
LETTER
https://doi.org/10.1038/s41586-018-0263-3

Robust relationship between air quality and infant 
mortality in Africa
Sam Heft-Neal1, Jennifer Burney2, Eran Bendavid3 & Marshall Burke1,4,5*

Poor air quality is thought to be an important mortality risk factor 
globally1–3, but there is little direct evidence from the developing 
world on how mortality risk varies with changing exposure 
to ambient particulate matter. Current global estimates apply 
exposure–response relationships that have been derived mostly 
from wealthy, mid-latitude countries to spatial population data4, 
and these estimates remain unvalidated across large portions of 
the globe. Here we combine household survey-based information 
on the location and timing of nearly 1 million births across sub-
Saharan Africa with satellite-based estimates5 of exposure to 
ambient respirable particulate matter with an aerodynamic 
diameter less than 2.5 µm (PM2.5) to estimate the impact of air 
quality on mortality rates among infants in Africa. We find that a 
10 µg m−3 increase in PM2.5 concentration is associated with a 9% 
(95% confidence interval, 4–14%) rise in infant mortality across the 
dataset. This effect has not declined over the last 15 years and does 
not diminish with higher levels of household wealth. Our estimates 
suggest that PM2.5 concentrations above minimum exposure levels 
were responsible for 22% (95% confidence interval, 9–35%) of 
infant deaths in our 30 study countries and led to 449,000 (95% 
confidence interval, 194,000–709,000) additional deaths of infants 
in 2015, an estimate that is more than three times higher than 
existing estimates that attribute death of infants to poor air quality 
for these countries2,6. Upward revision of disease-burden estimates 
in the studied countries in Africa alone would result in a doubling of 
current estimates of global deaths of infants that are associated with 
air pollution, and modest reductions in African PM2.5 exposures are 

predicted to have health benefits to infants that are larger than most 
known health interventions.

Epidemiological studies consistently highlight poor air quality as an 
important contributor to death and disability, with recent estimates 
showing that exposure to ambient PM2.5 is associated with 3–4 million  
global deaths annually1,2. Such estimates are influential in a wide variety 
of research activities3,7,8 and policy decisions, including the allocation 
of health resources, the designation of pollution standards, and the  
adoption of climate-mitigation policies.

However, the relationship between air quality and mortality  
in the developing world—where a large proportion of the deaths that 
can be attributable to poor air quality are thought to occur—remains 
poorly quantified, limiting our understanding of relative disease  
burdens and appropriate policy responses. Broad-scale evidence  
on the health burden of exposure to ambient air pollution  
comes mainly from developed countries1,2,4, where co-morbidities  
differ and where both mortality rates and average ambient PM2.5  
concentrations are typically much lower (Extended Data Fig. 1). In 
much of the developing world, limited air pollution data make quanti-
fication of dose–response functions challenging9,10, and it is unknown 
whether large recent declines in infant mortality11 would increase the 
relative health effects of poor air quality (if other unrelated causes of 
death are now less important) or decrease them (if children are more 
resilient).

Here we quantify associations between air quality and the health of 
infants in Africa by combining recent satellite-based measurements of 
annual ambient PM2.5 concentrations with household survey data on 
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Fig. 1 | Spatial patterns of pollution and infant mortality in Africa. 
a, Long-run average PM2.5 concentration for 2001–20155. b, Maximum 
annual PM2.5 concentration for 2001–2015. c, Average infant mortality rate 

(IMR) in study countries for 2001–2015, derived from Demographic and 
Health Surveys using previously described methods11. Country outlines 
were obtained from Global Administrative Areas, version 2.030.
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infant mortality (death in the first 12 months of life) as measured in 
the Demographic and Health Surveys, a set of nationally representative 
household health surveys. We use data from 65 available Demographic 
and Health Surveys across 30 sub-Saharan African (SSA) countries 
carried out between 2001 and 2015, representing 990,696 births over 
the period (Extended Data Fig. 2). We match the location and timing of 
each birth to satellite-based estimates of PM2.5 exposure from 9 months 
before to 12 months after birth5 (Fig. 1). These satellite data offer crit-
ical advantages in SSA, where only two countries have air-pollution 
monitoring stations that report to global databases12, and where chem-
ical transport model-based exposure estimates rely on emission inven-
tories that have high degrees of uncertainty in rural biomass-burning 
areas13,14.

We model the effects of PM2.5 exposure on infant mortality using 
fixed-effects regression analyses that flexibly account for time-invariant  
differences in air pollution and mortality across locations, local season-
ality in both air quality and mortality, and trending factors or abrupt 
shocks common to all locations in our sample (see Methods). Because 
seasonally adjusted variation in PM2.5 levels over time at a given loca-
tion is plausibly exogenous, we propose that this approach isolates the 
role of poor air quality from other confounding variables that affect 
mortality risk.

Infant mortality in SSA strongly and linearly increases with PM2.5 
exposure in our data (Fig. 2a, Extended Data Fig. 3 and Extended Data 
Table 1). A 10 µg m−3 increase in PM2.5 exposure in the first 12 months 
of life is associated with a 9.2% increase in infant mortality (P < 0.01). 
We find no qualitative difference between exposure before and after 
birth at average exposure levels (Fig. 2b), although prenatal associa-
tions appear to decline at higher exposure levels. Consistent with recent 
US evidence15, we estimate positive associations between PM2.5 expo-
sure and mortality at exposure levels below the WHO (World Health 
Organization)-recommended guideline of 10 µg m−3 annual average 
exposure16 (Extended Data Fig. 4).

Our results are robust to models that use only within-household 
variation in mortality and PM2.5 exposure over time, that allow  
differential country-level trends in mortality and PM2.5 exposure,  
models that include a large set of additional controls, including  
temperature, precipitation and household- and child-specific demo-
graphic information, and models that use only cross-sectional vari-
ation in PM2.5 exposure and mortality (Extended Data Figs. 3, 4 and 

Extended Data Table 1). Similarly, PM2.5 exposure in months 13–24 
after birth does not predict mortality in the first year of life (Extended 
Data Fig. 8i). These findings reduce concerns that results are driven 
by unobserved factors that are correlated with mortality and PM2.5 
exposure (for example, spurious time-trending variables), or by the 
relocation of higher mortality households into locations with poorer 
air quality (Methods).
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Fig. 2 | Mortality of infants in Africa is strongly and linearly increasing 
with post-birth PM2.5 exposure. a, Effect of PM2.5 exposure during the 
12 months after birth on mortality rates of infants (n = 990,696 births). 
Response function is centred at mean PM2.5 concentration (25 µg m−3) 
and mean IMR (71 deaths per 1,000 births). Histogram shows the 
distribution of exposures across sample locations. b, Impacts of in utero 
versus post-birth exposures. c, Impacts of post-birth exposure in West 

Africa (higher exposure) versus the rest of Africa (lower exposure). See 
Extended Data Fig. 2b for countries in each region. d, Effect of post-birth 
exposure on child mortality by terciles of household-level asset wealth, 
measured as the percentage change in infant mortality per 10 µg m−3 
increase in PM2.5 exposure. e, Effect of post-birth PM2.5 exposure on 
IMR over time, measured as the percentage change in IMR per 10 µg m−3 
increase in PM2.5 exposure.
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Fig. 3 | Comparing the relative risk curve for all-cause mortality from 
this study for SSA and the risk curve for respiratory-infection-specific 
mortality estimated for the Global Burden of Disease (GBD) study.  
Data for the GBD project were previously published4. The GBD acute 
lower respiratory infection relative risk curve (red) is an integrated 
exposure response combining point estimates from ambient air pollution 
studies, indoor air pollution studies and second-hand smoking studies. 
The relative risk curve estimated in this study (blue) is derived by 
empirically relating observed births and ambient PM2.5 concentrations in 
SSA (see Methods), with the shaded region representing the bootstrapped 
5–95th confidence interval. The histograms show the share of population 
exposed to different ambient PM2.5 concentrations in the regions 
corresponding to the estimation of each curve. The x axis is restricted to 
the range of ambient PM2.5 concentrations observed in our SSA sample.
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Despite differences in the source and level of PM2.5 concentrations 
across African regions (Fig. 1), we find similar associations between 
PM2.5 and mortality when the dataset is restricted to West Africa 
(where PM2.5 levels are higher and partly arise from dust) versus the rest 
of Africa (where exposures are lower and sources are mainly anthro-
pogenic; Fig. 2c and Extended Data Fig. 2c). Given that much of the 
PM2.5 exposure in West Africa is not a result of local economic activity, 
these results also suggest that such (unobserved) activity is not bias-
ing our estimated associations between PM2.5 exposure and mortality. 
Similarly, we find no estimated difference in the PM2.5–mortality rela-
tionship between households using ‘clean’ cooking fuels that produce 
no indoor particulates and households using ‘dirty’ PM2.5-producing 
cooking fuels, such as biomass, wood, agricultural residues or dung 
(Extended Data Fig. 5 and Extended Data Table 2), which suggests that 
unobserved indoor exposures are not biasing our estimated PM2.5–
mortality relationship (see Methods).

