CHAPTER 9

The economics of competitive bidding:
a selective survey

Paul R. Milgrom

1 Introduction

In Western economies, a wide variety of institutions have emerged for
determining prices and conducting trade. In retail stores, the price of
each good is usually posted by the seller, and individual buyers can do
little to influence that price. When costly inputs are sold to manufacturing
firms, the price is often negotiated — so the buyer and seller both take an
active part in setting the price. A third common institution for setting
prices is the auction, in which the price of goods is determined by .
competition among potential buyers. Hybrid trading institutions can also
be found; for example, on some securities exchanges, specialists bidding
against one another determine the market bid and ask prices, while public
customers act as price takers.

Each of these various arrangements for conducting trade has some
unique merits.! Detailed negotiations provide a flexible way to deter-
mine prices, product features, financing terms, and so on. But nego-
tiations are costly and time consuming. In contrast, posted prices are
inexpensive to administer, but they are also relatively inflexible and
unresponsive to the wants and needs of particular consumers and to
short-run fluctuations in demand.

Auctions have properties that place them somewhere between negotia-
tions and posted prices. Billions of dollars of U.S. Treasury bills are sold
each week using a sealed-tender auction, and while that causes resources
to be spent by potential buyers in preparing bids, it also allows T-bill

! Harris and Raviv [1981, 1982], Maskin, Riley [1981], and Riley and Zeckhauser [1983] all
consider various arrangements for selling goods from the point of view of profit max-
imization in an attempt to explain why, out of all conceivable’ selling arrangements,
posted prices and competitive bidding are so popular. Their analyses focus on production
and selling costs, rather than such factors as shifting demand, buyer transactions costs,
uniqueness of the goods,.and the need to adapt to newly arriving information.
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prices to reflect current demand conditions and to respond to new infor-
mation about variables like the federal deficit or the money supply.
Antiques are commonly sold at auction, and although bringing together
the potential buyers at one place and time entails moderate costs, there
are compensating benefits: the auction procedure leads to prices that
reflect the unique features and appeal of each piece, rather than setting a
single price for all “Early American Rockers.”

There are many kinds of auctions, but we shall limit our attention
primarily to the most popular forms: the Dutch, English, discriminatory,
and Vickrey auctions, In the Dutch auction, the auctioneer begins by
calling a relatively high price for the goods being sold, and then gradually
reduces the price until some bidder claims the goods for the current price.
The English auction is an increasing price auction; the auctioneer gradu-
ally raises the price until only one bidder is still active. That bidder is then
awarded the goods for the specified price. (The early Roman auctions
were probably also of this kind, for the word “auction” is derived from
the Latin root “auctus,” meaning “an increase” [Cassady, 1967].)

The discriminatory and Vickrey auctions are sealed-bid tender auc-
tions that can be used to sell units of a homogeneous good. In the
discriminatory auction, each bidder submits one or more sealed bids, and
the available units are awarded to the highest bidders according to the
terms of their bids. Thus, each unit may be sold at a different price. The
discriminatory auction is currently used for the sale of U.S. Treasury bills
to major buyers. (Individual customers are permitted to buy a small
number of bills for the average price paid by the major buyers.)

The Vickrey auction is a sealed-bid tender auction that, like the
discriminatory auction, awards the units to the highest bidders. The price
paid by a bidder for the j™ unit he acquires is equal to the j™ highest
rejected bid from among his competitors. Vickrey [1961] pointed out that
the prices a bidder must pay under this procedure do_not depend on his
own bids; that is, each bidder is a price taker. Consequently (assuming
there are no income effects), a bidder can maximize his expected payoff
by submitting bids equal to his marginal willingness to pay for each unit.
Notice that this bidding strategy is optimal regardless of the bids made by
one’s competitors; it is a dominant strategy. Vickrey argued that an
advantage of this procedure is that it eliminates the bidders’ incentives to
gather strategic information about their competitors and so reduces bid
preparation costs. Moreover, if every bidder adopts his dominantstrategy,
the allocation of goods resulting from the auction will be Pareto optimal,
because each unit is assigned to the bidder for whom its marginal value is
highest.

Closely related to the Vickrey auction is the uniform-price auction in
which the units are all sold at a uniform price equal to the highest rejected
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bid. Most formal analyses of auctions focus on the case where each bidder
desires only one unit, and in that case the uniform price auction and the
Vickrey auction are identical. Moreover, in that case, the uniform price is
a competitive price: it is the lowest price at which supply (the number of
units being offered) equals demand. ,

A storm of controversy arose in the 1960s when it was suggested that a
uniform-price auction be used in place of the discriminatory auction for
selling U.S. Treasury bills (Carson [1959], Friedman [1960], Brimmer
[1962], Goldstein [1962], Rieber [1964], Smith [1966]). Proponents of the
move argued that the uniform-price auction would lead to more effi-
cient allocations than the discriminatory auction. Moreover, because
uniform-price auctions are strategically simpler, the change would reduce
bid preparation costs and encourage more bidders to participate. Oppo-
nents retorted that efficiency is but one objective of government; getting
favorable terms on financing is another. In a discriminatory auction, it
was argued, the government captures substantial advantages from price
discrimination; more anxious buyers will pay higher prices to raise the
likelihood of acquiring a unit. Experiments conducted by Cox, Roberson,
and Smith [in press] lend support to this view.

As the following simple example shows, both the increased efficiency
argument made by the proponents of the uniform price procedure and the
increased revenue argument made by its opponents are subject to impor-
tant qualifications. Let there be four bidders named A, B, C, and D, each
of whom wants only one unit. Let their reservation prices be 22, 20, 15,
and 12, respectively. Suppose that two units are available for sale. We
model the auction as a noncooperative game among these bidders. If
bidder A is awarded an object and pays a price p, his payoff is 22 — p. If
he loses, his payoff is zero. The payoffs of the other bidders are similarly
determined. Each bidder selects a nonnegative real number to be his bid,
and the outcome is then determined according to the rules of the auction.

In the uniform price auction, each player has a dominant strategy: A
bids 22, B bids 20, C bids 15, and D bids 12. The units are awarded to A
and B for a price of 15, and the seller’s revenue is 30.

In the discriminatory auction, no bidder has a dominant strategy, but
the bidders do have dominated strategies: they should never bid higher
than their respective reservation prices. Because there is no dominant-
strategy equilibrium, we shall seek a Nash equilibrium in undominated
strategies. At every such equilibrium, A and B both bid 15 and C adopts
some randomized strategy. For example, at one equilibrium, C selects his
bid at random from the interval (14,15), using a uniform distribution, and -
D makes some undominated bid. At each equilibrium, the winners are A
and B. Both pay a price of 15, and the seller’s revenue is 30, just as with
the uniform-price auction.
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In this examplé, then, there are neither differences in efficiency nor
differences in revenues generated between these two auctions. It seems
clear that to reach any general conclusions, a more careful analysis is
needed. '

2 Equilibrium models of competitive bidding

The theoretical literature on competitive bidding consists mostly of stud-
ies of noncooperative game models of auctions in which a single item is
offered for sale. To specify a game model, one must identify (i) the
players, (i) the information known by the players, (iii) the actions
available to them, and (iv) how payoffs are determined. In addition, one
must specify a solution concept that predicts how players in a game will
behave.

