Computational Barriers in Statistical Estimation

Andrea Montanari

Stanford University

$$
\text { July 9, } 2017
$$

Statistical estimation/Statistical learning

Class of models $\left(\Theta \subseteq \mathbb{R}^{d}\right)$

$$
\mathcal{C}_{\Theta} \equiv\left\{\mathbb{P}_{\boldsymbol{\theta}}: \quad \boldsymbol{\theta} \in \Theta\right\}
$$

Data

$$
x_{1}, x_{2}, \ldots, x_{n} \sim_{i i d} \mathbb{P}_{\boldsymbol{\theta}_{0}}(\cdot)
$$

Estimate $\boldsymbol{\theta}_{0}$ from data $\boldsymbol{x}_{1}^{n}=\left(x_{1}, \ldots, x_{n}\right)$

Statistical estimation/Statistical learning

Class of models $\left(\Theta \subseteq \mathbb{R}^{d}\right)$

$$
\mathcal{C}_{\Theta} \equiv\left\{\mathbb{P}_{\boldsymbol{\theta}}: \quad \boldsymbol{\theta} \in \Theta\right\}
$$

Data

$$
x_{1}, x_{2}, \ldots, x_{n} \sim_{i i d} \mathbb{P}_{\boldsymbol{\theta}_{0}}(\cdot)
$$

Estimate $\boldsymbol{\theta}_{0}$ from data $\boldsymbol{x}_{1}^{n}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$

Minimax theory

Loss function

$$
\begin{aligned}
& L: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R} \\
& \quad\left(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}_{0}\right) \mapsto L\left(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}_{0}\right)
\end{aligned}
$$

Minimax risk

$$
R_{n}^{*}(\Theta)=\inf _{\hat{\boldsymbol{\theta}}(\cdot)} \sup _{\boldsymbol{\theta}_{0} \in \Theta} \mathbb{E}_{\boldsymbol{\theta}_{0}} L\left(\hat{\boldsymbol{\theta}}\left(\boldsymbol{x}_{1}^{n}\right), \boldsymbol{\theta}_{0}\right)
$$

[Wald, 1950]

Kindergarten example

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{\theta}}(\cdot)=\mathrm{N}\left(\boldsymbol{\theta}, \mathrm{I}_{d}\right) \\
& L\left(\boldsymbol{\theta}_{0}, \hat{\boldsymbol{\theta}}\right)=\left\|\boldsymbol{\theta}_{0}-\hat{\boldsymbol{\theta}}\right\|_{2}^{2} \\
& \Theta=\mathbb{R}^{d} .
\end{aligned}
$$

- Foundation of the least squares, maximum likelihood,

Kindergarten example

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{\theta}}(\cdot)=\mathrm{N}\left(\boldsymbol{\theta}, \mathrm{I}_{d}\right) \\
& L\left(\boldsymbol{\theta}_{0}, \hat{\boldsymbol{\theta}}\right)=\left\|\boldsymbol{\theta}_{0}-\hat{\boldsymbol{\theta}}\right\|_{2}^{2} \\
& \Theta=\mathbb{R}^{d} .
\end{aligned}
$$

Theorem

$$
R_{n}^{*}(\Theta)=\frac{d}{n}
$$

- Foundation of the least squares, maximum likelihood,

Kindergarten example

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{\theta}}(\cdot)=\mathrm{N}\left(\boldsymbol{\theta}, \mathrm{I}_{d}\right) \\
& L\left(\boldsymbol{\theta}_{0}, \hat{\boldsymbol{\theta}}\right)=\left\|\boldsymbol{\theta}_{0}-\hat{\boldsymbol{\theta}}\right\|_{2}^{2} \\
& \Theta=\mathbb{R}^{d} .
\end{aligned}
$$

Theorem

$$
R_{n}^{*}(\Theta)=\frac{d}{n}
$$

- Foundation of the least squares, maximum likelihood, ...

A more sophisticated example

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{\theta}}(\cdot)=\mathrm{N}\left(\boldsymbol{\theta}, \mathrm{I}_{d}\right) \\
& L\left(\boldsymbol{\theta}_{0}, \hat{\boldsymbol{\theta}}\right)=\left\|\boldsymbol{\boldsymbol { \theta } _ { 0 }}-\hat{\boldsymbol{\theta}}\right\|_{2}^{2} \\
& \Theta=\left\{\boldsymbol{\theta} \in \mathbb{R}^{d}:\|\boldsymbol{\theta}\|_{0} \leq s_{0}\right\} .
\end{aligned}
$$

Theorem (Donoho, Johnstone 1990s) If $s_{0} / d \rightarrow 0$, then

$$
R_{n}^{*}(\Theta)=\frac{2 s_{0}}{n} \log \left(d / s_{0}\right) \cdot(1+o(1)) .
$$

A more sophisticated example

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{\theta}}(\cdot)=N\left(\boldsymbol{\theta}, \mathrm{I}_{d}\right) \\
& L\left(\boldsymbol{\theta}_{0}, \hat{\boldsymbol{\theta}}\right)=\left\|\boldsymbol{\theta}_{0}-\hat{\boldsymbol{\theta}}\right\|_{2}^{2} \\
& \Theta=\left\{\boldsymbol{\theta} \in \mathbb{R}^{d}:\|\boldsymbol{\theta}\|_{0} \leq s_{0}\right\} .
\end{aligned}
$$

Theorem (Donoho, Johnstone 1990s)
If $s_{0} / d \rightarrow 0$, then

$$
R_{n}^{*}(\Theta)=\frac{2 s_{0}}{n} \log \left(d / s_{0}\right) \cdot(1+o(1)) .
$$

- Key role in compressed sensing, sparse learning,

A more sophisticated example

$$
\begin{aligned}
& \mathbb{P}_{\boldsymbol{\theta}}(\cdot)=\mathrm{N}\left(\boldsymbol{\theta}, \mathrm{I}_{d}\right) \\
& L\left(\boldsymbol{\theta}_{0}, \hat{\boldsymbol{\theta}}\right)=\left\|\boldsymbol{\theta}_{0}-\hat{\boldsymbol{\theta}}\right\|_{2}^{2} \\
& \Theta=\left\{\boldsymbol{\theta} \in \mathbb{R}^{d}:\|\boldsymbol{\theta}\|_{0} \leq s_{0}\right\} .
\end{aligned}
$$

Theorem (Donoho, Johnstone 1990s)
If $s_{0} / d \rightarrow 0$, then

$$
R_{n}^{*}(\Theta)=\frac{2 s_{0}}{n} \log \left(d / s_{0}\right) \cdot(1+o(1))
$$

- Key role in compressed sensing, sparse learning, ...

What is this talk about?

$$
R_{n}^{\text {Poly }}(\Theta)=\inf _{\hat{\boldsymbol{\theta}}(\cdot) \in \text { Poly }} \sup _{\boldsymbol{\theta}_{0} \in \Theta} \mathbb{E}_{\boldsymbol{\theta}_{0}} L\left(\hat{\boldsymbol{\theta}}\left(\boldsymbol{x}_{1}^{n}\right), \boldsymbol{\theta}_{0}\right)
$$

Developments

- Often we expect $R_{n}^{\text {Poly }}(\Theta) \geq R_{n}(\Theta)$
- Accurate predictions
- Convergence of fields (Statistics, CS Theory, Physics)
- New algorithms?

