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CHAPTER 1

Auction theory

Paul R. Milgrom

1 Introduction

Auctions are one of the oldest surviving classes of economic institutions.
The first historical record of an auction is usually attributed to Herod-
otus, who reported a custom in Babylonia in which men bid for women
to wed.! Other observers have reported auctions throughout the ancient
world - in Babylonia, Greece, the Roman Empire, China, and Japan.?

As impressive as the historical longevity of auctions is the remarkable
range of situations in which they are currently used. There are auctions
for livestock, a commodity for which many close substitutes are avail-
able. There are also auctions for rare and unusual items like large dia-
monds, works of art, and other collectibles. Durables (e.g., used machin-
ery), perishables (e.g., fresh fish), financial assets (e.g., U.S. Treasury
bills), and supply and construction contracts are all commonly bought or
sold at auction. The auction sales of unique items have suggester! to some
that auctions are a good vehicle for monopolists. But it is not only those
in a strong market position who use auctions. There are also auction sales
of the land, equipment, and supplies of bankrupt firms and 1« ms. These
show that auctions are used by sellers who are desperate for cash and will-
ing to sell even al prices far below replacement cost.

The first draft of this paper was written while | was a Fellow at the Institute for Advanced

Studies of the Hebrew University of Jerusalem. Discussions with Charles Wilson, Motty

Perry, and, especially, Ariel Rubinstein contributed enormously to my understanding of

the relation between auctions and bargaining. Comments by Byung-1l Choi and Alvin Roth

on a previous version of this manuscript led to improvements in the exposition.

' Herodotus may not have been the first 1o publish. Seme scholars interpret the biblical
account of the sale of Joseph (the greal-grandson of Abraham) into slavery as being an
auction sale,

! For a more detailed history of auctions and a deseription of some of the auctions used in
the modern world, see Cassady (1967).
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Indeed, the only clear common denominator for the kinds of objects
that are sold at auction is the need to establish individual prices for each
item sold. Used cars, whose condition varies over a wide range, are sold
to dealers at auction; new cars are not. Livestock are sold at auction even
though close substitutes are readily available, because individual animals
differ in weight and health. The price of fresh fish needs to be determined
daily, because the daily supply of fish varies so tremendously. Construc-
tion contracts are normally too complex to allow a simple pricing sched-
ule to work; competitive bids sometimes provide a workable alternative.

In this essay, I review only a small part of auction theory - the part
that claims to explain the long and widespread use of auctions and com-
petitive bidding and to account for certain details of the way auctions are
usually conducted. These details include the popular use of sealed-bid
and ascending-bid auctions, the establishment of minimum prices, the
preparation of expert appraisals of items being sold, and so forth.

Logically prior to explaining the use of auctions is defining just wliat
an auction is. The characteristic feature of an auction is that there is an
explicit comparison made among bids. In the ascending-bid (“English™)
auction, a bidder’s offer remains open long enough for other bidders to
make counteroffers, so that the seller can take the highest offer. In the
sealed-bid auction, the bidders’ offers arc.all made simultaneously, so that
the seller can compare them directly. In the descending-bid (“Dutch™)
auction, the seller makes a series of price offers, declining over time. Each
bidder has the opportunity to accept or feject the seller’s latest price offer;
this affords the seller an opportunity to compare the timing of buyers’
offers, and to take the offer that is made earliest. Each of these auctions
requires that all the bidding be completed within a relatively short period
of time. They can be coniiasted with, say, a sequential bargaining pro-
cess in which the seller negotiates one-by-one with a scries of buyers who
make short-lived offers, so that the seller has no opportunity to compare
the simultaneous Bffers of competing buyers. We shall develop the im-
portance of this difference in more detail later.

The simplest explanation of the continuing popularity of auctions is
that auctions often lead to outcomes that are cfficient and stable. More
formally, in a static deterministic model, the set of perfect equilibrium
trading outcomes obtained in an auction game {as the minimum bid is
varied) coincides with the set of core allocations. An outcome is in the
core when there is no coalition of traders that can, by trading just among
its members, make all coalition members better off.

To understand the significance of this conclusion, imagine a situation
in which a single item is sold but the resulting allocation lies outside the
core. There are two possibilities. First, the allocation may be inefficient;
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in this case, the new owner will likely find it profitable to resell the item to
a buyer who values it more. The second possibility is that, even though
the allocation is efficient, there are other buyers around who were willing
to pay a higher price (and after the auction are willing to tell the seller 50).
In either case, the seller may well resolve not to be so quick to sell the
next time around and perhaps even to compare alternative offers - that is,
to conduct some kind of auction.

A second explanation of the popularity of auctions highlights the ad-
vantages of an auction to a seller in a relatively poor bargaining position?
(such as the owner of a nearly bankrupt firm) when the goods sold at auc-
tion can later be resold. Consider the problem of such a seller. Suppose
that there are two potential buyers: Mr. 1, who has a high valuation for
the item being sold, and Mr. 2, whose valuation is lower. What happens
if the seller conducts an auction with a low minimum price? At the equi-
librium of the auction game, the item will be sold to Mr. 1 for approxi-
mately its value to Mr. 2. With the possibility of resale, that value cannot
be less than the price that Mr. 2 could get by reselling to Mr. 1. By con-
ducting an auction, the seller expects to get about the same price as Mr. 2
would get, even though Mr. 2 may be much better positioned for face-to-
face bargaining with Mr. 1. Thus, a seller in a relatively weak bargaining
position can do as well as a strong bargainer by conducting an auction.

These first two explanations of the prevalence of auctions are devel-
oped in detail in Section 2, which focuses on deterministic auction mod-
els. A third explanation, reviewed in Section 3, is that even a seller in a
strong bargaining position will sometimes find it optimal to conduct an
auction. That is, the seller will prefer to conduct some standard auction,
such as the sealed-bid or ascending-bid auction with a suitably chosen
minimum price, rather than to play any other exchange game* with the
bidders.

The three explanations just described are, of course, complementary.
Together, they provide a cogent set of reasons for a seller to use an auc-
tion when selling an indivisible object over a wide range of circumstances.

In the auction models discussed so far, there is little that can be said
about the details of how auctions are conducted. In those models, many
kinds of auctions (including all the usual ones) lead to the same mean
price. However, this “independence” result depends on the assumption
that bidders have no private information about each other. Formally, the
observations they make are assumed to be statistically independent. When

3 That is, a poor bargaining position relative to the potential buyers.

* An exchange game is any game whose outcome determines an allocation and time of
trade, and in which each player has a strategy of nonparticipation that leaves him with
his initial allocation.



4 Paul R. Milgrom

there is correlated uncertainty on the part of the bidders, different auc-
tion rules lead to different mean prices.

In Section 4, we introduce correlated uncertainty into the bidding
model and focus on the strategies open even to a seller with no bargain-
ing power, that is, one who cannot commit himself to withhold an item
that attracts only low bids.s What strategies can such a seller adopt? For
one, he can normally choose which kind of auction to offer, provided the
minimum bid is kept low, because buyers will always want to participate
in the auction.® Normally, the seller can also decide whether to reveal any
information about the itemn being sold or about the potential buyers, be-
cause it always pays a buyer to listen if he can do so without being seen.
Given these options, the seller’s preferences are surprisingly systematic.
In a wide range of circumstances,’ the seller will prefer (1) to conduct an
ascending-bid auction rather than a sealed-bid auction, (2) to reveal all
information that he has available, and (3) to link the price to any avail-
able exogenous indicators of value.

The analysis leading to these conclusions is founded on what has been
called the Linkage Principle. Intuitively, a bidder’s expected profits from
an auction are greatest when he has private information that the item
being sold is quite valuable. The intuition of the Linkage Principle is that
the auctions yielding the highest average prices are those that are most
effective at undermining the privacy of the winning bidder’s information,
thereby transfering some profits from the bidders to the seller. According
to the principle, privacy is undermined by linking price to information
other than (but correlated with) the winning bidder’s private information.

The three conclusions described above all follow from the Linkage
Principle. In an ascending-bid auction, the equilibrium price depends on
the information of losing bidders through the bids they place. That de-
pendence, or linkage, is absent in the sealed-bid auction. Its presence in
the ascending-bid auction leads to a higher predicted price (provided that
the bidders’ information is correlated).

5 In Section 4, we review some game-theoretic arguments supporting the presumption that
a “rational” seller cannot hold out for a high price when he is uncertain about the buyers’
reservation prices.

No matter what strategies the other players adopt, each buyer does at least as well by en-
tering the minimum bid as by abstaining from the auction. For some strategies - namely,
when others refrain from bidding - he does better. (This argument is transparent for the
case where resale is impossible, and can be extended also to the case with resale possibil-
ities.)

