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Consider a family of maximization models in which the optimum
trades off beneficial and costly effects. Then comparative statics de-
rived under many kinds of simplifying assumptions about the bene-
fits technology are also true for general (convex and nonconvex)
technologies. For example, any comparative statics conclusion about
investment by a risk-averse decision maker under uncertainty that
holds when expected returns are described by a general linear func-
tion also holds for an arbitrary nonlinear expected return function.

I. Introduction

One of the continuing controversies that divide economic theorists
is the question of how to regard results obtained from models incor-
porating particular functional forms. Nearly every subfield of eco-
nomics has produced influential papers with models that incorporate
such forms, especially for technology or demand. These forms are
typically adopted for reasons of tractability or computability, not be-
cause they are empirically supported or are even a priori plausible.
Critics observe that the conclusions derived from such models are
sometimes misleading and worry that they might often be so. This
paper addresses one aspect of that concern: When are the compara-
tive statics of narrowly parameterized families of optimization models
reliable guides to the general case?

My analysis focuses on the most commonly studied class of optimi-
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zation models for economic applications. This is the class in which
the optimum is determined by trading off two or more effects of a
particular choice variable. Formally, such problems can be expressed
in terms of maximizing a function V(x, f(x), 8) subject to a constraint
x € K C R, where x is the choice variable, § € R is a parameter, and
f(x) is the benefits production function. I assume that V is continu-
ously differentiable and that V, > 0. For many applications, I also
assume that V| = 0. Then increasing x directly reduces utility through
the first argument of V and may produce benefits (through f) that
are valued through the second argument of V.

The main theorem of this paper establishes that for problems in
this class, assumptions about that exact form of f are irrelevant for
the comparative statics analysis. More precisely, if a comparative stat-
ics result is established for the linear functions f(x) = ax + b or for
the functions in any other family in which the level and slope can be
varied independently, then the same conclusion is true for any func-
tion f. The theorem also establishes that the separate convexity as-
sumptions governing the payoff function V and the constraint set K
are always inessential for comparative statics analysis.

These conclusions do not mean that functional form assumptions
are either useless or inconsequential for economic analysis. Func-
tional form assumptions may be helpful for deriving explicit formulas
for empirical estimation or simulations or simply to lend insight into
the problem structure, and they certainly can help determine the
magnitude of comparative statics effects. But with economic knowl-
edge at its current state, functional form assumptions are never really
convincing, and this lends importance to the question I ask and to its
answer: One can indeed often draw valid general comparative statics
inferences from special cases. I begin by illustrating that point with
a particularly striking example.

II. An Example

Consider the problem of the risk-averse firm under price uncertainty
first studied by Sandmo (1971). In the original version of the model,
the firm is competitive and is run by an entrepreneur with exogenous
income I, facing a price P + € for its output, where € is a mean zero
random variable. The firm produces output x and earns an expected
profit of w(x) = Px — C(x). The entrepreneur chooses x = 0 to
maximize E[Uy(I + Px — C(x) + Sg(x) + x€y)]. Then 0 may parame-
terize shifts in the cost or demand functions through S, the risk
attitude or income tax rate through Uy, or the randomness of demand
through €;, or any combination of these. Assume that, for all 8, U,(-)
1s increasing, smooth, and concave and that Sy(*) is nonincreasing and
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concave. Although Sandmo’s original model focused on the competi-
tive firm, I generalize it here to include models in which the firm
may have some market power. Thus the nonrandom component of
price is treated here as a function of output: P = g(x).

The firm’s problem can be represented in the general benefit-
cost form with costly activity x and benefit y by taking V(x, y, 8) =
E[Ug(y + S¢(x) + xeq)], where 6 € T and T is an arbitrary subset of
R. Note that V is increasing in y and nonincreasing in x (because S is
nonincreasing and U is increasing and concave). This formulation
entails conceptualizing the problem as one in which increases in x
lead to increases in risk that may be offset by increases in expected
profits. The optimum is determined by balancing these effects, with
the balance affected by 6. The following proposition is a corollary of
my general theorem.

ProposriTION 1. In the generalized Sandmo problem, the following
three conditions (each of which is a joint restriction on Uy, Sy, and
€y) are equivalent.

1. In the special case of the model in which the firm is a price taker
(g(x) = P) and costs are zero (C(x) = 0), x*(0|P, I) is monotone
nondecreasing in 8 for all prices P > 0 and all exogenous in-
comes /.

2. In the special case of the model in which demand is linear with
slope —1 (g(x) = A — x) and costs are C(x) = 'ex?, x*(8|A, I) is
monotone nondecreasing in 8 for all values of the parameter
A > 0 and all exogenous incomes /.

