimes k} \rightarrow \mathbb{R}^{d^{a}} \otimes \mathbb{R}^{d^{b}} \\
& \boldsymbol{Y} \rightarrow \text { unfold }^{a \times b}(\boldsymbol{Y})
\end{aligned}
$$

$$
\text { unfold }^{a \times b}(\boldsymbol{Y})_{i_{1} \cdots i_{a} ; j_{1} \ldots j_{b}} \equiv Y_{i_{1} \ldots i_{a} j_{1} \ldots j_{b}}
$$

- $M=$ unfold $^{a \times b}(Y)$
- Do matrix completion (e.g. nuclear norm minimization) of M
- Fold back
[Tomioka, Hayashi, Kashima, 2010; Tomioka, Suzuki, Hayashi, Kashima, 2011; Liu, Musialski, Wonka, Ye, 2013; Gandy, Recht, Yamada, 2011]

Idea $\# 1$: What about reducing to $k=2$?
$k=a+b$

$$
\begin{aligned}
\text { unfold }^{a \times b}: & \left(\mathbb{R}^{d}\right)^{\otimes k} \rightarrow \mathbb{R}^{d^{a}} \otimes \mathbb{R}^{d^{b}} \\
& \boldsymbol{Y} \rightarrow \text { unfold }^{a \times b}(\boldsymbol{Y}) \\
& \text { unfold }^{a \times b}(\boldsymbol{Y})_{i_{1} \cdots i_{a} ; j_{1} \cdots j_{b}} \equiv Y_{i_{1} \cdots i_{a} j_{1} \cdots j_{b}}
\end{aligned}
$$

- $\boldsymbol{M}=$ unfold $^{a \times b}(\boldsymbol{Y})$
- Do matrix completion (e.g. nuclear norm minimization) of M
- Fold back

Idea $\# 1$: What about reducing to $k=2$?
$k=a+b$

$$
\begin{aligned}
\text { unfold }^{a \times b}: & \left(\mathbb{R}^{d}\right)^{\otimes k} \rightarrow \mathbb{R}^{d^{a}} \otimes \mathbb{R}^{d^{b}} \\
& \boldsymbol{Y} \rightarrow \text { unfold }^{a \times b}(\boldsymbol{Y}) \\
& \text { unfold }^{a \times b}(\boldsymbol{Y})_{i_{1} \cdots i_{a} ; j_{1} \cdots j_{b}} \equiv Y_{i_{1} \cdots i_{a} j_{1} \cdots j_{b}}
\end{aligned}
$$

- $\boldsymbol{M}=$ unfold $^{a \times b}(\boldsymbol{Y})$
- Do matrix completion (e.g. nuclear norm minimization) of M
- Fold back
[Tomioka, Hayashi, Kashima, 2010; Tomioka, Suzuki, Hayashi, Kashima, 2011; Liu, Musialski, Wonka, Ye, 2013; Gandy, Recht, Yamada, 2011]

Idea $\# 1$: What about reducing to $k=2$?

Corollary

If $\boldsymbol{X} \in\left(\mathbb{R}^{d}\right)^{\otimes k}, \operatorname{rank}(\boldsymbol{X}) \leq r$, is such that unfold ${ }^{a \times b}(\boldsymbol{X})$ satisfies incoherence, then it can be reconstructed whp from n random entries, provided

$$
n \geq C r d^{a \vee b}(\log d)^{2}
$$

Insights (?)
\square

- Unfolding cannot beat the barrier $n \gtrsim r d^{\lceil k / 2\rceil}$

Idea $\# 1$: What about reducing to $k=2$?

Corollary

If $\boldsymbol{X} \in\left(\mathbb{R}^{d}\right)^{\otimes k}, \operatorname{rank}(\boldsymbol{X}) \leq r$, is such that unfold ${ }^{a \times b}(\boldsymbol{X})$ satisfies incoherence, then it can be reconstructed whp from n random entries, provided

$$
n \geq C r d^{a \vee b}(\log d)^{2}
$$

Insights (?)

- Optimal choice $a=\lfloor k / 2\rfloor, b=\lceil k / 2\rceil$.
- Gap: $r d \ll n \ll r d^{\lceil k / 2\rceil}$.
- Unfolding cannot beat the barrier $n \gtrsim r d^{\lceil k / 2\rceil}$.