The principal assumptions required include risk neutrality, symmetric uncertainty about
the bidders' valuations, and a strong form of nonnegative correlation, known as affilia-
tion, among the bidders’ valuations.

>

)

bl aons

.

Auction theory 5

In any kind of auction, the seller, by revealing information, influences
the bids and therefore the price. So, by revealing his information, the
seller links the price directly to his information. Thus, according to the
Linkage Principle, a policy of revealing information raises the expected
price that will result from the auction, provided that the information to
be revealed is affiliated® with the bidders’ information. Similarly, basing
the price in part on ex post indicators of value creates a linkage that on
average increases the expected price (if these indicators are affiliated with
the bidders’ information). Examples of contracts let at auction where
price is determined in part by ex post indicators include construction con-
tracts with a cost-sharing provision and petroleum drilling contracts that
provide for royalty payments based on actual production.

The main theme of explaining the prevalence and robustness of auc-
tions is continued in Section 5, where the possibility of collusion is brieffy
studied. Collusion is widespread in real auctions, and there is little a one-
time seller can do to prevent it when the bidders have a long-term rela-
tionship. However, it is shown that ascending-bid auctions are more vul-
nerable to collusive agreements among bidders in a long-term relationship
than are sealed-bid auctions. This is an important reason for industrial
firms to solicit sealed bids from suppliers, despite the general superiority
of ascending-bid auctions in one-shot competitive situations.

Z Auctions, bargaining, and the core

We begin by formulating and proving the claim that the trading outcomes
of the auction game coincide with the core of the corresponding exchange
game. This result provides a simple, partial answer to the question of why
auction institutions are so prevalent throughout the world and through-
out history.

Consider a deterministic setting with a single seller and n (potential)
buyers for some item. Let s be the monetary value of the item to the seller;
this means that if the seller had the option of selling for some price p or
not selling the item at all, he would choose to sell for p if and only if p=s.
Similarly, the buyers have monetary valuations by, ..., b,. Our model is
discrete: All the valuations and bids are multiples of some common unit.
Here and throughout this chapter, we make the standard game-theoretic
assumption that the deterministic parameters are common knowledge

§ Random variables are said 1o be affifiated when they are positively correlated conditional
on lying in any small rectangle. For example, any pair of positively correlated joint nor-
mal random variables are affiliated. A precise Formal definition of the concept is given in
Section 4.
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among the buyers and the seller.? Without significant loss of generality,
we may assume that b;>---> b, and limit attention to the case where
there are some potential gains from trade: b, >s.

Now, if the seller offers the item for sale using a sealed-bid auction
with minimum price m < b,,'° what will happen? Using any sensible equi-
librium concept (e.g., Nash equilibrium in undominated strategies, '' per-
fect equilibrium, “rationalizable” strategies, or even correlated equilib-
rium), the item will be sold to bidder 1 for his bid of &,.'? The same trade
will occur if the seller sets any minimum price not exceeding b,. Again,
the same will occur if the seller hires an auctioneer to conduct an ascend-
ing-bid auction, regardless of whether the bids are called by the bidders
themselves or at a slow pace by the auctioneer.

If the seller sets a minimum price m € (b,, by), the equilibrium out-
come assigns the item to bidder 1 for a price of m. Of course, if m> by,

9 In the standard theory of games, the players need to know this structure in order to com-
pute the equilibrium and determine how to play. An alternative view, relevant to auction
theory, holds that players learn from experience about the reduced form of their decision
problems and select their best bids for that problem. Equilibrium is then a state where all
players have correctly learned and are using optimal strategies in their decision prob-
lems. Mathematically, this leads to the same definition of equilibrium as does the stan-
dard view, but it raises different stability questions and does not require as much knowl-
edge among the players about the overall structure of the game.

10 We assume in this auction and all those considered hereafter that ties are broken by toss-

ing a lair coin. ;

Although the Nash equilibrium and its refinements are often justifiably criticized, they

are particularly well suited to the analysis of auction games. A Nash equilibrium can be

defined as a profile of strategies, one for each player, such that (1) each player is maxi-
mizing given his beliets about how the others will play and (2) those beliefs are correct.

The first condition is neither stronger nor weaker than the usual rationality assumption

in economic models. The second (“rational expeciations”) condition is most plausible

for institutions — such as auctions - that have existed for millennia and so for which ex-
pectations can be based on actual experience.

12 Any perfect equilibrium (Selten, 1975) is a Nash equilibrium in undominated strategies,
and in fact lor this game the two concepts coincide. In the two-bidder game, the set of
perfect equilibria are characterized as follows: Bidder I bids ba. Bidder 2 uses any mixed
strategy F that satisfies two conditions. First, F(br)=1. Sccond, let Glx)=|F{x)+
Flx=1)]/2; then G(x) = (& —b)/ (b —x) for all xe(m, b2). With more than two bid-
ders, one can specify the strategies of the others arbitrarily, provided bidder j always

bids less than by, and this remains a perfect equilibrium.

Rationalizable strategies are derived by eliminating weakly dominated strategies from
the strategy set to form a reduced game. Then weakly dominated strategies are elimi-
nated from the reduced game, and so on until the process ends. The strategies that sur-
vive are called rationalizable. The only such strategies for bidders | and 2 are to bid bz
and b;—1, respectively.

Correlated equilibria (Aumann, 1973) of bidding games employ only rationalizable
strategies, so that concept is covered also.
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no exchange takes place; in that case the seller’s payoff is s and each buy-
er’s payoff is zero. The case m = b, is somewhat degenerate; its equilibria
include both the no-trade outcome and a trade at price &,. Our earlier
choice of the phrase “equilibrium trading outcomes” was intended to de-
note all the equilibrium outcomes except the no-trade outcome. Our claim
is then justified by the following proposition.

Proposition 1. The set of perfect equilibrium outcomes of the
atiction game, as the minimuun price ranges from s to by, consists
of the core outcomes of the corresponding exchange game to-
gether with the no-trade outcome. The latter can only occur when
the minimum price is by.

Proof: Let x=(xg, Xi,..., X,) be the vector of payoffs that are received
by the seller and the n buyers, respectively. A vector of payoffs x is called
an imputation if it is individually rational (i.e., nonnegative) and Pareto
optimal and corresponds to some feasible allocation of the egoods and
money among the players. These imply:

XG+x1+"‘+.\'”=b|. (2.1]

To be in the core, an imputation must also satisfy inequalities asserting
that no coalition could, by agreeing to exchange among themselves, earn
a higher total payolf:

Xo+ Y x;=maxls, (b;; i€S)}, forall SCll,...,n}. (2.2)
ie§

In view of the preceding discussion, the proposition asserts that the core
consists entirely of points of the form

(xg, 01—x¢,0,...,0)  for max(s, by) =x¢= by.

It is easy to check that all such points satisfy (2.1) and the inequalities
(2.2), and sc in fact do lie in the core.

Conversely, suppose x lies in the core. From (2.1) and nonnegativity,
xo+x, = b,. From (2.2) for S= {1}, xo+x,=&,. Hence, x,+x,= by and,
by (2.1) and nonnegativity, x,= -+ =x,=0. Therefore, all points in the
core are of the form (xy, b;—X4,0,...,0). Using (2.2) with §=[2], one
finds xo+x,=max(s, by); so xo=max(s, b;). Nonnegativity of x, im-
plies xy= b. ]

The strategic equivalence of the Dutch and sealed-bid auctions and the
notion of perfect equilibrium do not transfer neatly to bidding games
with continuous bid spaces. For discrete bid spaces with bid increment e,
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the only perfect equilibrium in the Dutch auction is for the highest eval-
uator to stop the auction when the price reaches by, and for each other
player i to stop it at the price b;—e. There are no corresponding strategies
in the standard formulation of the continuous Dutch auction, because
there is no possibility of bidding b; “minus an infinitesimal.” Indeed, in
the standard formulation of the continuous Dutch auction, no subgame
perfect equilibrium exists.

To avoid this problem, we formulate the extensive form Dutch auc-
tion game so that a bidder can claim the object whenever the price falls
to p, which we call bidding p, or whenever the price falls strictly below
p, which we call bidding p~. If a player bids p, another bids p~, and all
others bid less, then the item is awarded to the one who bids p for price p.
If a player bids p~ and nobody else bids more, then the item is awarded
to that bidder for a price of p. This specifies a well-defined continuous
Dutch auction game which suitably generalizes the game with discrete bid
amounts. Moreover, like the discrete bids game, it does have a unique
subgame perfect equilibrium: Player 1 bids b, and each i =1 bids b;."

There still remains the problem that “trembling-hand” perfect equilib-
rium is undefined for sealed-bid auction games with a continuum of pos-
sible bids. To avoid unnecessary technical difficulties, we shall normally
limit our analysis to equilibria of Dutch auctions.

