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DISTRIBUTIONAL STRATEGIES FOR GAMES
WITH INCOMPLETE INFORMATION*{ .

PAUL R. MILGROM{ anD ROBERT J. WEBER$§

We study games with incomplcte information from a point of view which cmphasizes the
empirical predictions arising from game-theoretic models. Using the notion of “distributional™
strategies, we prove four main theorems: (i) a mixed-strategy Nash equilibrium existence
thconern (ii) a purc-strategy equlhbnum ezulcnce theorem, (iii) a pure-strategy ¢-equilibrium

h and (iv) a th g how the set of equilibria of a game varics
with the parameters of the game.

1. Introduction. In 1961, William Vickrey introduced games with incomplete
information into the mainstream of economic theory in a study of competitive bidding
{30]). The variety of applications of these games has widened considerably over the
years (as evidenced by [6), [13], [18], [21]-{23), [25}, {26], [31]), and many contributions
have been made to the underlying theory of information [15]-{17], [20}.

Despite these advances, the most fundamental questions which arise in applications
remain unanswered. Do Nash equilibria exist for general games with incomplete
information? When will such games have equilibria in pure strategies? How sensitive
are equilibrium outcomes to modeling assumptions? For example, can a small varia-
tion in the assumed information structure lead to a large change in the equilibrium
strategies?

Our aim is to provide partial answers to all' of these questions, for one-stage
simultaneous-move games. We prove an equilibrium existence theorem for a broad
class of these games. We also prove that, with the appropriate concepts of closeness for -
information structures, payoff functions, and strategies, the correspondence that maps
the specifications of a game into its set of Nash equilibria is upper-hemicontinuous.
The ideas underlying this continuity theorem have been used elsewhere {13], [21] to
simplify and unify the solutions of certain bidding games and to gain insights into the
nature of the equilibria of these games; here we use them to study a game of timing
that can serve as a model of competition between two animals, or of strike behavior.
For games in which the players’ informational variables have atomless distributions,
we show that cach player’s set of pure strategies is dense in his complete set of
strategies. For such games, mixed strategies are empirically indistinguishable from pure
strategies and so the common objection that “one never observes people adopting
mixed strategies” has no force. Finally, we identify a large class of games in which
every mixed strategy equilibrium has a “purification”, i.c., a pure-strategy equilibrium
at which each player has the same expected payoff and the same distribution of
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observable behavior as at the mixed-strategy equilibrium in each of his informational
states.

The games whlch we study can be descnbed as follows. Each player i observes an
informational variable (or fype) ¢; whose values lie in some complete, separable metric
space T,. After observing his type, player i selects an action g, from some compact
metric space A; of feasible actions.

To accommodate a large variety of applications, we allow each player’s payoff to
depend on the actions chosen by all the players, on all the players® types, and also on
some environmental variable' #, chosen by Nature from the set T,. We designate
player i's payoff by U, = U(¢t,, . . ., 4,,4,, . . ., a,), where n is the number of players.
Within this formulation, we defme m information structure y for the game to be a joint
probability distribution on Ty X - « - X T, (where the measurable structure on each 7;
is its collection of Borel subsets).

The conventional analysis of games involves three types of strategies: pure, mixed,
and behavioral. A pure strategy is a measurable function p,: T, A,. This has the
interpretation that when player i learns that his type is ¢, he selects the action p,(¢).
Aumann (2] has observed that to define a mixed strategy properly (when 7, is “large™)
a randomizing device must be introduced for each player. Thus, let § be uniformly
distributed on [0, 1]. A mixed strategy for player i is a measurable function o, : {0, 1} X
T, A,. The interpretation is that when player i observes his type ¢ and his randomiz-
ing variable s;, he selects the action o,(s;, #,). Let A, be the collection of Borel subsets of
A,. A behavioral strategy is a function B, : A, X T, —[0, 1] with these two properties: (i)
For every B € A,, the function 8,(B, -): T,—[0, 1] is measurable. (ii) For every 1, € T,
the function B(-,7):A,->[0,1) is a probability measure. The interpretation of a
behavioral strategy is that when player i observes ¢, he sclects an action in A,
according to the measure 8,(-, 7).

These conventional characterizations of strategies are not well suited to our pur-
poses. Instead, we define a distributional strategy for player i to be a joint probability
distribution on 7, X A, for which the marginal distribution on 7 is the one specified by
the information structure. We shall later show that distributional strategies are simply
another way of representing mixed and/or behavioral strategics. While no meaning-
fully distinct strategies are added or deleted through this representation, the represena-
tion is more convenient for studying the relationship between the data of a game and
the game’s equilibria.

The remainder of this paper is organized as follows. In §2, we present an example to
illustrate the ideas of convergence and purification. §3 contains a formal description of
our model and presents the Existence Theorem, which provides sufficient conditions
for the existence of an equilibrium in distributional strategies. The Convergence
Theorem, which is developed in §4, asserts that when the data that specify a game are
varied “continuously”, the set of equilibria varies upper-hemicontinuously.

VIt is always possible 1o reduce a general game in which the payoffs may depend on 1, (as well as on all
the players’ types and all the players® actions) to a canonical game where the payoffs do not depend on .
GwenapmemlhpnyofﬂuncmU,!otphyeu,lhepnyoﬁﬁmcmi’,mlheunomulnmeuobumed
by integrating out /g, as foll

Viltys-eortysyee-ra) = ELUQp. . inr@yee @)y, o)

nummumllmnlheonc:mdwdbyHmnylllS].l(-umlIlylheappmptuufotmfortbe
comparison of theoretical results, since it climinates from id such spurious generality as the
inclusion ol dnnce cvents about which no ml‘ormnnon is available.