Idea \#2: Non-convex optimization

$X=v_{0}^{\otimes k},\left\|v_{0}\right\|_{2}=1$
Maximum likelihood

$$
\begin{aligned}
\operatorname{maximize} & \mathcal{L}_{n}(\boldsymbol{\theta})=\frac{1}{2}\left\|\Pi_{E}\left(\boldsymbol{Y}-\boldsymbol{\theta}^{\otimes k}\right)\right\|_{F}^{2} \\
\text { subject to } & \|\boldsymbol{\theta}\|_{2}=1
\end{aligned}
$$

Heuristic analysis

$$
\nabla \mathcal{L}_{n}(\boldsymbol{\theta})=-k \Pi_{E}(\boldsymbol{Y})\left\{\boldsymbol{\theta}^{\otimes(k-1)}\right\}+\text { smaller terms }
$$

Idea \#2: Non-convex optimization

$X=v_{0}^{\otimes k},\left\|v_{0}\right\|_{2}=1$
Maximum likelihood

$$
\begin{aligned}
\operatorname{maximize} & \mathcal{L}_{n}(\boldsymbol{\theta})=\frac{1}{2}\left\|\Pi_{E}\left(\boldsymbol{Y}-\boldsymbol{\theta}^{\otimes k}\right)\right\|_{F}^{2}, \\
\text { subject to } & \|\boldsymbol{\theta}\|_{2}=1
\end{aligned}
$$

Heuristic analysis

$$
\nabla \mathcal{L}_{n}(\theta)=-k \Pi_{E}(\boldsymbol{Y})\left\{\boldsymbol{\theta}^{\otimes(k-1)}\right\}+\text { smaller terms }
$$

Idea \#2: Non-convex optimization

$X=v_{0}^{\otimes k},\left\|v_{0}\right\|_{2}=1$
Maximum likelihood

$$
\begin{aligned}
\operatorname{maximize} & \mathcal{L}_{n}(\boldsymbol{\theta})=\frac{1}{2}\left\|\Pi_{E}\left(\boldsymbol{Y}-\boldsymbol{\theta}^{\otimes k}\right)\right\|_{F}^{2}, \\
\text { subject to } & \|\boldsymbol{\theta}\|_{2}=1
\end{aligned}
$$

Heuristic analysis

$$
\nabla \mathcal{L}_{n}(\boldsymbol{\theta})=-k \Pi_{E}(\boldsymbol{Y})\left\{\boldsymbol{\theta}^{\otimes(k-1)}\right\}+\text { smaller terms }
$$

Idea \#2: Non-convex optimization

$$
\begin{aligned}
\Pi_{E}(\boldsymbol{Y}) & =\mathbb{E} \Pi_{E}(\boldsymbol{Y})+\left\{\Pi_{E}(\boldsymbol{Y})-\mathbb{E} \Pi_{E}(\boldsymbol{Y})\right\} \\
& =\frac{n}{d^{k}} \boldsymbol{v}_{0}^{\otimes k}+\boldsymbol{W}
\end{aligned}
$$

Assume random initialization $\left\langle\boldsymbol{\theta}, v_{0}\right\rangle=c d^{-1 / 2}, c=O(1)$:

$$
\begin{aligned}
\left\langle\boldsymbol{v}_{0}, \nabla \mathcal{L}_{n}(\boldsymbol{\theta})\right\rangle & =-k\left\langle\Pi_{E}(\boldsymbol{Y}), \boldsymbol{v}_{0} \otimes \boldsymbol{\theta}^{\otimes(k-1)}\right\rangle+\text { smaller terms } \\
& =-\frac{k n}{d^{k}}\left\langle\boldsymbol{v}_{0}, \boldsymbol{\theta}\right\rangle^{k-1}-k\left\langle\boldsymbol{W}, \boldsymbol{v}_{0} \otimes \boldsymbol{\theta}^{\otimes(k-1)}\right\rangle+\ldots \\
& =-c k \frac{n}{d^{(3 k-1) / 2}} \pm \frac{n^{1 / 2}}{d^{k}}
\end{aligned}
$$

Gradient points in a random direction unless $n \gtrsim d^{k-1}$

Is there a practical estimator for $n \leq r d^{1.1}$?

Barak, Moitra, 2014, $k=3$:

- Under 'Feige's hypothesis,' no polynomil algorithm exists for

$$
n \ll d^{3 / 2}
$$

- Degree-6 Sum-Of-Squares works (approximate reconstruction) if

$$
n \geq \sigma_{r}^{2} d^{3 / 2}(\log d)^{4}
$$

- Complexity $O\left(d^{15}\right)$

> Practical algorithms? Better rank dependency?