From the perspective of coopcrativé game theory, the seller’s ability to
set any particular minimum price and stick to it measures his bargaining
power. !+ Indeed, the case n=11is just a bargaining problem, and auction
theory predicts (as does core theory) only that the outcome will be effi-
cient and that nobody will be worse off at equilibrium than if they did not
trade. Evidently, a complete auction theory must be informed to some
degree by bargaining theory. This leaves open the possibility that the pre-
dictions of auction theory could be quite sensitive to the bargaining mod-
el used.

Actually, when there are several viable bidders, auction theory is sur-
prisingly insensitive to the bargaining theory used at its foundations. To
show this, we embed the auction model in a general discounted, infinite-
horizon, noncooperative model of bargaining in which an owner always

13 One could, of course, define a modified sealed-bid auction game that is strategically
equivalent to our continuous Dutch auction game. However, comparing the subgame
perfect equilibria of the Dutch auction game (identified in the text) with the trembling-
hand perfect equilibria of the corresponding sealed-bid auction (identified in note 12)
shows that the Lwo pames are net equivalent for the purposes of perfect equilibrium
analysis.

14 The role of commitment in bargaining has been analyzed by Crawford (1982). The asso-
ciated roles of patience and risk aversion have been given a particularly penetrating anal-
ysis by Binmore, Rubinstein, and Wolinsky (1986).
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has the right to resell anything he has bought. Because a single player may
be sometimes a buyer and sometimes a seller, we shall designate a player’s
valuation by v; rather than by s or b;. It is assumed that v,> -+ >v,>0.

Let T be a game form that is to be played when i is the owner of the
durable good. Thus, D'=({Zi; j=1,..., ], /1), where 37 is the set of
strategies available to j in the game form and f'is a function mapping
strategy profiles into outcomes. Time is modeled as discrete. An outcome
involving trade specifies a date of trade r =1, a (nonnegative) price p, and
the next owner /. There is also an outcome called “no trade” that we iden-
tify as a trade at date r=co. To interpret the results that follow, it will
be useful to think of ¢ as the period of i’s ownership, rather than to asso-
ciate ¢ with any actual date.

Certain specified strategies are assumed to be available to the players
in each game form I'. First, the owner is permitted to keep the item for
himself; that is, he may choose a strategy that always leads to no trade.
Second, the owner is permitted to offer a Dutch auction with a zero mini-
mum price. Such an offer, if made, is the first move in ['*and initiates an
auction subgame (actually, a “subgame form”). If any non-owner bids in
the auction, I'! ends at date | with the item being assigned according to
the usual Dutch auction rules. Non-owners must decide simultaneously
whether to bid. 1f no bids are made, play continues according to the con-
tinuation rules of I'', whatever they may be. Each non-owner is assumed
to have a strategy of refusing to be party to any trade, in which case no
payment can be required of him. The assumption that the decision of
whether to offer an auction immediately is the first move in I’ means that
non-owners have no way, before an auction is offered, to commit them-
selves not to trade.

Using these very general game forms, which specify the rules govern-
ing trade given the owner’s identity, we create a game in which the buyer
can (if he chooses) resell the good. Let player /g be the initial owner. Then
the game form I/ is played. Lf the outcome involves trade after a period
of ownership of length ¢y, at price pg, and with next owner i, we con-
tinue with game form '\, which determines a period of ownership ¢,
price p,, and next owner {,. The outcome of this sequence of trades speci-
fies that i, owns the item from date 0 to date £p—1, i, owns the item from
Iy to tg+t;—1, and generally i; owns it from date fo+ -+ +1;-; 10 date
51 e ) Payments are made on the dates of transfer of owner-
ship. The number of actual times the good changes hands can be finite
or infinite.

The payoff associated with any outcome for any fixed player j is the
present value of the flow of benefits he receives plus the net present value
of payments received minus payments made. To make this more precise,
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fix an outcome path. Let 1;(¢) be one if player j owns the item on date ¢
and zero otherwise. (In particular, 1,(—1) =0.) Let p(¢) be the price paid
in any trade at date ¢, or zero if there is no trade at £. Then, j’s payoff in
the game is:

3 610=av L0 +pOLLE=D =101 (23)

Thus, 6 is the discount factor for the players’ payoffs.

With this, the specification of the selling games is completed. Corre-
sponding to each player i there is a game in which the identity /g of the
initial owner is i. We shall call that game I'}.

The games I} that can be constructed in this way for some choice of
game forms I' form a huge class. Included are games where the seller can
conduct auctions with a positive minimum price, exclude some set of bid-
ders, bargain effectively with some buyers, commit himself to take-it-or-
leave-it offers, or do all of these. Indeed, the only important restrictions
on the set of options available to a seller are that he can neither compel a
non-owner to buy nor prevent a buyer from reselling the good, and that
he can always offer an auction with a zero minimum price. An additional
“stationarity” restriction will be imposed through the equilibria that we
isolate for study. ;

In general, a strategy for a player specifies how to play at each date as
a function of the date and the entire past history. For our analysis, we
limit attention to equilibria in which the players adopt stationary strate-
gics. A stationary strategy for player j is an n-tuple o;= (g}, s ay) such
that oje X}. Such a strategy specifies how player j should play in each
game form I' (he should play oj) without regard to the carlier history of
play. By a stationary perfect equilibrivm, we mean an n-wuple of station-
ary strategies (o, ..., 0,) that is a perfect equilibrium profile regardless of
the identity of the initial owner (i.e., in each of the games 17).

Given a strategy profile (a4, ..., @,), one can define for each player i a
value v} associated with owning the item, that is, with playing the game
I"*. With stationary strategies, v is also the continuation payoff or value
of acquiring ownership at any point in the game, regardless of the pre-
vious history of play. With nonstationary strategies, that value might de-
pend on the history of play, because future play could also depend on
the history,

Proposition 2. Assume there are least three players, n=3. Let v}
be the expected payoff to i at a stationary perfect equilibrium in
the game T't. Then vi=uv,> v} forall i#1. Let a} be the payoff
to i in T} if all players except i adhere to their equilibrium strate-
gies while i deviates to adopt a strategy that entails conducting
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an auction and refusing to participate in any later sale. Then, for
all i, j #1, the following inequalities hold:

vf>ovj, (2.4)
at> 8%}, (2.5)

According to Proposition 2, for 4 close to | it is optimal or nearly opti-
mal for any player other than the highest evaluator to offer the good at
auction. Moreover, initial ownership is about equally valuable for all the
players other than player 1, even though owners may differ in the strat-
cgies available to them. The proposition applies even when some own-
ers are able to make credible take-it-or-leave-it offers while others can
sell only at auction. The ability to conduct an auction allows a weak bar-
gainer to benefit from the abilities of any stronger bargainers who may be
present, forcing player 1 to bid just as if he were bargaining with a strong

player.

Proof of Proposition 2: 1n the game I';, player 1 can guarantee a payoff
of v, by refusing to trade. Each other player can guarantee a payoff of
zero. Hence, the equilibrium payoffs must be at least that high. But the
maximum total utility from any outcome is v, and that can be achieved
only if player 1 is the owner in every period. Hence, in T}, any equilib-
rium must specify that no trade occurs.

Suppose i # L. In the game I'7, the total payoffs to all players at equi-
librium cannot exceed the total payoff (1—é)v;+ov,<v, that results from
an efficient exchange. Since all players’ payoffs are nonnegative, this im-
plies that v} <wv,.

Now, in I'f, i has the opportunity to conduct an auction with mini-
mum price 0. If he does and the non-owners refuse to participate, let the
expected continuation payoffs at equilibrium be &= (D;, ..., Up). The auc-
tion offer will be accepted by someone with certainty (at equilibrium) un-
less each non-owner prefers (weakly) his continuation payoff to the pay-
off from placing the minimum bid of 0: U;= 6v}. Because the sale price
cannot be negative, the seller’s expected payoff can never be less than the
first period flow: U; = (1—8) v;. Thus, some bidder will participate in the
auction at equilibrium unless the expected sum of payoffs when no auc-
lion takes place is at least 6 %, vf +(1—8)v;> dv,+(1—8)v;. The last
expression, however, is the total payoff that results from efficient trade.
Hence, there can be no strategies leading to continuation payoffs U satis-
fying the requisite inequality.