For h L itis i to include #, in the explicit f fation of the game.
For enmplc. the assumptions in [25) arc most casily stated and the economic insights are most casily
d when ¢ is included in the formulation. In [26] a major portion of the analysis is devoted to

nudymg the effects of variations in the players’ information about the state variable ¢,.
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We take up the matter of pure-strategy equilibria in §5. Two theorems and a
corollary summarize our results. Theorem 3 (the Denseness Theorem) states that a
player’s set of pure strategies is dense in his set of distributional strategies whenever his
type has an atomless distribution. A corollary asserts the existence of approximate
equilibria in pure strategies. To study exact equilibria, we need the following defini-
tion. A mixed strategy 4 is said to have a purification if there is a pure strategy o with
these three properties: (i) o is a best reply to the opposing strategies whenever § is, (ii)
for whatever strategies the other players may adopt, it is always true that the expected
payoff of each type of each opposing player is the same against o as against 4, and (jii)
for whatever strategies the other players may adopt, the joint distribution of the state ¢,
and all the players’ actions is the same whether ¢ or & is played. Theorem 4 (the
Purification Theorem) gives sufficient conditions to ensure that every mixed strategy
has a purification. When the conditions are satisfied, every mixed-strategy equilibrium
corresponds to some pure-strategy equilibrium in which each player faces the same
decision problem (at equilibrium) and carns the same expected payoff as in the
mixed-strategy equilibrium. §6 indicates how the assumption that the type spaces are
metric can be relaxed and how the case of “inconsistent beliefs” can be treated.

2. An example: The war of attrition. In this section, we present an-example which
illustrates the notions of “closeness” of information and payoff structures, and of
strategies in (possibly different) games with incomplete information, notions which are
central to the results of this paper. The game we analyze is known as the “War of
Attrition”,? and has been used to study conflict among animals [6]. It can also serve to
model other conflicts, such as labor-management disputes involving strikes.

In the animal-conflict interpretation, two animals face one another in competition
for a valuable prize, such as food or the opportunity to mate. The competition is
nonviolent (for example, the animals engage in a display ritual); the cost of competi-
tion is proportional to the time spent in conflict (time which alternatively could be
employed in the search for a comparable prize elsewhere, time during which both
competitors are vulnerable to attack from predators). Let s, (i = 1,2) be the greatest
length of time animal i would be willing to compete for the prize, if he were certain to
receive the prize at the end of that time. We take the payoff functions of the game to
be of the form
s-a if a>a,

Ui(s1,52,0y,a)) = [ —a otherwise
/] >

where {i, j} = {1,2), and g, and a; arc the lengths of time for which the two animals
choose to compete. Suppose that §; and §, are independent, identically distributed
random variables with common distribution F. It has been observed by several authors
that, when F is concentrated at a point &, so that the prize has commonly-known value
© to both competitors, the game has a unique symmetric Nash equilibrium point; the
strategy of each at equilibrium is to choose the time at which he will concede
according to the exponential distribution with mean 8. On the other hand, if Fis a
continuous distribution with densny f= F'fit is- known that there is a unique
symmetric Nash equilibrium point, in which each uses a pure strategy. which calls for
competition until time b(s;), where

. Y(1)

b(s)= "= 0] .

2This game is also known by various other names, including “Both-Pay Auction™ and “Dollar Auction.”
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How do the equilibria in these two cases compare? Let G be the distribution of
quitting times in the second case; then :

G(a) = Pr(d(i',) <a)= Pr(.L;'—l.—ii(I"i(:) ds < a).

fﬁssume tl}at F concentrates its mass on a neighbonlliood (©—¢,0 +¢). Then the
integrand in the expression above is nonzero only if s < & +¢, and so

G(a) > p.(('.-, +¢) f,_f(—;)m i< a)

= Pr(F(3) <1-exp[—a/(5 +¢)])
=1-exp[-a/(5+9)],

sincf the random variable F(§)) has the uniform distribution on (0, 1). Similarly, since
the integrand is only nonzero if s > & ~¢, G(a) < | ~ exp[—a /(¥ — ¢)]. From these
two bounds on G(a), it is clear that, as ¢->0, G converges weakly to the exponential
d.istribution with mean §. That convergence is comforting to the behavioral theorist,
since it would be quite unsettling if a slight change in the specifications of the model
led to a large change in predicted behavior. .

We shall next present a general analysis of the War of Attrition, taking a point of
view which is focused on the equilibrium distribution of observed behavior. Let f; and
f, be independent and uniformly distributed on (0, 1), and let o= F~!. (Here we
denote by F~' the generalized inverse of F, defined by F~'(s) = sup(s| F(s) < 1}.)
Th_en we can equivalently view the game as one in which the value of the prize to
animal i is the random variable v(¢) (i.c., v(#;) has the same distribution as §), and in
which the quitting time chosen by animal i depends directly on his “type” 1,. Let
0:(0,1)—>[0, 0] be a symmetric equilibrium strategy of the game. Without loss of
generality, we may take o to be nondecreasing;® note that o' is the distribution of
quitting times for ecach animal. If animal i, with type ¢, competes until time a, his
expected payoff is

J:(o(l,) —s)do~'(s) - a(l — 0" '(a)).

