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A B S T R A C T   

There is limited population-scale evidence on the burden of exposure to wildfire smoke during pregnancy and its 
impacts on birth outcomes. In order to investigate this relationship, data on every singleton birth in California 
2006–2012 were combined with satellite-based estimates of wildfire smoke plume boundaries and high- 
resolution gridded estimates of surface PM2.5 concentrations and a regression model was used to estimate as-
sociations with preterm birth risk. Results suggest that each additional day of exposure to any wildfire smoke 
during pregnancy was associated with an 0.49 % (95 % CI: 0.41–0.59 %) increase in risk of preterm birth (<37 
weeks). At sample median smoke exposure (7 days) this translated to a 3.4 % increase in risk, relative to an 
unexposed mother. Estimates by trimester suggest stronger associations with exposure later in pregnancy and 
estimates by smoke intensity indicate that observed associations were driven by higher intensity smoke-days. 
Exposure to low intensity smoke-days had no association with preterm birth while an additional medium 
(smoke PM2.5 5–10 μg/m3) or high (smoke PM2.5 > 10 μg/m3) intensity smoke-day was associated with an 0.95 
% (95 % CI: 0.47–1.42 %) and 0.82 % (95 % CI: 0.41–1.24 %) increase in preterm risk, respectively. In contrast to 
previous findings for other pollution types, neither exposure to smoke nor the relative impact of smoke on 
preterm birth differed by race/ethnicity or income in our sample. However, impacts differed greatly by baseline 
smoke exposure, with mothers in regions with infrequent smoke exposure experiencing substantially larger 
impacts from an additional smoke-day than mothers in regions where smoke is more common. We estimate 6,974 
(95 % CI: 5,513–8,437) excess preterm births attributable to wildfire smoke exposure 2007–2012, accounting for 
3.7 % of observed preterm births during this period. Our findings have important implications for understanding 
the costs of growing wildfire smoke exposure, and for understanding the benefits of smoke mitigation measures.   

1. Introduction 

Exposure to poor air quality has been associated with a wide range of 
adverse health outcomes in a variety of settings (Atkinson et al., 2014; 
Feng et al., 2016). However, the level of individual vulnerability can 
vary dramatically across the general population (Deryugina et al., 
2019). One group thought to be particularly vulnerable is young chil-
dren. Even prior to birth, fetal health can be affected by particulate 
matter both through direct transplacental exposure and indirectly 
through induced changes in maternal health (Glinianaia et al., 2004; 
Klepac et al., 2018). Recent reviews (Klepac et al., 2018; Bai et al., 2020; 
Bekkar et al., 2020;Lamichhane et al., 2015) highlighted evidence of an 

association between exposure to particulate matter during pregnancy 
and elevated risk of preterm birth, defined here as a birth prior to the 
37th week of pregnancy. 

While most past studies examining the relationship between air 
pollution and birth outcomes have examined exposure to total particu-
late matter with diameter < 2.5 μm (PM2.5), the source and composition 
of this PM2.5 is changing across much of the US, with declines in emis-
sions from transportation and power generation being increasingly 
offset by increased emissions from wildfires (Burke et al., 2021; O’Dell 
et al., 2019; McClure and Jaffe, 2018). This is particularly true in the 
Western US, where recent estimates suggest that wildfire smoke ac-
counts for more than 40 % of total PM2.5 exposure in high fire years 
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(Burke et al., 2021). Wildfire smoke is generated from the combustion of 
wood, other biomass sources, and in some cases, non-natural materials 
the fires consumes. While combustion of substances like households 
chemicals may be especially damaging to health, even combustion of 
natural biomass material generates smoke that contains thousands of 
chemicals, many of which adversely affect human health (Naeher et al., 
2007). Indeed, existing evidence suggests that like other sources of 
PM2.5, non-occupational exposure to wildfire smoke PM2.5 is associated 
with negative health outcomes (Liu et al., 2015; Reid et al., 2016; Cas-
cio, 2018; Kondo et al., 2019; Borchers Arriagada et al., 2019; Amjad 
et al., 2021). In fact, there is some evidence that exposure to particulate 
matter from wildfire smoke may be even worse for health than exposure 
to particulate matter from other sources (Wegesser et al., 2009; Aguilera 
et al., 2021). Given the changing relative contribution of PM2.5 sources 
and wildfire smoke’s documented harmful health effects, the extent to 
which wildfire smoke affects birth outcomes is an increasingly impor-
tant policy question. 

A recent review (Amjad et al., 2021) assessed that while the body of 
evidence is limited, existing work does support an association between 
wildfire smoke exposure during pregnancy and adverse birth outcomes. 
However, most previous worked focused on birth weight. The review 
called for additional research to better understand the effects of wildfire 
smoke on preterm birth, the importance of exposure timing, and to 
identify which mothers are most vulnerable to these impacts. Our work 
aims to contribute to improved understanding in each of these areas. An 
additional motivation for this paper is that most earlier studies of 
adverse pregnancy outcomes from wildfire smoke were limited to small 
geographical extents and coarse measurements of exposure within a 
limited study area for a single fire season (Holstius et al., 2012; Breton 
et al., 2011; O’Donnell and Behie, 2013). Recent methodological ad-
vances and the availability of an increasingly long time-series of 
remotely sensed smoke plume measures have made exposure assess-
ments on large populations feasible. Our study leverages these advances 
combined with a modeling framework designed to isolate the effect of 
wildfire smoke from other factors in order to improve understanding of 
how wildfire smoke affects preterm birth. 