What is this talk about?

$$
R_{n}^{\text {Poly }}(\Theta)=\inf _{\hat{\boldsymbol{\theta}}(\cdot) \in \text { Poly }} \sup _{\boldsymbol{\theta}_{0} \in \Theta} \mathbb{E}_{\boldsymbol{\theta}_{0}} L\left(\hat{\boldsymbol{\theta}}\left(\boldsymbol{x}_{1}^{n}\right), \boldsymbol{\theta}_{0}\right)
$$

Developments

- Often we expect $R_{n}^{\text {Poly }}(\Theta) \geqslant R_{n}(\Theta)$
- Accurate predictions
- Convergence of fields (Statistics, CS Theory, Physics)
- New algorithms?

Outline

(1) Local algorithms
(2) Landscapes
(3) SDP relaxations
(4) Conclusion

Local and message passing algorithms

Example \#1: Sparse low-rank matrix

Unknowns:

$$
\Theta\left(s_{0}, d\right)=\left\{\boldsymbol{\theta} \in\{0,1\}^{d}:\|\boldsymbol{\theta}\|_{0}=s_{0}\right\} .
$$

Loss:

$$
L(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta})=\frac{1}{d} \operatorname{Hamming}(\hat{\boldsymbol{\theta}}, \boldsymbol{\theta})
$$

Example \#1: Sparse low-rank matrix

Data: $\left(x_{1}, \ldots, x_{n}\right)$

$$
\begin{aligned}
& x_{\ell}=\left(i_{\ell}, j_{\ell}, Y_{i_{\ell}, j_{\ell}}\right) \in[d] \times[d] \times \mathbb{R}, \\
& i_{\ell,}, j_{\ell} \sim_{i i d} \operatorname{Unif}([d]), \\
& \left.Y_{i_{\ell}, j_{\ell}}\right|_{i_{\ell}, j_{\ell}} \sim N\left(\theta_{0, i_{\ell}} \theta_{0, j_{\ell}}, \sigma^{2}\right)
\end{aligned}
$$

Pictorially

Example \#1: A different formulation

Data $\boldsymbol{Y} \in \mathbb{R}^{n \times n}$

$$
\boldsymbol{Y}=\mathcal{P}_{E}\left(\boldsymbol{\theta}_{0} \boldsymbol{\theta}_{0}^{\top}+\boldsymbol{W}\right)
$$

- $E \subseteq\binom{[d]}{2}$ uniformly random s.t. $|E|=n$
- $\mathcal{P}_{E}: \mathbb{R}^{d \times d} \rightarrow \mathbb{R}^{d \times d}:$ projector that zeroes entries not in E
- $\left(W_{i j}\right)_{i<j} \sim_{i i d} \mathrm{~N}\left(0, \sigma^{2}\right), \boldsymbol{W}=\boldsymbol{W}^{\top}$
$\boldsymbol{\theta}_{0} \boldsymbol{\theta}_{0}^{\top}$

Example \#1: Yet another formulation

- $G=(V, E) \sim \mathcal{G}(d, n)$
(uniform random with d vertices, n edges)
- For each $(i, j) \in E$

$$
Y_{i j}=\theta_{i} \theta_{j}+W_{i j}, \quad W_{i j} \sim \mathrm{~N}\left(0, \sigma^{2}\right)
$$

Problem parameters

$$
\begin{array}{ll}
\delta=\frac{n}{d} & \text { (half) average graph degree } \\
\varepsilon=\frac{s_{0}}{d} & \text { sparsity }
\end{array}
$$

Asymptotics

- Dense graph: $n \asymp d^{2}, s_{0} \asymp \sqrt{d} \quad(\sim$ Planted clique problem $)$
- Sparse graph: $n \asymp d, s_{0} \asymp d$ (δ, ε fixed)

Problem parameters

$$
\begin{array}{ll}
\delta=\frac{n}{d} & \text { (half) average graph degree } \\
\varepsilon=\frac{s_{0}}{d} & \text { sparsity }
\end{array}
$$

Asymptotics

- Dense graph: $n \asymp d^{2}, s_{0} \asymp \sqrt{d}$
- Sparse graph: $n \asymp d, s_{0} \asymp d$
(\sim Planted clique problem) (δ, ε fixed)

$$
R^{\text {Poly }}(\delta, \varepsilon ; d) \equiv R_{n=d \delta}^{\text {Poly }}\left(\Theta\left(s_{0}=d \varepsilon, d\right)\right)
$$

$$
\lim _{d \rightarrow \infty} R^{\text {Poly }}(\delta, \varepsilon ; d)=?
$$

We do not know, but

$$
R^{\text {Poly }}(\delta, \varepsilon ; d) \equiv R_{n=d \delta}^{\text {Poly }}\left(\Theta\left(s_{0}=d \varepsilon, d\right)\right)
$$

$$
\lim _{d \rightarrow \infty} R^{\text {Poly }}(\delta, \varepsilon ; d)=?
$$

We do not know, but ...

First simplifications

- Worst case prior

$$
\boldsymbol{\theta} \sim \operatorname{Unif}\left(\Theta\left(s_{0}, d\right)\right)
$$

- Roughly $\left(\varepsilon=s_{0} / d\right)$

$$
\left(\theta_{i}\right)_{i \leq d} \sim_{i i d} \operatorname{Bern}(\varepsilon)
$$

First simplifications

- Worst case prior

$$
\boldsymbol{\theta} \sim \operatorname{Unif}\left(\Theta\left(s_{0}, d\right)\right)
$$

- Roughly $\left(\varepsilon=s_{0} / d\right)$

$$
\left(\theta_{i}\right)_{i \leq d} \sim_{i i d} \operatorname{Bern}(\varepsilon)
$$

Local weak limit: $d \rightarrow \infty$

$$
G \stackrel{l w c}{\Rightarrow} \mathrm{GW}(\operatorname{Pois}(2 \delta))
$$

Local weak limit: $d \rightarrow \infty$

$$
(G, \theta, Y) \stackrel{\text { lwc } c}{\Rightarrow}(\operatorname{GW}(\operatorname{Pois}(2 \delta)), \theta, Y)
$$

First guess

$$
\lim _{d \rightarrow \infty} R^{\text {Poly }}(\delta, \varepsilon, d) \stackrel{?}{=} \inf _{\hat{\boldsymbol{\theta}}} \mathbb{P}_{\text {Tree }}\left(\hat{\theta}_{\varnothing}(\boldsymbol{Y}) \neq \theta_{0, \varnothing}\right)
$$

It gets interesting

$$
\lim _{d \rightarrow \infty} R^{\text {Poly }}(\delta, \varepsilon, d) \stackrel{?}{\stackrel{i n f}{\hat{\theta}}} \mathbb{P}_{\text {Tree }}\left(\hat{\theta}_{\phi}(Y) \neq \theta_{0, \phi}\right)
$$

How do you define the r.h.s.?