A common hypothesis in the environmental health literature is that 
wealthier households can better avoid the negative health effects of 
hazardous environmental exposures17,18. However, we do not find 
evidence that wealth is protective in our setting: associations between 
PM2.5 exposure and mortality risk are similar across wealth terciles 

in our data (Fig. 2d), are not moderated by other socio-economic or 
demographic characteristics (Extended Data Fig. 5 and Extended Data 
Table 1), and have not declined over time (Fig. 2e and Extended Data 
Fig. 6).

We use model estimates to construct a relative risk curve for SSA 
(see Methods). Relative to the mortality risk at the lowest observed 
exposure levels in our sample (2 µg m−3), we estimate a 31% increase 
in mortality risk at sample median exposure levels (22 µg m−3) (Fig. 3). 
On the basis of this risk curve, we estimate that if PM2.5 concentrations 
in SSA had been reduced to an annual average of 2 µg m−3, 22% (95% 
confidence interval, 9–35%) of infant deaths would have been averted, 
with the largest reductions in areas with high average exposure (such 
as most of West Africa; Fig. 4a and Extended Data Fig. 7). We calcu-
late that exposure to PM2.5 levels above 2 µg m−3 was associated with 
449,000 (95% confidence interval, 194,000–709,000) additional infant 
deaths in 2015 in the 30 study countries alone, with over 40% of these 
occurring in Nigeria (Fig. 4b).

Although reducing PM2.5 concentrations to 2 µg m−3 is probably not 
feasible, substantial reductions in mortality could still be achieved by 
relatively modest reductions in PM2.5 concentrations. We estimate that 
reducing PM2.5 concentrations uniformly by 5 µg m−3 at all locations 
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Fig. 4 | Avoided infant deaths from reduced PM2.5 exposure.  
a, b, Estimated share (a) and number of infant deaths (b) in 30 SSA 
countries that would have been avoided in 2015 if observed PM2.5 levels 
were reduced to sample minimum exposure of 2 µg m−3. The colours 
in b correspond to the shares shown on the map in a. c, Comparison of 
estimated reductions in infant mortality from achieving 100% coverage 

of various health interventions in our study countries from the Lives 
Saved Tool19, and estimated reductions in mortality resulting from a 
PM2.5 reduction of 5 µg m−3 calculated using the relative risk functions 
from GBD4 or this study. Country outlines were obtained from Global 
Administrative Areas, version 2.030. DRC, Democratic Republic of Congo.
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in our sample countries—a reduction comparable to that achieved 
by the US Clean Air Act25 (Methods)—would have reduced infant  
mortality by 4.6% (95% confidence interval, 1.8–7.4%) and avoided 
40,000 (95% confidence interval, 20,000–70,000) infant deaths in 2015. 
This reduction exceeds the estimated mortality reductions that would 
be obtained if many key child health interventions—including vaccines, 
nutritional supplementation and insecticide-treated bed nets—were 
scaled from current levels to 100% population coverage across our study  
countries19 (Fig. 4c and Methods). We caution that this comparison 
does not account for the feasibility or cost effectiveness of achieving 
these alternative reductions or interventions, but instead provides a key 
input for future analysis.

Given that current estimates show that around 13% of the mortality 
of children under 5 years of age in Africa is attributable to lower res-
piratory infection (LRI)20, our estimate that 22% of infant deaths are 
attributable to PM2.5 exposure would be implausible if LRI were the 
only channel through which PM2.5 exposure affected infant mortality. 
However, consistent with many recent studies21–23 (Methods), we find 
substantial evidence for effects mediated by non-respiratory channels 
(Extended Data Fig. 8), including positive associations between in utero 
PM2.5 exposure and neonatal deaths and negative associations with 
birth weight, and harmful associations between post-birth exposure 
and both stunting and diarrhoea; all of which are leading causes or risk 
factors for infant death that overlap only partially with LRI20. We inter-
pret these findings as strong evidence that PM2.5 exposure can affect 
mortality risk through channels other than LRI. As a placebo test, we 
find no association between PM2.5 exposure and child age, sex or likeli-
hood of a multiple birth. Finally, our main estimate of a 9% increase in 
mortality per 10 µg m−3 increase in PM2.5 is the same or smaller than 
the six locality- or country-level quasi-experimental estimates24–29 to 
which our results can be easily compared (Extended Data Fig. 8j).

Our results indicate that risks from PM2.5 exposure could be much 
higher than current global estimates suggest. At median exposure levels  
in Africa, our estimated relative risk of mortality is double the risk 
estimated by the GBD at the same exposure level (Fig. 3), and our  
estimated number of infant deaths associated with ambient PM2.5 expo-
sure in our 30 study countries in 2015 is larger than the current GBD 
estimate of global infant deaths that are attributable to air pollution2,6. 
Differences could result from our measured associations with all-cause 
infant mortality, which is broader than LRI-specific mortality used in 
current global estimates.

Our results also contrast with the common finding that economic 
development is protective of health17,18, with our data suggesting con-
sistent effects across wealth levels and over time. One potential explana-
tion for this consistency is that we are studying long-term exposure to a 
pollutant that is small enough to penetrate buildings, making avoidance 
difficult even for wealthier households.

The greatest impact of poor air quality in our sample is in West 
Africa, where high PM2.5 concentrations include large fractions of dust 
carried by winds from the Sahara. Although the comparison between 
West Africa and the rest of the dataset suggests a common exposure–
response function, both the particle size distribution below 2.5 µm and 
the chemical species comprising the PM2.5 are unobserved but known 
to vary widely across sources and regions. More research is needed to 
characterize these parameters remotely, and to link measurements to 
prospective epidemiological studies with more detail on both exposures 
and health outcomes.

Our results indicate that substantial reductions in mortality can 
be achieved with even modest decreases in ambient PM2.5 concen-
trations. The strong linear relationship between PM2.5 and mortality 
indicates that, even against a high background exposure level, mitiga-
tion efforts could deliver large mortality reductions—on par with or 
exceeding many leading health interventions. This finding is particu-
larly important given the minimal protective benefit of wealth in our 
data. However, given the varied sources of particulate matter and its 
precursors across SSA, multi-sectoral and region-specific approaches 
to reducing exposure burdens may be necessary, and large benefits may 

come from developing and adopting protective approaches in dusty 
regions.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
018-0263-3.

Received: 14 July 2017; Accepted: 23 May 2018;  
Published online xx xx xxxx.

 1. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution 
of outdoor air pollution sources to premature mortality on a global scale. Nature 
525, 367–371 (2015).

 2. Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease 
attributable to ambient air pollution: an analysis of data from the Global 
Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

 3. Anenberg, S. C. et al. Impacts and mitigation of excess diesel-related NOx 
emissions in 11 major vehicle markets. Nature 545, 467–471 (2017).

 4. Burnett, R. T. et al. An integrated risk function for estimating the global burden 
of disease attributable to ambient fine particulate matter exposure. Environ. 
Health Perspect. 122, 397–403 (2014).

 5. van Donkelaar, A. et al. Global estimates of fine particulate matter using a 
combined geophysical-statistical method with information from satellites, 
models, and monitors. Environ. Sci. Technol. 50, 3762–3772 (2016).

 6. Institute for Health Metrics and Evaluation. Global Burden of Disease study 2015 
(GBD, 2015) results. http://ghdx.healthdata.org/gbd-results-tool (2016). URL.

 7. Shindell, D. et al. Simultaneously mitigating near-term climate change and 
improving human health and food security. Science 335, 183–189 (2012).

 8. Zhang, Q. et al. Transboundary health impacts of transported global air 
pollution and international trade. Nature 543, 705–709 (2017).

 9. Ebisu, K., Belanger, K. & Bell, M. L. Association between airborne PM2.5 chemical 
constituents and birth weight—implication of buffer exposure assignment. 
Environ. Res. Lett. 9, 084007 (2014).

 10. West, J. J. et al. What we breathe impacts our health: improving understanding 
of the link between air pollution and health. Environ. Sci. Technol. 50, 
4895–4904 (2016).

 11. Burke, M., Heft-Neal, S. & Bendavid, E. Sources of variation in under-5 mortality 
across sub-Saharan Africa: a spatial analysis. Lancet Glob. Health 4, e936–e945 
(2016).

 12. Brauer, M. et al. Ambient air pollution exposure estimation for the Global 
Burden of Disease 2013. Environ. Sci. Technol. 50, 79–88 (2016).

 13. Zhang, F. et al. Sensitivity of mesoscale modeling of smoke direct radiative effect 
to the emission inventory: a case study in northern sub-Saharan african region. 
Environ. Res. Lett. 9, 075002 (2014).

 14. Butt, E. W. et al. The impact of residential combustion emissions on 
atmospheric aerosol, human health, and climate. Atmos. Chem. Phys. 16, 
873–905 (2016).