So the auction, if offered, will be played with certainty. Let p be the
lowest price in the support of the equilibrium price distribution when
an auction is offered in I'}. Let k & {1, ] be such that vi=maxX;e i v}
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During a Dutch auction, when the price has fallen to any level p’ > p, bid-
der 1 must expect a payofT of at least 8(v,— p’) from allowing the auction
to continue, and & must expect at least 6(vi—p'). Because the total ex-
pected payoff to all bidders in the continuation after p’ is at most (v, — p)
(since the price will be at least p), it follows that 8(v,—p’) +8(vi—p') =
6(v,—p) for all p’> p. Hence, p= v}. In the Dutch auction, no bidder J
can benefit by bidding more than v}, so bidder 1 never finds it optimal (at
equilibrium) to bid strictly more than v. Hence, the highest equilibrium
price cannot exceed vf. Therefore the equilibrium price following an auc-
tion offer is v} with probability one.

If { offers an auction in 't and never repurchases the item, while the
other players follow their stationary equilibrium strategies, £’s payoff will
be

af=(1—8)v;+bvg>dvj, (2.6)

for all j&{l,i}. Since vy =a, (2.4) follows.
Next we make two applications of (2.6),

ar>6v} = 6a; > 6°v}, 2.7)

which establishes (2.5).

So far, we have allowed the game forms (I'fy i=1,...,n) to be quite
general. As an aid to intuition, let us now specify some simple game forms
as follows. At odd-numbered dates, the owner chooses a non-owner to
whom to make a price offer. The non-owner can accept the offer, in which
case a trade is consummated. Or, the non-owner can reject the offer and,
at the next (even) date, make a counteroffer. So far, this is the same game
as used for the “telephone bargaining” model of Binmore (1983). Now
comes a difference; We specify that the owner can, at time 0, offer a Dutch
auction with a zero minimum price. [f no buyer participates in the auc-
tion, then the seller can make a private offer at time 1, and the game con-
tinues in the Binmore fashion.

The games T} constructed from the specified game forms differ from
Binmore’s telephone bargaining game in two ways: by allowing auctions
and by including the possibility of resale. One can show that each T} has
a unique perfect equilibrium outcome. To describe it, define a function
B:R*- R by:

Blx, y)=x+(y—x)/(1+8). (2.8)

In the telephone bargaining model, if i#1 then the perfect equilibrium
outcome is that the item is sold to player 1 for the price B=B(v;, v;). Note
that for & close to one, the bargainers split the surplus almost equally.
Note too that the price is not at all sensitive to the presence of additional
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bargainers. For the games I'f, however, the equilibrium outcomes are
quite different.

Proposition 3. If the initial owner is i =1, then no trade ever oc-
curs at equilibrium. If the initial owner is any other player, then at
equilibrium the item is sold at date I to player 1 and never resold.
The sale is by private offer if the private offer price of B(v;, vy)
is larger than the auction price of (1—8)v,+6B(vy, vy). Other-
wise, the sale is by auction.'®

The game has been structured so that the owner makes the first offer.
Because delays are costly, this gives the owner some advantage in the bar-
gaining. When the time between successive offers is long and delay costs
are high, the advantage of making the first offer in negotiations is large,
and it is not optimal then for the owner to give up that advantage by con-
ducting a low minimum-price auction.

Probably more common is the situation where the time between of-
fers is small enough that & is nearly one.' In this case, the auction price
will exceed the private offer price if and only if there are at least two non-
owners with higher valuations than the initial owner i. That is, at equi-
librium the owner bargains if and only if there is only one real potential
buyer. Otherwise, he conducts an auction!

Together, Propositions 2 and 3 provide a strong case for the desirabil-
ity of conducting an auction.

3 Expected price-maximizing auctions

So far, we have shown that auctions lead to core outcomes and that when
resale is possible and trading costs are low, it is almost optimal for almost
every seller to conduct an auction with a low minimum price. This near
optimality holds regardless of the other alternatives available to the seller,
provided only that the buyers cannot be compelled to buy. However, the
specific example with which we ended Section 2 establishes that conduct-
ing an auction with a low minimum price is not generally the best strategy
for a seller in a strong bargaining position.

We therefore turn to the question: What is the best strategy for a seller
with a hegemony of bargaining power? What we have in mind is a situa-
tion in which the seller, for some unspecified reason, has the power Lo

15 The proof is omitted. It follows the now familiar lines for alternating offer bargaining
models (see Rubinstein, Chapter 5, this volume).

16 For example, if the annual real interest rate were as much as $% and it took a week to
arrange an auction, & would be 1999,
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select any institution he likes for conducting trade. The seller assumes
that the buyers will agree to participate if their expected payoffs are non-
negative - the buyers are too weak to demand more. In the deterministic
setting, the seller’s optimal strategy is obvious: make a take-it-or-leave-it
offer to the highest valuation buyer that extracts all the surplus from him.
If buyers' valuations are private information, however, then the seller
cannot implement such a strategy; he does not know what offer to make.
What, then, should an expected price-maximizing seller do?

Let us begin with the simplest case. We suppose that there is only one
buyer whose valuation V (V=0) for the item is unknown and has distri-
bution F. Suppose the seller’s valuation is s, corresponding to a flow ben-
efit from ownership of (1—&)s. These valuations mean that if the buyer
acquires the item at date ¢ for a price of p, his payoff (in von Neumann-
Morgenstern utility) is (V—p)é‘ and the seller’s is pdi+s(1—6.17 If
no trade occurs, the buyer’s payoff is zero and the seller’s is 5. Following
Vickrey’s style of formulation, let us suppose that the buyer observes pri-
vate information X and has a valuation V= u(X), where X is uniformly
distributed on (0, 1) and u is a nondecreasing function. '® For simplicity,
we take u to be strictly increasing and continuously differentiable.

1f the seller makes a take-it-or-leave-it offer at a price of p=u(x), the
buyer will accept if his valuation exceeds u(x). The probability of that is
1 —x. The seller’s expected payoff is then (1—x)u(x)+xs. Of course, the
seller has other strategies available. He could require the buyer to play
a game in which the buyer’s choices determine a probability distribution
over outcomes. An outcome specifies whether a trade occurs, when it oc-
curs, and what payments are made at which dates. The content of the next
result is that a simple take-it-or@€ave-it offer is as good or better than any
such game. " '

Propositior 4. Lei x* solve max(1—x)u(x)+xs. Then making
an immediate take-it-or-leave-it offer to sell at the price u(x),
with a commitment never to make another offer, maximizes the
seller’s expected payoff (over the class of all exchange games).

17 The assumption of identical discount rates can be weakened to an assumption that the
seller is no more patient than the buyers, without upsetting any of our results.

15 This involves no loss of generality. One can reproduce any distribution F essentially by
taking u=F L

19 Propositions 4 and 5 synthesize results of Harris and Raviv (1982), Milgrom (1985),
Myerson (1981), Riley and Samuelson (1981), and Rubinstein, Wilson, and Wolinsky
(private communication, 1985). Rubinstein, Wilson, and Wolinsky were the first to ex-
tend the optimal auction results to models in which the seller could use the threat of de-
lays to extract a higher price from the buyer. Their analysis makes clear that Proposition
5 depends on the assumption that the seller is no more patient than the buyers.
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Moreover, if (1—x)u(x) is strictly concave, then the seller’s pay-
off is maximized only by games that sell at time 0 to all buyers
for whom X >x* and do not sell to other buyers at any date.

The most surprising part of this conclusion is that it does not, in gen-
eral, pay the seller to use time and uncertainty for purposes of price dis-
crimination. As a corollary, the seller cannot benefit from private infor-
mation about his own valuation; he would make the same take-it-or-leave-
it offer as a function of s regardless of whether s is known ex ante.

The method of analysis used to prove Proposition 4 is important and
worthy of detailed study. The heart of the method is the observation that
it is possible to place substantive restrictions on the allocation that can
result from any Nash equilibrium of any Bayesian game. The first restric-
tion is the so-called incentive compatibility constraint: Each player must
prefer his own equilibrium allocation to anything he could get by pre-
tending to be a player of another type. A second type of restriction, the
participation constraint, reflects the assumption that the buyer cannot be
forced to participate: The buyer must actually prefer participation to non-
participation. As applied to the problem at hand, the incentive compati-
bility constraint means that the seller cannot extract a higher price from a
buyer with a higher valuation unless he gives that buyer something of cor-
responding value in return, such as a higher probability of receiving the
item or the opportunity to receive it sooner. The participation constraint
means that the buyer’s expected payoff must be nonnegative, regardless
of his valuation of the item. These constraints imply a bound on what
the seller can expect to receive at any Bayesian-Nash equilibrium of any
game. The proof of Proposiiion 4 amounts to computing the bound and
showing that it is achicved by a take-it-or-leave-it offer.

This method is most fruitful when applied to a model in which the
incentive constraints take a particularly simple form. In the problem at
hand, the buyer cares only about the expected discounted date at which
he acquires the item E[67] (where 7= o if he makes no acquisition) and
the expected discounted payments € to be made. The payoff to a buyer of
valuation v is vE[67]—#, a linear function of the relevant variables. The
celler cares about the same things; his payoff is 2+ s(1 —E[8™]). A proof
of Proposition 4 using these ideas is given in the appendix to this chapter.