A natural idea:

$$
\begin{aligned}
Y_{\ell}^{0} & =\left(Y_{i j}: d(\phi, i) \leq \ell\right), \\
\hat{\theta}_{\phi}\left(Y_{\ell}^{0}\right) & =\underset{\sigma \in\{0,1\}}{\arg \max ^{1}\left(\theta_{\phi}=\sigma \mid Y_{\ell}^{0}\right) .} .
\end{aligned}
$$

It gets interesting

$$
\lim _{d \rightarrow \infty} R^{\text {Poly }}(\delta, \varepsilon, d) \stackrel{?}{=} \inf _{\hat{\theta}} \mathbb{P}_{\text {Tree }}\left(\hat{\theta}_{\phi}(Y) \neq \theta_{0, \phi}\right)
$$

How do you define the r.h.s.?

A natural idea:

$$
\begin{aligned}
Y_{\ell}^{0} & =\left(Y_{i j}: d(\varnothing, i) \leq \ell\right), \\
\hat{\theta}_{\varnothing}\left(Y_{\ell}^{0}\right) & =\underset{\sigma \in\{0,1\}}{\arg \max ^{2}} \mathbb{P}\left(\theta_{\varnothing}=\sigma \mid Y_{\ell}^{0}\right) .
\end{aligned}
$$

Risk of local algorithms

$$
R^{\text {loc }}(\delta, \varepsilon)=\lim _{\ell \rightarrow \infty} \mathbb{P}_{\text {Tree }}\left(\hat{\theta}_{\varnothing}\left(\boldsymbol{Y}_{\ell}^{0}\right) \neq \theta_{0, \varnothing}\right)
$$

Remark

Belief nropagation achieves $R^{100}(\delta, \varepsilon)$

Risk of local algorithms

$$
R^{\mathrm{loc}}(\delta, \varepsilon)=\lim _{\ell \rightarrow \infty} \mathbb{P}_{\text {Tree }}\left(\hat{\theta}_{\varnothing}\left(\boldsymbol{Y}_{\ell}^{0}\right) \neq \theta_{0, \varnothing}\right)
$$

Remark
 Belief propagation achieves $R^{\text {loc }}(\delta, \varepsilon)$

Can be computed

$$
(\varepsilon=0.02, \sigma=1.5)
$$

$$
R^{\text {loc }}(\delta, \varepsilon)=\lim _{\ell \rightarrow \infty} \mathbb{P}_{\text {Tree }}\left(\hat{\theta}_{\varnothing}\left(\boldsymbol{Y}_{\ell}^{0}\right) \neq \theta_{0, \varnothing}\right)
$$

Phase transition for local algorithms

Theorem (~ Deshpande, Montanari, 2015)
As $\varepsilon \rightarrow 0$ (with $\delta \rightarrow \infty, \sigma$ fixed)

$$
\frac{1}{\varepsilon} R^{\mathrm{loc}}(\delta, \varepsilon) \rightarrow \begin{cases}1 & \text { if } \delta \leq\left(1-o_{\varepsilon}(1)\right) \cdot \frac{\sigma^{2}}{2 e \varepsilon^{2}} \\ 0 & \text { if } \delta \geq\left(1+o_{\varepsilon}(1)\right) \cdot \frac{\sigma^{2}}{2 e \varepsilon^{2}}\end{cases}
$$

A different definition of the limit

$$
\begin{aligned}
\boldsymbol{Y}_{\ell}^{+} & =\left\{\left(Y_{i j}: d(\varnothing, i) \leq \ell\right) ; \quad\left(\theta_{i}: d(\varnothing, i>\ell)\right\}\right. \\
\hat{\theta}_{\varnothing}\left(\boldsymbol{Y}_{\ell}^{+}\right) & =\arg \max _{\sigma \in\{0,1\}} \mathbb{P}\left(\theta_{\varnothing}=\sigma \mid \boldsymbol{Y}_{\ell}^{+}\right)
\end{aligned}
$$

$$
R^{\text {Ora }}(\delta, \varepsilon)=\lim _{\ell \rightarrow \infty} \mathbb{P}_{\text {Tree }}\left(\hat{\theta}_{\phi}\left(\boldsymbol{Y}_{\ell}^{0}\right) \neq \theta_{0, \varnothing}\right)
$$

It also can be computed

$$
R^{\text {Ora }}(\delta, \varepsilon) \leq R^{*}(\delta, \varepsilon) \leq R^{\text {Poly }}(\delta, \varepsilon) \leq R^{\text {loc }}(\delta, \varepsilon)
$$

It also can be computed

$$
R^{\mathrm{Ora}}(\delta, \varepsilon) \leq R^{*}(\delta, \varepsilon) \leq R^{\mathrm{Poly}}(\delta, \varepsilon) \leq R^{\mathrm{loc}}(\delta, \varepsilon)
$$

It also can be computed

$$
R^{\mathrm{Ora}}(\delta, \varepsilon) \leq R^{*}(\delta, \varepsilon) \leq R^{\mathrm{Poly}}(\delta, \varepsilon) \leq R^{\mathrm{loc}}(\delta, \varepsilon)
$$

Minimax risk

Theorem (\sim Montanari, 2015)
As $\varepsilon \rightarrow 0$ (with $\delta \rightarrow \infty, \sigma$ fixed)

$$
\frac{1}{\varepsilon} R^{*}(\delta, \varepsilon) \rightarrow \begin{cases}1 & \text { if } \delta \leq\left(1-o_{\varepsilon}(1)\right) \cdot \frac{\sigma^{2}}{2 \varepsilon} \log (1 / \varepsilon) \\ 0 & \text { if } \delta \geq\left(1+o_{\varepsilon}(1)\right) \cdot \frac{\sigma^{2}}{2 \varepsilon} \log (1 / \varepsilon)\end{cases}
$$

Minimax risk

Theorem (\sim Montanari, 2015)
As $\varepsilon \rightarrow 0$ (with $\delta \rightarrow \infty, \sigma$ fixed)

$$
\frac{1}{\varepsilon} R^{*}(\delta, \varepsilon) \rightarrow \begin{cases}1 & \text { if } \delta \leq\left(1-o_{\varepsilon}(1)\right) \cdot \frac{\sigma^{2}}{2 \varepsilon} \log (1 / \varepsilon) \\ 0 & \text { if } \delta \geq\left(1+o_{\varepsilon}(1)\right) \cdot \frac{\sigma^{2}}{2 \varepsilon} \log (1 / \varepsilon)\end{cases}
$$

- Sharp threshold (dense): Lelarge, Miolane 2017; Barbier et al. 2017

Minimax risk

Theorem (\sim Montanari, 2015)
As $\varepsilon \rightarrow 0$ (with $\delta \rightarrow \infty, \sigma$ fixed)

$$
\frac{1}{\varepsilon} R^{*}(\delta, \varepsilon) \rightarrow \begin{cases}1 & \text { if } \delta \leq\left(1-o_{\varepsilon}(1)\right) \cdot \frac{\sigma^{2}}{2 \varepsilon} \log (1 / \varepsilon) \\ 0 & \text { if } \delta \geq\left(1+o_{\varepsilon}(1)\right) \cdot \frac{\sigma^{2}}{2 \varepsilon} \log (1 / \varepsilon)\end{cases}
$$

- Sharp threshold (dense): Lelarge, Miolane 2017; Barbier et al. 2017
- Do not know of any polytime algorithm working for

$$
1.01 \cdot \frac{\sigma^{2}}{2 \varepsilon} \log (1 / \varepsilon)<\delta<0.99 \cdot \frac{\sigma^{2}}{2 e \varepsilon^{2}}
$$

Open problems

- Can we beat $R^{\text {loc }}(\delta, \varepsilon)$ by Gibbs sampling?
- Can we beat $R^{\text {loc }}(\delta, \varepsilon)$ by convex optimization?
- Is $R^{\text {Poly }}(\delta, \varepsilon)=R^{\text {loc }}(\delta, \varepsilon)$?