The first-order optimality condition is then »

1 do7/da

o(t) 1-o"Ya)'
and equilibrium requires that a = a(¢;), or equivalently, that ¢, = 0 ~!(a). Substituting
the latter equality into the first-order condition yields:

| _ do'/da
o(e7'(@)) 1-07Y(a) )

The left-hand side of this equation is a nonincreasing function of a, and the right-hand
side is the hazard rate of the distribution of individual quitting times at equilibrium.
From this we obtain a new result: The hazard rate of the duration of conflict is

3Indeed, for every strategy of one competitor, the other has a nond ing best resp In {6}, the

y that o is i ing is motivated by that t that “an animal is sometimes hungry and

sometimes less so. It is common sense that it should be willing to compete more strongly for food when
hungry.”
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nonincreasing at equilibrium. This is an empirical prediction of the model which is
independent of the specification of o, and hence of F.

Substituting a = o(4}) directly into the first-order condition yields a differential
equation which, combined with the necessary boundary condition that ¢(0) = 0, in
turn yields the equilibrium strategy: :

o(s
o(r)= I'I_S-ls ds.

Note that this analysis, which is focused on the distribution of equilibrium behavior,
offers a unified treatment of the game, independent of the character of F. Further-
more, because o' is precisely the distribution of choices predicted at equilibrium, the
analysis makes it relatively easy to deduce the empirical implications of the model.
(This fact has already been illustrated by our discovery of the declining-hazard-rate
property.) Finally, in this “distributional” form the dependence of equilibrium behav-
ior on the specifications of the model can be clearly seen. For example, we can observe
that o increases monotonically with the function o, i.c., the distribution o~ of quitting
times increases stochastically with the distribution o~ "= F of values. Also, o varies
continuously with o (in the sense of almost-everywhere convergence), so o' varies
continuously with F (in the sense of weak convergence of probability distributions).
These relations are less transparent in the traditional nondistributional analysis.

This model possesses a special monotonic structure, which we exploited in conclud-
ing that animals with higher types would choose later quitting times. In more general
models, a description of the equilibrium distributions of actions is not sufficient to

_specify the strategies of the players: It is necessary to indicate which types will take the

various actions. In order to preserve the analytical advantages noted in the preceding
paragraph, in the following sections we will represent the strategies of players by the
joint distributions of their types and actions, and will endow each space of “dis-
tributional” strategies with the topology of weak convergence of probability measures.
In this setting, the convergence of some sequences of pure strategies to mixed strategies
emerges naturally, and implies convergence of the associated distributions of actions.*
From the characterization of equilibrium strategies given above, it can be shown
that the game has a symmetric equilibrium point in pure strategies if and only if the
distribution F is atomless. We shall fusther explore the relationship between atomless
information structures and the existence of pure-strategy equilibria in §5. :

3. The formal model and the existence theorem. There are six formal elements in
our model. The first four are:

(i) the set of players: N = (1,2,..., n}.

(ii) the set of types for each player: (T,},cn- Each T; is a complete, separable metric
space.
(iii) the set of actions available to each player: (4,};c - Each 4, is a compact metric
space. .

(iv) the set of possible states: T,, a complete, separable metric space.

Let T=TyX -+ X T, and let A=4,X --- X A,. Then the last two elements
are:

(v) the payoff functions: {U,};cn- Each U, is a bounded, measurable function from
T X A into R.

(vi) the information structure: %, a probability measure on the Borel subsets of 7.

Associated with the information structure 7 is a marginal distribution on each T;

4Other i of the “point-opening”™ app h which unifies pure and mixed strategies are reported in
{13} and in 21, footnote 8] :
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How do the equilibria in these two cases compare? Let G be the distribution of
quitting times in the second case; then

)
F(s)

Assume that F concentrates its mass on a neighborhood (6 —¢,& +¢). Then the
integrand in the expression above is nonzero only if s < & +¢, and so

G(a) > Pr((o +¢)J; i f(F)(:) ds < a)

=Pr(F(§) <1-exp[—a/(D +9])
=1-exp[-a/(T+¢)]

since the random variable F(§)) has the uniform distribution on (0, 1). Similarly, since
the integrand is only nonzero if s > © —¢, G(a) < 1 — exp[—a /(5 — ¢)]. From these
two bounds on G(a), it is clear that, as €0, G converges weakly to the exponential
distribution with mean &. That convergence is comforting to the behavioral theorist,
since it would be quite unsettling if a slight change in the specifications of the model
led to a large change in predicted behavior.

We shall next present a general analysis of the War of Almt:on, taking a point of
view which is focused on the equilibrium distribution of observed behavior. Let ¢, and
t, be mdcpendent and uniformly distributed on (0,1), and let o= F~', (Here we
denote by F~! the generalized inverse of F, defined by F~Y(r) = sup{s| F(:)< t})
Then we can equivalently view the game as one in which the value of the prize to
animal i is the random variable v(l,) (ie., o(t,) has the same distribution as §), and in
which the quitting time chosen by animal i depends directly on his “type” . Let
0:(0,1)—>[0, 0] be a symmetric equilibrium nlrategy of the game. Without loss of
generality, we may take o to be nondecreasing;* note that o~ is the distribution of
quitting times for cach animal. If animal i, with type ¢, competes until time a, his
expected payoff is

G(a) = Pr(o(5) < a) = Pr( L T—Fm &< a).

L‘(o(:,) — 5)do~'(s) - a(1 - 0~ (a)).

The first-order optimality condition is then

1 _ d7'/da

o(t) 1-0"'a)’
and equilibrium requires that a = o(f,), or equivalently, that ¢, = ¢ ~'(a). Substituting
the latter equality into the first-order condition yields:
' 1 _ do7'/da

v(o"'(a)) 1-07Ya) )

The léft-hand side of this equation is a nonincreasing function of a, and the right-hand

side is the hazard rate of the distribution of individual quitting times at equilibrium.
From this we obtain a new result: The hazard rate of the duration of conflict is

3Indeed, for every strategy of one competitor, the other has a nond ing best resp In {6} the

jon that g is i g is ivated by that that “an nnmnlumeumu hungry and

sometimes less so0. It is common sense that it should be willing to compete more strongly for food when
hungry.”
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nonincreasing at equilibrium. This is an empirical prediction of the model which is
independent of the specification of v, and hence of F. .

