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Understanding the determinants of agricultural productivity requires accurate measurement of crop

output and yield. In smallholder production systems across low- and middle-income countries, crop

yields have traditionally been assessed based on farmer-reported production and land areas in house-

hold/farm surveys, occasionally by objective crop cuts for a sub-section of a farmer’s plot, and rarely us-

ing full-plot harvests. In parallel, satellite data continue to improve in terms of spatial, temporal, and

spectral resolution needed to discern performance on smallholder plots. This study evaluates ground-

and satellite-based approaches to estimating crop yields and yield responsiveness to inputs, using data

on maize from Eastern Uganda. Using unique, simultaneous ground data on yields based on farmer

reporting, sub-plot crop cutting, and full-plot harvests across hundreds of smallholder plots, we docu-

ment large discrepancies among the ground-based measures, particularly among yields based on

farmer-reporting versus sub-plot or full-plot crop cutting. Compared to yield measures based on either

farmer-reporting or sub-plot crop cutting, satellite-based yield measures explain as much or more varia-

tion in yields based on (gold-standard) full-plot crop cuts. Further, estimates of the association between

maize yield and various production factors (e.g., fertilizer, soil quality) are similar across crop cut- and

satellite-based yield measures, with the use of the latter at times leading to more significant results due

to larger sample sizes. Overall, the results suggest a substantial role for satellite-based yield estimation

in measuring and understanding agricultural productivity in the developing world.
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Improving the productivity of smallholder
farmers is widely considered to be one of the

most effective avenues for reducing their pov-
erty and food insecurity (Byerlee et al. 2007).
With agriculture contributing up to 69% of ru-
ral household income in Africa (Davis et al.
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2017), and given high rates of expected pov-
erty reduction associated with agricultural
growth (Dorosh and Thurlow 2018), such pro-
ductivity improvements remain a longstanding
goal in many African countries. Similarly, at
the international level, doubling the produc-
tivity and incomes of smallholders have been
identified as a key target within the United
Nation’s Sustainable Development Goal
(SDG) 2 of Ending Hunger.

Accurate measurements of crop production,
cultivated area, and yield are at the heart of
official agricultural statistics and are key to
monitoring progress towards national and in-
ternational development goals, including SDG
2. Further, the survey data underlying these
outcomes are frequently used by agricultural
economists to investigate a vast array of
policy-relevant research topics, including (a)
the scale-productivity relationship (Larson
et al. 2014; Julien et al. 2019); (b) agricultural
productivity impacts of fertilizer use (Harou
et al. 2017), soil quality (Berazneva et al.
2018), land misallocation (Restuccia and
Santaeulalia-Llopis 2017), and sustainable
land management practices (Arslan et al.
2015); (c) farm- and household-level impacts
of exposure to extreme weather events
(Wineman et al. 2017; McCarthy et al. 2018);
(d) the extent and cost of gender differences
in agricultural productivity (O’Sullivan et al.
2014; Kilic et al. 2015); (e) the relationships
between agricultural and welfare outcomes at
the household- and/or individual-level
(Carletto, Corral, and Guelfi 2017; Darko
et al. 2018); and (f) the comparative effects of
agricultural versus non-agricultural growth on
poverty reduction (Dorosh and Thurlow 2018;
Ivanic and Martin 2018).

The most common way to assess outcomes
related to the productivity of smallholder
farmers, including land productivity (e.g.,
crop yields), is by using information collected
through in-person interviews for household
and farm surveys. For example, the house-
hold surveys supported by the World Bank
Living Standards Measurement Study—
Integrated Surveys on Agriculture (LSMS-
ISA) initiative measure plot areas with
handheld GPS units and solicit farmer-
reported information on crop production
and input use, among other topics, at the
plot level. These data, together with the
multi-topic information solicited by these
surveys, have informed a burgeoning field of
development research on Africa over the
last decade.

Compared to the body of methodological
research that has shown severe systematic
biases in farmer-reported plot area measures
(Carletto et al. 2017) and that have under-
lined the increasing use of GPS-based plot
area measurement in national household sur-
veys, there is a dearth of evidence on the ac-
curacy of farmer-reported crop production. It
is, however, known that the process of solicit-
ing farmer-reported production information
is mediated by complexities that include (a)
potential recall bias, (b) tendency to round
off numbers, (c) the use of non-standard mea-
surement units, (d) various conditions and
states of crop harvest; and (e) partial/early
crop harvests, among others (Carletto,
Jolliffe, and Banerjee 2015). In fact, the
emerging body of evidence from various
smallholder production systems across Africa
has revealed the systematic measurement
errors in self-reported crop production
(Gourlay, Kilic, and Lobell 2017; Desiere and
Jolliffe 2018; Abay et al. 2019) and their non-
negligible implications for questions at the
heart of agricultural economics, including the
scale-productivity relationship. These find-
ings further highlight the critical need to im-
prove the accuracy of methods used to
measure land productivity.

A less common but also well-established
approach to measure crop yields is by physi-
cally harvesting a sub-section of a farmer’s
plot, also known as crop cutting (Fermont
and Benson 2011). Crop cutting provides a
more objective way to measure grain produc-
tion for a part of the plots, but heterogeneity
within a plot can lead to sensitivities of crop
cut yields to the precise location and size of
the crop cut sub-plot vis-�a-vis the entire plot
(Fermont and Benson 2011). An alternative
is to harvest the entire plot, which avoids
most of the problems of the prior methods
and is therefore frequently considered the
“gold standard” yield measurement (Casley
and Kumar 1988; Fermont and Benson 2011).
However, full plot harvests require a substan-
tial amount of labor and coordination with
farmer harvest schedules, which makes them
costly and difficult to scale.

Given the limitations of existing
approaches, recent work has explored the
ability of satellite data to track crop yields.
Burke and Lobell (2017) showed that 1 m res-
olution data from Terra Bella’s Skysat sen-
sors (now owned by Planet Labs) were useful
for mapping maize yields for farms in western
Kenya. This usefulness was measured both by
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correlation of satellite-based yield estimates
with traditional ground-based yield measures,
as well as by the ability of satellite-based
yields to detect positive yield associations
with fertilizer and hybrid seed inputs. This
latter aspect was considered especially impor-
tant since (a) ground-based yield measures
are inevitably imperfect themselves, and (b)
detecting response to inputs or some other
aspect of farm management is a common mo-
tivation for collecting plot-level yield data in
the first place. However, objective ground-
based measures of productivity were unavail-
able in Burke and Lobell (2017), which
limited the ability to understand the relative
extent of measurement error in ground-
versus satellite-based measures.