 15. Di, Q. et al. Air pollution and mortality in the medicare population. N. Engl. J. 
Med. 376, 2513–2522 (2017).

 16. Occupational and Environmental Health Team. WHO Air quality guidelines for 
particulate matter, ozone, nitrogen dioxide and sulfur dioxide : global update 
2005 : summary of risk assessment. World Health Organization http://www.who.
int/iris/handle/10665/69477 (WHO, 2006).

 17. Patt, A. G. et al. Estimating least-developed countries’ vulnerability to 
climate-related extreme events over the next 50 years. Proc. Natl Acad. Sci. USA 
107, 1333–1337 (2010).

 18. Smith, K. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability 
(eds Field, C. B. et al.) 709–794 (IPCC, Cambridge Univ. Press, 2014).

 19. Walker, N., Tam, Y. & Friberg, I. K. Overview of the lives saved tool (list). BMC 
Public Health 13, S1 (2013).

 20. Institute for Health Metrics and Evaluation. GBD Compare data visualization. 
http://vizhub.healthdata.org/gbd-compare (2017).

 21. Bell, M. L., Ebisu, K. & Belanger, K. Ambient air pollution and low birth weight in 
Connecticut and Massachusetts. Environ. Health Perspect. 115, 1118–1124 
(2007).

 22. Pope, D. P. et al. Risk of low birth weight and stillbirth associated with indoor air 
pollution from solid fuel use in developing countries. Epidemiol. Rev. 32, 70–81 
(2010).

 23. Pereira, G., Belanger, K., Ebisu, K. & Bell, M. L. Fine particulate matter and risk of 
preterm birth in Connecticut in 2000–2006: a longitudinal study. Am. J. 
Epidemiol. 179, 67–74 (2014).

 24. Chay, K. Y. & Greenstone, M. The impact of air pollution on infant mortality: 
evidence from geographic variation in pollution shocks induced by a recession. 
Q. J. Econ. 118, 1121–1167 (2003).

 25. Chay, K. Y. & Greenstone, M. Air Quality, Infant Mortality, and the Clean Air  
Act of 1970. Report No. 10053 (National Bureau of Economic Research,  
2003).

 26. Arceo, E., Hanna, R. & Oliva, P. Does the effect of pollution on infant mortality 
differ between developing and developed countries? evidence from mexico city. 
Econ. J. 126, 257–280 (2016).

 27. He, G., Fan, M. & Zhou, M. The effect of air pollution on mortality in China: Evidence 
from the 2008 Beijing Olympic games. J. Environ. Econ. Manage. 79, 18–39 (2016).

N A T U R E | www.nature.com/nature
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

https://doi.org/10.1038/s41586-018-0263-3
https://doi.org/10.1038/s41586-018-0263-3
http://ghdx.healthdata.org/gbd-results-tool
http://www.who.int/iris/handle/10665/69477
http://www.who.int/iris/handle/10665/69477
http://vizhub.healthdata.org/gbd-compare


LETTER RESEARCH

 28. Knittel, C. R., Miller, D. L. & Sanders, N. J. Caution, drivers! Children 
present: traffic, pollution, and infant health. Rev. Econ. Stat. 98, 350–366 
(2016).

 29. Cesur, R., Tekin, E. & Ulker, A. Air pollution and infant mortality: evidence  
from the expansion of natural gas infrastructure. Econ. J. 127, 330–362  
(2017).

 30. Global Administrative Areas. GADM database of Global Administrative Areas, 
version 2.0. https://gadm.org/ (2012).

Acknowledgements We thank D. Lobell, G. McCord, M. P. Burke and  
W. Schlenker for useful comments and V. Tanutama for research assistance. 
We thank the Stanford Environmental Ventures Fund and the National Science 
Foundation (CNH Award #1715557) for funding.

Reviewer information Nature thanks R. Black, J. Lelieveld, L. Waller and the other 
anonymous reviewer(s) for their contribution to the peer review of this work.

Author contributions S.H.N., J.B., E.B. and M.B. designed the research; S.H.N. 
analysed the data; S.H.N., J.B., E.B. and M.B. interpreted results and wrote the 
paper.

Competing interests The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41586-
018-0263-3.
Supplementary information is available for this paper at https://doi.
org/10.1038/s41586-018-0263-3.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to M.B.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

N A T U R E | www.nature.com/nature
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

https://gadm.org/
https://doi.org/10.1038/s41586-018-0263-3
https://doi.org/10.1038/s41586-018-0263-3
https://doi.org/10.1038/s41586-018-0263-3
https://doi.org/10.1038/s41586-018-0263-3
http://www.nature.com/reprints
http://www.nature.com/reprints


LETTERRESEARCH

METHODS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Infant mortality data. Data on infant health outcomes are taken from the 
Demographic and Health Surveys (DHS), nationally representative surveys that 
are conducted in many low-income and middle-income countries. DHS have a 
two-stage design, in which a number of clusters are first selected from a list of 
enumeration areas created in a recent population census, and then households are 
randomly selected in each of the clusters, and women aged 15–49 years are selected 
from those households for in-depth surveys. In most survey waves, enumerators 
use global positioning system devices to collect geospatial information to identify 
the central point of each cluster’s populated area. We used data from all 65 available 
surveys that were carried out between 2001 and 2015 to reconstruct a village-level 
time series31. Our sample covers 30 countries and includes 990,696 individual birth 
outcomes (Extended Data Fig. 2). The outcome of interest for this study is infant 
mortality, which is represented by a dummy variable equal to one when a child was 
reported to die within the first 12 months after birth. Children who were alive but 
less than 12 months old at the time of the survey were not included in our sample. 
The mean infant mortality rate in our sample is 71 deaths per 1,000 births.
Construction of the household wealth measure. The DHS record information on 
household ownership of a common set of durable assets. In the public distribution 
files, DHS release a wealth index obtained using a principal components analysis 
of these household assets and additional services, such as electricity, water supply 
and floor material, with the index in each survey normalized to that specific survey 
(that is, wealth quantiles are defined relative to the survey-specific asset distri-
bution). Therefore, although this index enables identification of relative wealth 
within surveys, it does not allow for comparisons across countries or over time 
given the within-survey normalization. In order to create a wealth index that could 
be compared across surveys, we pooled all households with information on the 
following assets: water source, sanitation facilities, type of flooring, electricity, the 
number of rooms per person living in the house, and possession of radio, television, 
phone (landline or cellphone), motorcycle and car. In our dataset, 85% had infor-
mation on all of these assets. The wealth index was then created using a principal 
components analysis procedure similar to the survey-specific DHS approach, but 
normalizing across the entire 65-survey sample rather than within each survey. 
Further details, including validation and testing of this approach, are available in 
a previously published paper32.
PM2.5 data. We use satellite-derived data on PM2.5 compiled by the Atmospheric 
Composition Analysis Group at Dalhousie University, consisting of annual bias- 
corrected average surface PM2.5 concentrations at 0.01° × 0.01° spatial resolution 
with global coverage5. Building on earlier efforts to predict PM2.5 from satellite obser-
vations33,34, these data are derived from a suite of satellite-based atmospheric optical 
depth measurement instruments, including the two MODIS instruments on the 
Terra and Aqua Satellites, the Multi-Angle Resolution Spectroradiometer (MISR) 
on Terra and the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) on the SeaStar 
satellite. These data are combined with aerosol profile measurements from the 
Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard 
the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), 
and satellite and weather and seasonality data from the GEOS-Chem Chemical 
transport model to quantify the relationship between column Aerosol Optical Depth 
(AOD) and surface PM2.5 measured at available ground-based stations.

In order to assign PM2.5 exposure to individual birth outcomes, we define two 
exposure periods for each birth: (i) the in utero period encompassing the 9 months 
before birth and (ii) the post-birth period encompassing the first 12 months of 
life inclusive of birth month. Given that pollution exposure data are only available 
annually, we calculate PM2.5 exposure in each of these periods as the weighted 
averages of the annual data, where the weights represent the share of the year that 
falls into the time period of interest. For example, a child born in the third month 
of year t would be assigned an in utero pollution exposure of 2/9(exposure in  
year t) + 7/9(exposure in year t−1) and a post-birth exposure of 10/12(exposure 
in year t) + 2/12(exposure in year t + 1). The mean PM2.5 exposure level for both 
pre- and post-birth periods is 25.2 µg m−3 in our sample.