Substituting a = a(t;) directly into the first-order condition yields a differential
equation which, combined with the necessary boundary condition that o(0) = 0, in
turn yields the equilibrium strategy:

a(t) = (s)

Note that this analysis, which is focused on the distribution of equilibrium behavior,
offers a unified treatment of the game, independent of the character of F. Further-
more, because o ~ ' is precisely the distribution of choices predicted at equilibrium, the
analysis makes it relatively easy to deduce the empirical implications of the model.
(This fact has already been illustrated by our discovery of the declining-hazard-rate
property.) Finally, in this “distributional” form the dependence of equilibrium behav-
ior on the specifications of the model can be clearly seen. For example, we can observe
that o increases monotonically with the function v, i.¢., the distribution 6 ~' of quitting
times increases stochastically with the distribution o" = F of values. Also, a varies
continuously with v (in the sense of almost-everywhere convergence), so 6! varies
continuously with F (in the sense of weak convergence of probablllly distributions).
These relations are less transparent in the traditional nondistributional analysis.

This model possesses a special monotonic structure, which we exploited in conclud-
ing that animals with higher types would choose later quitting times. In more general
models, a description of the equilibrium distributions of actions is not sufficient to
specify the strategies of the players: It is necessary to indicate which types will take the
various actions. In order to preserve the analytical advantages noted in the preceding
paragraph, in the following sections we will represent the stratcgies of players by the
joint distributions of their types and actions, and will endow each spacc of “dis-
tributional” strategies with the topology of weak convergence of probability measures.
In this setting, the convergence of some sequences of pure strategies to mixed slratcgm
emerges naturally, and implies convergence of the associated distributions of actions.*

From the characterization of cquilibrium strategies given above, it can be shown
that the game has a symmetric equilibrium point in pure strategies if and only if the
distribution F is atomless. We shall further explore the relationship between atomless
information structures and the existence of pure-strategy equilibria in §5.

3. The formal model and the existence theorem. There are six formal clements in
our model. The first four are: )

(i) the set of players: N = (1,2,...,n}.

(i) the set of types for cach player {T,}.cn- Each T, is a complete, separablc metric
space.

(iiii) the set of actions available to each player {A,},en-Each 4;is a compact metric
space.

(iv) the set of possible states: T, a complete, separable metric space.

Let T=TyX --- X T, and let A=A;X --- X A,. Then the last two elements
are:

(v) the payoff functions: {U,},cy. Each U, is a bounded, measurable function from
.TXx A into R.

(vi) the information structure: 7, a probability measure on the Borel subsets of T.

Associated with the information structure y is a marginal distribution on cach 7,

4Other instances of the “point-opcning” approach which unifies pure and mixed sirategies arc reported in
[13) and in [2, footnote 8).
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which we denote by #,. Thus, if S is a Borel subset of T, then 7(S) = 7(T; X S X
TyX -+ X T,).

A pure strategy is a measurable function p;: T,> 4;. In the case where T; is
uncountable, it was observed by Aumann [2] that a mixed strategy cannot be
acceptably defined as a measure on the set of pure strategies. To find a more
appropriate definition, he reasoned as follows.

Let us recall the intuitive meaning of a mixed strategy: It is a method for choosing a pure

strategy by the usc of a random device. Physically, one tosses a coin, and according to which
ndeeomesupchoosanmpondm;pmsmwgy ot.lfonemtllonndomlzeoverl

of pure gics, one uses a wheel. Math k , the
mdomdcvwe—lbendesolthemn,otthemolpmnuonlheednco[lherouhue
wheel i a probability space, f called & ple space; a mixed

strategy is a function from this sample space to the set of all pure strategies. In other words,
whalwehanhenupncuebammnmnabkwhmmlmmmnruegmw:pmmudy
attempted to work with hing cor to the distribution of this rand.

now we proposewusclhenndom variable itself.}

It is this idea which underlies the definition of a mixed strategy for player i as a
measurable function o;:[0, 1] X T, 4,. Our approach of defining a (distributional)
strategy as a measure on T, X A, provides another way of avoiding measurability
problems.

DEFINITION. A distributional strategy for player i is a probab:hty measure g, on the
subsets® of T, X A;, for which the marginal distribution of T; is n,. Formally, this
restriction on the marginal distribution is that for all § C T}, u,(S X 4,) = u,(S). When
the players adopt distributional strategies (g,, ..., p,), the expected payoff «; to
player i is defined to be:

T(Brs oo s ) = f U,(t a)p(day | 1)) - - - po(da, | t,)yn(dr).

There is a simple correspondence between a player’s behavioral strategies and his
distributional strategies. Given a behavioral strategy B,, the corresponding distribu-
tional strategy p, is defined for each S X B C 7, X A, (and, hence, for all Borel subsets
of T, X A)) by

B(SX B)= fs Bi(B. yn(dr).

In the reverse direction, for any given distributional strategy p, the corresponding
behavioral strategies are the regular conditional distributions (see [7] for definitions):
B«(B.t)=p(B|1).