Our study is complimentary to recent work that utilized similar data 
to estimate associations between wildfire smoke and birth outcomes in 
Colorado (Abdo et al., 2019). However, there are several differences 
between our study and the previous work that allow us to provide new 
insights. First, by comparing within zip-code changes over time in smoke 
exposure and outcomes after controlling flexibly for common time 
trending changes in exposure and outcomes, our modeling approach is 
designed to isolate variation in smoke exposure from other factors that 
co-vary over space or time – a key step for understanding the potentially 
causal relationship between pollution and health (Dominici et al., 2014). 
Second, the changes in air quality from wildfire smoke in our sample are 
substantially larger than in previous studies. This is because a significant 
portion of smoke exposure in Colorado is due to long range transport 
from wildfires in the Pacific Northwest and Canada (Abdo et al., 2019) 
whereas the vast majority of smoke exposure in California is from active 
wildfires nearby. Moreover, health effects associated with smoke from 
local and remote fire sources may differ even for a fixed level of exposure 
due to differential behavioral responses when fires are far away or 
changes in chemical composition as smoke travels further from the 
source fire (Magzamen et al., 2021). Third, baseline pollution exposures 
vary widely across California, allowing us to examine the interaction 
between wildfire smoke and baseline exposure. Finally, our birth sample 
covers a broad range of demographics allowing us to estimate hetero-
geneity in effects across race/ethnicity and income. Collectively, these 
features allow us to make a contribution to improved understanding of 
impacts on the populations most likely to be vulnerable to health 
damages from wildfire smoke exposure. 

2. Methods 

Study Population - Data on birth outcomes were drawn from birth 
certificates in Vital Records from the Department of Health in California. 
The initial sample included all 3,494,256 singleton births in California 
occurring between January 1, 2006 and December 31, 2011. The study 
population was then limited to infants born between gestational ages of 
23 and 41 weeks leaving a sample of 3,493,242 births. In order to avoid 
fixed-cohort bias (Barnett, 2011) we further limited the study popula-
tion based on estimated conception date. Namely all births with 
conception dates prior to 23 weeks before October 2006 or after 41 
weeks before December 31, 2012 were omitted leaving us with an 
eligible sample of 3,063,672 births. By limiting the study sample in this 
way, we ensured that shorter pregnancies were not under-represented 
early and longer-pregnancies were not over-represented later in the 
study period. 

Following a large literature, we then used data on gestational age in 
weeks to construct binary variables indicating whether a birth was 
preterm, using different cutoffs common in the literature (gestational 
age < 37, 32, or 28 weeks). Mother and child characteristics linked to 
the birth certificate data included mother’s age, mother’s race/ 
ethnicity, mother’s education, mother’s location of birth (foreign/do-
mestic), parity, child’s gestational age, and child’s sex. Births were 
geolocated to the mother’s 5-digit zip code of residence. We matched 
these data to community level income data from the American Com-
munity Survey 5-year averages (2007–2011). Median income was re-
ported at the census tract level and was estimated for each zip-code by 
taking the average of overlapping census tracts weighting by the area of 
overlap. After accounting for missing values in the covariates, the 
sample of complete observations included 3,002,014 births (Table 1). 

This work was approved by the Stanford University Institutional 
Review Board and the California State Committee for the Protection of 
Human Subjects. 

Exposure data - Smoke plume extents were assembled from NOAA’s 
Hazard Mapping System (HMS) Fire and Smoke Product (Schroeder 
et al., 2008) (Fig. 1). The HMS produces daily lists of active fires and 
polygons of smoke plume boundaries. The plume boundaries are hand 
drawn by trained analysts using animated visible channel imagery pri-
marily from the geostationary operational environmental satellite sys-
tem (GOES). The system provides a measure of smoke and fire activity 
every few hours throughout the daytime across the entire US for more 
than a decade. A limitation of these data is that they are unable to detect 
smoke plumes obscured by cloud cover or plumes at night. They are also 
unable to identify the vertical height of plumes and therefore cannot 
easily distinguish between plumes at surface level and plumes high 
above the ground. 

In order to asses the extent to which plumes affected surface condi-
tions, we combined plume boundaries with recently released daily 1 ×
1km gridded estimates of surface PM2.5 concentrations across the United 
States (Di et al., 2021; Di et al., 2019). These data are one of an 
increasing number of high temporally and spatially resolved estimates of 
surface PM2.5 concentrations (Di et al., 2021; Reid et al., 2021; Park 
et al., 2020; Hu et al., 2017) that have been developed using machine 
learning algorithms to incorporate a variety of inputs including ground 
monitor data, satellite observations, chemical transport model pre-
dictions, and other features. Among the available high-resolution daily 
PM2.5 products we chose the only one that is available for all of our study 
years. 

Exposure assessment - Smoke exposures were assigned to individual 
pregnancies at the zip-code level. Births from mothers with mailing 
address zip-codes that corresponded to P.O. boxes were dropped from 
the sample because we could not identify residence locations to assign 
exposures. This accounted for the loss of 7,033 births from the sample 
(0.2 % of eligible births, see Table 1 for details). Exposure to wildfire 
smoke was first characterized by counting the number of days in a given 
period that smoke plumes from the HMS data product intersected with 
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any part of the zip code (referred to as “smoke-days”). Across our sample 
there were 24 days ( < 1 %) where all smoke plume information was 
missing due to cloud cover. When smoke plume observations were 
missing we assumed that smoke was not present. This smoke-day metric 
provided a count of the number of days in all or part of the gestational 
period with any type of exposure to wildfire smoke. We treat this as our 
primary smoke exposure measure. 