Here, using unique gold-standard data
from full-plot harvests across hundreds of
smallholder fields, we assess the ability of
satellite-based approaches to measure plot-
level maize yields on African smallholder
farms and to understand how yields respond
to productivity-enhancing factors such as soil
quality. The analysis uses data from Eastern
Uganda from the 2016 round of MAPS:
Methodological Experiment on Measuring
Maize Productivity, Soil Fertility and
Variety, a survey experiment implemented
during the first rainy season of 2016 (June–
October) in 45 enumeration areas within a
400 square kilometer area spanning the
Iganga and Mayuge districts of Eastern
Uganda, the leading maize-producing region
of the country.

The analysis extends the work presented in
Burke and Lobell (2017) in at least three sub-
stantial ways. First, the Ugandan maize sys-
tems are considerably more subsistence-
focused and heterogeneous than the Kenyan
counterparts in Burke and Lobell (2017),
with generally smaller plot sizes, lower input
use, greater prevalence of under-canopy
intercrops such as beans and groundnuts, and
frequent occurrence of over-canopy inter-
crops such as cassava and bananas. Thus,
Uganda represents a different and, in many
ways, more challenging environment in which
to test satellite-based crop yield measure-
ment approaches.

Second, whereas Burke and Lobell (2017)
relied on farmer self-reported data on maize
production, this paper uses objective meas-
ures based on survey field team harvests of
maize grain for 64m2 subplots within each
plot (“crop cuts”), as well as whole plot har-
vests for a random half of our sample (“full

plot harvests”). Thus, we can compare differ-
ent ground-based measures with each other,
and with the satellite data.

Third, the study uses data from the
Copernicus program’s Sentinel-2A satellite,
which has coarser spatial resolution but more
spectral bands than the Skysat sensor used in
Burke and Lobell (2017). Furthermore,
whereas Skysat data are currently only avail-
able for a small fraction of the Earth’s surface
each day, Sentinel-2A and its recently
launched sister satellite Sentinel-2B each cap-
ture imagery every ten days for the entire
land surface of the Earth, with an effective
five-day repeat for the Sentinel-2 duo since
June 2017. These imagery are quickly made
available to the public at no cost. For these
reasons, Sentinel-2 represents an attractive
option for estimating yields over large
regions.1

All plot-level measures of maize yield, in-
cluding farmer-reported self-reported pro-
duction per hectare (SR), sub-plot crop cut
production per hectare (CC), full plot crop
production per hectare (FP), and variants of
remotely sensed production per hectare (RS)
rely on GPS-based plot areas. All such meas-
ures are also compared to each other using
standard statistical approaches, and are used
to study the sensitivity of the associations be-
tween maize yield and various production
factors measured through a combination of a
household survey and extensive soil sam-
pling. Overall, we find that SR yields exhib-
ited significant positive bias when compared
to CC or FP yields, with an average yield in
SR more than double the other two.
Although CC yields agreed well with FP in
terms of the overall yield distribution, the
correlation between CC and FP yields across
fields was relatively low, with CC able to cap-
ture roughly one-quarter of the variability in
FP yields. The RS yields exhibited significant
correlations with the ground measures, in
some cases exceeding CC yields in the ability
to capture variation in FP yields. Moreover,
RS yields exhibit correlations with different
production factors (e.g., fertilizer, soil qual-
ity) that are very similar to those for CC and
FP yields, further indicating that RS yields
provide a meaningful measure of land
productivity.

1 Burke and Lobell (2017) focused on field campaigns in 2014
and 2015, before Sentinel-2 was operational.
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The paper is organized as follows. The next
section describes the data, while the following
section presents the comparisons among
ground-based yield measures, as well as be-
tween ground- and satellite-based yield meas-
ures, and the results from the estimations of
maize yield regressions for each yield variant
of interest. The last section discusses these
results and summarizes the main conclusions.

Data

MAPS: Methodological Experiment on
Measuring Maize Productivity, Soil Fertility
and Variety is a two-round household panel
survey that was conducted in Eastern Uganda
to test the relative accuracy of subjective
approaches to data collection vis-�a-vis objec-
tive survey methods for maize yield measure-
ment, soil fertility assessment, and maize
variety identification. Both survey rounds
were implemented by the Uganda Bureau of
Statistics, with technical and financial assis-
tance provided by an inter-agency partner-
ship that was led by the World Bank Living
Standards Measurement Study (LSMS).

Sampling Design and Fieldwork

Analysis in this paper focused on Round II of
MAPS in 2016, building on sampling from
earlier MAPS I in 2015. In Round 1, a sample
of 75 enumeration areas (EAs) were selected
in Eastern Uganda, the top maize-producing
region of the country, using the 2014
Population and Household Census (PHC)
EA frame. We focus on 45 EAs distributed
across a 400 square kilometer remote sensing
tasking area spanning the Iganga and
Mayuge districts (figure 1). Fieldwork was
conducted from June to October 2016, and
field teams attempted to track and re-
interview 540 households that had been inter-
viewed in Round 1 within the tasking area.

Overall, 489 of the 540 households were
successfully re-interviewed.2 As in MAPS I,

one maize plot was selected from each house-
hold for crop cutting and variety identifica-
tion components.

MAPS II implemented full-plot crop cut-
ting for a random sub-sample of plots, and in-
creased the area for sub-plot crop cutting
(from 4x4m to 8x8m) on each plot. These
decisions were anchored in the concerns
around intra-plot variability of maize yields.
Given the enhancements in the scope of crop
cutting data in MAPS II and the interest in
the validation of satellite-based approaches
to yield estimation, we rely solely on the
MAPS II data on 463 households/plots for
which sub-plot crop cutting data are avail-
able. The only exception, as explained below,
is the plot-level data on soil fertility, which is
sourced from MAPS I. Table 1 provides a
breakdown of 463 plots in accordance with
pure stand versus (type of) intercropped cul-
tivation status.

Three visits were made to each household
during MAPS II. During the (first) post-
planting visit, enumerators solicited informa-
tion on (a) demographic and socio-economic
attributes of household members; (b) house-
hold dwelling characteristics and ownership
of durable assets and agricultural imple-
ments; and (c) area, cultivation pattern, man-
agement, pre-harvest labor and seed inputs
for all maize plots that were cultivated during
the reference rainy season.3 Following the
completion of the household post-planting in-
terview, each enumerator visited the maize
plot that was selected in accordance with the
protocol detailed in the previous section. At
that time, plot boundaries were mapped with
a handheld GPS device and crop-cut sub-
plots set up for later harvesting and weighing.
The crop cut sub-plot location was chosen at
random, in accordance with the protocol de-
tailed by Gourlay, Kilic, and Lobell (2017)
and in line with international best practices.