Ideally, we would account for heterogeneity in the chemical and physical prop-
erties of the particulate mix across space and time, but at present, these properties 
are not directly observed at scales commensurate with overall PM2.5. Moreover, 
estimates of PM2.5 properties rely heavily on aerosol models and emissions inven-
tories35, which are known to be highly uncertain in biomass-burning regions such 
as SSA13,14. As an example, the Atmospheric Composition Analysis Group offers 
a version of the PM2.5 dataset used in this analysis with dust and seasalt aerosols 
removed. However, this ‘dust-free’ version is not based on observational partition-
ing methods, but simply scaled based on an emissions inventory. As such, we use 
only the observationally constrained full PM2.5 dataset for our analysis, but note 
that finer-grained observations of the chemical and physical properties of aerosol 

particulate matter could be used in the future to understand whether and to what 
extent impacts change with PM2.5 chemical composition and size distribution.
Empirical approach. We model the relationship between infant deaths y and PM2.5 
exposure using a least squares linear probability model:

λ µ δ η ε= + + + + +y f X(PM , PM ) (1)icnmt icnt icnt icnmt c t nm icnmt
b a

where i indexes child, c indexes survey cluster (that is, village), t indexes birth year, 
and nm indexes country and month. PMicnt

b  and PMicnt
a  refer, respectively, to PM2.5 

exposure in the 9 months before and 12 months after birth. Xicnmt is a vector of 
additional controls potentially relevant to the relationship between PM2.5 and 
infant mortality, including household and individual characteristics, such as child 
sex, birth order, age of the mother, education of the mother, type of cooking fuel 
used at home and our asset-based wealth index, as well as time-varying climate 
variables such as temperature and precipitation. We do not include wealth as a 
control in our main results because the information is not available for the full 
sample, but show that results are unchanged upon its inclusion (Extended Data 
Table 1b). µc, δt and ηmn are DHS cluster, birth year and country–month effects, 
respectively. The cluster effects control for time-invariant cross-village differences 
(for example, higher or lower average mortality levels), year effects control flexibly 
for trends or abrupt shocks common to all locations (for example, macroeconomic 
shocks or declines in mortality over time), and country–month effects control for 
seasonality in infant mortality and PM2.5 exposure. In order to make nationally 
representative survey data representative of the entire 30-country sample, we follow 
a previous publication36 and weight observations by the product of country- 
specific household survey weights (supplied by DHS) and country population 
weights; however, our results are insensitive to dropping the weights.

GBD estimates suggest that f(·) is nonlinear, with marginal effects of PM2.5 expo-
sure declining at higher exposure levels4. To explore potential nonlinear responses 
to PM2.5 in our data, we estimate flexible versions of f(·), including higher-order 
polynomials and restricted cubic splines. However, we find that flexible models 
for post-birth exposure provide roughly the same shaped response function as 
simple linear models (Extended Data Fig. 3), and that higher-order polynomial 
terms for the post-birth period are not statistically significant in the full sample 
(Extended Data Table 1). We therefore model post-birth PM2.5 linearly in our 
main specification and in the calculation of attributable deaths; including higher- 
order terms generally steepens the relationship (Extended Data Fig. 3) and yields 
higher attributable death estimates. The quadratic term for the 9-month in utero 
period is statistically significant, however, and thus our main specification adopts 
f(·) quadratic in in utero PM2.5 exposure (PMb) and linear in post-birth PM2.5 
exposure (PMa):

β β β= + +f (PM , PM ) PM (PM ) PM (2)icnt icnt icnt icnt icnt
b a

1
b

2
b 2

3
a

To study whether the impacts of PM2.5 change over time or by wealth level, we 
interact linearized post-birth exposure with dummy variables for wealth quantile 
or for year of survey:

∑ β µ δ η ε= + + + +y I( PM ) (3)icnmt
d

n

d d icnt c t nm icnmt
a

where Id is a dummy variable for whether observation i falls into bin d. The βd 
coefficients provide the marginal effect of a 1 µg m−3 separately for each bin 
(wealth quantile or time period). For the wealth estimates, we focus on terciles 
of the wealth index.

The goal of the fixed effects in equations (1) and (3) is to isolate variation in 
PM2.5 exposure from other time-invariant, seasonally varying or time-trending fac-
tors that could be correlated with mortality. For instance, by including cluster-fixed 
effects and thus using only within-village deviations in PM2.5 and mortality over 
time, our approach accounts for time invariant unobservables that could be cor-
related with both PM2.5 exposure and mortality risk at the cluster level (for exam-
ple, if villages with lower PM2.5 exposure also happen to be wealthier). Because 
we observe more than one birth for most mothers, our data allow an even more 
stringent test on the potential role of time-invariant household unobservables. In 
particular, we can include a mother fixed effect in equation (1) (the cluster fixed 
effects thus drop out), and in this design, the effects of PM2.5 exposure on mortality 
derive from comparing whether a child born to a given mother during a period 
of high PM2.5 exposure is more or less likely to survive relative to a child born to 
that same mother during a period of lower PM2.5 exposure. This within-mother 
variation eliminates the common concern in pollution exposure studies that house-
holds with different levels of pollution exposure could be inherently different in 
unobservable ways (for instance if wealthier, lower-mortality mothers choose to 
live in areas of lower pollution exposure). Our results using mother fixed effects 
are very similar to results using cluster fixed effects (Extended Data Fig. 3), again 
providing strong evidence that our results are not being driven by time-invariant 
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unobservables. Whether or not we control directly for a broader set of individual 
and household characteristics Xicnmt also does not change our results (Extended 
Data Table 1).

Similarly, overall trends in mortality and PM2.5 exposure over time are taken 
out by the year fixed effects (and in robustness checks, by time trends or coun-
try-by-year fixed effects, see Extended Data Fig. 3), helping to reduce concerns 
that the effects of PM2.5 that we estimate are driven by common time-trending 
unobservables. However, common time effects would not account for local time- 
varying factors that could be correlated with both PM2.5 and mortality. Of particular  
importance is rainfall: rainfall reduces PM2.5 in the atmosphere, and rainfall could 
be plausibly negatively or positively correlated with mortality—positively if higher 
rainfall led to favourable conditions for transmission of vector-borne disease (for 
example, malaria) or negatively if higher rainfall led to greater local food availabil-
ity and thus lower mortality. To account for this possibility, we control directly for 
meteorological conditions using high-resolution remote-sensing based gridded 
data on precipitation and temperature37,38, and find that our results are unaffected 
(Extended Data Table 1).

A related concern is that local economic activity could be associated with both 
local PM2.5 levels and mortality. We believe that this is less important in our setting 
for two reasons. First, for large parts of our sample (particularly in West Africa), 
much of the variation in PM2.5 is driven by wind-borne dust, which is unrelated to 
local economic activity. Second, because economic growth is most likely associated 
with both higher PM2.5 levels (from industrial or agricultural activities) and lower 
infant mortality39, then this would bias our results towards zero.

A final concern is that although equation (1) identifies impacts using 
variation over time in PM2.5 exposure that is plausibly orthogonal to other 
determinants of mortality, individuals over the long run might adapt to  
differing levels of average pollution exposure in a way that is not picked up 
in a time series—for example, they might undertake defensive investments 
or learn how to limit exposures or reduce their consequence. Panel models 
that use inter-annual PM2.5 variation might then overstate the harm of PM2.5 
exposure, because variation around local averages is harder to anticipate 
and adapt to. Although cross-sectional models that relate location-average  
mortality to location-average pollution exposure are subject to bias concerns 
from omitted variables and are considered unreliable for estimating causal 
effects, they arguably have the benefit of accounting for general forms of 
longer run adaption. We find that panel and cross-sectional models indicate  
surprisingly similar responses of mortality to pollution (Extended Data 
Fig. 4a), suggesting limited adaptation over the longer run.
Calculating relative risk and excess deaths attributable to pollution. Using the 
full y(·) function estimated in equation (1), we calculate the relative risk (RR) at a 
given PM2.5 exposure level z as the predicted values from the full model evaluated 
at PM2.5 = z, divided by the predicted values from the full model evaluated at 
PM2.5 = 2:

=z y z
y

RR( ) ( )
(2) (4)

where 2 µg m−3 represents the minimum exposure level observed in our data. 
Our approach to defining the lower bound for risk is thus similar to the approach 
in the GBD4, who define the lower bound in their relative risk curve as the  
minimum PM2.5 exposure level observed in a constituent cohort study 
(z = 5.8 µg m−3). Although estimates are imprecise at very low exposure levels 
due to limited sample sizes, both flexible splines and piecewise linear functions 
suggest that, in our data, mortality is increasing with PM2.5 even at the lowest 
observed exposure levels in our data, and for this reason we set our ‘reference’ risk 
level to z = 2 µg m−3.

To calculate relative risk across the entire range of observed PM2.5 levels in our 
data and for all geographical locations, relative risk is calculated for every birth 
observation at its observed post-birth PM2.5 concentration and then averaged to 
the cluster level. To calculate the relative risk curve in Fig. 3, we divide the data into 
5 µg m−3 PM2.5 bins, calculate the average relative risk within each bin, and then 
fit a flexible locally weighted polynomial to these estimates. Confidence intervals 
are obtained by bootstrapping equation (1) 1,000 times, sampling clusters with 
replacement, and recalculating equation (4) for each bootstrapped y(·). The 5–95th 
confidence interval is then the 5th and 95th percentiles of these 1,000 estimates 
at each point in the PM2.5 distribution. Measurement error in our outdoor PM2.5 
measures, which is estimated to be roughly classical5, will lead to attenuation bias 
in our coefficient estimates in equation (1), and thus mean that our relative risk 
curve is biased towards zero. We discuss an alternate source of non-classical meas-
urement error—the error related to unobserved indoor air pollution exposure—in 
‘Indoor versus outdoor PM2.5’.