Aumann [2] has shown that there is many-to-one mapping from mixed to behavioral
strategies that preserves the players’ expected payoffs. We have just seen that there is
another many-to-one payoff-preserving mapping from behavioral strategies to distribu-
tional strategies, i.c., each distributional strategy corresponds to an equivalence class of
behavioral strategies. Since any pair of distinct distributional strategies will generally
lead to distinct payoffs and since distinct distributional strategies represent different
predictions about a player’s behavior in the game (when his type and selected action
are observable), distributional strategies give the most parsimonious representation
possible of a player’s meaningful strategic options.

Consider the following regularity conditions for the games we are studying.

R1:  Equicontinuous Payoffs. For every player i and every € > 0, there is a subset

$Quoted from (2. p. 633}
SThroughout thu paper, we deal only with Borel scts and Borel ble functs The adjectives
“Borel” and “measurablc” are suppressed bereafier.

)
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E of T such that n(E) > 1 — € and such that the family of functions (U (s, -){1 € E}
is equicontinuous.

R2: Absolutely Continuous Information. The measure 7 is absolutely continuous
with respect to the measure § =179 X - - - X 7,. We denote the density of n with
respect to 1 by f.

A principal requirement imposed by R1 is that for any ¢ the playcrs payoffs must be
continuous functions of their actions. This aspect of the condition is genuinely
restrictive: it rules out many bidding games and games of timing. One cannot,
however, prove an existence thecorem without some such restriction. For example, there
are bidding games for which no equilibrium exists. 9

The following proposition indicates that a large number of models do meet the
requirements of R1.

PropOSITION 1. Each of the following three conditions is sufficient to imply R1.

(a) For each i, A; is finite.

(b) For each i, U;: T X A >R is a uniformly continuous function.

(c) For each i, and for each t in T, U(t, -) is (uniformly) conlmuous with modulus of
continuity 8(t, -), and for every € > 0, 8(-,€) is measurable.

The following important consequence of the equicontinuous payoffs condition can
be proved using Lusin’s Theorem.

PROPOSITION 2. In a game with equicontinuous payoffs, the following condition is
satisfied.:

R1*:  For every player i and every € > 0, there are a continuous function V,: T X A
—R and a subset K of T such that (i) 7(K) > 1 — ¢, (ii) V, has the same bound as U,
and (i) ¥V, and U, agree on K X A.

Condition R2 is a fairly weak requirement on the joint information of the players. It
is always satisfied when the variables ¢, . .., 1, are mdependem, as well as when T is
finite. It is also satisfied in many apphed models Nevertheless, R2 is a potent
assumption. It allows us to express the players’ expected payoffs in a convenient
manner:

(e oo m)= [ U)o, - diy (D))

The frequent applicability of R2 is emphasized by the following proposition.

PrOPOSITION 3.  Each of the following three conditions is sufficient 1o imply R2.
(a) For each i, T, is f inite or countable.
(b) The variables ro, .. l are independent.

7A family of functions ( f,) is eg if for every x and every ¢ > 0, there is a 8 > 0 such that
|x y|<8|mplu=|f.(x) L(y)|<tforeverya
Pis mlhmcpeolmmthermmmgﬂfotev«ys Q(S) = 0 implics
P(S) 0mkadon—leodymTheoremthcnmuthltbereuadenmyjo{l‘mlhrupecnog such
that for every S, P(S) = [sfdQ.
9Consider the two-person game in which T, = (10}, T; = {10,20), 4, = 4, = {0, 30}, and

4—a if a>a,
Ulh.a.8)=31(4-a)  a=a,
(1 otherwise.

Suppose Pr{7y = 10) = Pr(1, = 20) = }. This simpic bidding game has no Nash equilibrium.

For an example in which R2 does not hold, let P be the uniform distribution on the unit square and let
@ be the uniform distribution on the diagonal of the square. Then n=(P + ©)/2 is not an absolutely
continuous information structure.
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(c) There exists some product measure § = Ao X « - - X\, on Tg X - - - X T, such that
7 is absolutely continuous with respect to A.

THeoreM 1 (Existence Theorem). If a game has equicontinuous payoffs and abso-
{utely continuous information (i.e., if it satisfies R1 and R2), then there exists an
equilibrium point in distributional strategies.

Proor. We verify that conditions hold that are sufficient for the application of
Glicksberg’s existence theorem."

In view of the tightness'? of 5 (and hence of each 7,) and the compactaess of the
action spaces, each player’s set of distributional strategies is a tight set of probability
measures; also, it is easy to check that the set is closed in the weak topology. By
Prohorov’s Theorem," it follows that the strategy sets are compact metric spaces in the
weak topology. Convexity of these sets is also easy to check.

Since the density f of y with respect to 4 is #j-integrable, there exists a sequence { f,}
of bounded continuous functions such that

J1f - folicano.

Also, using R1*, we can approximate any U, by a continuous function ¥,. Let B be a
bound on U, and let {(pf, ..., n¥)) be a sequence' of strategy n-tuples converging to
(#ys - -+ » i) Then using (3.1), ’

m(nk, .. mk)=- L >Mlq(:,a)ﬁ,(x)v,,,(dz.,)d,.." ...dp* + R*(be), where (32)

IR (5.9 < B[ |f(1) ~ fy(n)li(dr) + 2¢B.

An expression similar to (3.2) can be written for #,(p,, . . ., ,). Since the integrand
in (3.2) is bounded and continuous, it follows for all pairs (b, ¢) that

tm supm, (i -, W) = w2 )] < 2B1f(6) = (i () + 4B.

For large b and small ¢, this bound approaches zero. Hence, #, is continuous. From
(3.1), 7; is linear.