Is there a practical estimator for $n \leq r d^{1.1}$?

Barak, Moitra, 2014, $k=3$:

- Under 'Feige's hypothesis,' no polynomil algorithm exists for

- Degree-6 Sum-Of-Squares works (approximate reconstruction) if

$$
n \geq C_{r}^{2} d^{3 / 2}(\log d)^{4}
$$

- Complexity $O\left(d^{15}\right)$

Practical algorithms? Better rank dependency?

Is there a practical estimator for $n \leq r d^{1.1}$?

Barak, Moitra, 2014, $k=3$:

- Under 'Feige's hypothesis,' no polynomil algorithm exists for

$$
n \ll d^{3 / 2}
$$

- Degree-6 Sum-Of-Squares works (approximate reconstruction) if

$$
n \geq \sigma r_{*}^{2} d^{3 / 2}(\log d)^{1}
$$

- Complexity $O\left(d^{15}\right)$

> Practical algorithms? Better rank dependency?

Is there a practical estimator for $n \leq r d^{1.1}$?

Barak, Moitra, 2014, $k=3$:

- Under 'Feige's hypothesis,' no polynomil algorithm exists for

$$
n \ll d^{3 / 2}
$$

- Degree-6 Sum-Of-Squares works (approximate reconstruction) if

$$
n \geq C r_{*}^{2} d^{3 / 2}(\log d)^{4}
$$

- Complexity $O\left(d^{15}\right)$

Practical algorithms? Better rank dependency?

Is there a practical estimator for $n \leq r d^{1.1}$?

Barak, Moitra, 2014, $k=3$:

- Under 'Feige's hypothesis,' no polynomil algorithm exists for

$$
n \ll d^{3 / 2}
$$

- Degree-6 Sum-Of-Squares works (approximate reconstruction) if

$$
n \geq C r_{*}^{2} d^{3 / 2}(\log d)^{4}
$$

- Complexity $O\left(d^{15}\right)$

Practical algorithms? Better rank dependency?

Is there a practical estimator for $n \leq r d^{1.1}$?

Barak, Moitra, 2014, $k=3$:

- Under 'Feige's hypothesis,' no polynomil algorithm exists for

$$
n \ll d^{3 / 2}
$$

- Degree-6 Sum-Of-Squares works (approximate reconstruction) if

$$
n \geq C r_{*}^{2} d^{3 / 2}(\log d)^{4}
$$

- Complexity $O\left(d^{15}\right)$

Practical algorithms? Better rank dependency?

A theorem

$$
\text { A1. } \quad \max _{i_{1} \ldots i_{k}}\left|X_{i_{1} \ldots i_{k}}\right|^{2} \leq \frac{\alpha}{d^{k}}\|\boldsymbol{X}\|_{F}^{2}
$$

A2. $\|$ unfold ${ }^{a \times b}(X)\left\|_{\text {op }}^{2} \leq \frac{\mu}{r}\right\|$ unfold $^{a \times b}(X) \|_{F}^{2}$

Theorem (Montanari, Sun, 2017)
Under the above assumptions there exists a spectral algorithm achieving $\|\widehat{X}(Y)-X\|_{F} \leq \varepsilon\|X\|_{F}$ whp, provided ${ }^{a} r \leq d^{c(k)}$ and $n \geq C(\mu, \alpha, \varepsilon) r d^{k / 2}(\log d)^{9}$.

$$
{ }^{2} c(3)=3 / 4, c(k)=k / 2(k \text { even }), c(k)=(k / 2)-1(k>5 \text { odd }) .
$$

A theorem

$$
\begin{aligned}
& \text { A1. } \quad \max _{i_{1} \ldots i_{k}}\left|X_{i_{1} \ldots i_{k}}\right|^{2} \leq \frac{\alpha}{d^{k}}\|\boldsymbol{X}\|_{F}^{2} \\
& \text { A2. } \| \text { unfold }{ }^{a \times b}(X)\left\|_{\text {op }}^{2} \leq \frac{\mu}{r}\right\| \text { unfold }^{a \times b}(X) \|_{F}^{2}
\end{aligned}
$$

Theorem (Montanari, Sun, 2017)

Under the above assumptions there exists a spectral algorithm achieving $\|\widehat{\boldsymbol{X}}(\boldsymbol{Y})-\boldsymbol{X}\|_{F} \leq \varepsilon\|\boldsymbol{X}\|_{F}$ whp, provided ${ }^{a} r \leq d^{c(k)}$ and

$$
n \geq C(\mu, \alpha, \varepsilon) r d^{k / 2}(\log d)^{9}
$$

${ }^{a} c(3)=3 / 4, c(k)=k / 2(k$ even $), c(k)=(k / 2)-1(k \geq 5$ odd $)$.