We calculate the share of infant deaths attributable to PM2.5 exposure in each 
DHS location i as:

= − = −S y
y z

1 (2)
( )

1 1
RR (5)i

i i

The average share of PM2.5-attributable deaths across the sample is then  
calculated as the population-weighted average across DHS locations, using high- 
resolution gridded data on birth counts from WorldPop40 as weights. For each 
country, WorldPop produces a 100 × 100 m2 grid of birth counts that, when  
aggregated, are consistent with UN estimated country totals.

To generate the country-wide surfaces shown in Fig. 4, we apply the rela-
tive risk curve in Fig. 3 to all locations in our sample countries, using grid-level 
observed PM2.5 levels in 2015. Mean exposure levels in 2015 were 30 µg m−3, or 
about 5 µg m−3 higher than overall sample average exposure, and thus the share 
of attributable deaths in 2015 shown in Fig. 4 is a little above the 22% average that 
we calculate for the full sample.

Finally, to calculate the total additional infant deaths attributable to PM2.5 in 
2015, we calculate for each location i:

= B SED IMR (6)i i i i

where Bi is the estimated number of births in location i in 2015 from WorldPop, 
IMRi is the estimated average infant mortality rate (IMR) between 2005 and 2015 
as calculated by applying previously published methods11 to the more recent infant 
mortality data used in this study (map shown in Fig. 1c), and Si is the share of 
mortality attributable to PM2.5 as calculated above. The total attributable deaths 
across our sample countries in 2015 is then the sum of EDi over all locations. 
Confidence intervals are calculated as above by recalculating EDi across boot-
strapped estimates of Si.
Comparison to GBD. In a recent study4, a global integrated response function 
was derived that relates ambient PM2.5 exposure to the relative risk of acute lower 
respiratory infection in infants (reproduced in Extended Data Fig. 1a). (A recent 
update2 to our knowledge did not provide age-specific response functions to which 
our estimates can be compared.) To develop the global relative risk estimates, the 
GBD authors relied on the available literature (see the previous study4 for datasets 
and references) at the time, which consisted of: (i) 4 studies that measured the 
effect of ambient exposures on health outcomes, all from developed countries 
and with average ambient exposures below our African sample median (Extended 
Data Fig. 1a); (ii) 23 studies that measured the effect of second-hand smoking on 
health outcomes, all of which were assigned the same ‘ambient’ exposure level of 
50 µg m−3, because true exposures were unobserved; and (iii) 1 study of house-
hold carbon monoxide exposure on child respiratory outcomes in Guatemala, for 
which PM2.5 exposures had to be inferred for a large proportion of the sample, 
and for which counterfactual (minimum) ambient exposures were substantially 
higher than in all ambient studies. As shown in Extended Data Fig. 1b, of these  
28 studies, 8 were in developing countries, and only one in Africa, and the median 
study sample was n = 1,250 individuals.

In comparison, our study (i) observes nearly one million individuals, more than 
the combined sample size of the 28 studies of acute lower respiratory infection 
described in the previous study4; (ii) directly studies the effect of ambient expo-
sure on health outcomes in a developing country setting using quasi-experimental 
variation in PM2.5 exposure to estimate health effects; (iii) uses a single empirical 
approach and data source to estimate a relative risk function across a broad range of 
PM2.5 exposures, meaning that differences in measured responses across exposure 
levels cannot be attributed to differences in empirical approach or study design 
in different locations; and (iv) in keeping with growing literature suggesting non- 
respiratory effects, does not assume that the only pathway linking PM2.5 to overall 
health outcomes is respiratory infection.

Differences in estimated relative risk functions between our study and Burnett 
et al. are shown in Fig. 3 and discussed in the main text. Given the methodological 
and locational differences between our study and the previous study4, we empha-
size that differences in relative risk between the two studies at specific exposure 
levels cannot be interpreted as providing evidence on (for example) the relative 
damages caused by ambient PM2.5 exposure versus exposure to second-hand smoke 
or indoor air pollution.

To compare our estimates of attributable deaths to those of the GBD, we recal-
culate equation (5) using the relative risk function published previously4, using 
the same grid-level PM2.5 and population numbers that we used to generate our 
attribution estimates, but keeping the previously published4 counterfactual expo-
sure of 5.8 µg m−3. Using the previously published relative risk function4 and this 
higher counterfactual exposure, we estimate that 13% of infant deaths in our are 
sample are attributable to PM2.5 exposure. This estimate is contained within the 
confidence interval for our main estimate of 22% (9–35%).

An important difference between our attribution calculations and  
previous study4 is that the latter uses a counterfactual PM2.5 exposure (that is, 
theoretical minimum risk exposure level) of 5.8–8.0 µg m−3, which were the 
lowest and fifth percentiles of exposure in their reference studies (although we 
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note that a recent update by the GBD team2 now uses 2.4 µg m−3 as the counter-
factual exposure). As noted in the previous study4, these thresholds were chosen 
based on “(a) the availability of convincing evidence from epidemiologic studies 
that support a continuous reduction in risk of disease to the chosen distribution, 
and (b) a distribution that is theoretically possible at the population level.” We 
follow this logic and set our lower threshold at 2 µg m−3, as this is the mini-
mum exposure level measured in our sample, and because we find evidence of 
linear effects of PM2.5 on mortality at levels below 10 µg m−3 (Extended Data 
Fig. 4a). However, our choice of a lower counterfactual exposure, while arguably 
appropriate in our setting, could generate some of the difference that is observed 
between our attribution estimates and GBD’s. To understand the importance of 
this choice, we re-calculate our population-weighted attributable deaths under 
different counterfactual exposures, from 2 µg m−3 up to 10 µg m−3 (Extended 
Data Fig. 7). We find that the share of infant deaths attributable to PM2.5 exposure 
ranges from 22% with our counterfactual of 2 µg m−3 to 13% with a counter-
factual of 10 µg m−3. Using previously published4 minimum counterfactual of 
5.8 µg m−3, our estimate of attributable deaths becomes 18%, compared to the 
13% that we would calculate using the relative risk function of the previous study4 
(as described above).

In order to calculate a comparable estimate of additional deaths attributable to 
air pollution in 2015 from the GBD studies, data were downloaded from the GBD 
results tool6 for 2015 and infant deaths attributable to air pollution were summed 
over the 30 countries in our sample. The ‘air pollution’ category in GBD includes 
the categories ‘ambient particulate matter pollution’, ‘ambient ozone pollution’, and 
‘household air pollution from solid fuels’. We compare our estimates of PM2.5-
attributable death to GBD estimates of the total overall ‘air pollution’-attributable 
death estimates, which will be an upper bound on GBD-attributed deaths from 
PM2.5 exposures specifically, and thus provide the most conservative possible 
comparison. This comparison is also preferable on physical grounds: it is both 
statistically and functionally difficult to distinguish indoor and outdoor air pol-
lution exposures in rural biomass-burning regions, especially since most of the 
PM2.5 from household cooking and fires makes its way outdoors41. The inclusion 
of ‘ambient ozone pollution’ is a small effect because ozone-related mortality42 
is typically an order of magnitude lower than for PM2.5, and it is also difficult to 
distinguish from PM2.5-related impacts because both are often present in local 
pollution.

The GBD results tool indicates air pollution-attributable neonatal deaths of 
126,000 in our 30 countries in 2015 (range = 73,000–198,000), 150,000 in all  
of SSA (118,000–184,000) and 294,000 globally (234,000–350,000). Our estimate 
of 449,000 attributable deaths in 2015 is thus 3.6× higher than the GBD estimate 
for the same countries. Revising the attributable death estimates upward in our  
30 countries would result in an additional attributable 323,000 deaths, which would 
represent a more than doubling of the global estimated attributable deaths to air 
pollution.

Alternatively, we can apply the approach described in equation (6) to the inte-
grated response curve developed previously4. This approach produces an estimate 
of 336,000 attributable deaths in 2015, closer to—but still substantially smaller 
than—our estimate of 449,000 attributable deaths. Our finding that lower ranges 
of PM2.5 exposure are more harmful to infant health than previously thought is 
one of the factors that contributes to the difference in estimates. For example, only 
11% of attributable deaths (38,000) estimated using previously published response 
curve4 occurred in locations with lower than median (27 µg m−3) PM2.5 exposures 
whereas 18% (80,000) of attributable infant deaths estimated using our methods 
occurred in these relatively lower PM2.5 exposure areas.
Comparison to other health interventions. We compared the estimated effective-
ness of a given reduction in PM2.5 exposure from both our model and the previous 
study4, to the estimated effectiveness of other important health interventions based 
on estimates from the Lives Saved Tool19 (LiST; http://www.livessavedtool.org/, 
accessed 20 September 2017). LiST is a model designed to estimate the effect of 
scaling up health and nutritional interventions on child and maternal health. For 
each intervention of interest, LiST takes as input country-specific demographic 
information, cause-of-death data, current intervention coverage, and data from 
randomized controlled trials and quasi-experiments on intervention efficacy. It 
then combines this information to estimate the effectiveness (in terms of reduced 
mortality) of scaling the intervention to a desired level of population coverage.