Open problems

- Can we beat $R^{\text {loc }}(\delta, \varepsilon)$ by Gibbs sampling?
- Can we beat $R^{\text {loc }}(\delta, \varepsilon)$ by convex optimization?
- Is $R^{\text {Poly }}(\delta, \varepsilon)=R^{\text {loc }}(\delta, \varepsilon)$?

Open problems

- Can we beat $R^{\text {loc }}(\delta, \varepsilon)$ by Gibbs sampling?
- Can we beat $R^{\text {loc }}(\delta, \varepsilon)$ by convex optimization?
- Is $R^{\text {Poly }}(\delta, \varepsilon)=R^{\text {loc }}(\delta, \varepsilon)$?

Ubiquitous

Sparse principal component analysis

- Berthet, Rigollet, 2013
- Deshpande, Montanari, 2014
- Barbier et al 2016; Miolane 2017

Hidden clique problem
(2 asymmetric communities)

- Jerrum, 1992
- Feige, Krauthgamer, 200
- Deshpande, Montanari, 2015; Montanari 2015

Community detection ($k \geq 5$ symmetric communities)

- Decelle, Krzakala, Moore, Zdeborova 2011
- Bordenave, Lelarge, Massoulie 2015
- Abbe, Sandon 2015

Tensor PCA

- See below

Landscapes

Empirical risk minimization/M-estimation

Class of models $\left(\Theta \subseteq \mathbb{R}^{d}\right)$

$$
C_{\Theta} \equiv\left\{\mathbb{P}_{\boldsymbol{\theta}}: \quad \theta \in \Theta\right\}
$$

Data

$$
x_{1}, x_{2}, \ldots, x_{n} \sim_{i i d} \mathbb{P}_{\boldsymbol{\theta}_{0}}(\cdot)
$$

Empirical risk minimization/M-estimation

Class of models $\left(\Theta \subseteq \mathbb{R}^{d}\right)$

$$
C_{\Theta} \equiv\left\{\mathbb{P}_{\boldsymbol{\theta}}: \quad \theta \in \Theta\right\}
$$

Data

$$
x_{1}, x_{2}, \ldots, x_{n} \sim_{i i d} \mathbb{P}_{\boldsymbol{\theta}_{0}}(\cdot)
$$

$$
\operatorname{minimize} \quad \widehat{\mathcal{L}}_{n}(\boldsymbol{\theta}) \equiv \frac{1}{n} \sum_{i=1}^{n} \ell\left(\boldsymbol{\theta} ; \boldsymbol{x}_{i}\right)
$$

Empirical risk minimization/M-estimation

Rationale

$$
\boldsymbol{\theta}_{0}=\arg \min _{\boldsymbol{\theta} \in \mathbb{R}^{d}} \mathcal{L}(\boldsymbol{\theta}), \quad \mathcal{L}(\boldsymbol{\theta})=\mathbb{E} \widehat{\mathcal{L}}_{n}(\boldsymbol{\theta})
$$

- What can we say generically?
- How does complexity show up?
- What can we say generically?
- How does complexity show up?

Uniform convergence

Theorem (Vapnik, Chervonenkis, 1968; ...)
Under conditions [omitted], with high probability

$$
\begin{aligned}
& \sup _{\boldsymbol{\theta} \in \Theta}\left|\widehat{\mathcal{L}}_{n}(\boldsymbol{\theta})-\mathcal{L}(\boldsymbol{\theta})\right| \leq C \sqrt{\frac{d_{*}}{n}} \\
&\left(d_{*}=\text { VC dimension; } \ldots\right)
\end{aligned}
$$

Uniform convergence

Population risk

Empirical risk

Will optimization algorithms get stuck in local minima? Landscape analysis

Uniform convergence

Population risk

Empirical risk

Will optimization algorithms get stuck in local minima?

Uniform convergence

Population risk

Empirical risk

Will optimization algorithms get stuck in local minima? Landscape analysis

Assumptions

$\boldsymbol{\theta} \in \mathrm{B}^{p}(r)=$ Ball of radius r in \mathbb{R}^{p}
Data: $\boldsymbol{Z}_{1}, Z_{2}, \ldots, Z_{n}$ iid

> A1 $\nabla_{\theta} \ell(\theta ; Z)$ is τ^{2}-sub-Gaussian
> A2 For any $\lambda \in \mathrm{B}^{p}(1), \mathcal{Z}_{\lambda} \equiv\left\langle\lambda, \nabla^{2} \ell(\theta ; Z) \lambda\right\rangle$ is τ^{2}-sub-Exponential.
> A3 The Hessian of the population risk at 0 is bounded by a polynomial

$$
\left\|\nabla^{2} \mathcal{L}(0)\right\|_{\mathrm{op}} \leq \tau^{2} d^{C} .
$$

A4 The Hessian of the loss is Lipschitz continuous with integrable constant

$$
\mathbb{E}\left\{\left\|\nabla^{2} \ell(\cdot ; Z)\right\|_{\text {Lip }}\right\} \leq \tau^{3} d^{C} .
$$

Assumptions

$\boldsymbol{\theta} \in \mathrm{B}^{p}(r)=$ Ball of radius r in \mathbb{R}^{p}
Data: $Z_{1}, Z_{2}, \ldots, Z_{n}$ iid
A1 $\nabla_{\theta} \ell(\theta ; Z)$ is τ^{2}-sub-Gaussian
A2 For any $\lambda \in B^{p}(1), Z_{\lambda} \equiv\left\langle\lambda, \nabla^{2} \ell(\theta ; Z) \lambda\right\rangle$ is τ^{2}-sub-Exponential.
A3 The Hessian of the population risk at 0 is bounded by a polynomial

A4 The Hessian of the loss is Lipschitz continuous with integrable constant

Assumptions

$\boldsymbol{\theta} \in \mathrm{B}^{p}(r)=$ Ball of radius r in \mathbb{R}^{p}
Data: $\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots, \boldsymbol{Z}_{n}$ iid
A1 $\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} ; \boldsymbol{Z})$ is τ^{2}-sub-Gaussian
A2 For any $\boldsymbol{\lambda} \in \mathrm{B}^{p}(1), \mathcal{Z}_{\boldsymbol{\lambda}} \equiv\left\langle\boldsymbol{\lambda}, \nabla^{2} \ell(\boldsymbol{\theta} ; \boldsymbol{Z}) \boldsymbol{\lambda}\right\rangle$ is τ^{2}-sub-Exponential. polynomial