A theorem

Theorem (Montanari, Sun, 2017)

Under the above assumptions there exists a spectral algorithm achieving $\|\widehat{\boldsymbol{X}}(\boldsymbol{Y})-\boldsymbol{X}\|_{F} \leq \varepsilon\|\boldsymbol{X}\|_{F}$ whp, provided ${ }^{a} r \leq d^{c(k)}$ and

$$
n \geq C(\mu, \alpha, \varepsilon) r d^{k / 2}(\log d)^{9}
$$

${ }^{a} c(3)=3 / 4, c(k)=k / 2(k$ even $), c(k)=(k / 2)-1(k \geq 5$ odd $)$.

A theorem

Theorem (Montanari, Sun, 2017)

Under the above assumptions there exists a spectral algorithm achieving $\|\widehat{\boldsymbol{X}}(\boldsymbol{Y})-\boldsymbol{X}\|_{F} \leq \varepsilon\|\boldsymbol{X}\|_{F}$ whp, provided ${ }^{a} r \leq d^{c(k)}$ and

$$
n \geq C(\mu, \alpha, \varepsilon) r d^{k / 2}(\log d)^{9}
$$

${ }^{a} c(3)=3 / 4, c(k)=k / 2(k$ even $), c(k)=(k / 2)-1(k \geq 5$ odd $)$.

- FALSE: Optimal choice $a=\lfloor k / 2\rfloor, b=\lceil k / 2\rceil$.
- FALSE: Gap: $r d \ll n \ll r d^{\lceil k / 2\rceil}$.
- FALSE: Unfolding cannot beat the barrier $n \gtrsim r d^{\lceil k / 2\rceil}$.

Simulations: $k=3, r=4$

Algorithm idea

$k=a+b, a<b$

$$
M=\text { unfold }^{a \times b}(\boldsymbol{Y})
$$

$d^{a} \ll n \ll d^{k / 2}:$

- Cannot complete M
- Can estimate the top left singular space!

Algorithm, for $k=3 \quad\left(\delta=n d^{3}\right)$

1. Compute $M=$ unfold $^{1 \times 2}(X)$ and

$$
A=\frac{1}{\delta^{2}} \Pi_{\mathrm{diag}}^{\perp}\left(M M^{\top}\right)+\frac{1}{\delta} \Pi_{\mathrm{diag}}\left(M M^{\top}\right)
$$

2. Eigenvalue decomposition:

$$
\boldsymbol{A}=\sum_{i=1}^{d} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}
$$

3. Projector

$$
\boldsymbol{Q}=\sum_{i=1}^{d} \mathbf{1}_{\lambda_{i} \geq \lambda_{*}} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}
$$

4. Let $\mathcal{Q} \equiv Q \otimes Q \otimes Q$ and return

$$
\widehat{X}=\frac{1}{\delta} Q(X)
$$

Algorithm, for $k=3 \quad\left(\delta=n d^{3}\right)$

1. Compute $M=$ unfold $^{1 \times 2}(\boldsymbol{X})$ and

$$
A=\frac{1}{\delta^{2}} \Pi_{\mathrm{diag}}^{\perp}\left(M M^{\top}\right)+\frac{1}{\delta} \Pi_{\mathrm{diag}}\left(M M^{\top}\right)
$$

2. Eigenvalue decomposition:

3. Projector

4. Let $\mathcal{Q} \equiv Q \otimes Q \otimes Q$ and return

Algorithm, for $k=3 \quad\left(\delta=n d^{3}\right)$

1. Compute $M=$ unfold $^{1 \times 2}(\boldsymbol{X})$ and

$$
A=\frac{1}{\delta^{2}} \Pi_{\mathrm{diag}}^{\perp}\left(M M^{\top}\right)+\frac{1}{\delta} \Pi_{\mathrm{diag}}\left(M M^{\top}\right)
$$