We used LiST to estimate the mortality impacts of scaling the following inter-
ventions from baseline 2015 coverage rates to full (100%) coverage: vitamin A 
supplementation, selected vaccines (rotavirus, pneumococcal, influenza), insec-
ticide-treated bed nets and oral rehydration solution. We did this separately for 
each of the 30 countries in our sample (except Tanzania, which was not included 
in the LiST database), using the default demographic datasets provided in LiST. 
Baseline population-weighted coverage in 2015 for the interventions were: vitamin 
A supplementation (73%), rotavirus vaccine (32%), pneumococcal vaccine (54%), 
influenza B vaccine (74%), insecticide-treated bed nets (54%) and oral rehydration 

solution (37%). The LiST-estimated baseline infant mortality across these coun-
tries in 2015 was 56.7 deaths per 1,000 live births. Country-specific estimates of 
mortality reductions due to scaling each intervention to 100% population coverage 
were then averaged (weighting by population) to produce the overall estimates 
reported in Fig. 4.

We compared the LiST estimates to the estimated effect of a 5 µg m−3 PM2.5 
reduction, using both our model (equation (5)) and the previously published 
relative risk function4 using the approach described above. A 5 µg m−3 reduction 
is roughly equivalent to the estimated reduction in PM2.5 induced by the 1970 
Clean Air Act (CAA) in nonattainment counties in the United States; although 
PM2.5 was not routinely measured in the US until the 1990s, the CAA is esti-
mated43 to have reduced total suspended particulates (TSP) by 20–25 µg m−3, 
and evidence from multiple sites in North America44,45 suggest roughly 25% of 
TSP by mass is PM2.5, meaning the CAA led to PM2.5 reductions on the order 
of 5 µg m−3.

We emphasize that our comparison of the effectiveness of PM2.5 reductions 
to that of other health interventions abstracts from the policy, technical and/or 
financial realities of implementing these reductions or interventions. As with the 
LiST model, our purpose is rather to provide a basis for further exploration of the 
comparative feasibility and cost effectiveness of alternate interventions.
Indoor versus outdoor PM2.5. One concern with our results is that although we 
purport to measure the relationship between outdoor air pollution and infant 
health, infants could also be exposed to indoor air pollution, and this unobserved 
exposure could bias our estimates. Here we quantify the likely sign and magnitude 
of the bias, and show that unobserved indoor air pollution probably leads us to 
underestimate the effect of outdoor air pollution.

Indoor and outdoor air pollution have traditionally been treated as distinct 
public health threats, with the separation largely reflecting the difference in pol-
lution sources (as opposed to biological impact mechanisms) and the anticipated 
differential impacts of technologies or policy responses aimed at those sources. 
The main ‘indoor’ source of aerosol particular matter in SSA is cooking using 
solid, unprocessed fuels such as wood, dung, agricultural residues, charcoal, 
and coal. Nearly three billion people worldwide still depend primarily on such 
fuels (rates are extremely high—85%—in our sample), and women and young  
children tend to be disproportionately exposed to cooking-related emissions given 
the gendered breakdown of domestic tasks in much of the world. This stands in  
contrast to outdoor PM2.5 sources such as electric power generation, transportation,  
and open biomass burning, which are assumed to affect nearby populations more 
homogeneously.

But while these indoor and outdoor emissions sources may be distinct, the sep-
aration of exposures to those emissions is difficult. The basic connections between 
indoor and outdoor environments are well established: (i) much of the PM2.5 that 
originates indoors is transported outdoors through chimneys, windows, and doors, 
meaning that in rural areas in developing regions, cooking-related emissions can 
actually drive outdoor concentrations41; and (ii) absent sophisticated filtering, out-
door concentrations represent the lower limit for indoor exposures, because air 
must be exchanged periodically. Although very few studies in SSA feature simulta-
neous indoor and outdoor measurements (and most measure PM10 and/or carbon 
monoxide (CO) instead of PM2.5), they support several generalized findings: that 
a significant amount of cooking happens outdoors or in cooking areas separated 
from the rest of the house, that outdoor pollutant concentrations track indoor 
(cooking-related) concentrations46, that concentrations in the immediate cooking 
area/cookstove plume spike much higher, with concentrations rapidly falling off 
with distance, and that areas elsewhere in the house can be relatively protected and 
personal exposures can vary widely47–49.

We highlight the literature from SSA, albeit small, as much of the indoor/ 
outdoor literature that includes cooking emissions has focused on highland areas in 
China, India and Central and South America, where indoor heating is a key service 
provided by indoor combustion and so ventilation conditions can be very differ-
ent50,51. These studies also highlight that concentrations within houses and nearby 
areas vary markedly during cooking hours and across seasons52. The indoor/ 
outdoor literature from developed countries focuses on how well buildings (which 
must nevertheless exchange air with the outdoor environment) keep out pollutants, 
including PM2.5. These studies53 highlight that indoor:outdoor concentration ratios 
span 1 when windows are open and there is direct air exchange, as is the case in 
most of SSA/our DHS sample.

A perfect exposure metric would integrate indoor and outdoor exposures over 
time spent in the two environments (or weight an average of the two by relative 
time spent in each location). We do not have indoor concentration data for our 
study regions or individual exposure data; as noted above, very few simultane-
ous indoor and outdoor measurements exist anywhere, and especially in SSA. 
We therefore proxy for integrated PM2.5 exposure by average ambient (outdoor) 
concentrations, derived from satellites, ground monitors, and chemical transport 
models, as described in ‘PM2.5 data’. Therefore although infant mortality rates 
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undoubtedly are a function of total integrated PM2.5 exposure, we estimate the 
response only to the observable outdoor portion. Here we assess the extent to 
which this approximation is valid.

We can write total exposure (PMtot) as a weighted average of indoor and out-
door exposures, where aout and ain are the fraction of time exposed to outdoor and 
indoor concentrations, respectively:

= +a aPM PM PM (7)tot out out in in

We expect that IMR is a function of total exposure (that is, indoor plus outdoor), 
but that the health impact of a given amount of either indoor or outdoor exposure 
is the same. Thus the correct exposure model, assuming linearity for instructive 
purposes, would be:

β= + +a aIMR IMR ( PM PM ) (8)0 out out in in

with β being the ‘true’ response of IMR to PM2.5 exposure. Noting that 
aout + ain = 1, we can write:

β= + + −aIMR IMR (PM (PM PM )) (9)0 out in in out

If we assume a general relationship between PMin and PMout

δ δ= +PM PM (10)in 0 out

we can rewrite equation (9) as:

β δ δ= + + + −aIMR IMR (PM ( PM PM )) (11)0 out in 0 out out

which simplifies to:

β δ β δ= + + + −a aIMR (IMR ) (1 ( 1))PM (12)0 in 0 in out

We only observe PMout and thus estimate the coefficient on the model:

α= +IMR IMR (PM ) (13)0 out

From this regression (which is analogous to our main regression in equation (1)), 
we recover estimates of

α β δ= + −aˆ (1 ( 1))in

The key question is the extent to which α̂ diverges from the true response β. 
The fact that we do not observe PMin, δ0, δ, aout, or ain leads to several possibilities 
for α. Our estimate α̂ will clearly be unbiased when ain  ≈ 0, the case if the child is 
not exposed to indoor concentrations, either because they are not indoors, or (most 
practically) because cooking happens in a different location (for example, a sepa-
rate kitchen) and they are effectively protected from those emissions while indoors. 
Although there is evidence that young children often have less exposure to indoor 
air pollution than others in the family (particularly adult females)47, and some 
countries represented in our sample have fairly high rates of outdoor cooking, we 
nevertheless view it as unlikely that most children in our sample are unexposed to 
indoor pollution.

If ain > 0, then the extent of bias depends on δ. Our estimates α̂ recover the true 
effect β when δ = 1, that is, when PMin scales exactly with PMout (up to a constant 
offset δ0). When 0 < δ < 1, our estimates of α understate the true effect of PM2.5 
on health; the opposite is true if δ > 1. There are two ways to think about param-
eter δ. The first is at the household level. In a household model, δ0 can be thought 
of as the time-averaged concentration from indoor emission sources, and δ can be 
thought of as the time-averaged steady-state balance of total PM2.5 mass transport 
from outdoor-to-indoor compared to PM2.5 mass transport from indoor-to- 
outdoor. Because some air must be exchanged between indoor and outdoor  
environments, δ > 0, and although the volume of air exchanged will be equal, the 
total mass of PM2.5 transported in either direction can differ. A scenario in which 
δ > 1 means that PM2.5 is trapped and builds up indoors; this leads to estimates of 
α that exceed the true β. This scenario is highly unlikely in an environment such 
as SSA with unsealed buildings. Instead, the more likely scenario is that δ ≤ 1. δ = 1 
would be the case in households that do not have indoor PM2.5 sources (for example,  
clean cooking fuels), so indoor concentrations = outdoor concentrations, and air 
volumes are cycled back and forth. δ < 1 for households with indoor emissions 
sources that are ventilated to the outdoors: the total mass transported outdoors is 
larger than the mass transported indoors (a higher concentration of PM2.5 in the 
ventilated air than in outdoor air exchanged for it). The household-level interpre-
tations of δ and δ0 are summarized in Extended Data Table 2a.