In summary, when distributional strategies are topologized by weak convergence,
the players® strategy sets are compact, convex metric spaces and the payoff functions
are continuous and linear. By Glicksberg’s thcorem, an equilibrium exists. ®

4. The convergence theorem. Having proved the existence of a Nash equilibrium
we turn our attention to sequenm of games to study how variations in the specifica-
tions of a game affect the game’s equilibria. Throughout the analysis, we hold the type
space T fixed and we assumc that R1 and R2 hold. We index gama in l.he sequence
by k. In the kth game, n* is the distribution of types, and we define fj* = 3§ x - - - X
n* and f* = dn*/dij*. The set of actions gvailable to player i is a compact set A/ and

"'We refer to the following result, which can be extracted from [14]; related results appear in (9] and {19}
Let the players’ strategy spaces be pty comp convex sub of convex Hausdorff lincar
topological spaces. Let the payoff functions be i on the product of the strategy spaces, and let
each player’s payoff function be quasiconcave in his strategy. Then an equilibrium point exists.

12 A set of probability measures on a metric space is called sight Jloreveryt)l)lbmuucompmmk
such that for every P in the set of measures, P(K) > 1 — ¢. Any single probability ona p
separable metric space is tight. See |5, Thoorem 1.4}

13See [S, Theorem 6, p. 240}

1t suffices to consider sequences (rather than nets) because the domain of w, is a finite product of metric
spaces.
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his payoff function is U¥. The corresponding items in the * -game are n°, i*, f*, A*
and U*. Let (pf, ..., u¥) be an equilibrium point of the kth game.

THeOREM 2 (Convergence Theorem). Suppose that each game has equicontinuous
payoffs (Rl) and absolutely continuous mformauon (R2). If for all i € N,

@) { ") converges weakly to p?, and hence (¥} converges weakly to 7*,

(ii) {US) converges uniformiy to U?,

@ii) { f*} converges uniformly to f* on every compact subset of T,

(iv) U? is continuous on T X A and f* is continuous almost everywhere [#*}, and

w) {A") converges in the Hausdorff metric to A?, then (3, ..., p?) is an equilib-
rium of the *-game.

PROOF. Suppose, contrary to the theorem, that player 1 has a pure strategy o* in
the *-game which raises his expected payoff by some positive amount a over his payoff
from playing u?. Notice that a pure strategy in distributional form is simply a
probability measure concentrated on the graph of a classical pure strategy. Then, by
condition (v) of the theorem, there exists a sequence {o*} of pure strategies, viewed as
functions, that converges uniformly to ¢*, where a* is a feasible strategy in the kth
game.

Arguing as in the proof of the Existence Theorem, one can show that:

@) lim,, 71k, ..., pF) =7t (pt, ..., u?), and

() lim, , ,wi(o*, pf, ..., w5 = 73(e%, p, .. ., D).

Also, by assumption,

©2t(e* b3, ..., )2 7 (B}, .., W)t a
From (a), (b), and (c) it follows that for all sufficiently large k, the strategy o is better
than pf in the kth game, contradicting our hypothesis that each (uf, ..., u¥) is an
equilibrium point. 8

Condition (iii) of the theorem is noteworthy: it is not sufficient that the *’s
converge weakly to n*, as the following example shows.

ExampLE 1. A Bayesian statistical decision problem is a game pitting one strategic
player (the statistician) against Nature. We pose the standard estimation problem in
which the statistician must estimate an unknown parameter f,. Let T, = (0,1},
T,=A,=[0,1). In this problem, one often supposes that there is a quadratic loss
function: U(ty,a) = —(t, — a)’. We define a sequence of games, in which the informa-
tion structure for the kth game is concentrated on 2k points: .

Pr{to=0,¢,=j/k}y=1/2k) for j=1,...,k,
Pr{fo=1,4,=(2j— 1)/(2k)} = 1/(2k) for j=1,...,k.

The information structure for each game conveys perfect information about to If
2kt, is even, then lo = (; if it is odd, then ¢, = 1. Obviously, the optimal strategy in the
kth game IS

if 2kt, is even
k - 1 »
o) { 1 if 2ke, s odd.
Passing to the weak limit, the information structure becomes:
Pr{fp=0,1; <a} =Pr(fo=1,1; < a} = a/2.

For this mformauon structure, f, and t, are independent! Thus, t, conveys no
information about f;. The optimal strategy under this null information structure is'®

1t is well known that in an estimati blem with a quadratic loss function, the optimal esti is the
posterior expectation of the unknown paramelcr (cf. [10, p 228).
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a(1,) =1. The weak limit * of the sequence (0¥} is quite different (and nonoptimal),
calling for the player to choose his estimate to be cither 0 or 1, each with probability 1.
The following example highlights the role of assumption R2.
ExampLE 2. Consider the following variant of the “Battle of the Sexes” game. Let
T,= T, =[0,1] and let A, = A, = (1,2}. Assume that the payoffs are independent of
the types, and are given by the following table:

1 2
1 2,1 0,0
2 {00 12

Suppose that the information structure is given by Pr{l-, <u, t.2 < v} = min(y, v),
where u and v are numbers in [0, 1]. Thus, #, = 1,, and these variables are uniformly
distributed. Now consider the pure strategies

o*(n={

If both players adopt the strategy o*, perfect coordination is achieved and the strategy
pair is an equilibrium point. The limit of this sequence of pure strategies is the
following distributional strategy for player i:

Pr(l:< u,a,-=l}=Pr{t:< ua,=2}=u/f2 4.1

1 if the integer part of k¢ is odd,
2 otherwise.

Equation (4.1) asserts that the player ignores his information and randomizes his
choice of action, choosing each action with probability {. This “limit” is not an
equilibrium: a better response for player i would be to choose action i with certainty.
Thus, the set of equilibria of this game is not closed in the weak topology, and hence
the Convergence Theorem cannot apply to this game.