2. Eigenvalue decomposition:

$$
\boldsymbol{A}=\sum_{i=1}^{d} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}
$$

3. Projector

4. Let $Q \equiv Q \otimes Q \otimes Q$ and return

Algorithm, for $k=3 \quad\left(\delta=n d^{3}\right)$

1. Compute $M=$ unfold $^{1 \times 2}(X)$ and

$$
\boldsymbol{A}=\frac{1}{\delta^{2}} \Pi_{\mathrm{diag}}^{\perp}\left(\boldsymbol{M} \boldsymbol{M}^{\top}\right)+\frac{1}{\delta} \Pi_{\mathrm{diag}}\left(\boldsymbol{M} \boldsymbol{M}^{\top}\right)
$$

2. Eigenvalue decomposition:

$$
\boldsymbol{A}=\sum_{i=1}^{d} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}
$$

3. Projector

$$
\boldsymbol{Q}=\sum_{i=1}^{d} \mathbf{1}_{\lambda_{i} \geq \lambda_{*}} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}
$$

4. Let $Q \equiv Q \otimes Q \otimes Q$ and return

Algorithm, for $k=3 \quad\left(\delta=n d^{3}\right)$

1. Compute $M=$ unfold $^{1 \times 2}(X)$ and

$$
A=\frac{1}{\delta^{2}} \Pi_{\mathrm{diag}}^{\perp}\left(M M^{\top}\right)+\frac{1}{\delta} \Pi_{\mathrm{diag}}\left(M M^{\top}\right)
$$

2. Eigenvalue decomposition:

$$
\boldsymbol{A}=\sum_{i=1}^{d} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}
$$

3. Projector

$$
\boldsymbol{Q}=\sum_{i=1}^{d} \mathbf{1}_{\lambda_{i} \geq \lambda_{*}} \boldsymbol{u}_{i} \boldsymbol{u}_{i}^{\top}
$$

4. Let $\mathcal{Q} \equiv Q \otimes Q \otimes Q$ and return

$$
\widehat{\boldsymbol{X}}=\frac{1}{\delta} \mathcal{Q}(\boldsymbol{X})
$$

Similar method developed independently by Yuan, Xia, 2017

Back to image denoising

Image-by-image matrix denoising

Tensor denoising

:)

Overcomplete tensors

$k=3$

$$
\boldsymbol{X}=\sum_{\ell=1}^{r} \boldsymbol{v}_{\ell} \otimes \boldsymbol{v}_{\boldsymbol{\ell}} \otimes \boldsymbol{v}_{\ell}
$$

\boldsymbol{X} can have rank larger than $d!!!$

Can we use spectral methods?

Seems a lost cause:
$\operatorname{rank}(X) \geq d \quad \operatorname{rank}(M)=d$

Structure is lost!

Can we use spectral methods?

$$
\begin{aligned}
\boldsymbol{Y} & =\Pi_{E}(\boldsymbol{X}) \\
M & =\operatorname{unfold}^{1 \times 2}(\boldsymbol{Y})
\end{aligned}
$$

Seems a lost cause:

$$
\operatorname{rank}(X) \geq d \quad \Rightarrow \quad \operatorname{rank}(M)=d
$$

Can we use spectral methods?

$$
\begin{aligned}
Y & =\Pi_{E}(X) \\
M & =\text { unfold }^{1 \times 2}(Y)
\end{aligned}
$$

Seems a lost cause:

$$
\operatorname{rank}(\boldsymbol{X}) \geq d \Rightarrow \operatorname{rank}(M)=d
$$

Structure is lost!

Idea: Do something before spectral analysis

$$
\begin{aligned}
A & =\left(A_{i_{1} i_{2} ; j_{1} j_{2}}\right)_{i_{1}, i_{2}, j_{1}, j_{2} \leq d} \in \mathbb{R}^{d^{2} \times d^{2}}, \\
A_{i_{1} i_{2} ; j_{1} j_{2}} & \equiv \sum_{\ell=1}^{d} Y_{i_{1} j_{1} \ell} Y_{i_{2} j_{2} \ell} .
\end{aligned}
$$

$$
\begin{aligned}
M & =\text { unfold }^{1 \times 2}(\boldsymbol{Y}) \in \mathbb{R}^{d \times d^{2}}, \\
B & =M^{\top} M
\end{aligned}
$$