During the (second) crop cutting visit, the
enumerator harvested the crop cut sub-plots
to obtain objectively measured harvest

2 In total, 34 out of 51 households that we did not interview in
MAPS II were due to the fact that they were not cultivating
maize in the first season of 2016. The remaining 17 households
can be broken down as follows: 5 households could not be
tracked or were outside of the tracking area defined as the
Iganga and Mayuge districts (5); 4 households had suffered total
crop loss prior to post-planting interview; 7 households had al-
ready harvested their maize by the post-planting interview; and 1
household refused. Gourlay, Kilic, and Lobell (2017) report that
attrition bias is not a concern.

3 A parcel is conceptualized as a continuous piece of land un-
der a common tenure system, while a plot is defined as a continu-
ous piece of land on which a unique crop or a mixture of crops is
grown under a uniform, consistent crop management system, not
split by a path of more than one meter in width, and with bound-
aries defined in accordance with the crops grown and the opera-
tor. Therefore, a parcel can be made up of one or more plots.
This distinction is key since for the purposes of within-farm anal-
ysis of agricultural productivity, the ideal is to capture within-
parcel, plot area measurements linked with plot-level measure-
ment of agricultural production.
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quantities, as detailed in the subsequent sec-
tion. Finally, during the (third) post-harvest
visit, farmer-reported information on total plot-
specific maize production, non-labor inputs and
harvest labor inputs was solicited for all maize
plots that were cultivated during the reference
season. The post-harvest visit was scheduled
within a two-month period following the com-
pletion of each household’s harvest.

Key Measurement Domains and Methods

Plot area measurement. After walking the pe-
rimeter of a given plot with the plot manager
to identify the boundaries, the enumerators

re-paced the perimeter and measured the area
with a Garmin eTrex 30 handheld GPS device.
The area was recorded on the questionnaire in
square meters, and the raw GPS track outline
was stored. The competing yield measures in
our study are all anchored in GPS-based plot
area measurement. In MAPS II, the median
plot size was 0.11 hectare (ha; roughly one-
quarter of an acre), with 46% below 0.10 ha
and 17% below 0.05 ha.

Soil fertility assessment. The soil quality in-
dex, based on lab analyses of soil samples
obtained from the sampled plot locations, is
used in our analysis to gauge the possibility
of recovering the expected coefficients in pro-
duction function estimations that use
satellite-based yields as dependent variables.
Gourlay, Kilic, and Lobell (2017) provide
details on the collection of soil samples at
each plot location in MAPS I. Briefly, four soil
samples were collected at random locations
within each plot and were subjected to spec-
tral soil analysis. The resulting data were used
to construct a composite soil quality index
(SQI), following Mukherjee and Lal (2014).
Given the data limitations, the constructed in-
dex focuses on nutrient storage capacity but
ignores the other two components of soil

Figure 1 Study region in Eastern Uganda

Note: Three images show Sentinel-2 images and dates used in the study. Polygons indicate outlines of plots where surveys/crop cuts were performed.

Table 1. Distribution of MAPS II Plots by
Cultivation Status

Pure
stand

Intercropped

Maize-
Legume

Maize-
Cassava

Maize-
Legume-
Cassava

Maize-
Other

124 119 161 52 7
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quality identified by Mukherjee and Lal
(2014) related to root development and water
storage.4

Ground-based maize yield measurement. We
construct both farmer self-reported (SR) and
crop-cut based yield estimates. For the farmer
estimates, plot managers were asked to report
their estimate of maize harvest at the parcel-
plot-level during the post-harvest visit, as de-
scribed in Gourlay, Kilic, and Lobell (2017).
Each plot manager was allowed to report pro-
duction in non-standard measurement units,
and the dry grain-equivalent harvest quantities
in kilograms were calculated by using a con-
version factor database developed by UBOS.5

To complement SR estimates, we also
obtained two crop-cut based measures of plot-
level yields. Crop cutting has been recognized
as the gold standard for yield measurement
since the 1950s by the Food and Agriculture
Organization of the United Nations (FAO).
Gourlay, Kilic, and Lobell (2017) review the
potential concerns regarding yield measure-
ment concerning crop cutting and detail the
way in which the MAPS approach to crop cut-
ting and its hands-on supervision overcame
them.

In this study, one 8x8m sub-plot (divided
into four 4x4m quadrants) was laid on each
plot. Each subplot was cordoned off until har-
vest and was supervised by the EA-specific
crop cut monitor between the post-planting
and the crop cutting visits. Each plot manager
was asked not to harvest any crop from the
sub-plots until the crop cutting visit, and not to
manage the sub-plot any differently than the
rest of the plot. These messages, first communi-
cated by the enumerator, were intended to be
enforced by the local crop cut monitors.6 The
shelled maize harvests tied to each of the four
adjacent 4x4m quadrants were weighed in the

field and then reweighed at a central location
in Kampala under strict supervision following
additional drying. At the time of the final
weighing, the moisture content of each sample
was captured to standardize all crop cut sample
weights used for our analyses at 12% moisture.
The MAPS II sub-plot crop cutting based plot-
level maize production estimates are computed
by multiplying the crop cut sub-plot production
across the 64m2 area covered by the 8x8m sub-
plot by the ratio of the entire GPS-based plot
area in square meters up to 64m2.

Furthermore, half of the target household
population within each of the pure stand and
intercropped domain was selected at random
for a full-plot (FP) crop cut. This rare ap-
proach to crop production measurement
entails the harvesting of the entire plot area,
shelling the resulting harvest, weighing it in
the field, and capturing its moisture level. This
operation was conducted by the enumerators
with help from the EA-specific crop cut moni-
tor and the crop cut assistant(s) recruited from
within the households. On the MAPS II plots
selected for full-plot harvest, the harvest of
the designated 8x8m subplot was weighed sep-
arately from the full-plot harvest to allow for
comparative yield analysis. The full-plot har-
vests were only weighed in the EAs as their
transport to and additional drying and
reweighing at a central location was deemed
logistically infeasible. Moisture readings taken
from the maize grain harvested from the full
plot harvests were used to standardize the pro-
duction quantity to 12% moisture. A total of
211 plots had full-plot harvests. Gourlay, Kilic,
and Lobell (2017) detail the approach to full
plot harvests. Although farmers were not told
the final weight of their harvest, it is likely that
the process of harvesting and bagging the
maize improved their self-report production
values compared to plots without full plot har-
vests. Therefore, the analyses that use self-
reported maize production per hectare rely
only on 252 plots without a full plot harvest.

Ground-based SR and FP yields were de-
rived by dividing the reported or measured
mass of maize production by the area corre-
sponding to the GPS-based plot area, or 64m2,
in the case of the 8x8m crop cut sub-plot.

Satellite-based yield measurement. Images
from Sentinel-2A, processed to top-of-

4 The PCA-based soil quality index was constructed for the full
MAPS 1 sample, and therefore analyzes the correlation of soil prop-
erties and crop cutting yields on a larger sample than MAPS 2.