Next, we introduce multiple potential buyers into the environment.
Assume that there are n bidders, and that bidder /’s private information
is represented by the random variable X;. Bidder i’s valuation V;= u(X;)
depends only on his private information. Assume that u is nondecreasing
and that the X/’s are independently uniformly distributed on (0, 1). This
combination of assumptions defines the independent private values model
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adopted by Vickrey (1961, 1962), Griesmer, Levitan, and Shubik (1967),
and Ortega-Reichert (1968) in their pioneering studies of auction theory.
The independence assumption is particularly important for the results of
this section; it means that an outside observer (or the seller) can never in-
fer anything about X, by observing (X,..., X,). We relax this assump-
tion in Section 4,

The analysis in the multiple buyer case follows the same lines as in the
single buyer case. The conclusion, however, is even more striking.

Proposition 5. Assume that (1—x)u(x) is concave and let x* de-
note a maximizer of (1—x)u(x)+xs. Then among all possible
games that the bidders might agree (o play, the sealed-bid and
ascending-bid auctions with minimum price u(x*) maximize the
seller’s expected payoff.*°

Proposition 5 as stated applies only to a very limited set of auction en-
vironments. However, it can be (and has been) extended in many different
directions. The case of risk-averse buyers has been treated by Matthews
(1983) and Maskin and Riley (1984a). Cremer and McLean (1985b) have
studied a variation involving some statistical dependence. Milgrom (1985)
allowed the seller to have many objects for sale, subject to some convex
cost of production. Other variants can also be found. Most often, the
optimal selling strategies for these more complicated environments are
not recognizable auctions nor, indeed, recognizable institutions of any
kind. Thus, the optimal auction theory is inadequate, by itself, to explain
why auctions are used.

What is perhaps most missed in the theory of optimal auctions is some
indication of which institutions for selling an object are robust - that is,
optimal or nearly so in a range of environments, or at least not weakly
dominated across a range of environments. Also missing is some for-
malization of the idea that auctions are “simple” - for example, in most
auctions, all the bids that can be made actually are made with positive
probability at equilibrium in several simple environments. Properties like
simplicity and robustness are interesting to think about but hard to for-
mulate; almost nothing is known about this topic.

4 Strategies for a weak seller

The models of Sections 2 and 3 go a long way toward explaining the
continuing widespread use of auctions for selling many goods. However,

20 A shown in Section 4, other standard auctions with the same minimum price lead to the
same expected price.
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these theories tell us almost nothing about the details of auctions. The
deterministic models predict that all the usual sorts of auction mechan-
isms lead to the same outcome. Vickrey, who first introduced and used
the independent private values model of Section 3, found that all the com-
mon auctions lead to the same allocation of the item and the same aver-
age price for the seller. One of the main puzzles of auction theory sirice
Vickrey’s pioneering work has been to explain when different auctions
can be expected to lead to substantially different outcomes. Our purpose
in this section is to review a theory that offers such an explanation.

Our analysis is based on the symmetric auction model introduced by
Milgrom and Weber (1982a), which extends and unifies the earlier models
of Vickrey (1961, 1962) and Wilson (1977). In the Milgrom-Weber model,
each bidder i observes some private information variable X; in (x, ¥) be-
fore bidding. These observations are assumed to be drawn from some
symmetric joint distribution. The value of the item to bidder / is denoted
by Vi=u(X;, X_;, S), where X _; is the list of valuations of the other bid-
ders and S is some vector of unobserved random variables. It is assumed
that u is nondecreasing in all its arguments and is a symmetric function
of the components of X_,. It is also assumed that the bidders are risk-
neutral.

We have already seen in Section 2 that the value of the item at auction
to any bidder can depend on the valuations of other bidders when there is
a possibility for resale. The vector variable S, which generally represents
unknown attributes of the item, could be interpreted as the valuations of
bidders not present at the auction. Another interesting interpretation of
the variable S is that it represents some unknown physical attributes of
the item. For example, if the item being sold is the rights to timber on a
tract of land in Oregon, then the potential yield of the tract in board feet
of each species of timber is normally unknown. If the right to drill for oil
on some underwater tract off the north coast of Alaska is being auctioned,
the value will depend on the amount and grade of the oil, its depth, future
oil prices, availability of transport facilities such as pipelines (which in
turn depends on the productivity of nearby tracts), and so forth.

The presence of unknown attributes (physical or otherwise) gives rise
to a curious phenomenon known as the Winner’s Curse. The idea of the
curse is that inexperienced bidders will often lose money, or earn less than
expected, because a bidder is much more likely to place the highest bid
when he has overestimated the value of the item than when he has under-
estimated it. Of course, experienced bidders are aware of this phenome-
non and adjust their bids accordingly, which makes studying the bidding
problem an interesting exercise. Before giving a more formal account of
the Winner’s Curse, we must finish specifying our modeling assumptions.
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We shall assume that the variables (S, X) are pairwise positively cor-
related on all rectangles in IR"*". That is, they are positively correlated
conditional on any information of the form S; € (s;, 5;) and X; € (x;, X;),
i=1,...,m, j=1,...,n Such random variables are called affiliated. Some
key facts about affiliated random variables are briefly summarized in the
next paragraph. A complete treatment, including proofs, is given in Mil-
grom and Weber (1982a).

Suppose the random variables Z = (S, X) have a joint density f(Z).
Then affiliation can be expressed as a property of the density f as follows:

S f(2)=flznz) f(zVz'), 4.1)

where z Az’ is a vector whose ith component is min(z;, z{) and zvz’isa
. vector whose ith component is max(z;, z;). Note, in particular, that inde-
pendent random variables are affiliated. If f is smooth and everywhere pos-
itive, affiliation is equivalent to the requirement that the 8%1n f/dz; dz;=0
for all i j. A fact about an affiliated random vector Z which is used re-
peatedly in auction theory is that for any nondecreasing function g, the
function G defined by

Gl(z;,Zi3i=1,..0,0)] EE[g(_Z) |z;<Z;=%;i=1,...,n]1 (4.2)

is nondecreasing. In particular, if (Z,, Z,) is affiliated then P{Z, < x|
Z,=y} is decreasing in y.*! :

Given our assumptions about the bidders’ information, there is an es-
pecially nice way to formalize the Winner’s Curse. Suppose all the bid-
ders j # 1 choose bids in a sealed-bid auction as functions 8;(X;) of their
information. Suppose each ; is increasing. Finally, suppose that bidder
| submits a bid of b and wins. When the bidder learns that he has won,
how should he evaluate his winnings? The answer is that he should always
revise his estimate of value downward from his initial estimate:

E[V,| X, max B,(X;)<b]=E[V, | X, max f;(X;) <eo]
i J
=E[V| X,] 4.3)

[where we have used the fact (4.2) that conditional expectations of mono-
tone functions of affiliated variables are monotone functions of the con-
ditioning variables]. In simple English, learning that others have bid less
than & is bad news about the value of the item being acquired [see Mil-
grom (1981) for a more complete analysis]. Of course, at equilibrium,
bidders will take this fact into account in advance when choosing their
strategies.

21 That probability is equal to 1= E[1jz, > x| Z,=y] which, by (4.2}, is decreasing in .
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Consider a sealed-bid auction with a zero minimum price. We wish to
represent this formally as a game. The players are the n bidders. Each
bidder i observes X; and decides what to bid. A strategy is therefore a
function B8;(X;) specifying how much to bid as a function of what the
bidder knows. Given any realization of the vector X, the item will be sold
for the price max; 8;(X;) to the player who submits that bid.

Next, consider a Dutch auction game. In a Dutch auction, the auction-
eer starts the price at some very high level, and reduces it until some bid-
der shouts “Mine!” to claim the item, Although there are complicated
ways to describe any bidder’s strategic options, all amount to saying that,
as a function of .X;, player i must decide how far to let the price tall be-
fore shouting “Mine!” Suppose that bidder i’s strategy is to let the price
fall to 8;(X;) and then shout “Mine!” Then, the item will be sold for a
price of max §;(X;) to the bidder who chose that maximum level. Re-
markably, in strategic form, the Dutch and sealed-bid auctions are the
same game!