S. Pure strategies. Game-theoretic models are often criticized for their reliance on
mixed-strategy equilibrium points. Critics argue that mixed strategies have no role in a
behavioral theory: people do not base their decisions on the roll of a die or the toss of
a coin.

There are several kinds of responses one might make to such criticisms. First, one
can challenge the premise that mixed strategies are not actually observed. Close
decisions are often made on the basis of minor distinctions or simple whimsy, factors
which are hardly less random than roulette wheels. Second, one can claim that the
critics have failed to show that there is any observable difference between mixed and
pure strategic behavior. Third, models without pure-strategy cquilibria may neverthe-
less have pure-strategy e-equilibria'® for every positive e. If these are “close”™ to the
mixed-strategy equilibria in some appropriate sense, and if the e-equilibrium concept
seems empirically justifiable, then mixed strategies can be viewed as a convenient
technical device for behavoral modeling. Finally, one can accede to the critics and try
to identify classes of games for which pure-strategy equilibria exist.

The two theorems that we offer in this section address this whole range of possible
responses. The Denseness Theorem asserts that if a player’s type has an atomless
distribution,'? then his set of pure strategies is dense in his entire strategy set. It then
follows that if one can only observe points T X A, subject to some continuous
measurement error, pure strategies and mixed strategies are empirically indistinguish-

Y6 An e-equilibrium point of a game is an n-tuple (p, - .., i) of players’ strategics, such that for every
player i and cvery alternative strategy i, 7,(gy, . ... m) + €2 %(py, .-+ TR )
7A probability measure 3 is afomless if for every B with 3(B) > 0, there is a C C 8 for which
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able. Moreover, starting at any mixed-strategy equilibrium point, the Denseness
Theorem implies that one can locate a nearby pure-strategy e-equilibrium point.

The Purification Theorem identifies a class of games with the property that every
mixed strategy has a corresponding pure strategy such that (i) the pure strategy is
optimal whenever the mixed strategy is, (i) substituting the pure strategy for the mixed
strategy leaves the other players’ decision problems unchanged, and (iii) an observer
seeing only 1y and a would be unable to distinguish the pure strategy from the mixed
strategy.

THeOREM 3 (Denseness Theorem). Suppose that v, is atomless. The player i’s set of
pure strategies is dense in his set of distributional strategies.

Proor. Fix a distributional strategy pu for player i, and fix € > 0. Since 4, is
compact, there exists a finite e-partition B,, ..., By of 4, (i.e., a partition such that
each B, has radius less than ¢). Since T, is complete and separable, »; is tight [5,
Theorem 4.1}. Therefore T, can be partitioned into { X, S,}, where X is compact and
1:(So) < €. Also, K has a finite e-partition (S, . . ., S,}. Since #, is atomless, each S;

can in turn be partitioned into sets S, . . ., S;, such that %S/ 0(S)) = u(By| S) fo;
I=1,...,k(cf. [12) or [8, §2.2, problem 23]). .
Fix any points b, ..., b, in B,, ..., B,, and define a pure strategy o,: T, > A, by

o(r) = b, for all 1 in S It is routine to verify that as e >0, o, converges weakly to p
(cf. [4, p. 603]). &

In the statement and proof of the Denseness Theorem, we have assumed neither
equicontinuous payoffs nor absolutely continuous information. In the course of
proving the Existence Theorem, these two conditions were shown to imply that each
player’s expected payoff is a continuous function of the a-tuple of strategies. Thus,
these continuity conditions, together with the Denseness Theorem, ensure that there
are pure-strategy e-equilibrium points arbitrarily near any mixed-strategy equilibrium
point. In view of the Existence Theorem, we have the following result.

COROLLARY. If a game satisfies the equicontinuous payoffs and absolutely continuous
information conditions (R1 and R2), if each v; is atomless, and if the action spaces are
compact, then for every € > 0 there exists a pure-strategy e-equilibrium point.

Adapting terminology introduced by Radner and Rosenthal [27] to our model, we
say that a pure strategy o, is a purification of the strategy g, if two conditions are met:

(5.1) For almost every f,, o,(t,) lies in the support of pu,(- | ¢,). (Consequently, if p, is
a best response to some (n — 1)-tuple of strategies (g, . - -, u,) and if R1 holds, then
o, is also a best response.)

(5.2) For every player i # 1 and every (n — 1)-tuple (p,, . . ., 1) of strategies for
players 2, .. ., n, substituting o, for u, preserves i’s expected payoff: =, (p,, ..., 1)
=01, Ko - -5 M) -

1t is clear from the definition that if (u,, . . ., ,) is an equilibrium point and ¢, is a
purification of p,, then (0,, gy, ..., ) is also an equilibrium point. Radner and
Rosenthal have shown that if (i) the players’ types are mutually independent, (ii) each
n, is atomless, (iii) each player’s payoff depends only on his own type ¢, and the list of
actions a (that is, U; = U(t,,a)), and (iv) the action spaces are all finite, then each
strategy of each player has a purification. -

In a paper studying statistical decision problems, Dvoretsky, Wald and Wolfowitz

"[11} proved that if T, is a finite sct and 7, is atomless, then for every strategy p, there is

a pure strategy o, satisfying condition (5.1) and the following condition:
(5.3) Conditional on any ¢,, the distributions induced on 4, by g, and o, are
identical, i.c., for any subset B of 4,,

m(o7'(B) | 10) = [ m(Bltym(dn| o)
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As a corollary to the Dvoretsky-Wald-Wolfowitz result and to the Existence
Theorem, we obtain the Purification Theorem.