For households using clean cooking fuels, there is no indoor PM2.5 source 
(δ0 = 0), so the possible scenarios are the top row of Extended Data Table 2a. For 
houses using dirty cooking fuels (δ0 > 0, that is, there is an indoor source contrib-
uting to a steady-state indoor concentration that is unrelated to outdoor levels), 
the possible scenarios are the bottom row of the table. As described above, so long 

as δ > 0, the bias in α̂ does not depend on whether or not the household has an 
indoor source of PM2.5 (for example, it uses only clean cook fuels). Cells 3 and 6 
(δ > 1)  
of Extended Data Table 2a are highly unlikely in steady-state as they would imply 
that PM2.5 mass from outdoors is being transported indoors and concentrating 
there. Cell 1 is physically impossible without an indoor source of PM2.5, and cell 5 
would be an idiosyncratic case in which ventilated indoor PM2.5 concentrations 
were exactly matched by outdoor concentrations (this might be approximately the 
case for cooking emissions ventilated immediately via a chimney just outside the 
house, where they are pulled back in again). So from a household model, we would 
expect α̂ to be unbiased for households with clean cooking fuels (no indoor PM2.5 
generation), and underestimated for households with indoor PM2.5 sources.

We can evaluate this prediction in our data, given that DHS data do provide 
information on the use of cook fuels of households for a subset of households. We 
define ‘clean’ cook fuel households as those who cook with natural gas, biogas, 
liquefied petroleum gas (LPG) or electricity, and ‘dirty’ fuel households as those 
cooking with anything else. Consistent with the prediction above, point estimates 
suggest larger effects of PM2.5 exposure on clean fuel households compared to dirty 
fuel households, although we cannot reject that the estimates are the same given 
the wide confidence intervals (Extended Data Fig. 5).

The second way to think about δ is at the aggregate level, or the population rela-
tionship between indoor and outdoor PM2.5 concentrations. Intuitively, we would 
expect a positive correlation between indoor and outdoor PM2.5 concentrations in 
aggregate, because outdoor PM2.5 penetrates porous buildings and households ven-
tilate indoor emissions. Bias in α̂ would only occur if that relationship changed across 
levels of outdoor PM2.5 exposures. This would imply that, for example, at higher 
outdoor PM2.5 concentrations, indoor PM2.5 is less well-ventilated, or that at higher 
outdoor concentrations, homes are trapping and concentrating indoor PM2.5.

To explore these aggregate-level relationships in our data, we aggregate DHS 
and ambient pollution data to the cluster level, restrict the sample to within the 
survey year (given that survey questions ask about current fuel use) and test the 
relationship between the percentage of households in a cluster using ‘clean’ fuels 
and ambient PM2.5 levels. Results are shown in Extended Data Table 2b. We find 
that, on average, clusters using entirely clean cooking fuels have lower ambient 
PM2.5 levels, both across the full sample and (more importantly) when restricted 
to only clusters with at least some clean cook fuel use. To verify that this isn’t 
simply result of unobserved variables—for example, locations with access to clean 
cooking fuels might also have reduced open biomass burning, or better (cleaner) 
electric power generation, or lower transportation-related PM2.5 emissions—we 
conduct separate regressions on urban and rural clusters. We find no difference 
in the impact of cluster-level clean cooking fuel penetration on ambient levels in 
rural versus urban DHS clusters (where we would expect non-cooking emissions 
profiles to differ). This provides additional evidence that our ambient average 
metric proxies well for overall exposure, and that the relationship is not driven by 
non-cooking emissions, because cooking-related emissions that originate indoors 
are ultimately reflected in outdoor average concentrations.

These three pieces of evidence—that the basic physics of air flow suggest that 
0 < δ ≤ 1, that ‘clean’ fuel households have higher point estimates of PM2.5 effects, 
and that outdoor concentrations appear to reflect indoor exposures—suggest that, 
if anything, unobserved indoor PM2.5 exposures likely bias our main estimates 
down. We thus interpret our main estimates as conservative.

Nevertheless, infants could be extremely vulnerable to quick but marked spikes 
in indoor particulates during, for example, stove lighting. The existing literature for 
SSA highlights the high temporal variability in pollutant emissions from cooking, 
and the tremendous spatial heterogeneity in concentrations over short spatial scales47. 
Simultaneous measurement of direct exposure for individuals, in addition to indoor 
and outdoor concentrations, is a key area for future research that would help to clarify 
the role of higher frequency spatiotemporal variation in concentrations/exposures, 
and allow for comparison of integrated (versus average) exposure.
Impact channels and effect size plausibility. One of our main results is that 22% 
of infant deaths in our sample can be attributed to PM2.5 exposure above 2 µg m−3. 
This estimate is larger than current GBD estimates of the total child mortality bur-
den of LRI in SSA; the online GBD tool20 estimates that 12.8% of infant deaths in 
SSA in 2015 were due to LRI. The difference between estimates makes our results 
seem implausibly large if (i) the GBD estimates are correct and (ii) LRI are the only 
cause of death linking PM2.5 exposure and infant mortality.

As a first point, we note that if the GBD counterfactual PM2.5 concentration of 
5.8 µg m−3 is used to define our ‘clear air’ baseline, then our estimate of attributable 
deaths would be reduced to 18%. So different clear-air counterfactuals could result 
in some of the difference between our estimate and GBDs.

Second, when we use the exposure–response function that was the basis of the 
2015 GBD estimates4, we calculate for our SSA sample that 13% of infant deaths are 
attributable to PM2.5 exposure (see above). This estimate is within our estimated 
95% confidence interval and suggests that even in the GBD, LRI alone cannot 
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account for the mortality attributable to PM2.5, unless we are willing to attribute 
all deaths from LRI to PM2.5, an unlikely scenario given the multiple agents that 
cause LRI in young children. In other words, even the GBD data appear to indicate 
that PM2.5 affects mortality through causes beyond LRI.

Third, we can directly compare our main results to quasi-experimental studies 
from wealthy and middle-income countries that also measured the impact of air 
quality on infant mortality. We are aware of six quasi-experimental studies24–29 
that measured the impact of longer-run PM2.5 exposure on infant mortality for 
which we were able to calculate effect sizes in units comparable to ours. As many of 
these studies reported effect sizes for TSP or PM10, comparing effect sizes requires 
translating units to PM2.5. We used the following conversions: PM2.5 = 0.7PM10 and 
PM10 = 0.5TSP. We note that the results of one study27 are for 0–4 year olds, and 
baseline mortality rates were not reported in the paper for this study. For another 
study28, we used the results from table 4, dividing the effect of traffic on mortality 
by the effect of traffic on PM2.5.

Results are shown in Extended Data Fig. 8j. Our results are closest to the 
previously published results for Mexico City26, with both studies estimating an 
approximately 9% increase in infant mortality per 10 µg m−3 change in PM2.5. 
Our results are a little smaller than previously published results published in the 
US24,25 and substantially smaller than recent estimates from urban China, Turkey, 
and California27–29.

Fourth, there is also growing evidence from both developing and developed 
countries that PM2.5 exposure increases infant mortality risk through causes other 
than LRI. In particular, multiple studies (including meta-analyses) find that in 
utero exposure to PM2.5 increases the incidence of pre-term birth and low birth 
weight21–23,54–57, the leading risk factors for neonatal mortality (defined as death 
in the first 28 days of life). Although the epidemiological evidence leading from 
PM2.5 exposure to adverse fetal outcomes is now substantial, the basic mechanisms 
are not fully understood and are thought to include pro-inflammatory effects, 
endocrine effects, neurophysiological effects, metabolic effects, increasing oxida-
tive stress in both the mother and fetus and disruption of oxygen flow22,23,58–61. 
Studies from both developing and developed countries also directly show impacts 
of in utero PM2.5 exposure on neonatal mortality24,25,62. Although LRIs cause some 
deaths among neonates, the majority of neonatal mortality is distinct from LRI20. 
Neonatal mortality thus represents an important channel linking PM2.5 exposure 
and infant mortality that is largely distinct from LRI, and we test for this mecha-
nism in our data below below.