It was Vickrey (1961, 1962) who first noted this equivalence; he also
claimed that the standard ascending-bid auction is equivalent to a par-
ticular sealed-bid auction. He reasoned as follows. Suppose that in the
ascending-bid auction bidder  decides to bid up to the level 8;(.X;), which
we shall call i’s “bid.” Then the item will be sold for the second highest
bid to the high bidder. This is the same as conducting a sealed-bid auction
in which the item is awarded to the high bidder for the second highest bid.
Actually, this analysis is not quite correct, because the bidders in an as-
cending-bid auction have additional strategies available: They can make
their bids depend on the previous bids of the other bidders. Nevertheless,
in the interest of brevity and simplicity, we shall adopt Vickrey’s “second
price auction” as a model of the ascending-bid auction. The results we
obtain are not affected in any essential way by this modeling.?

One can show for the model we have described that there are uniqe
increasing strategies 8g and 34 such that (8s, ..., Bs) is an equilibrium of
the sealed-bid auction game, and (B4,...,84) is an equilibrium of the
ascending-bid auction game, and that these strategies are characterized
by solutions to first-order conditions.??

22 Milgrom and Weber (1982a) distinguish the Vickrey sccond price sealed bid auction from
the English ascending-bid auction. In the latter, they assume, bidders can base their bid-
ding decisions on the levels where other bidders ceased to be active. Such strategies re-
quire making complicated inferences in real time, and in any case their equilibria share
many of the same properties as those studied here.

23 Here, | ignore the possibility of multiple equilibria, and focus attention exclusively on a
monotone, symmetric equilibrium. The uniqueness problem and related issues are taken
up by Milgrom (1981), Maskin and Riley (1983), and Harstad and Levin (1985).
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How is one to compare the expected revenues from these two kinds of
auctions? How can one evaluate the impact of revealing information on
the expected selling price in either kind of auction? The main tool for this
analysis is the Linkage Principle.

The sealed-bid and ascending-bid auctions are examples of what we
shall call standard auctions —auctions in which (at equilibrium in the spec-
ified environments) the highest evaluator wins and pays a nonnegative
price, and in which losers always pay zero. Given a standard auction A,
let P be the resulting price; in general P! might depend on all the bids.
Let 77(z, x) be the expected payment by a bidder, say bidder I, who bids
in auction A as if his estimate were z when his actual estimate is x. Letting
Y=max;., X;, we may write 7(z,x) = E[P* - 1jy<z | X;=X].

Proposition 6 (The Linkage Principle).* Let A and B be stan-
dard auctions. Suppose that for all x, if wi(x, x) < 78(x, x) then
w4'(x, x) = 78(x, x) (where the subscripts denote partial deriv-
atives with respect to the second argument). Then, i x,x)=
78 (x, x) for all x, and the expected price is higher in auction A
than in auction B.

Proof: Let R(z,x) = E[V,* 1}y | X,=x], that is, the expected value re-
ceived in a standard auction when player 1 observes X, = x and bids as if
he had observed X, =z, assuming that the other bidders adhere to their
equilibrium strategies. At equilibrium, a bidder with estimate x cannot
improve his payoff by bidding as if his estimate were some z #x. Hence,
for any standard auction A, R;(x, x)—mili(x, x)=0. Because this holds
also for the standard auction B, ={*(x,x) =x(x, x) for all x.

Now consider tie function A(x) =7 4(x, x)— 7 5(x, x). Since 7(x, x)=
78(x, x)=0 (because P{Y < x}=0), A(x)=0. For x>x, by hypothesis
either A(x)=0 or

Alx)= %[w"(x,x) —a80x, )] = 7 (x, x)— 78 (x, x) = 0.

If there were some £ > x such that A(®) <0, then by the mean value theo-
rem there must be some e (x, £) with A(%) <0and A'(¥) <0, which con-
tradicts our last conclusion. 5]

The Linkage Principle derives its name {rom the fact that it makes com-
parisons of revenues across auctions using the statistical linkages that exist

24 The Linkage Principle was originally introduced by Milgrom and Weber (1982a), who
described it as “the common thread running through” their results (pp. 110-11). The
mathematics of the principle, which is buried in their arguments, was first made explicit
in a second (unpublished) paper, “A Theory ol Auctions, Part 11
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between a bidder’s private information and any information on which
the price is based. The partial derivative 7, measures how much the ex-
pected price increases with increases in the bidder’s private evaluation,
holding his bidding behavior constant; that is, it measures changes in =
that result from changes in the bidder’s beliefs about how others will bid.
When statistical linkages are used to align the price more closely to the
buyer’s willingness to pay, the rents associated with private information
fall and the average price rises.

Our first application of the Linkage Principle is to explain the equiva-
lence in expected prices that Vickrey first observed among the standard
auctions in his model.

Proposition 7 (Revenue Equivalence). Assume that the bidders’
observations X, ..., X, are independent. Then the expected price
in any standard auction is the same as in the ascending-bid auc-
tion.*

Proof: By independence, for any auction mechanism M:
Mz, ) =EIPY 1y | Xy=x]= E[PY 1y o).

Hence, for all auction games, 3'(z, x) = (2, x) = 0. The result then fol-
lows from the Linkage Principle.

When we replace the hypothesis of statistical independence by one of
affiliation, the Linkage Principle provides a powerful tool for. making
comparative statements about the expected prices under various alterna-
tive arrangements. For a first example, we can now compare the expected
price in the sealed- and ascending-bid auctions.

Proposition 8. The expected price (at equilibrium) in the ascend-
ing-bid auction is never less, and is sometimes more, than for the
sealed-bid auction.

Proof: Let A be the ascending-bid auction and B the sealed-bid auction,
with equilibrium bidding strategies « and {3, respectively. These auctions
are standard, because « and 3 are increasing (Milgrom and Weber, 1982a).
Now 7%(z,x) = E[B(2) 1|y« | Xy =x] =B(z) PIY < z| X, = x|, which
we write as 3(z) F(z | x). Also,

74z, %) = Ela(Y) Ly | Xi=x]1=Ela(Y) | X, =x, Y <2]F(z|X).

% For a more general revenue equivalence result and a helpful discussion of its implica-
tions, see Riley and Samuelson (1981).
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Hence:
F,(z|x)
F(z|x)

d
+F{z]x)~c§E[a(Y}]X]=x, Yzl

;}-{-[w"‘(z, x) =718z, 0] =74z, x)—75(z,x)]

By affiliation, (d/dx)E[a(Y)|X,=x,Y<z]is nonnegative and F,(z | x)
is nonpositive, so the partial derivative is nonnegative unless 7(z, x) >
73(z, x). Apply the Linkage Principle. A

In the sealed-bid auction, the price the winning bidder pays depends
only on his own bid; there is no direct or indirect linkage to other vari-
ables. In the ascending-bid auction, the price is an increasing function of
the second highest bidder’s observation, which is affiliated with the win-
ning bidder’s observation. This provides the price-increasing linkage.

When the seller has a private estimate that he can provide, the equilib-
rium price may be an increasing function of that estimate, providing yet
another price-increasing linkage. Of course, this assumes that the seller
can both provide information in a verifiable way and commit to a policy
for revealing information.

Proposition 9. Verifiably revealing any information variable S,
raises the expected price both in the sealed-bid auction and in the
ascending-bid auction. Among all policies for full or partial rev-
elation of information, the policy of full revelation maximizes
the expected price.

Partial proof: For the sealed-bid auction .4 without information revealed
and B with information revealed, the expected prices are

74z, x)=E[al(z) | jyk ;) and 72(z,x)=E(B(z,S0) 1 jy<z)s
where « and 8 are the equilibrium bidding strategies. As before,

0 B, A it i Fy(z]x)
el & X) = (z,x)1=[x%(z,x)—= [z,x)]4~F(z|X)

d
+F(z|x}3;5{{3{z, So) | X =x, Y<z].

This is nonnegative whenever x8(z,x) < #4(z, x). Thus, by the Linkage
Principle, revealing information raises the average price.

Applying this result to the case where only partial information is re-
vealed, the expected price can be raised by revealing the remaining infor-
mation. Hence, no policy can be better than the policy of full revelation
of the available information.

Auction theory

For the ascending bid auction, the price depends on both Y and Sg.
The proof given by Milgrom and Weber (1982a) uses the characterization
of the equilibrium strategies to show that the linkage is greater when in-
formation is revealed than when it is withheld (even though the linkage to
Y may be weakened). =

The policy of full revelation can also be expected to emerge when the
seller cannot commit to an information policy.

Proposition I0. If a seller must decide, after observing So, whether
to report it, and if his report is verifiable, then at a perfect equi-
libritm he always reports Sy regardless of its value.