In a typical auction game, the players are the bidders. All of the
bidders share certain common knowledge about their environment — the
rules of auction, certain characteristics of the item being sold, and so on.
In addition, each bidder may have private information concerning his
own tastes or the characteristics of the item being sold. To capture the
idea that this information is private (and therefore not known by the
other bidders), each player’s information is modeled by a random vari-
able that he alone observes. The bidders’ uncertainty about one another’s
information is then represented by a joint-probability distribution over
all these random variables. This distribution is itself assumed to be
common knowledge among the bidders. Thus, but for the differences in
their information, the bidders would share identical beliefs about the
item being offered and about their competitors.

The auctions available to individual bidders depend on the particular
auction game being played. In a sealed-bid auction, each bidder selects a
single number, representing his bid. The payoff to the winning bidder will
most often be the excess of the value of the item to the bidder over the
price he pays. In most bidding games, the losing bidders’ payoffs is set
equal to zero.

A strategy for a bidder specifies what action to take as a function of
what he knows. For example, in a sealed-bid auction, a bidder who
estimates the value of the item to himself at x might bid an amount B(x).
Then, the function B is his strategy.

All formal auction models developed to date have assumed that the
biddets do not collude or cooperate with each other. The noncooperative
solution most often used in game theory is the Nash equilibrium or one of
its variants. A set of strategies (one for each player) is a Nash equilibrium
if every player, believing that his competitors will use their equilibrium
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strategies, maximizes his own payoff by playing his equilibrium strategy.
Thus, if it were common knowledge that all planned to use their equilib-
rium strategies, no bidder would have an incentive to alter his plan.

There have been many formal equilibrium models of competitive
bidding. The assumptions of these models differ along many dimensions,
but two of these dimensions are of preeminent importance for our
analysis: the determinants of the bidders’ payoffs (value assumptions)
and the determinants of their beliefs about their competitors (distribu-
tional assumptions). ‘

The original Vickrey [1961, 1962] studies of competitive bidding as
well as many more recent studies (Griesmer, Levitan, and Shubik [1967],
Ortega-Reichert [1968], Matthews [1979], Holt [1980], Riley and Samuel-
son [1981], Harris and Raviv [1982]) adopted the private-values assump-
tion. According to this assumption, a bidder’s payoffs can depend only on
(i) what he knows, (ii) whether he wins, and (iii) how much he pays.
Value is treated asa purely personal matter: each bidder knows what the
goods are worth to himself, and no bidder cares what they are worth to
others, except possibly as strategic information to be used in choosing a
bid. Thus, the object being sold is not a painting that may eventually be
resold for a pricé depending on the tastes of others; it is not the rights to
minerals or timber on federal territory, whose value depends on the
unknown amounts and composition of the recoverable minerals or timber;
and it is not a financial security, whose value depends on future prices,
dividends, interest rates, and the like.

In extreme contrast to the private-values assumption is the common-
value assumption, used most often in analyzing auctions for mineral
rights (Wilson [1967], Ortega-Reichert [1968], Rothkopf [1969], Reece
[1978], Engelbrecht-Wiggans, Milgrom, and Weber [1981], Milgrom and
Weber [1982b]). According to the common-value assumption, the actual
value (V) of the mineral rights is the same to all bidders, but the value will
not be known until the resource is extracted. Also, the bidders may
presently differ in their estimates of V.

Let X; be bidder i’s estimate of V, and suppose that it is an unbiased
estimate; that is, E[X}|V] = V. Other things being equal, the winning
bidder will be the one with the highest estimate. The estimate of the
winning bidder is biased upward; that is, E[max X,|V] > max E[X|V] =V
(because “max” is a convex function). Intuitively, a bidder wins often
when he overestimates V but wins only rarely when he underestimates V.,
Consequently, even if his estimates are unbiased, his estimates will be
systematically high in those cases where he wins. The phenomenon is
called the winner’s curse.

Qil companies bidding for tracts of land in unexplored territory are
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allegedly among those accursed (Capen, Clapp, and Campbell [1971)),
and other examples of the curse are easy to find. The new entrant in a
local construction industry who is inexperienced in making competitive
cost estimates may find that his bid wins the job only when he has
underestimated the construction cost — he suffers from the winner’s
curse (cf. Brown [1975]). The university that makes the highest salary
offer to a young assistant professor and the first-time homebuyer who
outbids all rivals may both suffer the curse.

The analysis of common-value models focuses on the winner’s curse
and related issues. How does one bid to alleviate the curse? (Cautiously!)
‘What are the incentives to acquire information? (Private information
alleviates the curse for the informed bidder and intensifies the curse for
his competitors.) How efficiently do prices aggregate information? How
should the seller manage any information to which he may be privy?

A few papers develop bidding models that accommodate both private-
values and common-value models, as well as a range of intermediate
models (Wilson [1977], Milgrom [1979a,b, 1981a], Milgrom and Weber

[1982a,b]). The most general models allow the value of the goods to any

one bidder to depend on his tastes, the tastes of other bidders, the
preferences of nonparticipants, and various unobserved qualities of
goods. All of the issues described can be treated in this framework.

The second important way in which bidding models differ is in their
distributional assumptions. The value estimate that a bidder makes — or
his reservation price in a private-values model — is represented by a
real-valued random variable, called the bidder’s type. One common
assumption is that the types are statistically independent. In an auction
for a painting, the independent types assumption rules out the possibility
that a bidder, finding the painting to be quite beautiful, might expect
others to admire it as well. In the sale of mineral rights, it rules out the
possibility that a bidder, upon receiving a discouraging geological report,
may expect his competitors to receive discouraging reports. In Section 4,
we consider a model in which the bidders’ types are positively correlated
or, more precisely, affiliated. The concept of affiliation is defined in that
section.

The independent private-values model combines the independent types
and private-values assumptions. We begin the formal analysis of auctions
by studying that model. Henceforth, we make the simplifying assumption
that each bidder wants only one unit of the good.

3 The independent private-values model

To penetrate to the heart of a bidder’s decision problem, it is useful to
abstract from the particular rules of the auction and focus directly on
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matters of concern to a bidder. Given the private-values assumption, if
the bidder is risk neutral, his choice of bids affects his payoff only to the
extent that it affects either his probability of winning a unit or the amount
he expects to pay. Figure 1 displays the bidder’s abstract choice problem.

In the figure, the curve (p, e(p)) represents the menu of (probability,
expected payment) pairs available to the bidder. If the bidder values
a unit at v, his expected payoff u from the point (p, e(p)) is u =
p + v — e(p), so his indifference curves are lines with slope v. The inter-
cept of the indifference line with the vertical axis is —u, the negative
of the expected payoff.

Let (p*, e(p*)) denote the most preferred point for the bidder; then
we may write p* = p*(v).2 One can see from the figure that the p*
function must be increasing and that if e() is differentiable at p*(v), then
e'(p*(v)) = v. Even if e is not differentiable, one can establish the
following result.