The Hessian of the loss is Lipschitz continuous with integrable constant

Assumptions

$\boldsymbol{\theta} \in \mathrm{B}^{p}(r)=$ Ball of radius r in \mathbb{R}^{p}
Data: $\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots, \boldsymbol{Z}_{n}$ iid
A1 $\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} ; \boldsymbol{Z})$ is τ^{2}-sub-Gaussian
A2 For any $\boldsymbol{\lambda} \in \mathrm{B}^{p}(1), \mathcal{Z}_{\boldsymbol{\lambda}} \equiv\left\langle\boldsymbol{\lambda}, \nabla^{2} \ell(\boldsymbol{\theta} ; \boldsymbol{Z}) \boldsymbol{\lambda}\right\rangle$ is $\boldsymbol{\tau}^{2}$-sub-Exponential.
A3 The Hessian of the population risk at 0 is bounded by a polynomial

$$
\left\|\nabla^{2} \mathcal{L}(0)\right\|_{\mathrm{op}} \leq \tau^{2} d^{C}
$$

A4 The Hessian of the loss is Lipschitz continuous with integrable constant

Assumptions

$\boldsymbol{\theta} \in \mathrm{B}^{p}(r)=$ Ball of radius r in \mathbb{R}^{p}
Data: $\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots, \boldsymbol{Z}_{n}$ iid
A1 $\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} ; \boldsymbol{Z})$ is τ^{2}-sub-Gaussian
A2 For any $\boldsymbol{\lambda} \in \mathrm{B}^{p}(1), \mathcal{Z}_{\boldsymbol{\lambda}} \equiv\left\langle\boldsymbol{\lambda}, \nabla^{2} \ell(\boldsymbol{\theta} ; \boldsymbol{Z}) \boldsymbol{\lambda}\right\rangle$ is $\boldsymbol{\tau}^{2}$-sub-Exponential.
A3 The Hessian of the population risk at 0 is bounded by a polynomial

$$
\left\|\nabla^{2} \mathcal{L}(0)\right\|_{\mathrm{op}} \leq \tau^{2} d^{C}
$$

A4 The Hessian of the loss is Lipschitz continuous with integrable constant

$$
\mathbb{E}\left\{\left\|\nabla^{2} \ell(\cdot ; \boldsymbol{Z})\right\|_{\text {Lip }}\right\} \leq \tau^{3} d^{C}
$$

Assumptions

$\boldsymbol{\theta} \in \mathrm{B}^{p}(r)=$ Ball of radius r in \mathbb{R}^{p}
Data: $\boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \ldots, \boldsymbol{Z}_{n}$ iid
A1 $\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta} ; \boldsymbol{Z})$ is τ^{2}-sub-Gaussian
A2 For any $\boldsymbol{\lambda} \in \mathrm{B}^{p}(1), \mathcal{Z}_{\boldsymbol{\lambda}} \equiv\left\langle\boldsymbol{\lambda}, \nabla^{2} \ell(\boldsymbol{\theta} ; \boldsymbol{Z}) \boldsymbol{\lambda}\right\rangle$ is $\boldsymbol{\tau}^{2}$-sub-Exponential.
A3 The Hessian of the population risk at 0 is bounded by a polynomial

$$
\left\|\nabla^{2} \mathcal{L}(0)\right\|_{\mathrm{op}} \leq \tau^{2} d^{C}
$$

A4 The Hessian of the loss is Lipschitz continuous with integrable constant

$$
\mathbb{E}\left\{\left\|\nabla^{2} \ell(\cdot ; \boldsymbol{Z})\right\|_{\text {Lip }}\right\} \leq \tau^{3} d^{C}
$$

'Under mild assumptions'

Lemma

Under assumptions A1, A2, A3, A4, if $n \geq C p \log p$, then with probability at least $1-\delta$, the following hold:

$$
\begin{gathered}
\sup _{\boldsymbol{\theta} \in \mathrm{B}^{p}(r)}\left\|\nabla \widehat{\mathcal{L}}_{n}(\boldsymbol{\theta})-\nabla \mathcal{L}(\boldsymbol{\theta})\right\|_{2} \leq \tau \sqrt{\frac{C d \log n}{n}} \\
\sup _{\boldsymbol{\theta} \in \mathrm{B}^{p}(r)}\left\|\nabla^{2} \widehat{\mathcal{L}}_{n}(\boldsymbol{\theta})-\nabla^{2} \mathcal{L}(\boldsymbol{\theta})\right\|_{\mathrm{op}} \leq \tau^{2} \sqrt{\frac{C d \log n}{n}} .
\end{gathered}
$$

This cannot happen!

Population risk

Empirical risk

This can happen!

Nice population risk \Rightarrow Nice empirical risk

This can happen!

Population risk

Empirical risk

Nice population risk \Rightarrow Nice empirical risk

Example: Binary classification

$\boldsymbol{z}_{i}=\left(y_{i}, \boldsymbol{x}_{i}\right), y_{i} \in\{0,1\}, \boldsymbol{x}_{i} \in \mathbb{R}^{d}$

$$
\begin{aligned}
\mathbb{P}\left(y_{i}=1 \mid x_{i}\right) & =\sigma\left(\left\langle\boldsymbol{\theta}_{0}, \boldsymbol{x}_{i}\right\rangle\right) \\
\widehat{\mathcal{L}}_{n}(\boldsymbol{\theta}) & =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\sigma\left(\left\langle\boldsymbol{\theta}, \boldsymbol{x}_{i}\right\rangle\right)\right)^{2} .
\end{aligned}
$$

- Rosenblatt 1958 (Perceptron); . . . many extensions
- More robust than logistic regression

Sample application: Binary classification

Theorem (Mei, Bai, Montanari 2017)
Assume \boldsymbol{X}_{i} to be centered, sub-Gaussian, with $\mathbb{E}\left\{\boldsymbol{X} \boldsymbol{X}^{\top}\right\} \succeq \delta I_{d}$. For nice ${ }^{a}$ functions σ, whp:

1. The population risk has a unique critical point $\hat{\theta}_{n}$.
2. Gradient descent converges exponentially fast to $\hat{\boldsymbol{\theta}}_{n}$.
3. The estimation error is $\left\|\hat{\theta}_{n}-0_{0}\right\|_{2} \leq C \sqrt{(d \log n) / n}$.

$$
{ }^{a} \sigma^{\prime}(x)>0,\left\|\sigma^{\prime}\right\|_{\infty},\left\|\sigma^{\prime \prime}\right\|_{\infty},\left\|\sigma^{\prime \prime \prime}\right\|_{\infty} \leq C .
$$

Similar results for robust regression, one-bit compressed sensing, [see pape]

Sample application: Binary classification

Theorem (Mei, Bai, Montanari 2017)
Assume \boldsymbol{X}_{i} to be centered, sub-Gaussian, with $\mathbb{E}\left\{\boldsymbol{X} \boldsymbol{X}^{\top}\right\} \succeq \delta I_{d}$. For nice ${ }^{a}$ functions σ, whp:

1. The population risk has a unique critical point $\hat{\boldsymbol{\theta}}_{n}$.
2. Gradient descent converges exponentially fast to $\hat{\boldsymbol{\theta}}_{n}$.
3. The estimation error is $\left\|\hat{\boldsymbol{\theta}}_{n}-\theta_{0}\right\|_{2} \leq C \sqrt{(d \log n) / n}$.