3. For all expected inverse demand functions g(-), cost functions
C('), and exogenous incomes I, x*((—)|g, C, I) is monotone nonde-
creasing in 0.

Thus, for each of the kinds of comparative statics exercises listed
above, showing monotone comparative statics in a very special case
such as case 1 or 2 is equivalent to establishing the same conclusion
for the case of general demand and cost functions.

I have not yet defined monotone comparative statics for the case
in which the optimum is not unique. A sensible definition must assert
that for any two parameter values 6 = 6’ for which the optimum x*(-)
is unique, x*(0) = x*(0’). The proposition does indeed imply that
and more. The treatment of nonexistent and nonunique optima is
explained in the next section.

The key to understanding the proposition is that the particular
cases, though restrictive, are rich enough to incorporate what I call
semifull two-parameter families of benefit production functions. The
families are f(x|I, P) = I + Px for case 1 and f(x|I,A) = I + x(A — x)
— 'ox? for case 2. Both families have the crucial property that, for
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each x, one can select the parameters to fix both the value f(x) and
the slope f'(x) at any desired levels.

Results such as proposition 1 can be used to expand the scope of
earlier analyses. For example, one variation of the problem studied
in case 1 of the proposition is identical to Arrow’s (1971) problem of
the demand for a risky asset, where P is reinterpreted to be the excess
return on the risky asset. Arrow showed that, in that case, a sufficient
condition for x*(I| P) to be monotone nondecreasing in I for all P is
that U exhibit decreasing absolute risk aversion. If U and the distribu-
tion of € are taken to be independent of 8 and Sy(x) is set equal to 6,
proposition 1 then implies that the same condition is also sufficient
to conclude that x*(I|g, C) is monotone nondecreasing in I for all
demand functions g and all cost functions C in the generalized
Sandmo model. Similarly, Rothschild and Stiglitz (1971) showed that
if there is decreasing absolute risk aversion, then increasing the riski-
ness of investment in Arrow’s model leads to reduced demand for
the asset. It follows that under the same conditions in the Sandmo
model, with general demand and cost functions, increasing riskiness
of €, causes the entrepreneur to produce less output.

III. The Main Theorem

In general, maximization problems may have multiple optima or no
optimum at all, so I shall need to be careful about the meaning of
the phrase “monotone comparative statics.” Let x*(8|f, S) denote the
possibly empty set of maximizers in a one-variable maximization
problem with objective V(x, f(x), 8) subject to x € S. I define monoto-
nicity using Veinott’s “strong set order” on the range of the function
x*. Formally, x* is monotone nondecreasing in 8 if, for every two
parameter values 8’ < 6" for which an optimum exists, the following
condition holds: If x" € x*(0'|f, S) and x” € x*(0"|f, S), then max(x’,
x") € x*(8"|f, S) and min(x’, x") € x*(0'|f, S). If one restricts attention
to values of the parameter 8 for which the optimum is unique, this
condition is equivalent to the intuitive definition that the unique opti-
mum is a monotone nondecreasing function of 6. Notice from the
definition that if the set of optima is empty for some parameter value
', then it is automatically true that x*(8) = x*(8') and x*(8") = x*(0).
Hence, the claims about monotone comparative statics made below
entail no conclusions about the existence of an optimum.

In the theorem below, we shall also have need of the concept of a
full two-parameter family {g(-|a)} of concave functions from R to R.
This is a family of concave functions with parameter a lying in some
set A and with the property that, for all x, a, b € R, there is some
parameter value a € A such that g(x|a) = b and dg(x|a)/ox = a. A
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semifull two-parameter family of concave functions is defined by the
same restrictions, but the restrictions are imposed only when a > 0.

Finally, the (x, y)—level sets of V are the sets Sg, = {(x, y)|V(x, y, 0)
= v}. In the theorem below, I assume V, > 0 so that there is at most
a single value y(x|8, v) such that (x, y(x)) € Sg,- The set Sy, is a curve
if y(-8, v) is a continuous function. With the definitions in place, I
can state the main theorem.

THEOREM 1. Let V: R® — R be continuously differentiable with V,
> 0 and suppose that the (x, y)—level sets of V are curves. Let § C R
be convex. Then the following two conditions are equivalent:

1. For all functions f: R — R and all sets K C §, the solution
x*(8|f, K) of the following problem is monotone nondecreasing
in 6:

maximize V(x, f(x), 8) subject to x € K.