Idea: Do something before spectral analysis

$$
\begin{aligned}
\boldsymbol{A} & =\left(A_{i_{1} i_{2} ; j_{1} j_{2}}\right)_{i_{1}, i_{2}, j_{1}, j_{2} \leq d} \in \mathbb{R}^{d^{2} \times d^{2}}, \\
A_{i_{1} i_{2} ; j_{1} j_{2}} & \equiv \sum_{\ell=1}^{d} Y_{i_{1} j_{1} \ell} Y_{i_{2} j_{2} \ell} .
\end{aligned}
$$

NOT EQUAL TO:

Idea: Do something before spectral analysis

$$
\begin{aligned}
\boldsymbol{A} & =\left(A_{i_{1} i_{2} ; j_{1} j_{2}}\right)_{i_{1}, i_{2}, j_{1}, j_{2} \leq d} \in \mathbb{R}^{d^{2} \times d^{2}}, \\
A_{i_{1} i_{2} ; j_{1} j_{2}} & \equiv \sum_{\ell=1}^{d} Y_{i_{1} j_{1} \ell} Y_{i_{2} j_{2} \ell} .
\end{aligned}
$$

NOT EQUAL TO:

$$
\begin{aligned}
M & =\text { unfold }^{1 \times 2}(\boldsymbol{Y}) \in \mathbb{R}^{d \times d^{2}}, \\
B & =M^{\top} M
\end{aligned}
$$

Claim: $\operatorname{rank}_{*}(\boldsymbol{A}) \approx r, \operatorname{rank}(B) \leq d$
$\boldsymbol{X}=\sum_{\ell=1}^{r} \boldsymbol{v}_{\ell}^{\otimes 3}$

Theorem (Montanari, Sun, 2017)
Assume $\left(v_{\ell}\right)_{\ell \leq r} \sim_{\text {iid }} \mathrm{N}\left(0, \mathrm{I}_{d}\right)$, and $r \leq d^{2}$. Then there exists a spectral algorithm achieving $\|\widehat{\boldsymbol{X}}-\boldsymbol{X}\|_{F} \leq \varepsilon\|\boldsymbol{X}\|_{F}$ whp, for n random entries, provided

$$
n \geq C(\varepsilon)(d \vee r) d^{3 / 2}(\log d)^{c_{0}}
$$

Similar ideas: Hopkins, Schramm, Shi, Steurer 2016; Raghavendra, Schramm 2016
$\boldsymbol{X}=\sum_{\ell=1}^{r} \boldsymbol{v}_{\ell}^{\otimes 3}$

Theorem (Montanari, Sun, 2017)
Assume $\left(v_{\ell}\right)_{\ell \leq r} \sim_{\text {iid }} \mathrm{N}\left(0, \mathrm{I}_{d}\right)$, and $r \leq d^{2}$. Then there exists a spectral algorithm achieving $\|\widehat{\boldsymbol{X}}-\boldsymbol{X}\|_{F} \leq \varepsilon\|\boldsymbol{X}\|_{F}$ whp, for n random entries, provided

$$
n \geq C(\varepsilon)(d \vee r) d^{3 / 2}(\log d)^{c_{0}}
$$

Similar ideas: Hopkins, Schramm, Shi, Steurer 2016; Raghavendra, Schramm 2016

Simulations: $k=3, r=4$

Spiked tensor model (a.k.a. tensor PCA)

Reminder: A much simpler model

$$
\boldsymbol{Y}=\lambda \boldsymbol{v}_{0}^{\otimes k}+\boldsymbol{W}
$$

Signal: $v_{0} \in \mathrm{~S}^{d-1} \equiv\left\{x \in \mathbb{R}^{d}:\|x\|_{2}=1\right\}$.
Noise: $\left(W_{i_{1}, i_{2}, \ldots, i_{k}}\right)_{i_{1}<i_{2}<\cdots<i_{k}} \sim_{i i d} \mathrm{~N}(0,1 / d)$ SNR: λ

Given \boldsymbol{Y}, estimate \boldsymbol{v}_{0}
[Montanari, Richard, 2015]

A lot of information from statistical physics

Gibbs measure

$$
\mu_{\beta, \lambda}(\mathrm{d} \boldsymbol{\theta})=\frac{1}{Z(\beta, \lambda)} \exp \left\{\beta\left\langle\boldsymbol{Y}, \boldsymbol{\theta}^{\otimes k}\right\rangle\right\} \mu_{0}(\mathrm{~d} \boldsymbol{\theta})
$$

- $\beta=\infty$: Maximum Likelihood
- $\beta=\lambda / k$!: Bayes posterior
- $\mu_{0}(\cdot)$: Uniform measure on S^{d-1}
[Crisanti, Sommers, 1992, 1995; Auffinger, Ben Arous, Cerny, 2013; Chen, 2013; Subag, 2016; Krzakala, Lelarge, Miolane, Zdeborova, 2016;...]