5 Refer to Gourlay, Kilic, and Lobell (2017) for more informa-
tion regarding the conversion factors used in expressing farmer-
reported production information in kilogram-equivalent terms.

6 The lack of statistically significant differences between average
CC and FP yields is a finding in support of the assumption that the
crop cut sub-plot areas were not managed differently with respect
to the rest of the plot. Following the first visit to the sampled house-
holds, the supervision of the crop cut sub-plots were conducted on
a weekly basis by the local crop cut monitors, who were tasked
with visiting the sampled households and sub-plot locations to en-
sure that the farmers were clear regarding our request for consis-
tency in management practices on the crop cut sub-plot vis-�a-vis
the rest of the plot. During the fieldwork, the field teams submitted

weekly progress reports, none of which referred to any suspected
instances of differential management of crop cut sub-plot areas.

6 August 2019 Amer. J. Agr. Econ.

D
ow

nloaded from
 https://academ

ic.oup.com
/ajae/advance-article-abstract/doi/10.1093/ajae/aaz051/5607565 by Stanford U

niversity user on 08 N
ovem

ber 2019



atmosphere reflectance (Level -1 C), were
accessed within the Google Earth Engine
platform. Sentinel-2A is a polar orbiting sat-
ellite carrying a Multi-Spectral Instrument
(MSI), which acquires images at �10:30 a.m.
local time for each location on the Earth’s
land surface roughly every ten days. The MSI
measures radiation reflected from the Earth’s
surface in 13 separate wavelength intervals
called “bands”, with a spatial resolution of
10m for the visible and near-infrared bands,
and 20m to 60m for other bands. For this
study, three relatively cloud-free images were
available during the growing season, on April
30, May 30, and June 19, 2016. Sentinel-2B,
which is identical to Sentinel-2A but stag-
gered by five days, was launched in 2017 and
so is not included in this study.

Clouds and shadows were masked from the
Sentinel images using a random forest classi-
fier trained on points visually selected from
images throughout the region. Five vegetation
indices (VIs) that are commonly used in the
literature were then calculated for each pixel
using the equations shown in table 2. The av-
erage value of all bands and VIs within each
plot polygon were then extracted for each im-
age date for further analysis, averaging across
all pixels with at least half of their area over-
lapping with the plot. In addition, for compari-
son with the Sentinel-2A images, an image
acquired by Planet Lab’s Skysat sensor on
May 29, 2016 was accessed. Skysat measures
radiance in blue, green, red, and near-infrared
channels at a 1m resolution. As with the
Sentinel-2 data, clouds and shadows were
masked using a random forest classifier

trained on several images in the region, includ-
ing those used in Burke and Lobell (2017).

Satellite-based yields were then derived in
two ways, following Burke and Lobell (2017).
First, “calibrated” remote sensing yields
(RS_cal) were obtained from a regression
model of FP yields on VI values measured on
May 30 and June 19, 2016, using only pure
stand maize plots that were at least 0.1ha in
size. Since FP yields are expensive to obtain
and cannot be considered as part of large-
scale operations, an alternative version of the
calibrated remote sensing yield was obtained
(RS_cal_cc), which used CC, rather than FP
yields to calibrate the model. These models
can be specified as follows:

ð1Þ RS cal Model : FP Yieldi ¼ aFP;i

þ bVI;FP;1 �VIMay 30;i

þ bVI;FP;2 �VIJune 19;i

þ eFP;i

ð2Þ RS cal cc Model : CC Yieldi ¼ aCC;i

þ bVI;CC;1 �VIMay 30;i

þ bVI;CC;2 �VIJune 19;i

þ eCC;i

where i denotes plot, and a and e denote
regression-specific constant and error term, re-
spectively. The calibration was done using only
purestand plots since ground-based objective
yield estimates were not available for non-

Table 2. Spectral Vegetation Indices (VIs) Employed in This Study

Name Equation Equation using
Sentinel-2 bands

Reference

NDVI
(Normalized
Difference
Vegetation Index)

(RNIR – RRED) /
(RNIR þ RRED)

(B8 – B4) / (B8 þ B4) (Rouse et al. 1973)

GCVI
(Green Chlorophyll
Vegetation Index)

(RNIR / RGREEN) – 1 (B8/B3) - 1 (Gitelson et al. 2003)

MTCI
(MERIS Terrestrial
Chlorophyll Index)

(RNIR—R705) /
(R705—RRED)

(B8-B5) / (B5 – B4) (Dash and Curran 2004)

NDVI705
(Red-Edge NDVI705)

(RNIR – R705) /
(RNIR þ R705)

(B8 – B5) / (B8 þ B5) (Gitelson et al. 2003)

NDVI740
(Red-Edge NDVI740)

(RNIR – R740) /
(RNIR þ R740)

(B8 – B6) / (B8 þ B6) (Gitelson et al. 2003)

Note: R refers to reflectance, and B refers to the corresponding sentinel-2 band number used to compute the VI.
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maize crops on intercropped plots. The restric-
tion in terms of plot area was driven by smaller
plots having larger problems with geolocation
accuracies and mixed pixels in Sentinel-2. All
VIs shown in table 2 were tested and are dis-
cussed below, with the preferred model using
the MERIS Terrestrial Chlorophyll Index
(MTCI). Yields were estimated as a linear
function of VI as shown in equations (1)–(2).
Quadratic models were also considered but
gave poorer out-of-sample performance.

The second satellite-based approach was to
estimate “uncalibrated” yields (RS_scym) by
using the scalable crop yield mapper (SCYM)
approach (Lobell et al. 2015). In this approach,
a crop model and local daily weather data were
used to simulate crop growth and yield for vari-
ous realistic combinations of on-farm manage-
ment, such as sow date, seeding density, and
fertilizer rate. The simulated values of total can-
opy nitrogen on the dates with available images
were then translated into MTCI using pub-
lished relationships (Schlemmer et al. 2013),

ð3Þ MTCI ¼ 3:05þ 0:789 � canopyN

where canopyN is the simulated amount of
total nitrogen in aboveground biomass after
subtracting the nitrogen in the grain (which is
invisible to the sensor). As in the calibrated
approach, the yields are then regressed on
MTCI, except in the case of SCYM the re-
gression uses simulated yield and MTCI
rather than actual values. In this way, SCYM
avoids reliance on any ground data for cali-
bration, which is why it is referred to as an
“uncalibrated” approach.