Tueorem 4 (Purification Theorem). If (i) conditional on ty, the players’ types are
independent, (i) each v is atomless, (iii) each player's payoff depends only on the state
variable t,, his own type 1,, and the list of actions a (that is, U; = U(to,1;,a)), (iv) each
player's action set A, is finite,' (v) payoffs are equicontinuous (R1 holds), and (vi) Ty is a
finite set, then each strategy of each player has a purification satisfying conditions (5.1),
(5.2), and (5.3). Furthermore, the game has an equilibrium point, and hence has an
equilibrium point in pure strategies.

Proor. It is direct to verify that conditions (i), (iii), (iv), and (5.3) imply (5.2), so
the existence of purifications follows from the Dvoretsky-Wald-Wolfowitz theorem.
Also, it is direct to show that conditions (i) and (vi) imply R2, so existence follows
from the Existence Theorem. @

Theorem 4 extends the Radner-Rosenthal purification result [27] to allow some
players to have information about variables that appear in other players’ payoff
functions. Models with this latter feature are known as “adverse selection” models,
and play an important role in information economics.

6. Complements and comments. Our formulation of games with incomplete infor-
mation contains the assumption that an exogenously-specified metric on the type space
T is available. It might appear preferable to simply treat the players’ types as points in
a general measurable space, without assuming any topological structure. Indeed, the
critical conditions of equicontinuous payoffs (R1) and absolutely continuous informa-
tion (R2) depend only on measure-theoretic properties of T. Yet the topology on types
was necessary in order to define the weak topology on distributional strategies, and
this topology played a crucial role in the Existence, Convergence, and Denseness
Theorems.

How might we have proceeded, if only a measurable structure on T had been given?
A natural approach would have been to define endogenously a metric on T which
reflects the nature of the game. In general, a player’s type has two aspects. First, it
influences his payoffs, as well as the payoffs of others. Additionally, it affects his
beliefs about the types of his competitors, and hence about their behavior. As noted,
for example, in [20] and [24], both of these effects are metrizable. We here define two
metrics (actually, pseudometrics) on T which correspond to the two effects. For the
sake of expositional simplicity, our analysis will be in terms of the canonical form of
the game (cf. footnote 1; we assume that the state has been integrated out of the
payoff functions, and that T= T X - -- X T,).

Assume that the players’ payoff functions are bounded, and are continuous on A for
each ¢ in T. For any player i and types ¢ and " in T}, define

n
di‘(‘l’"l’) - E Sllp Sl.lp |l]/(l",1_‘,¢l) - l’](’l’ ,’_“a)l,
j=l1acA_,€T_,

and for ¢ and ¢ in T, define d'(¢',1") = 37.,d\(#],4). With respect to the product
topology on T X A induced by this metric on T and the originally-given topology on
A, all of the players’ payoff functions are continuous. (Of course, this statement is

trivial if, for example, the metric d' induces the discrete topology on T.)
For any player i and type 1, in T}, let _,(- | £;) denote the conditional distribution'®

yakar Kannai has provided an example which, when suitably extended, shows that this condition
cannot be weakened to allow arbitrary compact action spaces.

19We assume that a regular conditional distribution exists—as it does, for example, it 7 is a Borel space
(see [7, Chapter 4)).
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on T_, induced by 7. For any ] and ¢/ in 7,, define
dX(4,¢) = sy _(Bley— B|y
AURS) ‘cg_‘l"l (BIEY=n_y(BI")

and for ¢ and ¢” in T, define

a7y 3 a2 7).
=1

The .mcl.ric d? might be termed the “continuous beliefs” metric for player i.

Given a metric d on T, we say that the d-topology is measurable if all d-open sets
are measurable. A probability measure n on T is d-fight if the d-topology on T is
measurable, and if for every € > 0 there is a d-compact set of measure at least | — ¢.

PROPOSITION 4. (a) If 1 is d'-tight, then the game has equiconti
T - s quicontinuous payoffs.
(b) If y is dz-aghl, then the game has absolutely continuous infonnatimfay 7

A natural endogenously-determined topology on any 7, is that induced by the
metric d' + d?. All of the results of the paper could have been derived in terms of
thm metrics. Since essentially all proofs of the existence of equilibria for classes of
games depend on the compactness of the players’ strategy spaces, and since the
tightness of 5 is required to ensure the compactness of the sets of distributional
strategies in a game with incomplete information, it seems unlikely that our Existence
Theorem can be substantially generalized.

A proof of Proposition 4 is given in [24). That paper also discusses the connections
!)ctwecn this paper, [1}, and [27). Those latter two papers approach games with
incomplete information with objectives different from ours, and contain, among other
results, special cases of our Existence Theorem.

) Harsanyi [16] studied the perturbation of a complete-information game by the
lfnroduction of payoff uncertainty, and showed that almost any mixed-strategy equi-
hbri_u}n in the original game can be distributionally approximated by pure-strategy
equilibria in the perturbed games. This may be viewed as a lower-hemicontinuity result
which complements our Convergence Theorem. ;

) Throughout this paper, we have assumed that all the players agree on the informa-
upn _stru.cturc 7. Let us now suppose instead that, according to player i, the joint
distribution on Ty X - - - X T, isn’. Let = (' + - - - + 9”)/n. It is straightforward
to check that if each 7' is an absolutely continuous information structure, then each 3’
is absolutely continuous with respect to #. Let f = dy'/dij be the density of o' with
respect to ij. If we replace f everywhere it appears by f' or f/, as appropriate, then all of
our arguments retain their validity. Thus, nothing essential is affected by the consis-
tency assumption used in §§1-5. '
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