2. For all x € int(S) and all y € R, the function V(x, y, 8)/V,(x, y, 0)
is monotone nondecreasing in .

Suppose, in addition, that V is quasi-concave. If either (i) {g(-| o)} is
a full two-parameter family of concave functions or (ii) V| = 0 every-
where and {g(-| @)} is a semifull two-parameter family of concave func-
tions, then conditions 1 and 2 are also equivalent to the following
condition:

3. For all a € A, the solution x*(8|a) of the following problem is
monotone nondecreasing in 6:

maximize V(x, g(x|a), 8) subject to x € . (1)

Proof. The equivalence of conditions 1 and 2 is established in Mil-
grom and Shannon (1994), and it is obvious that condition 1 implies
condition 3. So it is sufficient to verify that condition 3 implies condi-
tion 2 under the hypotheses of the theorem.

Choose any x € int(S), y € R, and 8 € R. Choose o € A such that
g(x|a) = y and dg(x|a)/ox = =V (%, 3, 0)/Vy(%, ¥, 0). This choice of «
means that the convex preferred set {(x, y)|V(x, y, 8) = V(x, 3, 0)} is
tangent to the convex set {(x, y)|y = g(x|a)} at (%, j). Hence, (%, y)
maximizes V(x, y, 8) subject to x € S and y = g(x|a). Therefore, since
Vo > 0, x maximizes V(x, g(x\ a), 8) subject to x € S, thatis, x € x*(0 |).
If, for some 6’ > 0, condition 2 fails at (x, ), then the derivative with
respect to x of V(x, g(x|a), 8") is less than that of V(x, g(x|a), 0) at x
and, hence, negative. Therefore, by quasi concavity of the objective,
any x' € x*(0'|a) satisfies x' < %, in contradiction to condition 3.
Q.ED.

Several remarks may help clarify the scope and meaning of the
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theorem. First, the proof of the theorem works by deriving necessary
conditions for the convex case from standard convex programming
methods and then using a direct argument to establish that the same
conditions are sufficient for the nonconvex case. This is a familiar
idea from the analysis of demand relations, carried here to its logical
conclusion, and allows us to unify convex and nonconvex comparative
statics into one single theory. Although the theory is derived for com-
parative statics of global maxima in optimization problems, it can also
be used to analyze local maxima, because the local maxima are just
the global maxima for a family of problems with a small constraint
set.

Second, although this example emphasizes that one can use convex
methods on particular parameterized problems to obtain more gen-
eral comparative statics, the theorem suggests an alternative ap-
proach: direct verification of condition 2. This approach, which Mil-
grom and Shannon (1994) have dubbed the “method of dissection,”
has several advantages for applications. It can be applied regardless
of whether the problem is convex; it works whenever anything does
(because condition 2 is necessary as well as sufficient, even within the
class of convex problems); and it serves intuition by directing atten-
tion away from the irrelevant structure of the benefit production
function and by emphasizing a marginal rate of substitution concept
that is familiar to economists from demand theory.

The final remark concerns the possibility of strengthening conclu-
sion 1 of the theorem in the case of multiple optima. As it stands,
condition 1 still allows that when x*(0) is not single-valued, there may
exist a selection x(0) from the set of optimizers that is not monotone
nondecreasing. A variation of the theorem that rules that out follows.
In this variation, x() is said to be a selection from x*(0) if the domain
of x(-) is the set of parameter values such that x*(8) is nonempty and
for all 6 in the domain x(0) € x*(0).

THeEOREM 2. Let V: R®* — R be continuously differentiable with
Vy > 0 and suppose that the (x, y)—level sets of V are curves. Let S C R
be convex. Then condition 2 below implies condition 1:

1. For all functions f: R — R and all sets K C S, every selection x(6)
from x*(8|f, K) is monotone nondecreasing.

2. For allx € int(S) and all y € R, the function V| (x, y, 0)/V,(x, y, 0)
is monotone increasing in 6.

Suppose, in addition, that V' is quasi-concave. If either (i) {g(-|a)} is
a full two-parameter family of concave functions or (ii) V|, = 0 every-
where and {g(-| @)} is a semifull two-parameter family of concave func-
tions, then condition 3 below implies condition 2:
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3. For all a € A, the solution x*(8|a) of problem (1) is unique, is
continuously differentiable in 6, and satisfies dx*/90 > 0.

Thus, in the Sandmo example, if x*(0|a) is single-valued and in-
creasing in either case 1 or case 2, then every selection from x*(8|a)
is nondecreasing in the general case 3.