2 If there are several optimal points, p* may be chosen arbitrarily from among them. Note
that p* is essentially the dual functional of e.
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Lemma 1 (Myerson [1981], Riley and Samuelson [1981]):

e(p*(x)) = e(p*(0)) + L s dp*(s).

In most treatments of the independent private-values model, it is as-
sumed that the seller sets some minimum price r (the “reserve’ price) and
that bidders’ types are drawn from some known distribution F with a

- positive density f. For the Vickrey and discriminatory auctions, a strategy
is a function B that maps a bidder’s type x into his nonnegative bid B(x).
Because the rules of the auctions treat bidders symmetrically and because
we have made symmetric assumptions about the bidders, we shall look
for a symmetric equilibrium point.

For the Vickrey auction, the analysis of equilibrium is relatively easy.
Let there be n bidders (n > k) and let their types be X, , ..., X,.
Let Y;,..., Y, ; denote the maximum, ..., minimum among
X, , ..., X, Atypical bidder, say bidder 1, has a dominant strategy. If
he observes X; = x, he bids B(x) = x. If the others also adopt this
strategy, bidder 1 of type x will beé awarded a unit of the good if
x > max(r, Y), and the price charged will be Y = max(r, Y,). Bidder
1’s probability of winning at equilibrium with type x is zeroif x < randis
P{Y < x} otherwise. In summary, we have p*(x) = P{Y < x} and
e(p*(x)) = P{Y <x} - E[Y]Y < x].

In the discriminatory auction, the required monotonicity of p* implies
that the symmetric equilibrium strategy § must be nondecreasing, and it
isn’t hard to show that B must be increasing. Hence, for this auction,
p*(x) = P{Y = x}, just as it was for the Vickrey auction. Also, as with
the Vickrey auction, e(p*(0)) = e(0) = 0. Hence, by Lemma 1, the
bidders must have the same expected payment function as in the Vickrey
auction. Then since e(p*(x)) = p*(x) - B(x), we have the following
result.

Proposition 1 (Vickrey [1961], Ortega-Reichert [1968]): The symmetric
equilibrium strategy of the discriminatory auction game is given by
E[Y|Y < x] ifx=r
o=

ifx<r.

The expected price, the expected number of sales, and the seller’s ex-

pected revenue from the discriminatory auction are the same as from the

Vickrey auction.

One can analyze a wide variety of auctions by the same technique and
always reach the same conclusion: the equilibrium allocation of goods,
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the expected bidder profits, and the expected seller revenues are the
same as in the Vickrey auction. A general statement of this equivalence
principle, based on the lemma, goes as follows.

Proposition 2 (Revenue equivalence principle): Consider the indepen-
dent private-values symmetric auction model with risk-neutral bidders.
If, at equilibrium, units of the good are awarded to just those bidders
whose types exceed Y, and if bidders whose types are less than r pay
nothing, then the expected payment of a bidder of type x is equal to
P{Y < x} - E[Y|Y < x].

Proposition 2 applies to a large number of auction games including
both simultaneous auctions like the discriminatory and Vickrey auctions
and some sequential auctions — auctions where units are soldin sequence,
one at a time. The proposition can be used to derive the equilibrium
strategies in some sequential auction games. For example, suppose k
objects are to be sold by a sequence of k discriminatory auctions. Sup-
pose that the winning bid is announced after each round, and let b,
by, . . ., by denote these winning bids. A strategy is a collection of
functlons Bi(*), Ba(*; b1), - . ., Bu(s; by, . . ., bi—y) that specify how
to bid at each round, as a function of the bidder’s type and the winning
bids at earlier rounds.

Let us hypothesize that each B(-; by, . . . , bj_;) is increasing, so
that the winner at the jth round will be the jth highest type. By Proposi-
tion 2, at equilibrium, the expected payment by a bidder of type x (x = r)
who has not yet won an object after the jth round is P{Y < xY; > x} -
E[Y|Y < x, Y, > x]. Starting withj = k and working backward, one can
deduce that a bidder’s expected payment at stage j is P{Y,., > x >
Y;} - E[Y|Y,—, > x > Y}], and from that one can guess the equilibrium
strategy.

Proposition 3: The symmetric equilibrium strategy in the sequential dis-
criminatory auction game is given by
ElYY;-;>x>Y] ifx=
Bf(x;b1,~..,bj—l)=[ YNjr > x> )] ffx>
0 fx<r

forj=1,...,k.

One can similarly analyze the sequential Vickrey auction. That auc-
tion has no dominant-strategy equilibrium, because at each round (except
the last) the bidder must weigh the value of submitting a low bid at the




270 Paul R. Milgrom

current round and possibly acquiring a unit at a later round against the
value of acquiring a unit immediately. It is clear that at the last round, the
dominant strategy is Bu(x; b1, . . . , bg—1) = x. At the next to last
round, the expected payment of a player of type x who has not yet won
is P{Y < x|Y;_, < x} * E[Y|Y, < x < Y,_,] by Proposition 2. If he
wins at the last round, his expected payment is E[Y|Y, < x < Yj-1], s0
his conditional expected payment at the next to last round, conditional on
winning then, must be E[Y|Y;—1 < x < Y;_,]. This must be equal to
E[Br-1(Yk-15 b1, « + s be2)] Yooy <x < Yp2l] S0, Br—a(x;
by, ..., br_y) = E[Y|]Y < x < Y4_;]. Arguing inductively leads to
the following result.

Propositiond: The symmetric equilibrium strategy in the sequential Vickrey
auction game is given by

ElYYjs1 <x<Y)] ifx=r
Bj(x, bl, coee bj—l) - {0 ifx<r

forj=1,...,k

Several authors have considered the problem of designing an auction
for a single object that maximizes the seller’s expected revenue (an
“optimal auction”). The intent of this theory is both positive (to explam
existing selling arrangements) and normative (to determine an appropri-
ate auction design for the sale of T-bills or government-owned properties,
or for purchasing supplies or services). The various papersin the “optimal
auctions” literature vary in their distributional assumptions: Myerson
[1981] and Riley and Samuelson [1981] assume that the bidders’ types are
continuously distributed on a convex set, while Harris and Raviv [1982]
and Maskin and Riley [1981] work with discrete distributions. By adopting
Vickrey’s [1961, 1962] original approach to modeling uncertainty in
auctions, one can unify these diverse results. Indeed, using this approach,
we extend them to the case where more than one item is to be sold, and
more generally to the case where the kth item can be produced and
delivered at a cost c, where the sequence {c,} is nondecreasing. However,
we retain the independence and private-value assumptions along with the
assumptions that bidders are risk neutral and that each bidder desires
only one item.

Vickrey’s approach was this: Let each bidder’s type be distributed
uniformly on the interval (0,1). A bidder of type x has a reservation price
F(x), where F is some nondecreasing function. Thus, a bidder of type x
who acquires a unit for the price b has a payoff of F(x) — b. Essentially,
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F is the inverse of the distribution F of bidder reservation prices: for y
in the support of F, F(F(y)) = y. In general, for any given distribution
of reservation prices F, F(x) = inf{f|F(t) > x}.