$$
{ }^{a} \sigma^{\prime}(x)>0,\left\|\sigma^{\prime}\right\|_{\infty},\left\|\sigma^{\prime \prime}\right\|_{\infty},\left\|\sigma^{\prime \prime \prime}\right\|_{\infty} \leq C .
$$

Similar results for robust regression, one-bit compressed sensing,

Sample application: Binary classification

Theorem (Mei, Bai, Montanari 2017)

Assume X_{i} to be centered, sub-Gaussian, with $\mathbb{E}\left\{X X^{\top}\right\} \succeq \delta I_{d}$. For nice ${ }^{a}$ functions σ, whp:

1. The population risk has a unique critical point $\hat{\boldsymbol{\theta}}_{n}$.
2. Gradient descent converges exponentially fast to $\hat{\boldsymbol{\theta}}_{n}$.
3. The estimation error is $\left\|\hat{\theta}_{n}-\theta_{0}\right\|_{2} \leq C \sqrt{(d \log n) / n}$.

$$
{ }^{a} \sigma^{\prime}(x)>0,\left\|\sigma^{\prime}\right\|_{\infty},\left\|\sigma^{\prime \prime}\right\|_{\infty},\left\|\sigma^{\prime \prime \prime}\right\|_{\infty} \leq C .
$$

Similar results for robust regression, one-bit compressed sensing,

Sample application: Binary classification

Theorem (Mei, Bai, Montanari 2017)

Assume X_{i} to be centered, sub-Gaussian, with $\mathbb{E}\left\{X X^{\top}\right\} \succeq \delta I_{d}$. For nice ${ }^{a}$ functions σ, whp:

1. The population risk has a unique critical point $\hat{\boldsymbol{\theta}}_{n}$.
2. Gradient descent converges exponentially fast to $\hat{\boldsymbol{\theta}}_{n}$.
3. The estimation error is $\left\|\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right\|_{2} \leq C \sqrt{(d \log n) / n}$.

$$
{ }^{2} \sigma^{\prime}(x)>0,\left\|\sigma^{\prime}\right\|_{\infty},\left\|\sigma^{\prime \prime}\right\|_{\infty},\left\|\sigma^{\prime \prime \prime}\right\|_{\infty} \leq C .
$$

Similar results for robust regression, one-bit compressed sensing,

Sample application: Binary classification

Theorem (Mei, Bai, Montanari 2017)

Assume X_{i} to be centered, sub-Gaussian, with $\mathbb{E}\left\{X^{\top} X^{\top}\right\} \succeq \delta I_{d}$. For nice ${ }^{a}$ functions σ, whp:

1. The population risk has a unique critical point $\hat{\boldsymbol{\theta}}_{n}$.
2. Gradient descent converges exponentially fast to $\hat{\boldsymbol{\theta}}_{n}$.
3. The estimation error is $\left\|\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\theta}_{0}\right\|_{2} \leq C \sqrt{(d \log n) / n}$.

$$
{ }^{2} \sigma^{\prime}(x)>0,\left\|\sigma^{\prime}\right\|_{\infty},\left\|\sigma^{\prime \prime}\right\|_{\infty},\left\|\sigma^{\prime \prime \prime}\right\|_{\infty} \leq C .
$$

Similar results for robust regression, one-bit compressed sensing, ...
[see paper]

Non-convex literature

Convergence to 'statistical neighborhood'

- Loh, Wainwright, 2012
- Loh Wainwright, 2013
- Yang, Wang, Liu, Eldar, Zhang, 2015

Smart initialization

- TKeshavan, Montanari, Oh, 2009
- Chen, Candés, 2015
- Anandkumar Ge Jenramin, 2015

Unique local minimum

- Ioh, 2015
- Sun, Qu, Wright, 2016
[High-dim. regression, $n \gtrsim s_{0}^{2}$]
[Phase retrievall
- Ge, Lee, Ma, 2016

Non-convex literature

Convergence to 'statistical neighborhood'

- Loh, Wainwright, 2012
- Loh Wainwright, 2013
- Yang, Wang, Liu, Eldar, Zhang, 2015

Smart initialization

- Keshavan, Montanari, Oh, 2009
- Chen, Candés, 2015
- Anandkumar, Ge, Jenzamin, 2015

Unique local minimum

- Loh, 2015
- Sun, Qu, Wright, 2016
- Ge, Lee, Ma, 2016
[High-dim. regression, $n \gtrsim s_{0}^{2}$]
[Phase retrieval]
[Matrix completion]
- What can we say generically?
- How does complexity show up?

Intuition

Population risk very flat \Leftrightarrow Many local minima

[Close to where local algorithms fail?]

Simplest example: Spiked tensor model

- Unknown parameter $\boldsymbol{\theta}_{0} \in \mathbb{R}^{n},\left\|\boldsymbol{\theta}_{0}\right\|_{2}=1$
- Data ${ }^{1}$

$$
\boldsymbol{Y}=\lambda \boldsymbol{\theta}_{0}^{\otimes k}+\boldsymbol{W}
$$

- $\boldsymbol{W}=$ symmetric Gaussian noise tensor. $\left(W_{i_{1}, \ldots, i_{k}}\right)_{i_{1}<\cdots<i_{k}} \sim_{i i d} \mathrm{~N}(0,1 / n)$

[^0]
Spiked tensor model: What do we know?

$$
\boldsymbol{Y}=\lambda \boldsymbol{\theta}_{0}^{\otimes k}+\boldsymbol{W}
$$

Theorem (Montanari, Richard, 2014; Hopkins, Shi, Steurer, 2015)
For any $\varepsilon>0$, there exist constants λ_{IT}, $\lambda_{\mathrm{ML}}(\varepsilon), C(\varepsilon)$, such that:

- If $\lambda>\lambda_{\mathrm{ML}}(\varepsilon)$, then $\mathbb{E}\left\{\left|\left\langle\hat{\theta}^{\mathrm{ML}}, \theta_{0}\right\rangle\right|\right\} \geq 1-\varepsilon$.
- No estimator can achieve $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}, \theta_{0}\right\rangle\right|\right\} \geq \varepsilon$ unless $\lambda>\lambda_{\text {IT }}$.
- There exists poly-time estimator achieving
$\mathbb{E}\left\{\mid\left\langle\hat{\theta}^{\text {Dolty }}, \theta_{0}\right|\right\} \geq 1-\varepsilon$, provided $\lambda \geq C(\varepsilon) n^{(i \lambda-2) / 4}$.

No efficient estimator is known for $1 \ll \lambda \ll n^{(k-2) / 4}$!

Spiked tensor model: What do we know?

$$
\boldsymbol{Y}=\lambda \boldsymbol{\theta}_{0}^{\otimes k}+\boldsymbol{W}
$$

Theorem (Montanari, Richard, 2014; Hopkins, Shi, Steurer, 2015)
For any $\varepsilon>0$, there exist constants $\lambda_{\mathrm{IT}}, \lambda_{\mathrm{ML}}(\varepsilon), C(\varepsilon)$, such that:

- If $\lambda>\lambda_{\mathrm{ML}}(\varepsilon)$, then $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}^{\mathrm{ML}}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq 1-\boldsymbol{\varepsilon}$.