Proof sketch: Suppose that a seller observes Sy and then decides whether
to report it. At equilibrium, the buyers’ bids (when the seller makes no re-
port) depend on their beliefs about the value of 5. For any beliefs the
buyers may have, one can show that the seller’s best reponse is to make
a report whenever Sy is in fact sufficiently favorable; thus any equilibrium
must have the property that the seller reports whenever S, > s*. But then,
when the seller reports nothing, at equilibrium the buyers must believe
that So<s* and bid accordingly. They would bid strictly more if they had
the “more favorable” [in the sense of Milgrom (1981)] belief that 5y =s7,
so it would be in the seller’s interest to report Sy even when it is slightly
lower than s*. Hence there can be no perfect equilibrium at which s* ex-
ceeds the lower bound s of the support of S;. Because P{Sy>s)=1, the
proposition is proved.

In a further application of the Linkage Principle, Riley (1985) argues
that when value can be observed ex post (even imperfectly), the expected
price is higher when part of the price is a royalty based on the observed
value. McAfee and McMillan (1986) make the same observation in con-
nection with incentive contracting, where bidding and moral hazard is-
sues arise together. Consider a situation in which a buyer must select one
of several contractors lor, say, a construction project. Including a cost-
sharing provision in a contract yields a lower price at the bidding stage
(apply the Linkage Principle), but that must be balanced against the weak-
ened incentive for cost control that such contracts may create. This exam-
ination of the relation between bidding and contract incentives is one of
the most promising recent developments in bidding theory.

Even when a seller has little ability to enforce a high minimum price, he
can still choose any auction with a zero minimum price because, as noted
in Section 2, rational buyers cannot refuse to participate. 1f the bidders
behave noncooperatively, the seller does better by using an ascending-bid
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auction than by soliciting sealed bids. This accords well with Cassady’s
(1967) observation that ascending-bid auctions are by far the most popu-
lar kind worldwide. The seller also does well to provide any information
he may have, since that, too, creates a price-increasing linkage.

In terms of incentive theory, the Linkage Principle is based on the ob-
servation that a bidder’s profits depend upon his ability to conceal infor-
mation. Linking the price to variables that are affiliated with the bidder’s
private information diminishes his ability to conceal information effec-
tively, and so lowers his profits. When comparing auctions (with risk-
neutral bidders and a risk-neutral seller) that allocate the good efficiently,
any reduction in the bidders’ payoffs is a gain to the seller.

Clearly, this reasoning depends on the assumption that bidders are
risk-neutral. With risk aversion, there can be efficiency gains from making
the bidders’ payoffs less random. This idea has heretofore been studied
only in connection with the independent private values model. For that
model, Matthews (1980) noted that if the bidders’ observations are statis-
tically independent and the valuation function is ¥; = X, then the sealed-
bid auction is always preferred by the seller when either he or the buyers
(or both) are risk-averse [see also Holt (1980)].

In the independent private values model, linkages inefficiently increasc
the randomness in the payoffs. In other models, however, linkages re-
duce the randomness in the payoffs. For example, suppose the observa-
tions are independent and the valuation function is V;=min (X;, max X ).
Then the ascending-bid auction is always preferred by the seller when the
bidders are risk-averse. In this example, the linkage of the price to other
bidders’ information reduces the fluctuations in the winning bidder’s pay-
offs and makes him willing to pay more, to the seller’s benefit. In general,
in the presence of risk aversion, linkages may or may not enhance reve-
nue.and efficiency.

Finally, we turn to the question of whether uncertainty atout the bid-
ders’ valuations makes it harder or easier for the seller ta achieve commit-
ment in his efforts to maintain a high minimum price. Consider a model
in which the seller conducts a series of auctions, specifying any minimum
price he chooses, and the buyers are limited to bidding in the auction;
they cannot make extraneous offers. In the deterministic case, the seller
can extract all the surplus from the highest valuation buyer by insistently
setting the minimum price equal to that valuation, Indeed, in the discrete
time version of this game model, the equilibrium just described is the only
perfect equilibrium.

With uncertainty, however, the situation is quite different. The case of
a single buyer and offers made by the seller has been analyzed by Stokey
(1982), and by Gul, Sonnenschein, and Wilson (1986). In the discrete time
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game where offers are made by the seller, there is a unique perfect equi-
librium. If the buyer’s reservation value is uncertain to the seller and dis-
tributed over an interval that includes the seller’s reservation value, then
at equilibrium the seller must sell for nearly his own reservation price:
Uncertainty is the enemy of commitment. Gul and Sonnenschein (1985)
have proved a variant of this result for the case where both the seller and
the buyer can make offers.

Here we make a simple extension of this conclusion to the case of many
buyers. Suppose that the seller can conduct an auction at each moment
of time, and can vary the minimum price m(¢) over time. For technical
convenience, we require that the seller choose a path m(r) that is right
continuous. A buyer’s strategy specifies whether to bid and an amount to
bid, for each moment in time, as a function of the path of minimum prices
announced by the seller up to that point. We limit the bidders to strate-
gies that determine a first moment to bid (possibly + <o) for any feasible
strategy of the seller. For example, the buyer cannot specify that he will
make a bid whenever the minimum is below $5 and has been below $5 be-
fore, because that does not specify a first moment to bid if the seller sets
a minimum of $4 at all times. Finally, suppose that payofls from trades
conducted at any date ¢ > 0 are discounted to time zero at the same rate
for buyers and the seller.

Proposition I1. An equilibrium of the continuous auction game
is described as follows: The seller sets a minimunm price equal (o
his reservation price s at every point in time. A buyer with obser-
vation X;=x bids Bs(x) at the first moment that m(t) = Bs(x),
where s is the synunetric equilibrium strategy for the (static)
sealed-bid auction.

During the play of the game, if the seller sets a minimpm price other
than s, a player using the prescribed strategy will bid if and only if his
planned bid exceeds that minimum. Therefore, by watching the game pro-
aress, the seller and the other bidders could learn about the bidders’ valu-
ations - specifically, that they are too low to justify bidding at the prices
named by the seller. This sort of learning is perlectly analogous to what
occurs in a Dutch auction. As with Dutch auctions, no matter what upper
bound on valuations a bidder may learn during the course of the auction,
it will always be optimal for him to adhere to his equilibrium strategy,
“because” he expects the seller to reduce the price to s very soon.

It is easy to see that the optimal auction, which requires that the seller
make a once-and-for-all take-it-or-leave-it offer, is not a perfect equilib-
rium of this continuous time game. Suppose that the seller expects the
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bidders to adhere to the optimal auction equilibrium strategies. The opti-
mal auction offer always entails setting a minimum price in excess of the
seller’s reservation price. Hence, if the seller makes the optimal auction
offer and no bidder bids, it will always pay the seller to make another,
better offer to the buyers. Hence, the seller can conduct an optimal auc-
tion only if he can commit himself to refrain from making a profitable
offer later. Such commitment is proscribed by the perfect equilibrium
solution concept.

By imposing a plausible restriction on the buyers’ strategy spaces, one
can eliminate much more than just the optimal auction equilibrium in
this continuous time game. Indeed, if the bidders are limited to strategies
that satisfy the Gul and Sonnenschein (1985) stationarity property, then
the equilibrium of Proposition 11 is the unique symmetric (among buy-
ers) equilibrium. The stationarity property requires that a buyer’s current
decision depend only on his own type and on the “common knowledge”
distribution of buyer types (which, at equilibrium, can be inferred from
past bidding behavior); in particular, the behavior does not depend on
the time nor on how those beliefs were reached. When the buyers are lim-
ited to stationary strategies, if all trading does not take place at time zero
then it will always be in the seller’s interest to “speed up the clock,” replac-
ing his strategy m(¢) by (1) =m(2¢), This stratagem makes all trades
occur earlier, without reducing the price obtained by the seller. There-
fore, at any equilibrium in stationary strategies, all trading occurs at time
zero. Then, because the seller cannot adhere to a minimum price above
his reservation price of s, the uniqueness result follows.

Thus, with uncertainty about the buyers’ valuations, the seller’s ability
Lo achieve commitment is severely reduced. Whatever power the seller re-
tains comes from his ability to generate competition among bidders by
conducting an auction.

5 Coliusion

Only recently has any theoretical attention been devoted to the problem
of collusion in auctions. The fact that the outcome of auctions in deter-
ministic settings lies in the core of the exchange game does not mean that
auctions are immune to collusion; it means only that no subset of players
could improve their lot by going off and trading among themselves. Auc-
tions with low minimum prices are vulnerable to collusion among bidders.
Graham and Marshall (1985), beginning with that observation and a claim
that collusion is rampant in real auctions, have studied a variation of the
independent private values model of Section 3 in which the bidders may
have formed a cartel or ring. They find that the optimal minimum price
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to be set by a seller is an increasing function of the likelihood that a ring
has formed.