While counts of smoke-days provide a measure of accumulated 
smoke exposure during a pregnancy, they do not contain information on 
exposure intensity, as plumes can vary in their density. An optimal in-
tensity metric would measure the amount of PM2.5 or other pollutants 
that come directly from wildfire smoke. However, separating smoke 
PM2.5 from other PM2.5 is empirically challenging. A number of 
modeling approaches have been developed to address this challenge, 
including the use of chemical transport models (CTMs) (O’Dell et al., 
2019; Fann et al., 2018; Wilkins et al., 2018). CTMs in principle allow 
direct linking of emissions sources (such as wildfires) to pollution con-
centrations, but are challenging to implement in our setting for multiple 
reasons. In particular, recent studies show that large uncertainties in 
wildfire emissions inventories can lead to many-fold differences in 
surface-level wildfire-attributed PM2.5 concentrations across the United 
States (and even larger regional differences in high fire years) when 

different inventories are used as input to the same CTM (Koplitz et al., 
2018; Carter et al., 2020). 

These uncertainties are amplified by difficulties in accurately 
capturing plume injection heights in these models and in accurately 
representing the atmospheric chemistry relevant to wildfire smoke 
evolution (Kahn et al., 2008; Tomaz et al., 2018;Gunsch et al., 2018). 

Rather than use a CTM, we instead built on recent statistical ap-
proaches (Burke et al., 2021; O’Dell et al., 2019) that combine 
ground-based measures of total PM2.5 with satellite-based measures of 
the timing and location of wildfire smoke plume movements. The central 
idea of our approach is that PM2.5 anomalies in a given location, defined 
as deviations from site- and month-specific average PM2.5, can plausibly 
be attributed to smoke if there is a smoke plume overhead. We generated 
PM2.5 anomalies using recent high-resolution daily estimates of total 
PM2.5 (Di et al., 2019), with grid cell anomalies calculated as the dif-
ference between the grid cell-day PM2.5 estimate and the grid cell’s 
‘background PM2.5’ where background PM2.5 was the month-of-year 
average PM2.5 for that grid cell on non-smoke days across all years in 
the sample. Any positive anomaly from this background level was then 
attributed to smoke if there was a plume overlapping the grid cell on that 
day. 

To then combine this intensity information with the duration infor-
mation captured in our primary smoke-day measures, we calculated 
accumulated exposure to different smoke intensities by assigning smoke 
days to different intensity bins. Smoke-days with PM2.5 anomalies < 5 
μg/m3 were assigned low intensity, smoke-days with PM2.5 anomalies of 
5–10 μg/m3 were assigned medium intensity, and smoke-days with 
PM2.5 anomalies > 10 μg/m3 were assigned high intensity; as 5 μg/m3 

and 10 μg/m3 were the median and 75 % of the estimated smoke PM2.5 
distribution, this corresponded to bins at 0-50th, 50-75th, and > 75th 
percentiles of smoke PM2.5. Grid cell level bin counts where then 
aggregated to the zip-code day level by taking averages of bin counts 
across grid cells in each zip code. 

Finally, daily zip code smoke exposures for any smoke and by in-
tensity were summed to weekly exposures, matched to week of preg-
nancy, and summed across defined exposure periods (i.e., trimesters or 
full pregnancy). 

Exposure was assessed for each trimester with periods defined by 
week relative to estimated conception date. Trimester 1 was defined as 
weeks 1–13 following conception, Trimester 2 was defined as weeks 
14–26, and Trimester 3 exposure was defined as the last four weeks of 
pregnancy so that the opportunity of exposure did not vary with 
gestation length. Third trimester exposure was not assessed for births 
prior to week 31 so as to avoid overlapping trimester exposure periods. 
Total pregnancy exposure was modeled as the period across the three 
trimesters as defined above. 

Impacts of exposure to wildfire smoke - Associations between pre-
term births of varying severities ( < 37, 32, or 28 weeks) and exposures 
were estimated using multiple regression models. In order to isolate 
variation in smoke exposure from other time-invariant or time-varying 
factors that might be correlated with both smoke exposure and risk of 
PTB, we utilized repeated observation of birth outcomes across many zip 
codes and over time. In particular, our regression analysis included 
dummies (fixed effects) for each zip-code-month (i.e. 12 dummies for 
each month of the year in each of the 2,610 zip codes) as well as for each 
county-year (i.e. 7 dummies for each of the years in each of the 59 
counties). Inclusion of these fixed effects meant that resulting associa-
tions between smoke exposure and PTB were estimated by comparing 
birth outcomes within zip codes over time as smoke exposure fluctuated, 
after accounting for any common trends in either smoke exposure or PTB 
across zip codes in the same county – e.g. June 2010 versus June 2009 in 
zip code 94305, after accounting for any differences between 2010 and 
2009 in the surrounding county. This approach flexibly accounted for all 
time-invariant differences between zip codes in either PTB or smoke 
exposure, regardless of whether they’re directly measured, and for local 
trends over time in either PTB or smoke exposure. In total, 23,202 zip 

Table 1 
Study population characteristics by pregnancy length.   