Both types of satellite-based yield estimates
were tested in two complementary ways. First,
the yields were compared directly with the
ground-based estimates across both purestand
and intercropped plots. However, given that
ground-based estimates are subject to (differ-
ent types of) measurement error and neglect a
potentially substantial amount of production
from non-maize crops, the direct comparisons
between the two yield measures is not a
straightforward test of the satellite-based
yields. That is, some of the discrepancy will
also be due to errors in the ground-based esti-
mates, or discrepancies in the types of outputs
that are measured. As a second form of evalu-
ation, we performed regressions of yield on
different production factors for both ground-
based and satellite-based yields and compared
the resulting coefficients. Specifically, we
regressed yields on key plot characteristics,

including log of plot area, log of distance to
household (km), presence of cover crops, log
of seed planted (kg), use of inorganic fertil-
izer, log of household labor days and hired la-
bor days, number of hired laborers, soil
quality index (SQI), and household attributes,
including wealth index, agricultural asset in-
dex, dependency ratio, household size, head
of household age, gender, and years of educa-
tion, and whether the manager was the survey
respondent. For regressions including inter-
cropped plots, two additional variables were
included: a binary variable indicating the pres-
ence of an intercrop, and a variable indicating
the log of the intercrop seed rate (i.e., the ra-
tio of quantity of seed planted to quantity of
seed that the farmer estimates would have
been planted if the plot was pure stand).

Although we include a rich set of controls in
our regressions, it is possible that omitted vari-
ables may be affecting yields, and therefore
the estimated coefficients should not be inter-
preted as causal. Instead, the primary goal of
this analysis is to use independently measured
variables—many of which (such as fertilizer or
soil quality) are known to affect productivity
in a wide array of cropping systems—to fur-
ther evaluate satellite-based yield measures.
This is especially helpful in cases where the
ground-based yield measures are thought to
be error-prone, or when output is measured
only for one crop on an intercropped field.

Results

Given the unique co-occurrence of three dif-
ferent ground-based yield measures in this
study, we begin by comparing these measures
to each other. We then describe the compari-
son of satellite and ground measures of maize
yield for purestand maize fields, where the
comparison is most straightforward because
maize harvest alone defines the productivity
of the plot. Comparisons are then presented
for intercropped fields where ground-based
measures provide only a partial measure of
crop output. Finally, we present results of
regressing the various yield measures on dif-
ferent production factors, both with and with-
out including intercropped fields.

Comparison of Ground-Based Yield
Measures

The distributions of yields from the three
ground-based approaches are displayed in
figure 2a and summarized in table 3. Both
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objective, harvest-based approaches show
very similar distributions, with a mean CC
yield of 0.73 metric tons per hectare (t/ha)
and a mean FP yield of 0.68 t/ha. These dif-
ferences were not statistically significant
(p> 0.2). In contrast, the farmer self-reported
(SR) yields contained many more high yield-
ing values, including 11 (out of 252 total)
plots with SR yield greater than 5 t/ha. The
highest SR yields tended to occur on very
small plots, with 8 of these 11 being on plots
smaller than 0.05 ha. The average SR yield of
1.83 t/ha was significantly higher, and indeed
more than double, that for CC and FP yields.

Given that SR, CC, and FP yields are com-
peting ground-based measures, a useful ques-
tion is how well correlated they are across
different plots. Correlation between CC and
FP yields was significant (p< 0.01) but only
0.51 overall (figure 2c). If one views full-plot
crop cutting as the “gold standard” of
ground-based measures, this indicates that
8x8m crop cuts capture only roughly one-
quarter of the variability in actual plot yields.
These discrepancies reflect the substantial
intra-plot heterogeneity of yields in these sys-
tems. The 64 m2 area of the crop cuts, despite
requiring a costly and ambitious effort, are
roughly just 6% of the median plot size

(0.11 ha or 1,100 m2) or 4% of the average
plot size. The effect of this heterogeneity
appears to be greater in intercropped plots,
as the correlation between CC and FP yields
is higher on pure stand maize plots (r¼ 0.70).

The more subjective SR yields show al-
most no correspondence (r¼ 0.04) with the
crop cutting-based measures (figure 2b).
Because correlations may be heavily influ-
enced by errors on especially small fields,
figure 2b also reports correlations that are
based on the exclusion of plots with areas
below 0.05ha. Despite the increase in the
correlation coefficient to 0.28, still less than
10% of the variation in CC yields is cap-
tured by SR yields.

Comparison of Ground- and Satellite-Based
Yield Measures on Pure Stand Plots

We begin the evaluation of satellite VIs by
presenting the performance of the calibrated
models (in terms of adjusted R2) using differ-
ent sources of ground-based yields for cali-
bration, as well as different types of VIs
(figure 3). Satellite-based yields were esti-
mated for all plots that did not contain clouds
on either May 30 or June 19 (397 out of 463
total plots).
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Figure 2. Yield distributions for ground-based measures

Note: (a) Vertical bars at bottom indicate the mean yield for each measurement approach. (b) Scatter plot of SR and CC yields for all plots, and, separately,

for plots above 0.05ha in size (black points). (c) Scatter plot of FP and CC yields.
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Four important features are evident in fig-
ure 3: (a) Adjusted R2 values were generally
higher between VIs and FP yields than be-
tween VIs and CC or SR yields, which is con-
sistent with the notion that full-plot crop
cutting provides a better measure of plot-
level productivity. (b) Adjusted R2 tended to
improve when excluding the smallest plot
sizes, consistent with the results in Burke and
Lobell (2017). A likely explanation for this is
the increased importance of georeferencing
errors and mixed pixels on the smallest of
plots. For example, a 0.05 ha plot covers an
area of just five 10x10m Sentinel-2 pixels, and
most of these pixels are likely to span the
edge of the plot and contain some contribu-
tion from neighboring plots. (c) The MTCI

consistently outperformed the other VIs on
both image dates. The MTCI was designed to
be sensitive to canopy chlorophyll concentra-
tion (Dash and Curran 2004), which is likely
a good proxy for yield in the low nutrient set-
ting of Uganda. Perhaps more importantly,
MTCI is much less sensitive to atmospheric
conditions than other VIs such as NDVI or
GCVI (Curran and Dash 2005) because it
uses the difference in reflectance between
two nearby bands that will be similarly af-
fected by atmospheric scattering. In both
images, significant amounts of haze are evi-
dent above many of the plot sites in both the
raw reflectance and NDVI or GCVI images.
However, the MTCI images exhibit much
lower sensitivity to haze (see online supple-
mentary appendix figure A1). (d) Finally, a
substantial fraction of FP yield variability is
captured by VIs, with the MTCI-based model
capturing 55% of yield variability on plots of
at least 0.10ha. Notably, this value is greater
than the amount of FP yield variability cap-
tured by CC yields on these plots (adjusted
R2 ¼ 47%), indicating that satellite meas-
ures are better correlated with full plot har-
vests than the crop cuts on those same
fields. Performance using only May 30 or
June 19 was similar but slightly worse than
the model using both dates (37% and 49%
of yield variation explained for each date,
respectively), as shown in online supple-
mentary appendix figure A2.