If, faced with a single buyer, the seller sets a price of F (t) he will sell
the goods with probability (1 — #), so his expected revenue is (1 — £)F(?).
If this expected revenue function is not concave, then for some values of
t there exist types ¢’ > ¢ > ¢’ and s € [0,1] such that

st +(1—-s)t' =1,
and
s(L=¢)F@) + (1 —s)A =) F@) > (1~ 1) F(@).

In that case, the seller could randomize among the prices F(¢') and F(t")
with probabilities s and (1 — s), sell the object with probability 1 — ¢,
and gain more expected revenue than would be possible by fixing a price
of F(r). Hence, the maximal expected revenue to a seller among all
schemes that involve picking a price at random, and for which the
probability of sale is exactly 1 — ¢ is H(f), where H is the minimum
concave function such that for all £, H(f) = (1 = £)F(z).

As was noted earlier, in any auction game, the probability of acquiring
a unit p* must be a nondecreasing function of the bidder’s type, and the
seller’s expected revenue depends only on that probability function p*
and e(p*(0)). The seller can implement any nondecreasing p* by ran-
domizing over the price he demands. Then —e(p*(0)) can be interpreted
as a lump sum the seller chooses to pay buyers just for participating in the
auction. In an expected-revenue maximizing auction, one must certainly
have that e(p*(0)) = 0. Therefore, H(t) is the maximal expected revenue
to a seller among all selling schemes that sell with a probability of precisely
1 — .3 If the cost of supplying the item is c, then the seller’s optimal
selling scheme can be determined by maximizing H(tf) ~ (1 — t)c. If
the optimum value #* is not zero or one, we must have H'(t*) = —c.
Generally, to allow that H’' may not be differentiable at *, let ¢* =
inf{dH'(f) < —c}.

The general optimal selling problem for the independent private-
values model with n risk-neutral buyers can be formulated by allowing the
cost ¢, of supplying the kth unit to vary with k. Consider the case where
cp<c¢y;<....Bysettingc; = 0andc; = +=forallj = 2, one obtains
the optimal selling strategy for a single costless object. Except for Harris
and Raviv [1981], previous analysis have limited attention to this special
case.

3 Roger Myerson suggested this interpretation of H to me.
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One particularly transparent case to analyze that suggests the general
solution is the case of constant unit production costs c. In that case, the
optimal selling problem decomposes into r individual problems. Apply-
ing the previous analysis leads to the conclusion that an optimal scheme is
to sell to buyer i if Hj(x;) < —c, at a price determined as in the one-buyer
problem. The generalizable attributes of this solution turn out to be the
following ones: (i) the number of items sold is the largest & such that there
are at least k buyers with Hj(x;) < —c, (by convention, ¢, = 0), (ii) the
buyers awarded items are the k buyers with the smallest values of H{(x;)
(ties can be broken in any fashion), and (iii) the price is determined as in
the one-buyer problem.

Combining this result with the revenue equivalence theorem leads to
the following result, which generalizes several previous optimal auction
results.

Proposition 5: A symmetric auction game with production cost ¢, for the
kth item maximizes seller profits if at its equilibrium, (i) the number of
items sold is the largest k such that at least k bidders have H'(x;) < —cy,
(ii) the items are awarded to the k buyers for which H'(x;) is lowest, with
ties broken at random, and (iii) the expected payment by each bidder not
awarded an item is zero.

A great deal of attention has been focused on the case where exactly £
items are offered for sale and the seller’s personal reservation price is c.
One question that is sometimes asked is: How do the standard auction
mechanisms perform in this setting?

The answer hinges on the concavity of the function (1 — 1)F(£). When
that function is not concave, the standard auctions do not maximize
expected seller revenues; but when it is concave (as it is when F is the
cumulative distribution function of a normal, exponential, or uniform
distribution), then the discriminatory, Vickrey, sequential discriminatory,
and sequential Vickrey auctions with a reserve price of F(¢*) (where
H'(t*) = c) are all expected-revenue —maximizing auctions. This result
relies on the independent types, private values, symmetry, and risk-
neutrality assumptions. It does not generalize to the case of risk-avetse
bidders.

When bidders are risk averse, it is still a dominant strategy in the
Vickrey auction for a bidder of type x to bid x. In the discriminatory
auction, however, risk-averse bidders will tend to bid higher than is
required to maximize expected profits. To see why this is so, notice that a
small increase Ab in the bid from the expected-profit—maximizing level
reduces profits on the order of (Ab)? (that follows from the first-order
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maximality condition), but the increase Ab reduces the riskiness of the
lottery a bidder faces by raising his chance of winning (on the order of Ab)
and reducing his expected profit conditional on winning.

Implicitly, by raising their bids slightly, risk-averse bidders can buy
“partial insurance,” on actuarially fair terms, against losing, and this
opportunity is seized in the equilibrium strategies of the discriminatory,
sequential discriminatory, and sequential Vickrey auctions. That fact
leads to this result.

Proposition 6 (Matthews [1979], Holt [1980], Maskin and Riley [1980],

Harris and Raviv [1982], Milgrom and Weber [1982a]): In the indepen-
dent private-values model with risk-averse bidders, the expected pay-
ment by a winning bidder of any type x (conditional on winning) is larger
in the discriminatory auction than in the Vickrey auction. In particular,
the expected revenue is larger in the discriminatory auction.

Proposition 6-provides some formal justification for the argument
that price discrimination in T-bill auctions raises the government’s ex-
pected revenue from the sale. However, we shall see in Section 4 that
statistical dependence among the bidders’ types favors Vickrey auctions
over discriminatory auctions, so the matter remains ambiguous.

Two common auction forms that we have not yet discussed in this
section are the English and the Dutch. These auctions are most com-
monly used to sell one object at a time. In the English auction for a single
object, each bidder has a dominant strategy: he should remain active until
the price called by the auctioneer exceeds his reservation price. If this
strategy is universally adopted, the object will be awarded to the bidder
who values it most highly for a price equal to the second highest valuation.
This outcome is identical to the outcome in the Vickrey auction, and for
that reason Vickrey considered the two auctions equivalent. Actually,
this equivalence hinges on the private-values assumption: when we drop
that assumption, quite a-different conclusion will emerge.

In the Dutch auction, a bidder of type x must decide as the price falls
whether to stop the auction and claim the prize or whether to let the price
continue to fall. Given any strategy that the bidder may adopt, there is a
highest price b = B(x) at which he will stop the auction. Thus, a strategy
can be described as a function from types into nonnegative real numbers,
which we may call “bids.” The bidder choosing the highest “bid” wins
and is awarded the object for a price equal to his “bid.”

Notice that the Dutch auction game is identical to the discriminatory
auction game. In both games, the bidder selects a “bid” as a function of
his type, the high bid wins, and the winning bidder pays his bid. In short,
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the Dutch and discriminatory auctions are strategically equivalent, and
this equivalence, unlike that of the Vickrey and English auctions, does
not depend on any value or distributional assumption. However, experi-
mental evidence obtained by Cox, Roberson, and Smith [in press] tends
to refute this conclusion.