Gestational Length    

20–27 
weeks 

28–31 
weeks 

32–36 
weeks 

37–41 
weeks 

All 
pregnancies 

Eligible Analysis 
Sample (N) 

10,021 18,494 191,225 2,843,932 3,063,672 

Share Sample 
(%) 

0.3 0.6 6.2 92.8 100 

Child Sex (% 
female) 

45.2 44.8 45.0 49.1 48.8 

Missing (%) 0 0 0 0 0 
Mother’s Age 28.1 28.6 28.6 28.2 28.2 
Missing (%) 0 0 0 0 0 
Mother’s Race/ 

Ethnicity 
Hispanic (%) 

49.6 50.0 49.4 48.9 48.9 

Non-Hispanic 
Asian (%) 

9.8 11.8 13.0 12.8 12.8 

Non-Hispanic 
White (%) 

19.7 21.0 24.3 27.7 27.4 

Non-Hispanic 
Black (%) 

14.7 11.1 7.8 5.7 5.9 

Missing (%) 2.5 2.6 2.0 1.8 1.8 
Temperature (C) 17.4 17.3 17.2 17.0 17.0 
Missing (%) 0 0 0 0 0 
Wildfire smoke 

exposure 
(days) 

8.6 8.8 8.8 8.6 8.6 

Missing (%) 0.3 0.3 0.2 0.2 0.2 
Non-Missing 

Sample (N) 
9,739 17,960 187,004 2,787,311 3,002,014 

Share Sample 
(%) 

0.3 0.6 6.2 92.8 100 

a3rd Trimester 
Sample (N) 

– 6,083 187,004 2,787,311 2,980,398 

Other Analysis 
Covariates 
Income 
($1,000) 

58.7 60.1 61.3 62.9 62.8 

Missing (%) 1.4 1.3 1.4 1.4 1.4 
Smoked 

cigarettes (%) 
0.5 0.5 0.5 0.3 0.3 

Missing (%) 11.4 10.7 8.7 4.7 5.0  

a The sample for analyses that included 3rd trimester exposure (measured as 4 
weeks prior to birth) was limited to births occurring week 31 or later (i.e., 4 
weeks into third trimester) to ensure opportunity of exposure did not vary with 
gestation length. The 28–31 week gestation length category that included 3rd 
trimester exposure therefore only included week 31 births. 
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code by month dummies and 441 county by year dummies were 
included in the regressions. 

We also included birth- and mother-level covariates known to in-
fluence the risk of preterm birth, including mother’s age and mother’s 
age squared, dummy variables for mother’s completion of high school, 
mother’s completion of at least some college, mother’s race/ethnicity 
(non-Hispanic White, non-Hispanic Black, non-Hispanic Asian, Hispan-
ic), for whether the mother was foreign born, and for the child’s sex. 
These covariates, most of which influence the risk of preterm birth but 
may or may not be correlated with wildfire smoke exposure, served to 
add precision to our estimates by explaining a portion of the variation in 
preterm birth risk. Results are shown both with and without these 
adjustments. 

We estimated the impact of smoke on preterm birth split by trimester 
or across the entire pregnancy and for total smoke or by smoke intensity: 

yizcmy = β1 smoketri1
zcmy + β2 smoketri2

zcmy + β3 smoketri3
zcmy + θ Xizc + α zm + γcy

+ εizcmy

(1)  

where y was a dummy for preterm birth for child i with mother residing 
in zip-code z and county c in month m and year y. smoketri indicated the 
count of smoke-days in the respective trimester (or alternatively the 
three smoke trimester measures were replaced by a single pregnancy 
measure). X included child and mother covariates, α was a set of zip by 
month dummies, γ was a set of county by year dummies, and ε was our 
error term. β in Equation (1) measured the total effect of smoke exposure 
during the relevant exposure period – which may include smoke-derived 
PM2.5 as well as other non-PM2.5 components of smoke – on preterm 
birth. For the smoke intensity regressions each of the smoke-day counts 
(smoke in equation (1)) was replaced with multiple variables each 
counting the number of smoke-days of a given intensity. 

We did not include temperature, humidity, or other weather vari-
ables as controls in the main analysis, because these variables can drive 
variation in fire activity and thus smoke exposure. Therefore, controlling 
for them would inappropriately absorb variation in the main exposure of 
interest. However, because it’s plausible that these variables could have 
effects on birth outcomes that are independent of their effects on fire and 
smoke, in robustness checks we did control for these variables. 

Heterogeneity Analysis - Given existing evidence that different racial 
and socioeconomic groups could be both differentially exposed to and 
differentially affected by air pollutants, we also modeled differential 
effects by income group, mother’s race/ethnicity, and baseline smoke 

exposure. For each case we interacted smoke exposure with dummy 
variables indicating whether the child was in the sub-group category 
(Eq. (2)). For tractability interaction models were not estimated sepa-
rately by smoke intensity or separately by trimester. 

yizcmy = βj

(

smoke preg
zcmy ⋅

∑n

j=1
Zjzc

)

+ α
(

smoke preg
zcmy

)
+ωj

∑n

j=1
Zjzc + θ Xizc

+ αzm + γcy + εizcmy

(2) 

While mother’s race/ethnicity was an individual level covariate, 
income and baseline smoke exposure were averages in the mother’s zip- 
code of residence. We tested whether coefficients estimated for each sub 
group were statistically different from zero as well as whether they were 
statistically different from each other, both in terms of relative impacts 
(percentage change in preterm birth risk above group-specific baseline) 
and absolute impacts (change in preterm birth risk). Relative and ab-
solute impacts might differ, as baseline risk of preterm birth differs by 
race and income in CA (Fig. 2). 