Many of the most general results of demand theory have been
derived on the basis of simplifying assumptions, especially the as-
sumption that the budget set is linear. That assumption is sometimes
unnatural and, as our theory implies, often dispensable with no extra
work. For example, the effect on labor supply of changing the tax
rate on income is typically studied by analyzing the problem of max-
imizing U((1 — 7)(I + wx), X — x) subject to x € [0, x]. Here, U is
a quasi-concave utility function defined on income-leisure pairs, 7 is
the tax rate, I is nonlabor income, w is the wage, and x is the labor
hours supplied out of the total labor endowment x. Suppose that for
some family of utility functions U it is concluded that, for all I and
w, x*(7) 1s monotone nondecreasing (or nonincreasing) in 7. Then the
results imply that the same conclusion holds when the linear wage
function wx is replaced to be an arbitrary nonlinear function f(x) and
when the constraint x € [0, x] is supplemented by an arbitrary con-
straint x € K. Nonlinear functions can represent pay differentials for
part-time and overtime work, which are prominent features of the
real working environment, and the constraint set K can reflect realis-
tic restrictions on the hours of work that are available in various
Jobs. To verify this claimed generalization of the comparative statics
conclusion using theorem 1 or 2, one takes V(x, ¥, 0) = U@y, x — x)
and g(x|1, w) = I + wx.

IV. Higher Dimensions

The theorems in the previous section are stated for problems in which
the choice variable is a real number, but it is obvious that the same
theorems imply that convexity assumptions can also be relaxed in
problems in which the choice set is a subset of R for n > 1. The
reason is that one can always perform a two-stage maximization to
reduce a multivariate problem to one of choosing a single real vari-
able. The following theorem and its proof illustrate this possibility.

‘THEOREM 3. Suppose that the function f(x, 0): R* X R — R is
continuously differentiable and that, for all 6, (-, 8) is concave. Let
S C R" be compact and convex. Suppose, in addition, that, for all
a € R, the solution set x{(8|a) is monotone nondecreasing in 0, where
x{(8]a) is the first component optimum of the problem

maximize f(x, 8) + ax, subjecttox € S.
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Then for all functions g: R — R and all K C R, the first component
optimum x§(8|g) of the problem

maximize f(x, 8) + g(x;) subjecttox € § and x; € K

is also monotone nondecreasing in 6.

Proof. Let f*: R2 — R be defined by f*(z, 8) = max{f(x, 8)|x € S,
x; = z} and let §; be the projection of S onto its first component.
Then x¥(0]a, b) = x%¥(0|a) is the solution set of the one-dimensional
problem

maximize f*(x;, 0) + ax; + b subject tox; € .

Set V(x,y,0) =y + f*(x;, 8) and g(x,|a, b) = ax, + b. Apply theorem
1. Q.E.D.

Adding g(x,) to the objective and introducing the additional con-
straint that x; € K generally destroy the convexity of the original
problem, so convexity cannot be essential for conclusions about com-
parative statics. Still, convexity of the subproblem in the two-stage
maximization is sometimes helpful for establishing the requisite prop-
erties of the second-stage (reduced) problem.

To illustrate, consider the problem of maximizing the total benefit

*_, B;(x;) obtained from a finite amount of total resource x, where
2 x; =X and x; = 0 for all 7. It is a standard result of convex program-
ming that if each B, is concave, then x§(x) is monotone nondecreasing.
To relax the concavity of the overall problem, let us conduct a two-
stage optimization. Thus define B_,(z) = max 2, B;(x;) subject to
21 %; = zand, for all 7, x; = 0. Then the original problem is reduced
to maximize B (x;) + B_;(x — x;). With V(x,y,0) =y + B_,(6 — x),
condition 2 in theorem 2 indicates that a sufficient condition for com-
parative statics is that B_,(+) is concave, and the theorem indicates
that this condition is also necessary if B, is to be arbitrary. A sufficient
condition for the concavity of B_, is that the functions By, . . ., B,
(but not B,) are concave. When n = 2, the concavity of B, is a neces-
sary condition as well. Thus, in this example, concavity in the sub-
problem, but not in the overall problem, is necessary as well as suffi-
cient for the comparative statics analysis.

V. Conclusion

My theorems assert that comparative statics of concave maximization
models derived in highly specific contexts are sometimes reliable
guides to the comparative statics of much more general contexts. The
critical sufficient condition in each context is the same: it is condition
2 of theorem 1. Milgrom and Roberts (1994) obtain similar results
for equilibrium models. They show that the necessary conditions for
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monotone comparative statics in certain narrow, two-parameter fami-
lies of fixed-point problems are sufficient conditions for a much wider
family of fixed-point problems. Together, these results suggest that
comparative statics conclusions obtained in models with special sim-
plifying assumptions can often be significantly generalized. The theo-
rems help to distinguish the critical assumptions of an analysis from
the other assumptions that simplify calculations but do not alter the
qualitative comparative statics conclusions. In that way, the theorems
improve our ability to develop useful models of parts of the economy
and to interpret those models accurately.
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