No efficient estimator is known for $1 \ll \lambda \ll n^{(k-2) / 4}$!

Spiked tensor model: What do we know?

$$
\boldsymbol{Y}=\lambda \boldsymbol{\theta}_{0}^{\otimes k}+\boldsymbol{W}
$$

Theorem (Montanari, Richard, 2014; Hopkins, Shi, Steurer, 2015)
For any $\varepsilon>0$, there exist constants $\lambda_{\text {IT }}$, $\lambda_{\text {МL }}(\varepsilon), C(\varepsilon)$, such that:

- If $\lambda>\lambda_{\mathrm{ML}}(\varepsilon)$, then $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}^{\mathrm{ML}}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq 1-\boldsymbol{\varepsilon}$.
- No estimator can achieve $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq \boldsymbol{\varepsilon}$ unless $\lambda>\lambda_{\mathrm{IT}}$.

No efficient estimator is known for $1 \ll \lambda \ll n^{(k-2) / 4}$!

Spiked tensor model: What do we know?

$$
\boldsymbol{Y}=\lambda \boldsymbol{\theta}_{0}^{\otimes k}+\boldsymbol{W}
$$

Theorem (Montanari, Richard, 2014; Hopkins, Shi, Steurer, 2015)
For any $\varepsilon>0$, there exist constants $\lambda_{\mathrm{IT}}, \lambda_{\mathrm{ML}}(\varepsilon), C(\varepsilon)$, such that:

- If $\lambda>\lambda_{\mathrm{ML}}(\varepsilon)$, then $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}^{\mathrm{ML}}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq 1-\boldsymbol{\varepsilon}$.
- No estimator can achieve $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq \varepsilon$ unless $\lambda>\lambda_{\mathrm{IT}}$.
- There exists poly-time estimator achieving $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}^{\text {Poly }}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq 1-\boldsymbol{\varepsilon}$, provided $\lambda \geq C(\varepsilon) n^{(k-2) / 4}$.

Spiked tensor model: What do we know?

$$
\boldsymbol{Y}=\lambda \boldsymbol{\theta}_{0}^{\otimes k}+\boldsymbol{W}
$$

Theorem (Montanari, Richard, 2014; Hopkins, Shi, Steurer, 2015)
For any $\varepsilon>0$, there exist constants $\lambda_{\mathrm{IT}}, \lambda_{\mathrm{ML}}(\varepsilon), C(\varepsilon)$, such that:

- If $\lambda>\lambda_{\mathrm{ML}}(\varepsilon)$, then $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}^{\mathrm{ML}}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq 1-\boldsymbol{\varepsilon}$.
- No estimator can achieve $\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq \boldsymbol{\varepsilon}$ unless $\lambda>\lambda_{\mathrm{IT}}$.
- There exists poly-time estimator achieving
$\mathbb{E}\left\{\left|\left\langle\hat{\boldsymbol{\theta}}^{\text {Poly }}, \boldsymbol{\theta}_{0}\right\rangle\right|\right\} \geq 1-\boldsymbol{\varepsilon}$, provided $\lambda \geq C(\varepsilon) n^{(k-2) / 4}$.

No efficient estimator is known for $1 \ll \lambda \ll n^{(k-2) / 4}$!

More precise results

- Montanari, Reichman, Zeitouni, 2015
- Bandeira, Perry, Wein, 2017
- Krzakala, Lelarge, Miolane, Zdeborova, 2017

In practice $(k=3)_{n=3 s}$

What does the landscape look like?

Maximum likelihood

$$
\begin{aligned}
\text { minimize } & \widehat{\mathcal{L}}_{n}(\boldsymbol{\theta})=\left\|\boldsymbol{Y}-\lambda \boldsymbol{\theta}^{\otimes k}\right\|_{F} \\
\text { subject to } & \|\boldsymbol{\theta}\|_{2}=1
\end{aligned}
$$

Maximum likelihood

$$
\begin{aligned}
\operatorname{minimize} & \widehat{\mathcal{L}}_{n}(\boldsymbol{\theta})=\left\|\boldsymbol{Y}-\lambda \boldsymbol{\theta}^{\otimes k}\right\|_{F} \\
\text { subject to } & \|\boldsymbol{\theta}\|_{2}=1
\end{aligned}
$$

$$
\widehat{\mathcal{L}}_{n}(\boldsymbol{\theta})=\text { const. }-2 \lambda\left\langle\boldsymbol{Y}, \boldsymbol{\theta}^{\otimes k}\right\rangle
$$

Risk

Maximum likelihood

$$
\begin{aligned}
\operatorname{minimize} & \widehat{\mathcal{L}}_{n}(\boldsymbol{\theta})=-\left\langle\boldsymbol{Y}, \boldsymbol{\theta}^{\otimes k}\right\rangle \\
\text { subject to } & \|\boldsymbol{\theta}\|_{2}=1
\end{aligned}
$$

'Population' risk

$$
\mathcal{L}(\boldsymbol{\theta})=-\lambda\left\langle\boldsymbol{\theta}_{0}, \boldsymbol{\theta}\right\rangle^{k}
$$

Back-of-the-envelope

Expected gradient

$$
\nabla \mathcal{L}(\boldsymbol{\theta})=-k \lambda\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}_{0}\right\rangle^{k-1} \boldsymbol{\theta}_{0}
$$

Random initialization $\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}_{0}\right\rangle=\Theta\left(n^{-1 / 2}\right)$:

$$
\begin{aligned}
\left\langle\theta_{0}, \nabla \widehat{\mathcal{L}}_{n}(\theta)\right\rangle & =-k \lambda\left\langle\theta_{,} \theta_{0}\right\rangle^{k-1}-k\left\langle W, \theta_{0} \otimes \theta^{\otimes(k-1)}\right\rangle \\
& =-\lambda \Theta\left(n^{-(k-1) / 2}\right)+\Theta\left(n^{-1 / 2}\right)
\end{aligned}
$$

Back-of-the-envelope

Expected gradient

$$
\nabla \mathcal{L}(\boldsymbol{\theta})=-k \lambda\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}_{0}\right\rangle^{k-1} \boldsymbol{\theta}_{0}
$$

Random initialization $\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}_{0}\right\rangle=\Theta\left(n^{-1 / 2}\right)$:

$$
\begin{aligned}
\left\langle\boldsymbol{\theta}_{0}, \nabla \widehat{\mathcal{L}}_{n}(\boldsymbol{\theta})\right\rangle & =-k \lambda\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}_{0}\right\rangle^{k-1}-k\left\langle\boldsymbol{W}, \boldsymbol{\theta}_{0} \otimes \boldsymbol{\theta}^{\otimes(k-1)}\right\rangle \\
& =-\lambda \Theta\left(n^{-(k-1) / 2}\right)+\Theta\left(n^{-1 / 2}\right)
\end{aligned}
$$

Back-of-the-envelope

Expected gradient

$$
\nabla \mathcal{L}(\boldsymbol{\theta})=-k \lambda\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}_{0}\right\rangle^{k-1} \boldsymbol{\theta}_{0}
$$