4 Affiliated types and monotone values

The model that we study in this section is more general in both its value
assimptions and its distributional assumption than the independent
private-values model. Specifically, let X, . . . , X,, be the types of the n
bidders, and let Sy, . . . , S,, be any other variables that may influence
the value of the goods to the bidders. The value of a unit to bidder i is
designated by V; where

Vi = V(X, {xj}j#b S)

where $ = (Sq, ..., S,). The expression {X};5; is designed to em-
phasize the assumed symmetry of the valuation function; bidder, i’s
payoffs may depend on the preferences of the competing bidders, but
only in a symmetric fashion. The monotone values assumption asserts that
the valuation function V is nondecreasing and E[V,] is finite. The private-
values assumption is the special case of the monotone-values assumption
in which V; = X,. The common-value assumption is the special case in
which V; = §,. Interiediate cases, in which the bidders’ valuations are
partly a matter of personal preference and partly dependent on observed
qualities, can also be accommodated by the monotone-values assumption.
Like the common-value model, these intermediate models include as-
pects of a winner’s curse.

The equilibrium strategies in an auction game will implicitly reflect an
adjustment for the winner’s curse. Thus, consider bidder 1’s problemin a
first-price auction. Let W; denote the highest bid among the n — 1
opposing bidders; it is a random variable from bidder 1’s point of view.
The bidder’s expected payoff from a bid of b is

E[(V1 - b) 1{W,<b)|xl] = P{wl <b l xl} E[Vl - b|xl,{wl < b}]>

where 1w, <y designates an indicator function that is one if W; <b
and zero otherwise. In words, the bidder computes his expected payoff as
his probability of winning (given the information X;) times his condi-
tional expected winnings V; — b given both on his actual information X,
and the hypothesis that W, < b; the bidder anticipates the winner’s curse
in choosing his bid.

In addition to the monotone-values assumption, assume that all of the

Economics of competitive bidding 275

random elements of the model have positive partial correlations, and
further that these positive correlations are preserved conditional on
arbitrary restrictions on the ranges of the individual variables. Such
restrictions arise in bidding models when one bidder learns or conjectures
something about his competitors’ bids.

The restriction on distributions just described is not vacuous. Indeed,
it is identical to the assumption that the exogenous random elements of
the bidding model are affiliated. A random vectorZ = (Zy, . . . , Z)) is
affiliated if for every z and z' in R, (*) f(2) f(z') < f(z v 2') f(z N 2'),
where

z v z' = (max(zy,21), . . . , max(z,,2))

z A z' = (min(zy,2}), . . . , min(z,z2;)).

The inequality (*) is known as the affiliation inequality (and also as the
“FKG inequality”’ and the “MTP, property”). The general theory of
affiliation has beert developed by Milgrom and Weber [1982a].*

Notice that if Z,, .. . , Z, are independent, then the affiliation in-
equality holds an equality. Also, in common-value models, it is usual to
specify that the bidder’s types X, . . . , X,, are independent estimates of
S, drawn from some common distribution with density f(+|s,), where the
family of densities {f(+|s1)} is lognormal with mean s, or exponential with
mean sy, or uniform on (0, s;), or some other family with the monotone
likelihood ratio property. In all such cases, regardless of the prior distribu-
tion for §,, the vector (S, Xy, . . . , X,)) is affiliated.

The key property of affiliation for our analysis is this:

Proposition 7 (Milgrom and Weber [1982a]): If (Z,, . .
ated and g is a nondecreasing function, then the function

may, . ..,a5by, ..., b)) =E[gZ) ] a, <Z;<b, ...,
a,SZ,SbI] :

., Z) is affili-

is nondecreasing.

To describe the equilibria of various auction games, it is useful to
define the random variables Yy, . . . , Y,_; to be the maximum, . . . ,
minimum from among X,, . . . , X,,. It has been shown (Milgrom and
Weber [1982a]) that S, X, Yy, . .., Y,_, are affiliated.

Let Fy(ylx) = P{Y; < y|X, = x} and let f,(y|x) be the corresponding
density. Let vj(x, y) = E[V4|X; = x, Y; = y]. In view of Proposition 7,
v; is nondecreasing.

4 A survey of the theory of affiliated variables is also given by Karlin and Rinott [1980].




276 Paul R. Milgrom

The model with monotone values and affiliated types is called the
general symmetrical model. The equilibrium strategies for the Vickrey
and discriminatory auctions for this model are given by the next two
propositions, where x* = inf{x|E[V,/]X; = x, Y, < x] = r}; x* is called
the screening level corresponding to r.

Proposition 8 (Milgrom [1981]): The symmetric equilibrium strategy in
the Vickrey auction game is given by

nlx, x)  ifx=x*

o i =

if x < x*.

Proposition 9 (Milgrom and Weber [1982a,b], Wilson [1977]): The
symmetric equilibrium strategy in the discriminatory auction game is
given by’

X

vilt, £) dLi(tx)  if x = x*

r* Ly(x*x) + j

X

BP(x) =

0 : if x < x*
where

Li(o)x) = exp[— jx %II% dt} .

Notice that with a private-values assumption, the equilibrium strategy
in the Vickrey auction becomes B¥(x) = x. With independent types,
Ly(fx) = Fi(t) / Fi(x), and the discriminatory auction equilibrium strat-
egy becomes B°(x) = E[max (r, vu(Yi,Yx)) | Yi < x], which further
simplifies under private values to BP(x) = E[max (r,Y,) |Y, < x], in
accordance with Proposition 1.

Now, motivated by the Treasury bill controversy, we may ask which of
the two auctions, Vickrey or discriminatory, leads to greater revenues for
the seller in the general symmetric model.

Proposition 10 (Milgrom and Weber [1982a,b]): The expected price paid
by a winning bidder of type x in the Vickrey auction is as high as, or higher
than, that paid in the discriminatory auction:

BP(x) < E[max(r, BY(Yx)) | X1 = x, Yi <x].
Consequently, the expected revenue to the seller is higher for the Vickrey
auction than for the discriminatory auction.

5 For s not in the support of X, fi(sls)/Fi(sls) is taken to be zero.
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Results reported by Tsao and Vignola [1977] tend to confirm this
conclusion using data drawn from the weekly T-bill auction.

An important general intuition lies behind Proposition 10 that will
shortly enable us to generate a host of similar comparisons. The key
insight is best seen by abstracting from the particular rules of the auction
and representing a bidder’s choice problem in a new way. In each auction
game that we have studied, the bidders’ strategies were increasing func-
tions of their types, and by bidding B(x), any bidder, regardless of his
actual type, could arrange to win whenever max(x*,Y;) < x. We may
therefore think of a bidder as choosing x, rather than as choosing particu-
lar bids. :

Consider the problem faced by bidder 1 when his type is z in some
auction game “A”. If he chooses some x = x* and wins, then condi-
tional on winning the expected value received is R(x, z) = E[V||X, = z,
Y, < x] and the expected payment is some amount W*(x, z). The two
sides of the inéquality in Proposition 10 represent W4(x, x) for the
discriminatory and Vickrey auctions, respectively.