Attribution Estimate - Finally, we used our smoke-days regression 
model to estimate the number and share of preterm births attributable to 
smoke each year. The number of attributable preterm births was esti-
mated each year in each zip code by first multiplying the number of 
smoke days by β̂ in the full pregnancy exposure version of Equation (1) 
to generate an estimate for the change in probability of a preterm birth 
in that zip-code and year. This change in probability was then multiplied 
by the number of observed births in that zip-code and year to generate 
an estimate for the number of preterm births attributable to smoke. 
Finally shares of preterm births attributable to smoke were calculated by 
dividing the number of predicted preterm births by the number of 
observed preterm births in that zip-code and year. These estimates are 
reflective of singleton births that occurred in California during this 
period but do not include additional preterm births associated with 
multiple births. 

Estimation Procedures - Our preferred specification for the regres-
sion models described in Equations (1) and (2) was a linear probability 
model (LPM) estimated with OLS. While LPM can be biased for binary 
dependent variables (Horrace and Oaxaca, 2006), nonlinear models (eg 
logit) can be biased in short panels with fixed effects (Heiss et al., 2019), 
which is our setting. LPM also offer more interpretable results over 
common non-linear alternatives, with parameter estimates directly 
interpretable as marginal effects (i.e., change in the outcome per unit of 
exposure); unlike odds or risk ratios, these marginal effects are also 

Fig. 1. Spatial patterns of smoke and all-source PM2.5 exposure. a. An example of the daily remotely sensed smoke and fire data showing smoke plumes and 
active fires on June 17, 2008 when several fires burned simultaneously across the state. b. The average number of days exposed to wildfire smoke per year. c. 
Average PM2.5 levels (Van Donkelaar et al., 2016). 
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directly comparable across studies when presented in absolute terms 
because they are not relative to an in-sample sub-group. Estimating an 
LPM therefore allowed us to report both relative and absolute coefficient 
estimates. LPMs are most problematic when used for predictions 
(because predictions can fall outside of the 0,1 interval) which we 
avoided here. Nonetheless, in order to ensure results were not dependent 
on the use of an LPM, we also estimated the main specifications with a 
logit model which allowed us to present results as Odds Ratios. Results 
from OLS estimation are presented in the main text and results from logit 
estimation are presented in the supplement. Estimation of both OLS and 
logit models was carried out using the fixest package (0.4.1) in the R 
programming language (3.5.3). 

3. Results 

Sample Overview - Our analysis included data on 3,002,014 births 
occurring in California between 2006 and 2011. Overall, 9,739 (0.3 %) 
births in our sample occurred prior to week 28 while 17,960 (0.6 %) 
occurred weeks 28–31 and 187,004 (6.2 %) occurred from weeks 32–36 
(Table 1). 2,787,311 (92.8 %) births in our sample were full term ( > 36 
weeks). Approximately half of the mothers in our sample were Hispanic, 
one-quarter were non-Hispanic White, and the other quarter were split 
between non-Hispanic Asian, Black, and other. Community-level me-
dian household income in our sample zip-codes was about $63,000. 

Exposure Assessment - Fig. 1 illustrates the exposure data. Spatial 
patterns of average smoke-days per year (Fig. 1b) and total PM2.5 con-
centrations (Fig. 1c) differed visually across zip codes, consistent with 
the local importance of non-wildfire sources of PM2.5 in some areas but 
not others. Indeed, a naive regression of sample average PM2.5 con-
centrations on the average number of smoke days in each zip code 
suggests that each additional smoke day was associated with 0.62 μg/m3 

(p = 0.042) lower average PM2.5 concentration (Fig. S1a). This associ-
ation demonstrates the importance of non-wildfire sources of pollution 
in total PM2.5 concentrations in CA, and highlights the difficulty in using 

cross-sectional comparisons to quantify smoke impacts on health. 
To understand the temporal relationship between smoke exposure 

and PM2.5 concentrations – the variation we exploit to estimate health 
impacts – we regressed a time series of monthly zip code PM2.5 con-
centrations on the number of smoke days in that month. In contrast to 
the cross-sectional relationship, we found that each additional smoke 
day above zip-code specific averages in the panel relationship was 
associated with 0.44 μg/m3 (p < 0.01) higher PM2.5 concentration in that 
month (Fig. S1b). Therefore, while baseline averages of smoke and 
PM2.5 were negatively correlated over space, deviations from these av-
erages were positively correlated over time. These findings provide ev-
idence that our smoke metric explains relevant temporal variation in 
pollution exposure across our study locations. 

The cross-sectional spatial patterns discussed above suggest a 
differing exposure burden for wildfire smoke than for total (all-source) 
PM2.5 across population sub-groups, and examining exposures across the 
intersection of income and race indeed revealed contrasting exposures 
(Fig. 2 and Fig. S2). Across racial and ethnic groups, mothers residing in 
higher income zip-codes were exposed to lower average PM2.5 concen-
trations than mothers residing in lower income zip-codes. There were 
also differences across race/ethnicity: Non-White mothers residing in 
zip-codes with below-median income were exposed to substantially 
higher average total PM2.5 than White mothers in the same income 
deciles. However, this relationship was the opposite for smoke: White 
mothers living in zip-codes in the bottom 40 percentile of income were 
exposed to nearly 50 % more smoke on average than Black or Asian 
mothers in any of the lowest income deciles. Moreover, across race/ 
ethnicity mothers residing in the highest income zip codes were exposed 
to moderate levels of smoke whereas mothers in these income groups 
were universally exposed to the lowest average levels of total PM2.5. 
These patterns are broadly consistent with California demographics 
where rural zip codes close to most source fires are disproportionately 
White and lower income while total PM2.5 most affects non-White urban 
communities and Hispanic populations in the Central Valley. 