Theorem
There exists $\lambda_{\text {Bayes }}(k)$ (explicit!) such that:

A lot of information from statistical physics

Gibbs measure

$$
\mu_{\beta, \lambda}(\mathrm{d} \boldsymbol{\theta})=\frac{1}{Z(\beta, \lambda)} \exp \left\{\beta\left\langle\boldsymbol{Y}, \boldsymbol{\theta}^{\otimes k}\right\rangle\right\} \mu_{0}(\mathrm{~d} \boldsymbol{\theta})
$$

- $\beta=\infty$: Maximum Likelihood
- $\beta=\lambda / k$!: Bayes posterior
- $\mu_{0}(\cdot)$: Uniform measure on S^{d-1}
[Crisanti, Sommers, 1992, 1995; Auffinger, Ben Arous, Cerny, 2013; Chen, 2013; Subag, 2016; Krzakala, Lelarge, Miolane, Zdeborova, 2016;...]

Theorem

There exists $\lambda_{\text {Bayes }}(k)$ (explicit!) such that:

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left|\left\langle\boldsymbol{v}_{0}, \boldsymbol{v}_{\text {Bayes }}(\boldsymbol{Y})\right\rangle\right|= \begin{cases}0 & \text { if } \lambda<\lambda_{\text {Bayes }}(k), \\ >0 & \text { if } \lambda>\lambda_{\text {Bayes }}(k) .\end{cases}
$$

What about polynomial-time estimators?

Theorem (Montanari, Richard, 2014; Hopkins, Shi, Steurer, 2015)

There exists poly-time estimaior achieving $\mathbb{C}\left\{\mid\left\langle\hat{\theta}^{\text {Poly }}, \theta_{0}\right\rangle^{\prime \prime}\right\} \geq 1-\varepsilon$, provided

$$
\lambda \geq C(\varepsilon) n^{(k-2) / 4}
$$

$$
\text { No poly-time algorithm known for } 1 \ll \lambda \ll n^{(k-2) / 4} \text {. }
$$

What about polynomial-time estimators?

Theorem (Montanari, Richard, 2014; Hopkins, Shi, Steurer, 2015)
There exists poly-time estimator achieving $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}^{\text {Poly }}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq 1-\boldsymbol{\varepsilon}$, provided

$$
\lambda \geq C(\varepsilon) n^{(k-2) / 4}
$$

What about polynomial-time estimators?

Theorem (Montanari, Richard, 2014; Hopkins, Shi, Steurer, 2015)
There exists poly-time estimator achieving $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}^{\text {Poly }}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq 1-\boldsymbol{\varepsilon}$, provided

$$
\lambda \geq C(\varepsilon) n^{(k-2) / 4}
$$

No poly-time algorithm known for $1 \ll \lambda \ll n^{(k-2) / 4}$.

A case study in failure: Maximum likelihood

maximize $\left\langle\boldsymbol{Y}, \boldsymbol{\theta}^{\otimes k}\right\rangle$
subject to $\boldsymbol{\theta} \in \mathrm{S}^{d-1}$

$N(x, m) \equiv \#\left\{\right.$ critical points with $\left.\left\langle\boldsymbol{Y}, \boldsymbol{\theta}^{\otimes k}\right\rangle \approx x,\left\langle\boldsymbol{v}_{0}, \boldsymbol{\theta}\right\rangle \approx m\right\}$

A peek at complexity

$$
\begin{aligned}
\mathbb{E} N(x, m) & =e^{d \Phi(x, m)+o(d)} \\
\Phi(x, m) & =\text { explicit expression }
\end{aligned}
$$

[Ben Arous, Mei, Montanari, Nica, in progress]

Conclusion

Conclusion

- Tensors are useful for modeling multivariate data
- Estimation requires entirely new ideas
- Information-computation gap
- Many open problems

Thanks! Happy birthday Dave!

Conclusion

- Tensors are useful for modeling multivariate data
- Estimation requires entirely new ideas
- Information-computation gap
- Many open problems

Thanks! Happy birthday Dave!