When bidder 1 chooses x, his expected payoff is [R(x, z) — WA(x, z)]
Fi(x|z). At a symmetric equilibrium, it must be optimal for the bidder to
choose x = z, so the first-order necessary condition is

0 =[R(z, 2) - WA(z, 2)fu(zlz) + [Ri(z, z) — Wi(z, 2)]Fi(zl2),

where subscripts on R and W* denote partial derivatives. Solving for

W4, one can compute the total derivative of W*.
d

- WAz, 2) = Wiz, 2) + Wi(z, 2)
z

= R((z, 2) + [R(z, z) — WA(z, 2)] %)+ Wiz, z).
"

In each of the auctions studied, W*(x*, x*) = r, and that boundary
condition plus the differential equation (**) completely determine the
W#(z, z) function. The differential equations corresponding to different
auctions are identical, except for the W5 term.

It now follows that the winner’s expected payment across different
auctions can be compared by comparing the partial derivatives W3
When the bidders’ types are statistically independent, W4' is necessarily

.- zero for all auction games. This fact can be used to derive Proposition 2,

the revenue equivalence principle. More generally, different auction
games yield different average revenues. The key to comparing games is
the linkage principle, which is a consequence of equation (**).
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The linkage principle: Let A and B be two auction games with symmetric
equilibrium at which (1) units are awarded to all bidders with types
z > max(x*, X+1)) and (2) bidders with types z < x* have expected
payoff zero. If W4(z, z) = W2(z, z) for all z = x*, then W4(z, z) =
W5(z, 2) for all z = x*.

The function W4 summarizes the effect of the bidder’s unobserved
type on the amount he expects to pay. That effect arises only when the
variables of the model are statistically dependent. As the winning bidder’s
actual type z rises, he expects the types of others to rise as well. If the
price he pays depends on those types, then he expects the price to rise;
that is, W3 > 0.

In the discriminatory auction, W2(x, z) = B2(x) and W5 = 0: the
equilibrium price is determined exclusively by the winner’s type, so there
is no linkage at all. In the Vickrey auction, W"(x, z) = E[max(r, v,
(Yo, Y ))|X; = z, Y, < x]. The Vickrey price depends on Y, which is
statistically linked to X;. By Proposition 6, WY = 0. These observations
and the linkage principle establish Proposition 10.

A second application of the linkage principle arises in connection with
analyzing whether the seller, if he has information X of his own, should
establish a policy of revealing that information, or whether he would
be better off concealing it. A key word here is “policy”: the idea is that
the seller must commit himself to revealing information according to
some rule. For example, the U.S. Congress could instruct the Depart-
ment of Interior to conduct geologic surveys before offering the mineral
rights on any piece of property. It could also order the Department to
adopt a policy of always reporting the survey in detail, or summarizing it,
or reporting it only if the information is favorable. In this last case,
however, the bidders would “hear the silence”” — withholding the report
would be a sure sign of an unfavorable survey.

When X is reported, the set of bidders willing to bid at least r will be
changed. However, the seller can choose to use the survey data to set an
appropriate reserve price. We shall say that the seller has adopted a fixed
screening-level policy at x* if, upon reporting his information Xy, he sets
the reserve price r = r(X,) to attract exactly those bidders whose types
are at least x*. When the seller reports all of his information and adopts
a fixed screening-level policy at x*, it can be shown that the conditions of
the linkage principle are satisfied. That leads to the following result.

Proposition 11 (Milgrom and Weber [1982a]): In a discriminatory auction,
a policy of revealing X, and fixing the screening level at x* results in
greater expected revenue than withholding the information and setting
the screening level at x*.
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Adopting the prescribed policy links the price to X, and X, is affili-
ated with the winning bidder’s estimate. That linkage results in W4 being
positive for the auction with X, announced. Proposition 11 follows as a
consequence.

If the seller reports only a summary statement about X, — for ex-

. ample if he reports only that X, lies in some set Tp — then condi-

tional on that information, the variables X,, Xy, . . . , X,, are still af-
filiated. Hence, by Proposition 11, reporting the remaining details of X
and fixing the screening level would further raise expected revenues. This
observation leads to Proposition 12.

Proposition 12 (Milgrom and Weber [1982a)): In a discriminatory auction,
the expected-revenue maximizing policy for revealing information and
setting a reserve price involves reporting X precisely and in full detail.

In the Vickrey auction, there is already some linkage of the price to
variables other than the winner’s type, but one can sometimes raise
revenues further by introducing additional linkages. For example, the
seller can raise revenues by reporting his information X,.

Proposition 13 (Milgrom and Weber [1982a]): In a Vickrey auction, a
policy of revealing X, and fixing the screening level at x* results in greater
expected revenues than withholding the information and setting the
screening level at x*.

Proposition 14 (Milgrom and Weber [1982a)): In a Vickrey auction, the
expected-revenue maximizing policy for revealing information and set-
ting a reserve price involves reporting Xq precisely and in full detail.

In a discriminatory auction, revealing information has two effects.
First, if Xy, . . . , X,, are strictly affiliated, then the seller’s information
tells each bidder something about his competitor’s type. As a result, the
bidders with lower types will, on average, raise their assessments of their
competitors’ bids. They will then bid more aggressively, and that will tend
to make the higher types raise their bids, too. This effect is present even in
a private-values model if types are affiliated. The next effect appears only -
in models involving the winner’s curse. In such models, bidders tend to
shade their bids to avoid the curse, and the lower types, who are overly
pessimistic, shade their bids excessively. When the seller provides public
information, he alleviates the winner’s curse, allowing lower types to bid
more aggressively on average, which in turn causes everyone to bid more
aggressively. This raises revenues.
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In contrast to the discriminatory auction, revealing information has no
effect in the Vickrey auction game with private values, since the bidders
all follow their dominant strategy (8"(x) = x) regardless of the content
of the seller’s information. But if the private-values assumption does not
hold and a winner’s curse effect is present, then revealing affiliated
information alleviates the winner’s curse and causes the average price to
rise: the inequality in Proposition 13 becomes strict.

Recall that in any private-values model, the Vickrey and English
auctions are equivalent. In the general model, this equivalence may not
hold. The equivalence or lack thereof depends on how much of the
bidding behavior of the n — 2 lowest types can be observed during the
auction by the two highest types. If none of their bidding can be observed,
then the Vickrey and English auctions are strategically equivalent. Mil-
grom and Weber [1982a] have computed equilibrium strategies for the
case where all of the bidding behavior can be observed. Observing those
bids passes information to the last two bidders, with much the same effect
(at equilibrium) as if the seller had revealed his information: Prices
become linked monotonically to the types of n — 2 lowest bidders as well
as to the types of the second highest bidder. Then, three new propositions
follow, using the linkage principle.

Proposition 15 (Milgrom and Weber [1982a]): The expected price paid by
a winning bidder in the English auction is as high as, or higher than, that
paid in the Vickrey auction.

Proposition 16 (Milgrom and Weber [1982a]): In an English auction, a
policy of revealing X, and fixing the screening level at x* results in greater
expected revenue than withholding the information and setting the screen-
ing level at x*.

Proposition 17 (Milgrom and Weber [1982a]): In an English auction, the
expected-revenue maximizing policy for revealing information and set-
ting a reserve price involves reporting X precisely and in full detail.