My purpose here is simply to examine the hypothesis that auction forms
differ in their degrees of susceptibility to collusion. I will focus on Mead’s
(1967) hypothesis that ascending-bid auctions are more susceptible to col-
lusion than are sealed-bid auctions. Such a conclusion would explain why
a seller might choose a sealed-bid auction in preference to an ascending-
bid auction, despite the latter’s theoretical superiority when bidders be-
have competitively. The simplest model (not involving side payments) that
I have found to study collusion is the following; it exploits the existence
of multiple Nash equilibria in ascending-bid auctions to construct collu-
sive perfect equilibria in repeated ascending-bid auctions.?®

The model is deterministic. We suppose that two bidders bid periodi-
cally against one another in an auction for items that both bidders value
al x. Suppose they agree to take turns winning at a price of < x. The
discount factor that reflects the frequency of these periodic interactions
is some number 6 < 1. How Irequent must the interactions be to support
this collusive arrangement? That is, how large must 4 be to allow collu-
sion of this sort to survive at an equilibrium?

In the case of a sealed-bid auction, suppose it is an equilibrium for the
players to alternate bidding b, while the other bidder makes a show of it
by bidding b—e. To be an equilibrium, it must be unprofitable lor the
scheduled loser to bid just more than & today and forgo future profits: ¥

x—>b
x—b<é 1—:52 4
which reduces to 6> (¥5—1)/2 or, approximately, 6> .62. One corre-
sponding collusive agreement in the ascending-bid auction has the sched-
uled winner bid x and the scheduled loser bid b. For the scheduled loser
to find a deviation unprofitable requires only that 6> 0.

Thus, collusion is easier to support in an ascending-bid auction than in
a sealed-bid auction. The intuition for this result is a familiar one: Collu-
sion is hardest to support when sceret price concessions are possible, and
casiest to support when all price offers must be made publicly.

0 Bikhehandani (1984) has exploited the faet that the one-shot ascending bid auction has
multiple cquilibria to construct a repeated bidding same in which the equilibria have a
collusive Havor. Robinson (1983) has also exploited the muliiple equilibrium idea. He
analyzes a simple one-shot game maodel, but the analysis assumes that colluders can
share inlermation verifiably - an assumption that naturally favors the formation ol col-
lusive rings.

3 There are some minor issues here about whether the inequalities given below should be
strict or weak. These depend on the solution concept used, and @re not a matter of great
importance here.
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6 Conclusion

[ have organized this paper around two central questions. Why do auc-
tion institutions continue to be so popular after thousands of years? And
what accounts for such particular details as the popularity of sealed- and
ascending-bid auctions? The answers to these questions were summarized
in the introduction. The answers are plainly incomplete; indeed, they rely
on fundamentally different models of the auction environment. It would
be much better to have a single consistent model that explained both the
use of auctions (in preference to other mechanisms when individual items
are unique) as well as the widely observed preference for ascending-bid
auctions over sealed-bid auctions.

There are large segments of auction theory that I have omitted from
my review, partly because a surveyor must draw lines. One could survey
very different territory by asking questions such as the following. (1) How
do experimental subjects behave in auctions? Such a survey would feature
the work of Vernon Smith and his colleagues, who have led the way in
the study of bidding behavior with controlled laboratory experiments.
It would also cover studies of the implications of alternative models of
choice under uncertainty for bidding behavior.?* (2) Whalt insights does
auction theory offer into the problems of price discrimination by a monop-
olist? Many researchers who have contributed to the theory of expected
price-maximizing auctions have extended their results to the problem of
optimal price discrimination [Cremer and McLean (1985a), Harris and
Raviv (1981), Maskin and Riley (1984b)]. (3) What are the relationships
between bargaining theory, auction theory, and competitive equilibrium
theory? Wilson’s companion survey gives an introduction to this new and
lively arca of research (see Chapter 2, this volume), sometimes called the

28 An excellent example of this line of research is the work reported in Cox, Smith, and

Walker (1984). ! :

The proper interpretation of their experinental results is controversial. The experi-
menters generally regard it to be evidence concerning how actual bidders behave in auc-
tions. However, 1 tend to regard it as another kind of model: the subjects (instead of
rational maximizers) arc the model of actual bidders. This is analogous to comparing
mathematical models of air oils with corresponding scale models tested in wind tunnels;
often, the mathematical models are better predictors.

In auctions for mineral rights, the bidders (oil company executives) normally have ac-
cess to professional consultants who can conduct formal analyses with much more pro-
ficiency than the typical subject in an experiment. It seems likely that these executives
bid much more rationally than typical experimental subjects, although this supposition
is of course subject to empirical refutation.

For a carefully articulated view of the role ol experiments in economics, see Roth
(Chapter 7, this volume).

For example, Karni and Safra (1985) have a model of bidding behavior in which the bid-
ders may behave differently in strategically equivalent games.
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theory of market microstructure. Our Propositions 2, 3, and 1! intro-
duce some of the main issues studied in that connection. (4) How are auc-
tions used in contracting environments, where the risk of cost overruns
may need to be shared and the bidder’s performance in the contract prop-
erly motivated? This is a new subject of study that so far has limited itsell
mostly to private value auction models, but which is evidently generaliz-
able to many important bidding situations.
The list of possible questions is endless, but this survey is not.

Appendix

Proof of Proposition 5: Suppose the seller designs some game [ in which,
at equilibrium, trade takes place at some date 7" that may depend (pos-
sibly probabilistically) on some choice made by the buyer. If no trade
takes place, let us say that 7=e0. Suppose L is the set of strategies avail-
able to the buyer. For each o€ £, let p(o) = £,[67] be the expected pres-
ent value of 1 unit paid at the time of trade. This expectation depends, of
course, on the strategy ¢ chosen by the buyer. Similarly, let e{o) be the
expected present value of net payments made by the buyer over the course
of the game. It the buyer’s information is X, his expected payoff using ¢
is (X)p(o)—e(o). Let o*(x) and IT*(x) denote, respectively, the buy-
er’s optimal strategy and the maximum payoff in the game when X = x.
Define p*(x) = p(o*(x)) and e*(x) =e(o*(x)). Then,

MY x)y=u(x)p*(x)—e*(x). (A.1)

As Vickrey originally argued, p*(x) must be nondecreasing; otherwise
the buyer must be using a dominated strategy ¢*(x). He could increase
his ex ante expected payoff by rectifying his strategy to make p*(x) non-
decreasing while holding the distribution of ¢*(.X) fixed, since that leaves
his expected payment aud probability of winning unchanged while in-
creasing the expected value received. By the Envelope Theorem, d11*/dx =
u(x)p*(x), using equation (A.l), de*(x)=u(x)dp*(x). Hence, e*(x)=
e*(0)+J3 u(s) dp*(t). Now the seller’s expected cash receipts, conditional
on x, are (1—p*(x))s+e*(x). Because X is uniformly distributed on
(0, 1), the corresponding unconditional expectation is:

+ o]y
.\0 e(x)ydx=e*(0)+ .\u .\u () dp*(r) dx

=¢e*(0) + l:} \: dxu(t)ydp*(r)

=e'(0)+S;(I—r]u(r)dp*(r)‘ (A.2)
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In addition, the seller obtains value from keeping the item:
! =preendr=s| [1-py+{ dp*t)|d
s a=prandx=s| [1-p*()+] dp*() |dx
o opr
:s{l-—p"(l)—k\uSdedp*(f]jl
'l
:s[l+p’(1)+jurdp*(:)]. (A.3)
The seller’s total expected payoff is therefore:
o
e-(0)+s[1up*mj+L}[(1~;)um+sr}dp*(n. (A.4)

Because the buyer must have a strategy o of nonparticipation, which
leads to a payoff of zero, we may conclude:

e*(0) = p*(0)u(0). (A.5)

Inequality (A.5) constrains the seller in designing a game. Another con-
straint that (by Vickrey's argument cited carlier) must hold at equilib-
rium is:

pr0,1]—[0,1] is nondccrc;asing. (A.6)

Because the objective (A.4) is linear in p* and e*(0), and because the con-
straint set (A.5)-(A.6) is convex, the'maximum must occur at an extreme
point of the constraint set. Thus, at a maximum, (A.5) must hold with
equality. Also, the optimal p* function must be everywhere 0 or 1. So, by
(A.6), there is a point x* such that p*(x) is 0 for x<x* and | for x=x"*.
The maximized value of the seller’s payoll (A.4), subject to (A.5)-(A.6),
s sx*+(I—x*)yu(x"). '

This maximum, which bounds what the seller can get at any equilib-
rium of any game, can be achieved by making the take-it-or-l=ave-it offer
u(x*). Moreover, if (1—x)u(x) is strictly concave, there is a anique x*
that maximizes sx+ (1 —x)u(x). Hence, the unique p*(-) function that
attains the maximum is p*(x) =0 for x <x* and p*(x)=1lor x = x*. Any
institution as good as making a take-it-or-leave-it offer must lead to the
same trading outcome. =
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