One potential concern with the calibrated
models is that they are unduly influenced by
sowing date differences between fields. For
example, if rains came early, such that fields
planted early in the season had higher yields,
but also more mature plants at an earlier
stage, the correlation between crop yields

Table 3. Summary Statistics of the Different Ground-Based Yield Measures

All Pure stand Intercropped

Yields (in kg/ha) mean median mean Median mean median

Self-Reported
(SR)

1,826 784 1,878 1,039 1,805 685

Sub-Plot Crop
Cutting (CC)

728 595 827 725 692 571

Full Plot Crop
Cutting (FP)

676 511 842 740 623 472

Different
means?

Different
Distributions?

Different
means?

Different
Distributions?

Different
means?

Different
Distributions?

SR vs. CC *** *** *** *** ** ***
CC vs. FP � � � � � �
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Figure 3. Adjusted R2 of regressions of yields
vs. VI, by VI type and type of ground-based
yield measure

Note: Models were run for successive subsets of data by excluding plots be-

low indicated plot size. Results for some VIs in table 2 are not displayed for

clarity, but consistently performed worse than GCVI and MTCI.
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and the satellite measures would appear posi-
tive but could simply arise from plants being
at different stages in the season. For our data-
set, farmers reported the month of sowing
and whether they sowed in the first or second
half of the month. These reported sowing
dates exhibited a weak negative correlation
with yields, with r ¼ �0.22 for all purestand
maize fields and r ¼ �0.44 for purestand
fields larger than 0.1ha. Moreover, the agree-
ment between VI and yields were not unduly
influenced by omitting particular sowing
dates from model testing, as shown in online
supplementary appendix figure A3.
Specifically, removing fields with different
sow dates had a negligible impact on the cor-
relation between satellite and full-plot yields,
with the exception of one influential field
sown in February, which achieved a very high
yield and whose removal reduced the ad-
justed R2 by roughly 15 percentage points.
Nonetheless, even after removing this field
the model still explained a highly significant
43% of yield variation in the remaining fields.

At first glance, the results discussed above
imply that measuring FP yields will result in a
superior calibrated model, given that the ad-
justed R2 for the FP model is more than twice
that for the CC model when focusing on the
performance of pure stand plots larger than
0.10 ha. Individual field predictions are shown
in figure 4a and b, along with the calibration
statistics. Interestingly, though, the coeffi-
cients of the two regressions were very simi-
lar, with the model calibrated to CC yields
having a slightly lower range of predicted
yields. As a result, this model did nearly as
well predicting FP yields (R2 ¼ 0.54) as the
model calibrated to FP yields.

This finding suggests that although CC
yields are noisier measures of plot-level pro-
ductivity compared to FP yields, this noise is
mostly random and does not significantly bias
the estimated coefficients in a model to pre-
dict yields from satellite data. Thus, one can
expect models calibrated using CC yields
(which are much more feasible and common
than FP yields) to have lower R2 but similar
out of sample accuracy for predicting true
plot productivity as models calibrated with
FP yields.

The “uncalibrated” estimates, obtained
from a regression of simulated yields versus
simulated MTCI on these same dates,
resulted in a nearly identical R2 to models
calibrated with FP yields (R2 ¼ 0.54,
figure 4c). The uncalibrated estimates did ex-
hibit significant bias, with a tendency to over-
estimate yields by roughly 1 ton/ha, because
none of the simulated yields were as low as
the lowest of the observed FP yields.
Nonetheless, the high correlation between
uncalibrated estimates and true FP yields
indicates that ground calibration is not a pre-
requisite for capturing a large fraction of spa-
tial yield variability with satellite data.

The “calibrated” and “uncalibrated” mod-
els can be viewed as two extremes of using
available ground data, with the calibrated
model using all purestand maize fields with
cloud-free imagery, and the uncalibrated
model using only model simulations. In prac-
tice, an important question is how much accu-
racy is retained as the size of the calibration
dataset, and the associated costs of field
work, is reduced. To explore this further, we
randomly selected a subset of fields larger
than 0.1ha to train a calibrated model, and
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Figure 4. Plot yield comparisons

Note: Comparison of (a) full plot yields vs. predictions from a remote sensing model calibrated to full plot yields, (b) crop cut yields vs. predictions from a re-

mote sensing model calibrated to crop cut yields, and (c) full plot yields vs. “uncalibrated” remote sensing yield estimates, which are based on calibration to

crop model simulations. All panels show results for pure stand maize plots at least 0.1 ha in size, which are the subset of plots used to calibrate the models in

(a) and (b).
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then tested the model on FP yields from fields
not used in the calibration. This was repeated
for different sizes of the training subset, with
the average performance plotted as a func-
tion of training sample size (figure 5). We al-
ternatively evaluated predictions on fields
above 0.1ha as well as all purestand fields.
Results indicate that although the out-of-
sample performance continues to improve for
additional samples, training on 10 fields does
nearly as well as training on 25. Also evident
in figure 5, and consistent with the discussion
above, is the fact that training on CC results
in nearly identical performance as the FP
model when tested on FP yields. Training on
SR yields, in contrast, results in large root
mean square errors because of the substantial
bias associated with SR yields (figure 5).

The superior performance of MTCI is
noteworthy, especially given that several of
the most recent satellite sensors, which pos-
sess higher spatial resolution than Sentinel-2,
lack the red edge bands needed to calculate
MTCI. In this study, we fortuitously had ac-
cess to a relatively cloud-free image acquired
by Terra Bella’s Skysat sensor on May 29,
one day before a Sentinel-2 image. Skysat
was used in Burke and Lobell (2017), and in
the context of smallholder mapping has the
particularly attractive feature of 1m spatial
resolution. Particularly for the small plot
sizes in Uganda, we anticipated that the 1m
resolution would offer substantial benefits
compared to the 10m resolution of Sentinel-
2’s main bands, and the 20m resolution of
Sentinel-2’s red edge bands. Surprisingly, we

found that Sentinel-2 and Skysat performed
very similarly when using GCVI for both,
even though many plots contained only a few
Sentinel-2 pixels (online supplementary ap-
pendix figure A4). The large boost in perfor-
mance when using MTCI with Sentinel-2
therefore more than outweighed any loss in
accuracy from using coarser resolution. This
result may be specific to the particular atmo-
spheric conditions, time of growing season,
and characteristics of the study site, and
therefore we caution against overweighting
the benefits of spectral versus spatial resolu-
tion. Nonetheless, it is an informative com-
parison made possible by having two images
so close in time over a study site with large
amounts of quality ground-based data.