Random initialization $\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}_{0}\right\rangle=\Theta\left(n^{-1 / 2}\right)$:

$$
\begin{aligned}
\left\langle\boldsymbol{\theta}_{0}, \nabla \widehat{\mathcal{L}}_{n}(\boldsymbol{\theta})\right\rangle & =-k \lambda\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}_{0}\right\rangle^{k-1}-k\left\langle\boldsymbol{W}, \boldsymbol{\theta}_{0} \otimes \boldsymbol{\theta}^{\otimes(k-1)}\right\rangle \\
& =-\lambda \Theta\left(n^{-(k-1) / 2}\right)+\Theta\left(n^{-1 / 2}\right)
\end{aligned}
$$

- Convergence: $\lambda \gg n^{(k-2) / 2}$

Expected number of local minima: $k=3, \lambda=3$

- Exponential in black region

$$
\left(m=\left\langle\boldsymbol{\theta}, \boldsymbol{\theta}_{0}\right\rangle, x=\left\langle\boldsymbol{Y}, \boldsymbol{\theta}^{\otimes k}\right\rangle\right)
$$

- $N=$ number of local minima

$$
\mathbb{E} N(m, x)=e^{n S_{0}(m, x)+o(n)}
$$

[Ben Arous, Mei, Montanari, Nica, 2017]

Complexity of landscape $\stackrel{?}{\leftrightarrow}$ Complexity for local algorithms

An emerging dichotomy

In several statistical estimation problems

- Dither local (or message-passing) algorithms work. - ... or SDP hierarchies do not work

Why?

An emerging dichotomy

In several statistical estimation problems

- Either local (or message-passing) algorithms work...
- . . . or SDP hierarchies do not work

An emerging dichotomy

In several statistical estimation problems

- Either local (or message-passing) algorithms work...
- ... or SDP hierarchies do not work

Why?

A possible explanation

Perhaps SDPs on random instances can be solved by local algorithms...

Simplest example

Centered adjacency matrix of $G=(V, E) \quad$ ($d=$ average degree)

$$
A_{i j}^{\text {cen }}= \begin{cases}1-\frac{d}{n} & \text { if }(i, j) \in E \\ -\frac{d}{n} & \text { otherwise }\end{cases}
$$

$\operatorname{SDP}\left(\boldsymbol{A}^{\mathrm{cen}}\right):$

$$
\begin{aligned}
\operatorname{maximize} & \left\langle\boldsymbol{A}^{\mathrm{cen}}, \boldsymbol{X}\right\rangle \\
\text { subject to } & \boldsymbol{X} \in \mathbb{R}^{n \times n}, \boldsymbol{X} \succeq 0 \\
& X_{i i}=1
\end{aligned}
$$

- Graph clustering, embedding, testing latent structure,...

What does it mean?

Input: Graph $G_{n}=\left(V_{n}, E_{n}\right)$

1. Generate $\boldsymbol{z}=(z(i))_{i \in V} \sim_{i i d} \mathrm{~N}(0,1)$
2. Compute, for each $v \in V_{n}, \xi_{v}=F\left(\mathrm{~B}_{\ell}\left(v ; G_{n}\right),\left.z\right|_{\mathrm{B}_{\ell}\left(v ; G_{n}\right)}\right)$
3. Output $\boldsymbol{X}=\mathbb{E}_{\boldsymbol{z}}\left\{\boldsymbol{\xi} \xi^{\top}\right\}+\cdots \in \mathbb{R}^{n \times n}$

Can this achieve $\left\langle\boldsymbol{A}^{\text {cen }}, \boldsymbol{X}\right\rangle \geq\left(1-o_{n}(1)\right) \operatorname{SDP}\left(\boldsymbol{A}^{\text {cen }}\right)$?

Erdős-Renyi random graphs

Theorem (Fan, Montanari, 2016)
Let $G \sim \mathcal{G}(n, d / n)$ and $A^{\text {cen }}=A_{G}^{\mathrm{cen}}$. Then, a.s.,

$$
\begin{aligned}
2 \sqrt{d}\left(1-\frac{1}{d+1}\right) & \leq \lim \inf _{n \rightarrow \infty} \frac{1}{n} \operatorname{SDP}\left(A^{\mathrm{cen}}\right) \leq \\
& \leq \lim \sup _{n \rightarrow \infty} \frac{1}{n} \operatorname{SDP}\left(A^{\mathrm{cen}}\right) \leq 2 \sqrt{d}\left(1-\frac{1}{2 d}\right)
\end{aligned}
$$

Further, the lower bound is achieved by local algorithms.

- A local algorithm achieves $8 / 9$ of $\operatorname{SDP}\left(\boldsymbol{A}^{\mathrm{cen}}\right)$.

Erdős-Renyi random graphs

Theorem (Fan, Montanari, 2016)
Let $G \sim \mathcal{G}(n, d / n)$ and $A^{\text {cen }}=A_{G}^{\mathrm{cen}}$. Then, a.s.,

$$
\begin{aligned}
2 \sqrt{d}\left(1-\frac{1}{d+1}\right) & \leq \lim \inf _{n \rightarrow \infty} \frac{1}{n} \operatorname{SDP}\left(\boldsymbol{A}^{\mathrm{cen}}\right) \leq \\
& \leq \lim \sup _{n \rightarrow \infty} \frac{1}{n} \operatorname{SDP}\left(\boldsymbol{A}^{\mathrm{cen}}\right) \leq 2 \sqrt{d}\left(1-\frac{1}{2 d}\right)
\end{aligned}
$$

Further, the lower bound is achieved by local algorithms.

Erdős-Renyi random graphs

Theorem (Fan, Montanari, 2016)

Let $G \sim \mathcal{G}(n, d / n)$ and $A^{\text {cen }}=A_{G}^{\mathrm{cen}}$. Then, a.s.,

$$
\begin{aligned}
2 \sqrt{d}\left(1-\frac{1}{d+1}\right) & \leq \lim \inf _{n \rightarrow \infty} \frac{1}{n} \operatorname{SDP}\left(A^{\mathrm{cen}}\right) \leq \\
& \leq \lim \sup _{n \rightarrow \infty} \frac{1}{n} \operatorname{SDP}\left(A^{\mathrm{cen}}\right) \leq 2 \sqrt{d}\left(1-\frac{1}{2 d}\right)
\end{aligned}
$$

Further, the lower bound is achieved by local algorithms.

- A local algorithm achieves $8 / 9$ of $\operatorname{SDP}\left(\boldsymbol{A}^{\mathrm{cen}}\right)$.

Bounds vs numerical simulations

[Related results for planted partition model, regular graphs, ...]

A better local algorithm (see paper)

[Related results for planted partition model, regular graphs, ...]

Conclusion

Conclusion

- Which statistical problems are tractable?
- Multiple points of view:
- Local-message passing algorithms
- Landscape analysis
- SDP hierarchies

Conclusion

- Which statistical problems are tractable?
- Multiple points of view:
- Local-message passing algorithms
- Landscape analysis
- SDP hierarchies

Thanks!

[^0]: ${ }^{1}$ Equivalently, $Y_{i_{1}, \ldots, i_{k}}=\lambda \theta_{0, i_{1}} \cdots \theta_{0, i_{k}}+W_{i_{1}, \ldots, i_{k}}$.