Fig. 2. Heterogeneity in smoke exposure. Each row shows the distribution of smoke exposure for a different group. The first row shows the full sample and 
subsequent rows show exposure for different subgroups. Righthand side columns show mean preterm birth rate ( < 37 week), smoke exposure (smoke-days per 
pregnancy), and quantiles of smoke exposure. 
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Main Results - Estimating Equation (1) with a linear probability 
model, we estimated that each additional day of exposure to any wildfire 
smoke across the entire pregnancy was associated with a 0.49 % (95 % 
CI: 0.41–0.59 %) increase in the risk of preterm birth ( < 37 weeks). 
Relative to no exposure, this translated to a predicted 3.4 % increase in 
preterm births at median wildfire smoke exposure frequency (7 days). 
Effects were largest for smoke days that occurred during the second 
trimester (Fig. 3a, Fig. S5 top panel). An additional day of smoke 
exposure during this trimester was associated with an 0.83 % (95 % CI: 
0.71–0.96 %) increase in the risk of a preterm birth, as compared to an 
0.68 % (95 % CI: 0.49–0.87 %) increase for exposure in the third 
trimester. The effect of exposure during the first trimester was not found 
to be statistically different from zero. The same regression models esti-
mated with a logit model resulted in qualitatively similar results albeit 
with associations measured as odds ratios rather than marginal effects 
(Fig. S3a). 

In order to examine the stability of our main estimate we also carried 
out a series of robustness checks (Fig. S4). First, we estimated the un-
adjusted version of the main model that included the same zip-code by 
month and county by year dummies but omitted the mother and child 
covariates. Next, we limited the sample to first births to account for the 
increased likelihood of a second preterm birth, conditional on a first. We 
estimated the model limited to Hispanic mothers because they are the 
least likely to smoke, and we included self reported covariates indicating 
a dummy for whether a mother self-reported smoking cigarettes during 
pregnancy. Lastly we included mean temperature during pregnancy. 
Each of these models produced results that were statistically indistin-
guishable from the results in our main model. 

Effects of smoke by PM2.5 intensity were also estimated across the 
entire pregnancy and by trimester (Fig. 3b). In all cases the effect of an 
additional low-intensity smoke-day (plume overhead but smoke PM2.5 
< 5 μg/m3) were not statistically different from zero. Across the entire 
pregnancy period associated risks were similar for exposure to smoke- 
days of medium and high intensity. Exposure to an additional medium 
intensity smoke-day (PM2.5 5–10 μg/m3) was associated with an 0.95 % 
(95 % CI: 0.47–1.42 %) increase in the risk of preterm birth and expo-
sure to a high intensity smoke-day (PM2.5>10 μg/m3) was associated 
with an 0.82 % (95 % CI: 0.41–1.24 %) increase in risk. While the 
estimated association with medium intensity smoke-days was slightly 
higher than for high intensity smoke-days, these estimates were not 
statistically different from each other. However, for both medium and 
high intensity smoke-days, estimated associations were nearly twice as 
large as they were for the model that included smoke-days of all types. 

Results by trimester exhibited similar patterns with no association 
detected for any trimester for low intensity smoke-days and effects of 
medium and high intensity smoke-days in the second and third trimester 
substantially larger than the respective association estimated for all 
types of smoke-days. These associations were also estimated with a logit 
model and presented in the supplement as odds ratios (Fig. S3b). 

Heterogeneous Effects - We performed a heterogeneity analysis for 
sub-groups by zip-code income, mother’s race/ethnicity, and baseline 
zip-code smoke exposure. The burden of wildfire health impacts de-
pends both on patterns of exposures (discussed above) and, for a given 
level of exposure, marginal impacts per unit of exposure for different 
sub-groups (discussed here). 

We estimated the effect of one additional smoke day for each sub- 
group, looking at differences in both absolute impacts (changes in 
rates) and relative impacts (percentage change above group-specific 
baseline rate). The marginal impact of an additional smoke day during 
the pregnancy was similar across income and race/ethnic groups in 
relative terms (Fig. 4 top and middle panels), and we found no statisti-
cally significant differences among either income or racial/ethnic sub-
groups, although our point estimate for Black mothers was at least a 
third higher than for other racial or ethnic groups in absolute terms, 
consistent with existing evidence that Black women have persistently 
higher rates of preterm birth due to various factors such as institutional 
racism that increase vulnerability to environmental and other stressors 
(Mendez et al., 2014; Dominguez, 2008; Gee and Payne-Sturges, 2004). 

The only sub-group analysis where we found consistent and sub-
stantial differences across groups for both relative and absolute out-
comes was the split by baseline average smoke exposure. Children born 
to mothers residing in zip codes with higher baseline average smoke 
were found to be less effected by an additional day of wildfire smoke 
than children born to mother’s residing in zip codes with infrequent 
smoke exposure (p < 0.01). Similar patterns were found when 
comparing any of the higher than average smoke exposure groups to the 
lowest smoke exposure group (Fig. 4 bottom panel). Effects were three 
times larger for children born to mothers in locations with the most 
infrequent smoke exposure as compared to children born to mothers in 
locations with the most frequent smoke exposure. 