Comparison of Ground- and Satellite-Based
Yield Measures on All Maize Plots

Of interest in agricultural regions such as
Uganda, where maize is typically inter-
cropped with other species, is how well satel-
lite measures can capture the performance of
mixed-crop plots. Of course, ground-based
yield measures are readily beset by chal-
lenges from intercropping (Carletto, Jolliffe,
and Banerjee 2015). In crop cutting applica-
tions, pure stand plots are typically priori-
tized due to (a) differences in harvest
calendars of crops on intercropped plots (e.g.,
maize versus root/tuber crops, such as cassava
as in our study, whose harvests may span an
extended period; take place on a needs basis;
and cut across agricultural seasons); (b) the
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Figure 5. Sample size training effects

Note: The effect of training sample size on the out-of-sample root mean square errors (rmse, left) and squared correlation (R2, right) for predicting FP yields,

using models trained on SR, CC, or FP yields. Dashed lines indicate results for purestand maize fields larger than 0.1ha, while solid lines show results for all
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difficulty of conducting multiple crop har-
vests on intercropped plots and accommodat-
ing crop-specific post-harvest processing and
drying needs prior to weighing. And in the
analysis of surveys soliciting farmer-reported
information on crop production, the yields
for each crop on an intercropped plot is com-
puted by dividing the production of each crop
by either (a) the entire plot area, (b) the plot
area multiplied by the farmer-reported share
of the plot area cultivated with the crop, or
(c) the plot area multiplied by the ratio be-
tween the farmer-reported seed use under
intercropping and hypothetical seed use un-
der pure stand cultivation.

In our study, the ground-based measures of
yield (SR, CC, and FP) were obtained only
for maize, irrespective of the pure stand ver-
sus intercropped cultivation status. The sec-
ondary crop harvests were not considered in
our crop cutting operation primarily due to
the above referenced reasons that typically
lead to the prioritization of pure stand plots
in crop cutting applications. In turn, we com-
pared the satellite-based yield measures to
FP for different types of plots, grouped based
on the presence and type of intercropping
(figure 6). The performance on plots inter-
cropped with legumes (beans or groundnuts)
was significantly lower than on pure stand
plots, with roughly 20% of yield variability
captured for plots at least 0.10ha in size
(figure 6a). Maize yield estimates were even
worse on plots intercropped with cassava
(figure 6b) or both legumes and cassava
(figure 6c), with less than 10% of the maize
yield variability captured by the satellite

estimates. The relatively better performance
for legume intercrops presumably reflects the
fact that both beans and groundnuts grow
close to the ground, below the maize crop,
whereas cassava intercrops often include very
mature cassava plants that exceed the maize
crop in height.

The worse performance for satellite- based
maize yields on intercropped compared to
pure stand plots makes sense, since non-
maize crops can be a large contributor to the
light reflected from the canopy and measured
by satellite sensors, especially in the case of
intercrops such as cassava that overhang
maize plants. However, in these situations it
is doubtful that the yield of maize is the best
measure of land productivity. In the absence
of other ground-based measures of productiv-
ity, we turn instead to assessing the sensitivity
of the relationships between yield and factors
of production to the choice of the ground-
versus satellite-based yield variant.

Assessment of Inter-Relationships between
Maize Yields and Factors of Production

Pure stand plot-level maize yield regressions
resulted in similar coefficients for models us-
ing CC, FP, and satellite-based yields (ta-
ble 4). The coefficients for the three factors
of production of interest—plot area, soil
quality index, and incidence of inorganic fer-
tilizer use—are visualized in figure 7a. As
also noted by Gourlay, Kilic, and Lobell
(2017), the regression using SR yields
resulted in a much stronger negative coeffi-
cient for plot area than the objective ground-
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Figure 6. Comparison of calibrated remote sensing yields vs. full plot harvests for different
types of intercropped plots

Note: (a) maize intercropped with only legumes (beans, groundnuts), (b) maize intercropped with only cassava, and (c) maize intercropped with both legumes

and cassava. All panels show remote sensing yields based on calibration to FP yields in purestand maize plots at least 0.1ha in size (model shown in figure 4a).

RS yields tend to be higher than FP yields in intercropped fields since the latter do not account for production from the other crops.
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based measures, indicating that the conven-
tional wisdom of an inverse-relationship be-
tween farm size and productivity may be an
artifact of measurement error. While the rela-
tionship between soil quality and any one of
CC, FP, and satellite-based yields was positive
and statistically significant at least at the 5%
level, the coefficient associated with soil quality
failed to be statistically significant in the regres-
sion using SR yields. In line with the results of
the CC and FP yield regressions, the relation-
ship between fertilizer use and any one of the
calibrated or uncalibrated satellite-based yields
was positive and statistically significant at the
1% level.

The regressions for all plots, including both
pure stand and intercropped plots, show quali-
tatively similar coefficients, as depicted in
figure 7b and online supplementary appendix
table A1. The satellite-based regressions still
find a significant positive association with soil
quality, whereas the coefficients on fertilizer
remain positive but become statistically insig-
nificant. A possible explanation for this result
is that cassava biomass, which influences the
satellite-based yield estimates on intercropped
plots, is similar to maize in its responsiveness
to soil quality, but less responsive to inorganic
fertilizer. In comparison to regressions using
FP yields, those using either CC or satellite-
based yields generally had smaller confidence
intervals for coefficient values, which reflects
the fact that full plot harvests were only per-
formed on 211 plots, whereas sub-plot crop
cutting was done for all 463, and satellite esti-
mates were available on 397.

Discussion and Conclusions

Despite the importance of agriculture for ru-
ral livelihoods, poverty alleviation, and food
security across the developing world, house-
hold and farm surveys collecting micro data
on agriculture exhibit substantial cross-
country heterogeneity in terms of access poli-
cies, use of international best practice survey
methods and dissemination standards, and
data quality (Carletto, Jolliffe, and Banerjee
2015). Given the rapid advances in the avail-
ability of 10-meter or sub-10-meter spatial
resolution satellite imagery, the demand is in-
creasing for understanding how these advan-
ces can be leveraged to measure and
understand agricultural outcomes with
greater accuracy and higher spatial
resolution.