Some work has been done studying the incentives of bidders to gather
information in a common value model. In a detailed example, Schweizer
and von Ungern-Sternberg [1980] show that it may not pay a bidder to
acquire information if his competitors will learn that he has done so. Lee
[1982] notes that the seller can, by providing information, discourage
bidders from gathering their own information (if such is costly). That
policy tends to raise the expected price in a discriminatory auction.
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Milgrom [1981] has studied the bidders’ incentives to acquire information
in a Vickrey auction and has proved the following result.

Proposition 18: In a common-value model for a single object, let bidders
1, ... ,n adopt the equilibrium strategies given in Proposition 7. Let
there be an (n + 1)st bidder whose information X, is a garbling of
that of bidder 1 (i.e., the joint distribution of S, Xo, . . . , X, given both
X, and X, 4+, does. not depend on the value of X, .1). Then there is
no strategy for bidder n + 1 that yields a positive expected payoff. Hence,
an equilibrium of (n + 1)-bidder game ensues if bidders 1, . . . ,n use BV
and bidder n + 1 always bids zero.

Following a different line of thought, Wilson [1977] and Milgrom
[1979a,b] have studied how the price resulting from a first-price (dis-
criminatory) auction aggregates the information of the many bidders. It
might seem that the price could not reflect more information than was
available to the winning bidder, since his bid sets the price. However, this
reasoning is not correct. The winning bidder’s type is a maximum order
statistic from a (possibly large) sample, and such a statistic can sometimes
reveal quite a lot of information.

In one version of the Wilson—~Milgrom model, the bidder’s types are
independent estimates of the common value §;, drawn from a distribu-
tion with density f(:|S;), where the family of densities {f(-|s)} has the
monotone likelihood ratio property. The upshot of their investigations is
the following theorem.

Proposition 19: Let a subscript of n denote the number of bidders in an
auction. The following three statements are equivalent.

(1) The winning bid pP(X1y) is a consistent estimator® of S;.
(2) There exists some functions g, such that g,(X)) is a consistent

estimator of S;.
(3) Forany s <s', inf[f(x|s)/f(x|s")] = 0.

The equivalence of the first two statements means that the first-price
auction generates consistent estimates of S; whenever any consistent
estimator based on the maximum order statistic exists. The third state-
ment makes it easy to check which distributions lead to consistency; in
particular, if the types are normally distributed with mean 8, and fixed
variance, or if they are uniformly distributed on [0, 8], consistency does

¢ In other words, if W,, = 8,2(X(y,) denotes the winning bid in an auction with » bidders,
then W, converges in probability to S,.
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follow, but if they are exponentially distributed with mean 8, it does not.

When the winning bid is not a consistent estimator of S in this model,
there are two other possibilities. The first is that there is a degeneracy:
there are two values s’ and s” such that for all s e (s', 5"), f(:|s) = f(-|s').
This case can be eliminated by reformulating the problem, replacing S,
by its expected value conditional on the whole sequence {X,}. The
resulting game has the same normal form as the original game, and the
degeneracy noted previously does not arise.

If the degeneracy described previously has been ruled out and the
winning bid still does not consistently estimate S, then there is often a
nonnegligible difference between the highest and second highest bidders’
“estimates’ of §,, where the bidder’s estimate is made conditional on his
observed X; and the hypothesis that X is the maximum observation. In
that case, the bidder will attempt to earn nonnegligible positive profits.
He will often succeed. Indeed, it can be shown for this case that as the
number of bidders grows large, the bidders’ total expected profits remain
bounded away from zero and the seller’s expected revenue remains
bounded away from E[S,;]. The asymptotic expected profits depend only
on the asymptotic likelihood ratios: inf, f(x|s)/f(x|s').

5 Incentives for gathering information

It is well known that in any formal decision problem, information has
nonnegative value. Effectively, information enlarges a decision maker’s
set of strategies because it permits basing a decision on more variables. In
multiperson settings, the issues become subtler, because if a decision
maker is known to have gathered additional information, the other agents
may choose to revise their strategies. Such changes may either benefit or
harm the decision maker. It is always true, however, that if a decision
maker can costlessly gather information without letting anyone else
become aware of that fact (use “‘covertly gathered information’), then he
or she would benefit from (or at least not be harmed by) doing so.

To study the incentives of the bidders and the seller in an auction game
to gather information, we shall deal with a simple model of asymmetrically
informed bidders. This model was introduced by Wilson [1967] in re-
sponse to a description by Woods [1965] of a competition between two oil
companies bidding for oil and gas rights on U.S. government-owned
territory. One company owned the rights on an adjacent tract and had
been able to explore the new tract by drilling at an angle. The other
company had access only to publicly available geologic data.

To model this situation, let V be the common value of the rights.
Assume that V > 0 and E[V] is finite. Let the random variable X repre-
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sent the private information of the better-informed bidder whom we call -
bidder A. No assumptions about X are necessary; its values may lie in any
measurable space. We assume the reserve price set by seller is zero.

Bidder A’s decision problem actually depends on X only through the
resulting estimate of V: let H = H(X) = E[V|X] denote that estimate.
Let U denote a random variable, independent of (V, X), that is uni-
formly distributed on (0,1). We assume that A observes U and uses it
whenever he needs to randomize. A strategy for A is then a function
B: R+ x (0,1) = R., where B(h, u) represents the bid made when
(H,U) = (h,u). There is no loss of generality in restricting B to be
nondecreasing in u.

A randomized strategy for the uninformed bidder B is simply a proba-
bility distribution function G on R,. The auction is a discriminatory
auction, and its equilibrium is given below.

Proposition 20 (Weverburgh [1979], Engelbrecht-Wiggans, Milgrom,
and Weber [1981]): In the asymmetric common-value model described
previously, there is ‘a unique Nash equilibrium point of the first-price
auction game. The equilibrium strategies are

B(h, u) = EH{H < h or (H = h and U < u)}]

G(b) = P{B(H, U) < b}.

To analyze how the seller’s revenues and the bidders’ profits depend
on the better-informed bidder’s information, let Fdenote the distribution
of H. Then, profits and revenues at the unique equilibrium are as follows.

Propositicn 21 (Engelbrecht-Wiggans, Milgrom and Weber [1981]): At
equilibrium the expected profit of the better-informed bidder conditional
onH=~his

A
j F(s) ds
0
and unconditionally it is
j F(s) (1 — F(s)) ds.
0

The expected profit of the worse-informed bidder is zero. The seller’s
expected revenue is

Jw (1 = F(s))* ds.

0
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A host of conclusions flow from Proposition 21. First, consider what
would happen to bidder B if he acquired some of A’s information. If he
could do so covertly, there would be no competitive response, and B
would clearly benefit. If, however, it were common knowledge that B had
gathered that information, Proposition 21 would apply, and B’s profit
would still be zero. Thus, as Milgrom and Weber [1982] have observed, B
cannot gain by overtly collecting some of A’s information.

If A could observe some additional variable Z, his new estimate would
be H' = E[V|X, Z]. If B believed that A had observed only X, he would
bid according to G. Then, if H' = A, bidder A’s maximal expected profit
would be [4F(s) ds, by Proposition 21. (Notice that this profit depends
only on B’s strategy and on A’s estimate; it does not matter whether A

.based his estimate on much information or on little.) If, on the other
hand, B knew that A had observed both X and Z, then A’s maximal
expected profit would be [8F'(s) ds, where F' is the distribution of H'.
Which of these two scenarios does A prefer?