PTB Severity - As a secondary analysis, we estimated the effect of 
wildfire smoke exposure on more severe preterm births and found ef-
fects to be larger in percentage terms but less precisely estimated 
(Fig. S5). We estimated that an additional smoke day during pregnancy 
was associated with an 0.88 % (95 % CI: 0.52–1.24 %) increase in the 
risk of PTB < 32 weeks and an 0.55 % (95 % CI: 0.051.15 %) increase in 

Fig. 3. Associations between smoke exposure and risk of preterm birth ( < 37 weeks). Associations between preterm birth and smoke exposure across the 
pregnancy and by trimester estimated by separate regressions. Panel a shows estimated associations for any type of smoke-day. Panel b shows estimated associations 
for low, medium, and high intensity smoke-days where intensity is determined by the size of the PM2.5 anomaly on the smoke-day. Note the scales of the y-axes differ 
across panels. 
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the risk of PTB < 28 weeks. For both of the more severe preterm birth 
types, second trimester exposure was found to matter more than first 
trimester exposure. Third trimester exposure was not estimated because 
a substantial portion of the severe preterm births occurred prior to the 
start of the third trimester. 

PTB Subtype - In order to better understand potential pathways, we 
estimated our main models separately for spontaneous and medically 
indicated PTBs. In total, we observed 159,950 spontaneous PTBs and 
47,159 medically indicated PTBs in our sample. We did not find 

meaningful differences across PTB subtypes with either model for full- 
pregnancy exposure or exposure by trimester. For both PTB types and 
with both models we found results similar to our main analysis: the 
second and third trimesters were the important exposure periods. Effects 
for medically indicated PTBs were slightly larger than for spontaneous 
PTBs in the third trimester and slightly smaller in the second trimester 
but these estimates were not statistically distinguishable from each other 
and, in the case of third trimester exposure, were not statistically 
different from zero. In summary we did not find evidence of differences 

Fig. 4. Estimated effects of smoke exposure on preterm birth ( < 37 week) by sub-group. The first row shows the full sample (Equation (1)) and subsequent 
rows show effect estimates for different sub-groups (Equation (2)). 

Fig. 5. Model predicted 37 week preterm births attributable to wildfire smoke exposure. Our model predicted 6,974 (95 % CI: 5,513–8,437) preterm births 
attributable to wildfire smoke exposure across the years 2007–2012. This accounted for 3.7 % (95 % CI: 2.9–4.5 %) of the 187,913 observed preterm births. a. Annual 
number of preterm births attributable to wildfire smoke exposure predicted by our model. Percentages shown above estimates indicate the estimated share of 
observed preterm births attributable to wildfire smoke in that year. b. Zip code level total model predicted preterm births from 2007 to 2012. White indicates there 
were no predicted preterm births from smoke either because smoke exposure was low or because there were a small number of observed births in that zip code. 
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by PTB subtype in this setting. 
Attribution Estimates - Our model predicted 6,974 (95 % CI: 

5,513–8,437) preterm births attributable to wildfire smoke exposure 
across the years 2007–2012 (Fig. 5). This accounted for 3.7 % (95 % CI: 
2.9–4.5 %) of the 187,913 observed preterm births during this period. 
Annual percentages of preterm births attributable to smoke ranged from 
as low as 1.8 % in 2011 (a low smoke year) to as high as 6.3 % in 2008 (a 
high smoke year). 

4. Discussion 

We used statistical methods with satellite derived smoke plumes to 
estimate the effect of wildfire smoke exposure during pregnancy on 
preterm birth in California. We found a statistically significant rela-
tionship between smoke exposure and risk of pre-term birth, with each 
additional smoke day increasing the risk of preterm birth for all evalu-
ated preterm birth severities. Consistent with previous literature 
focusing on wildfire smoke exposure during pregnancy (Holstius et al., 
2012; Abdo et al., 2019), associations were found later in the pregnancy 
with the largest effects in the second trimester. This pattern was 
apparent both when we estimated effects of any smoke exposure and 
when we estimated the effect of smoke exposure separately by PM2.5 
intensity. This differs somewhat from findings in studies examining all 
source PM2.5 exposure where the third trimester has been identified as 
the most important exposure period (Klepac et al., 2018; Stieb et al., 
2012; Morello-Frosch et al., 2010). Potential explanations for this 
discrepancy include differences in exposure patterns, differences in 
composition between wildfire smoke and other sources of PM2.5, and 
imprecision in identifying the start and end of trimesters. 

Across exposure periods we observed a clear difference between 
exposure to low intensity and exposure to medium or high intensity 
smoke-days. However, the estimated associations for medium and high 
intensity smoke-days as they were defined were not statistically 
different from each other. Collectively these results indicate that asso-
ciations between wildfire smoke and preterm birth are likely driven by 
exposures on the less frequent but higher intensity smoke-days. 

Our heterogeneity analysis indicated the burden of exposures to 
wildfire smoke differed from the burden of exposure to total PM2.5 both 
across racial/ethnic groups and incomes. White mothers residing in zip- 
codes in the bottom 40 percentile of income were exposed most 
frequently to smoke, while total PM2.5 (from all sources) dispropor-
tionately affected low income minority communities (Fig. S2) consistent 
with previous studies(Jones et al., 2014; Miranda et al., 2011). In 
contrast to the patterns of exposure, we did not find differences in the 
relative effect of an additional smoke day across income or race/-
ethnicity (Fig. 4). Taken together, our findings on the patterns and im-
pacts of smoke exposure thus differed somewhat from the standard 
narrative in the environmental justice literature, which finds strong 
income and racial gradients in exposure and impacts of various envi-
ronmental pollutants. We found that smoke exposure had fairly consis-
tent negative impacts on pre-term birth across population subgroups. 