Although there is a concerted push to
showcase the value of geospatial applications
for monitoring and evaluation efforts in the
agriculture sector, and for tracking the prog-
ress towards the SDGs, multi-disciplinary re-
search efforts aimed at assessing the accuracy
and feasibility of the proposed applications,
particularly in smallholder production sys-
tems, are scant. If validated, satellite-based
remote sensing, combined with georefer-
enced household and farm survey data that
could serve as “ground truth”, could dramati-
cally enhance not only our ability to fill the
data gaps, but also our understanding of the
linkages between development and human
welfare. The field of agricultural economics,
too, has a stake in these developments, given

●●

● ● ● ● ●

●
●

●
●

● ●

●
●

●

● ● ●

R
eg

re
ss

io
n 

C
oe

ffi
ci

en
t

−4

−2

0

2

4

6

8

Plot area Soil Quality Fertilizer

Yield source
SR
CC
FP
RS_CAL_FP
RS_CAL_CC
RS_SCYM

Purestand

●

●
●

● ● ● ●

●
● ● ● ● ●

● ●
● ● ●

R
eg

re
ss

io
n 

C
oe

ffi
ci

en
t

−4

−2

0

2

4

6

8

Plot area Soil Quality Fertilizer

Yield source
SR
CC
FP
RS_CAL_FP
RS_CAL_CC
RS_SCYM

All fields
(a) (b)

Figure 7. Summary of regression coefficients for three relevant factors using six different mod-
els corresponding to six yield measures. Error bars show 1/- two standard deviations of the
mean estimate.
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the wide range of research applications in
low- and low–middle income contexts that
continue to rely on household and farm sur-
vey data, and the emerging evidence on sys-
tematic measurement errors in farmer-
reported crop production estimates that may
have a bearing on fundamental relationships
in smallholder production systems (Gourlay,
Kilic, and Lobell 2017; Desiere and Jolliffe
2018; Abay et al. 2019; Wossen et al. 2019).

Taking advantage of a unique range of
ground-based plot-level maize yield measures
based on farmer-reporting, sub-plot crop cut-
ting and full-plot harvests that were collected
as part of a methodological survey experi-
ment that was conducted in Eastern Uganda,
our study showcases the accuracy and empiri-
cal utility of satellite-based approaches to
plot-level maize yield estimation in small-
holder production systems with a median plot
size of approximately one-tenth of a hectare.

The satellite-based yield estimates include
those that are (a) anchored in a calibration
model that relates maize yields from full-plot
harvests to MTCI values on multiple dates on
a subset of pure stand maize plots that were at
least 0.1 ha in size; (b) based on the same cali-
bration model that uses sub-plot crop cut, as
opposed to full-plot, yield; and (c) based solely
on crop model simulations, without reliance
on any ground-based yield measure. While (a)
and (b) are identified as “calibrated” variants
of remotely-sensed maize yields, (c) is framed
as the “uncalibrated” counterpart.

The accuracy of the satellite-based maize
yield estimates is found to be very encourag-
ing. The availability of over 200 full plot har-
vests, which is very rare because of their cost,
is a unique situation with which to test satel-
lite estimates, and we find that both cali-
brated and uncalibrated approaches capture
roughly half of the variance in full plot har-
vests when restricting the analysis to where
both ground and satellite approaches are
measuring the same output (pure stand
plots), and where the satellite pixels corre-
sponding to the plot are less likely to be con-
taminated by neighboring plots (plots > 0.10
hectare). The uncalibrated approach exhibits,
however, a strong tendency to overestimate
yields, but adequately captures spatial varia-
tion in yield. In fact, the satellite-based esti-
mates explained slightly more variance in full
plot harvests than sub-plot crop cuts per-
formed within the plots.

In addition, satellite-based estimates can
faithfully reproduce the associations between

yield and key production factors such as soil
quality and fertilizer use, even when including
plots of all sizes and those that are inter-
cropped. The significance levels of the coeffi-
cients informed by the satellite-based
measures are often even higher than those
underlined by the full plot harvests. The cross-
sectional nature of our data limits the ability
to interpret regression coefficients as the
causal effect of a factor on yields.
Nonetheless, the fact that factors expected to
affect yields (i.e., soil quality, fertilizers) are
associated as strongly with satellite-based
yield measures as with ground-based yield
measures indicates that the errors in both yield
measures are of similar magnitude. This find-
ing emphasizes that an imperfect correlation
between satellite measures and full plot har-
vests reflects errors in ground-based estimates
as well as those in satellite-based estimates.
Moreover, the regression results suggest that
even if satellite-based measures are less accu-
rate than full plot harvests, the greater sample
size can compensate for any loss in accuracy.

Also noteworthy is the fact that satellite-
based models calibrated to CC yields perform
similarly to those calibrated to FP yields, in
terms of both agreement with FP yields and
estimation of yield response to soil quality and
fertilizer. These results indicate that although
CC yields are imperfect approximations of ac-
tual yields, the errors do not substantially bias
remote sensing calibrations. Thus, sub-plot
crop cutting appears to be a suitable replace-
ment for full-plot harvests when the latter are
not possible. We also found that even using
just 10 fields of either FP or CC yields for cali-
bration results in accuracies approaching that
of the full model. In addition, we show that
crop model simulations can be used as a re-
placement for ground-based measures if the
potential bias in estimated yields is recognized
and acceptable. The bias may also be reduced
in the future, although that is beyond the
scope of the current paper.

Overall, our findings suggest that remote
sensing approaches to measuring crop yields,
particularly when calibrated based on crop
cutting operations on the ground, can offer
more accurate and precise measurements
compared to farmer reporting. At the plot-
level, the future models can be trained with
sub-plot crop cutting on a subsample of plots
identified in a household/farm survey, and
subsequently, used to estimate crop yields on
the remaining plots that are not subject to
crop cutting as part of the same survey.
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Our results corroborate and extend those in
Burke and Lobell (2017), despite differences
in the study region and the sensors used.
Burke and Lobell reported higher R2 between
satellite estimates and self-reported yields on
purestand maize fields (�0.4 vs. �0.2 in this
study), which could reflect the fact that farm-
ers in the commercial fields of western Kenya
have more accurate estimates of their yields
than the more subsistence farmers of Eastern
Uganda. Unlike in Burke and Lobell (2017),
this study had the benefit of objective ground-
based measures, including 8x8m crop cuts and
full plot harvests, which revealed the low accu-
racy of self-reports in this region. Similar to
Burke and Lobell (2017), this study found that
the correlation between yields and different
production factors were very similar whether
using satellite-based yields or the preferred
ground-based yield measures, though in this
study a wider range of factors, including objec-
tive soil measurements, was considered.

Even though our study emphasized measur-
ing plot-level yields, many applications, such
as forecasting regional food supply or assess-
ing local conditions for insurance payouts, re-
quire accuracy at more aggregate scales. Our
results suggest that the integration of georefer-
enced micro survey data on agriculture, such
as that from the LSMS-ISA, with the expand-
ing, publicly-available high-resolution satellite
imagery, will provide a tool to generate the
landscape-scale data needed for these aggre-
gate estimates. Not only could these outputs
be used in national and international monitor-
ing efforts, they should be expected to create
an unparalleled scope for research on entire
landscapes of agricultural plots. Collectively,
these measurement tools will allow more rapid
feedback on the effectiveness of different
efforts to raise productivity, which in turn can
enable more effective agricultural and devel-
opment policy.

Supplementary Material

Supplementary materials are available at
American Journal of Agricultural Economics
online.
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