Proposition 22 (Milgrom and Weber [1982]): For any realizations of X
and Z, bidder A prefers that B know that A has observed both variables
over having B believe that A has observed only X; that is, for every h,

Jh F'(s) ds > Jh F(s) ds.

0 0

In summary, the better-informed bidder prefers to do his information
gathering overtly. When B knows that A has observed Z, he realizes that
he has become more vulnerable to the winner’s curse, so he shades his
bids, and A benefits from that response. On the other hand, if B can
gather some of A’s information, he would choose to do so covertly,
because A’s response to B’s better information would be to bid more
aggressively when the rights are relatively valuable, thereby depriving B
of his best opportunity for earning a profit.

Notice that, in view of Proposition 21, the seller’s interests and A’s are
strictly opposed. The sum of A’s expected profit and the seller’s expected
revenue is E[V]. Thus, if the seller has some information Z, it may pay
him to report it to reduce A’s informational advantage.

We consider two cases. First, suppose A already knows Z. For
example, A might be better informed from his drillings on an adjacent
tract and Z might be the royalty report that A filed for that tract.

Proposition 23 (Milgrom and Weber [1982]): If A knows (X, Z), then a
policy of announcing Z reduces bidder A’s expected profit and raises the
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seller’s expected revenue. Moreover, no policy of summarizing, garbliﬁg,
or sometimes withholding Z results in greater expected revenue than the
policy of reporting it precisely and in full detail.

If A does not already know the seller’s information, the matter be-
comes somewhat trickier. It is possible that the seller’s information,
though useless to B, is very useful to the better informed bidder A, much
as half of a treasure map is most useful to the holder of the other half. A
statistical example capturing this idea has been given by Milgrom and
Weber [1981]. There is, however, an important class of models in which
this problem can never arise. '

Proposition 24 (Milgrom and Weber [1982]): Let X and Z be real valued
and suppose (V, X, Z) is affiliated. Then revealing Z. raises the seller’s
expected revenue. Moreover, no policy of summarizing, garbling, or
sometimes withhdlding Z, results in greater expected revenue than the
policy of reporting it precisely and in full detail.

Proposition'g4 is yet another consequence of the linkage principle.

6 Miscellaneous topics: collusion, sequencing, and bundling

The theory surveyed in the preceding sections deals with only a few of the
many interesting and important questions concerning the conduct of
auctions. Certainly, the assumption that bidders behave noncoopera-
tively cannot be taken uncritically, especially in auctions like those for
timber rights where the few buyers in each region may all be members of a
single trade association (cf. Mead [1967]). Nor is the assumption that the
bidders compete against one another once and for all a particularly
appealing one. If bidders do bid against each other repeatedly, then they
may attempt to infer something about their competitors’ characteristics
from their bidding history.

An interesting analysis that captures this learning feature has been
given by Ortega-Reichert [1968]. In his model, two manufacturers com-
pete for supply contracts in two periods. The cost of production of each
manufacturer in each period is drawn from an exponential distribution
with unknown mean t. The unknown mean has a gamma distribution.

In the first period, each bidder i offers a supply contract for a price
pit = pa(Ci1). The low bidder wins and earns a profit of p;; — C;,. At
the end of the first period, the bids are announced and the supply contract
is awarded.
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In the second period, the bids are again tendered, but this time each
bidder has more information to use

P2 = p(Cya | Cu, pa, le)

where j denotes the other bidder. Ortega-Reichert found that, at equilib-
rium, p;, is independent of C;;, but is increasing in its other arguments.
In particular, by placing higher bids in the first period, a firm could induce
its competitor to place higher bids in the second period. In effect, the
competitor views the firm’s bid as a statistic providing relevant informa-
tion about the “technology” t. ,

The result of the bidders’ attempts to influence their competitors’
beliefs is that the prices bid at the first round are higher than they would
otherwise be. In modern parlance, this is a “signaling equilibrium,”
because each firm tries to signal to its competitors that its future costs will
be high. At equilibrium, however, each bidder recognizes the others’
incentive to signal and no one is fooled.

Although it would be risky to draw any general inferences from this
two-period model, the nature of the analysis does at least suggest that
equilibrium in repeated contests moves away from the competitive theory
in the direction of a collusive theory. This seems to hold here even in a
finitely repeated game model at a symmetric Nash equilibrium. The
results reported by Kreps et al. [1982] suggest that frequent interaction
among the bidders may quite generally enhance incentives to collude.

All of the auction theory that we have so far considered rests on the
implicit assumption that preferences have a special additive structure so
that auctions for single goods can be considered in isolation. This assump-
tion is perhaps most clearly violated in sales of the assets of bankrupt
of manufacturing firms, where the value of the land, plant, and equip-
ment together may, for some buyers, exceed the sum of their individual
values. To cope with that complementarity, an institution called “‘entirety
bidding” has emerged. In one version, the entirety bids are made before
the piecemeal auction begins, and the individual objects are awarded to
the winning bidders only if their sum exceeds the highest entirety bid
(Cassady [1967]). In another variation, entirety bidding occurs after the
piecemeal auction. At this level, auction theory merges into the general
theory of resource allocation.

7 Conclusion and postscript

Auctions represent an important institution used for conducting trade.
The results that have been described in this survey give a good idea of why
English auctions are more popular among sellers than sealed bids and
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other auction designs, and why auction houses adopt the practice of
revealing their own estimates of worth for the items being offered.
Still, the received theory is far from complete: it does not consider

- entirety bidding and problems of complementary goods; it does not deal

adequately with collusion, or repeated bidding, or the nature of competi-
tion when there are many sellers as well as many buyers; it does not treat
competitive bidding in connection with procurement, where suppliers
often have differentiated products so that the evaluation of bids is not so
straightforward. Finally, the received theory has little to say about when
auctions are more appropriate than other arrangements for conducting
trade. These open questions are part of the agenda for future research.

Since this survey was written in October 1981, a great deal more has
been learned about the economics of auctions. Specific predictions of the
theory have been tested (sometimes confirmed, sometimes not) using
both empirical data and a series of laboratory experiments. The indepen-
dent private-values model has been extended to models with multiple
buyers and sellers and to situations where two parameters of individual
preference — such as the bidder’s valuation and relative risk aversion —
are both unknown. The theory of optimal auctions has been modified to
include the case of risk-averse buyers. And the affiliated—monotone-
value model has been generalized to accommodate the sequential sale of
several identical items.

Itis interesting to contrast the research achievements in auction theory
of the last few years with the research agenda I proposed in 1981. Little
has been learned about collusion in auctions; that topic certainly deserves
more attention. Less has been learned about comparisons of alternative
modes of transaction: When should a purchaser bargain with individual
suppliers and when should he seek bids? Too much recent research effort
in auctions has been simply applying the latest techniques (principaily
“mechanism design”) to ever more complicated models; too little has
been devoted to the very real and important economic questions that
auctions raise.
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