The estimated impact of an additional day of smoke exposure 
depended strongly on baseline average smoke exposure, with mothers 
residing in zip codes with frequent smoke exposure much less sensitive 
to one additional day of wildfire smoke than mothers in locations with 
infrequent smoke exposure. The finding of larger health impacts for less- 
frequently-exposed groups is consistent with findings in a recent study of 
wildfire smoke impacts on the Medicare population (Miller et al., 2019) 
and with findings on the broader effects of PM2.5 on mortality in the US. 
(Deryugina et al., 2020) There are at least four possible explanations 
why less-frequently-exposed mothers could be more vulnerable to 
wildfire smoke. First, mothers in high exposure areas could be adapting 
to repeated exposure (e.g. by taking effective preventative measures). 
Second, the effect of additional smoke on preterm birth could be 
non-linear, flattening out at higher levels. Third, perhaps mothers who 
are most sensitive to smoke exposure avoid areas that are more smoke 

exposed on average (e.g. choosing to live in areas with less frequent 
smoke). Finally, some other moderator could co-vary with average 
smoke exposure – although we note that this moderator would have to 
be uncorrelated with income or race/ethnicity, as these latter variables 
do not appear to be moderators. Distinguishing the importance of these 
different explanations will be empirically challenging, and will likely 
require more detailed data on household’s avoidance behavior and 
underlying susceptibility than our data can currently provide. 

We estimated that 3.7 % of preterm births in our sample were 
attributable to wildfire smoke exposure. These results are broadly 
consistent with a recent study (Trasande et al., 2016) which estimated 
that, on average, nearly 5 % of all preterm births in California were 
attributable to total PM2.5, and new evidence that wildfire smoke ac-
counts for more than half of PM2.5 exposure in high smoke years in 
California (Burke et al., 2021). 

There are a number of strengths to our study. Our sample included 
three million births and covered a wide range of exposures and socio-
economic groups. The large sample with repeated observations in the 
same zip codes allowed us to use statistical methods capable of isolating 
variation in wildfires smoke exposure plausibly uncorrelated with the 
many other time-invariant and time-varying factors that affect risk of 
preterm birth. In addition, we were able to test for statistical differences 
in impacts across exposures and socioeconomic groups. Our finding that 
income was not protective of these effects has important implications for 
targeting effective mitigation or protection policies. In addition, we 
were able to provide evidence on the relative importance of timing and 
intensity in the association between wildfire smoke exposure and pre-
term birth. 

A potential weakness of our study is possible imprecision in our 
measurement of smoke exposure. We assigned exposure based on 
mother’s zip code of residence but smoke exposure could possibly vary 
within zip codes. In addition, we did not observe where women work, 
and instead our exposure measure was limited to place of residence 
which could lead to mismeasurement for women who spend substantial 
time outside of the residence zip code. The satellite-derived smoke 
plumes utilized in the analysis are also imperfect measurements of 
smoke exposure in several ways. Cloud cover can prevent identification 
of smoke leading to underestimation of the number or extent of smoke 
plumes on cloudy days. We did not observe the height of smoke plumes 
in the column likely leading to overestimation of the number of days 
when smoke was near enough to ground level to affect local pollution. 
The plume measures also did not include information on smoke in-
tensity. We used local surface PM2.5 anomalies to characterize smoke 
intensity on smoke-days. However, this approach relied on the plume 
boundaries to attribute PM2.5 anomalies to smoke and thus were subject 
to the same limitations of mischaracterized plume boundaries. In addi-
tion, there is uncertainty associated with the PM2.5 estimates, particu-
larly when smoke is present (Reid et al., 2021), which could lead to 
mis-assignment of smoke intensity. Our approach to assigning intensity 
also assumed PM2.5 concentrations were representative of smoke in-
tensity whereas other pollutants in smoke, which may or may not 
co-vary with PM2.5, could also affect risk of preterm birth. Imprecision in 
the timing of exposure due to uncertainty around conception date may 
have also lead to imprecise exposure measurements. If these errors in 
exposure are classical, then our estimated effects of smoke exposure on 
preterm birth will be attenuated toward zero. Similarly, while we esti-
mated separate effects by trimester, if critical exposure windows do not 
align with trimesters then our exposure measure would not fully capture 
the consequences of exposure (Wilson et al., 2017). Lastly, our 
sub-group analysis relied on interacting smoke exposure with socio-
economic and demographic features which may be correlated with 
additional unmeasured moderators. 

To our knowledge only one previous study has examined the effect of 
wildfire smoke exposure during pregnancy on preterm birth (Abdo et al., 
2019). That study used similar data with different methods for both 
characterizing exposure and estimating impacts, and was carried out on 
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a sample with substantially lower background pollution and smaller 
changes in PM2.5 from smoke exposure than we observed. While the 
units are not directly comparable between studies (smoke-days versus 
average μg/m3 of PM2.5 from smoke), our estimated effects on 37 week 
preterm birth from smoke exposure across pregnancy and later in the 
pregnancy were qualitatively consistent with these earlier results. 

PM2.5 is the pollutant in wildfire smoke most directly associated with 
harmful health impacts including preterm birth. However, there are a 
number of potential reasons why an increase in PM2.5 driven by wildfire 
smoke could have different impact than an increase in PM2.5 driven by 
other sources. First, wildfire smoke exposure tends to occur in short 
intense periods, often one to 2 weeks at a time. This structure of expo-
sure makes avoidance more straightforward because it requires limiting 
ambient exposures during a short but intense period in which air quality 
issues might be salient, rather than sustained behavioral changes due to 
gradual rises in PM2.5 which may be less obviously detected. Second, the 
components of PM2.5 emitted from wildfires may differ in ways that 
matter for health. Obtaining more comprehensive speciated measures of 
smoke-derived PM2.5 (and associated other pollutants) is a critical area 
for future research. 
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