Other work has linked PM2.5 exposure to low child height-for-age (that is, 
stunting)63, an outcome that is primarily reflective of long-term malnutrition64 
rather than LRI specifically, and which is the leading risk factor for child mortality 
in Africa. Evidence of a PM2.5–stunting relationship in our data would again be 
consistent with PM2.5 having mortality-relevant health impacts beyond LRI. A 
few studies also link poor air quality to incidence of diarrhoea65,66. Diarrhoea is 
a leading cause of infant death in Africa and is mostly considered to be distinct 
from LRI, even if some conditions, such as poor hygienic conditions, predispose 
children to both illnesses67. Although the mechanisms linking PM2.5 exposure and 
diarrhoeal illness are poorly characterized—for instance it is thought that biological 
PM2.5 could be associated with increased diarrhoea66—we nevertheless consider 
this yet another possible pathway leading from PM2.5 exposure to infant mortality 
that is distinct from LRI, and evidence of this pathway in our data would provide 
further support for non-LRI effects.

Although the cause of death is unobserved in our data, we use the same empiri-
cal strategy as our main analysis to test the extent to which PM2.5 levels are related 
to adverse childhood outcomes that could affect mortality separately from LRI, 
including neonatal mortality, birth weight, birth size, stunting and diarrhoeal 
illness. In order to control for differences across mothers (for example, in their 
ability to estimate birth size), we include mother fixed effects in all specifications so 
the estimated effects come from comparing outcomes between children born to the 
same mother at times of different PM2.5 concentrations. The point of these analyses 
is not to isolate the specific causes of death related to PM2.5 exposure—this level 
of ascertainment is not available in DHS, given that DHS does not collect autopsy 
data—but to provide evidence that PM2.5 exposure harms infant health by increas-
ing the risks of several adverse conditions beyond LRI. As shown in Extended 
Data Fig. 8, we find substantial evidence of non-LRI pathways, as described below.
In utero PM2.5 exposure is associated with lower birth weights. We use all obser-
vations in our data for which we have birth weight (directly recorded in grams 
from birth cards and transcribed by DHS enumerators, n = 215,975) or birth size 
recalled by interviewed mothers (five-point scale from ‘very small’ to ‘very large’, 
n = 454,444). Consistent with existing literature on the relationship between PM 
exposure and birth weight, we find suggestive evidence that higher in utero PM2.5 
exposure is associated with lower birth weight and birth size, although estimates are 
imprecise (particularly for the birth card measurements) given the reduced sample.
In utero PM2.5 exposure is associated with higher neonatal mortality. Consistent 
with the epidemiologic evidence that links PM2.5 exposure to low birth weight, and 

our findings that in utero PM2.5 exposure is associated with reduced birth weight 
and birth size, we find a strong positive link between in utero PM2.5 exposure and 
neonatal mortality (Extended Data Fig. 8c). At the mean exposure in our sample 
(25 µg m−3), we find a similar PM2.5–mortality relationship as in our post-birth 
results. However, because baseline neonatal mortality rates are less than half infant 
mortality rates, this effect translates into a larger percentage change. We find a 
10 µg m−3 PM2.5 increase associated with an approximately 22% (95% confidence 
interval, 3–41%) increase in neonatal mortality at mean exposure; the relationship 
flattens out at higher exposure levels. Overall, the evidence that links in utero PM2.5 
exposure to birth weight outcomes and neonatal mortality strongly suggests a 
meaningful non-LRI pathway from PM2.5 exposure to infant mortality.
Post-birth exposure to PM2.5 reduces child height-for-age among surviving children. 
Anthropometric measurements are routinely performed on children under five 
years of age in the majority of DHS surveys. This allows estimation of malnutrition 
among living children present during the household interviews. Malnutrition is the 
largest risk factor for mortality in children under five years of age among children 
in SSA, responsible for over one million deaths of children under-5 from neonatal 
disorders, diarrhoeal illness, LRI and other common communicable diseases20. 
Low height-for-age (stunting), in particular, is a reflection of long-term malnutri-
tion. We find that post-birth PM2.5 exposure in the first year is strongly associated 
with reduced height-for-age at the time of survey (Extended Data Fig. 8d). To 
the extent that high PM2.5 represents unhealthy environments for child growth, it 
could increase the risk of stunting. Stunting, in turn, represents another pathway 
linking PM2.5 exposure with infant mortality that is unrelated to LRI. We note 
that the sample for this analysis only includes children who survived to the date 
of the interview, and thus undercounts children who died before the survey and 
who may be smaller in size; this may lead us to understate the ‘true’ effect of PM2.5 
on stunting in this analysis.
Post-birth PM2.5 exposure is associated with increase diarrhoeal incidence among 
surviving children. Interviewed mothers are asked whether or not each living child 
born in the past 3–5 years had diarrhoea in the two weeks before the survey. We 
again find a positive relationship between post-birth PM2.5 exposure in the first 
year and the probability of experiencing diarrhoea within the two weeks preceding 
the survey (Extended Data Fig. 8e). We interpret this as additional evidence of a 
potential pathway beyond LRI, and one that should be investigated further.
Post-birth PM2.5 exposure has no effect on child sex, the likelihood of a multiple birth 
or bed net usage. These measures are the three most easily observable child-level 
variables in our data (Extended Data Fig. 8f–h). These are placebo tests to ensure 
that our main effects are not spurious and that PM2.5 exposure is uncorrelated with 
variables that should not be affected by air quality.
PM2.5 exposure 13–24 months after birth does not predict mortality in the first 12 months 
after birth. As another placebo test, we confirm that exposure after the first birthday 
of a child does not affect the probability of dying before the first birthday (Extended 
Data Fig. 8i). This again is evidence that our main effects are not spurious.

The balance of evidence thus strongly suggests that PM2.5 exposure is associated 
with infant survival through channels other than respiratory infection, and lends 
plausibility to our main results. For instance, the GBD estimates that LRI (12%), 
diarrhoeal illnesses (11%) and neonatal disorders (27%) make up a combined 50% 
of all deaths of children under five in SSA20. Given evidence that PM2.5 is associated 
with all of these channels, and the fact that our estimates are even smaller than 
comparable estimates from the US, our estimate that approximately 20% of infant 
mortality could be attributed to PM2.5 exposure is plausible. Nevertheless, we view 
prospective epidemiological studies that measure both exposures and intermediary 
outcomes as critical in building a more complete understanding of causal pathways 
going forward; such studies would shed critical light on the large overall estimates 
that we provide here.
Reporting summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. All codes that support the findings of this study are available at 
https://purl.stanford.edu/qt056zr6479.
Data availability. All data and code that support the findings of this study are 
available at https://purl.stanford.edu/qt056zr6479.
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Extended Data Fig. 1 | Integrated exposure risk curve estimated by 
the GBD project. Data were obtained from a previous study4. a, Relative 
risk curve representing the risk from acute lower respiratory infections 
in infants (obtained from figure 2 of Burnett et al.4). The curve combines 
point estimates from ambient air pollution (AAP) studies, indoor air 
pollution (HAP) studies and second-hand smoking (SHS) studies to derive 
risk responses across the PM2.5 exposure distribution. The histograms 
show the share of population exposed to different long-run (15-year 
average) ambient PM2.5 concentrations in North American and Europe 
where most GBD studies took place, in SSA countries in our sample, 

and globally. In total, 49% of the overall population in Africa, and 51% 
globally, live in areas with ambient pollution concentrations exceeding the 
maximum ambient PM2.5 concentration from the GBD study (25 µg m−3). 
b, Most studies used to estimate the GBD integrated exposure response4 
were carried out in North America or Europe, with the exception of a 
household air pollution study in Guatemala and second-hand smoking 
studies in Vietnam, India and South Africa. Median sample size (depicted 
by marker size in the plot) across these studies is n = 1,250. Country 
outlines were obtained from Global Administrative Areas, version 2.030.
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a DHS cluster locations Number of births observed by year

75,000 50,000 25,000

990,696 births observed between 2001 and 2015

West Africa

Rest of Africa

Study regionsb c

Extended Data Fig. 2 | Overview of birth data from DHS surveys and 
study regions in Africa. a, Location of DHS clusters included in our 
sample. b, The number of births observed in each year in our sample. 
More births are observed in earlier years because births are recalled in the 
surveys so each new survey round potentially adds births from all previous 
years. c, Regional categorization of countries, for regional analysis in 
Fig. 2c. Sample countries assigned to West Africa region are Benin, 

Burkina Faso, Ivory Coast, Ghana, Guinea, Liberia, Mali, Nigeria, Senegal, 
Sierra Leone and Togo. Sample countries assigned to ‘rest of Africa’ are 
Angola, Burundi, Cameroon, Comoros, DRC, Ethiopia, Gabon, Kenya, 
Lesotho, Madagascar, Malawi, Mozambique, Namibia, Rwanda, Swaziland, 
Uganda, Zambia and Zimbabwe. Country outlines were obtained from 
Global Administrative Areas, version 2.030.
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Extended Data Fig. 3 | Effect of post-birth PM2.5 exposure is robust 
under different regression models. Estimated responses under higher-
order polynomials (a), different specifications of the fixed effects (b), 
restricted cubic spline functions of PM2.5 (c) and additional time  

controls (d). In each panel, the blue line and shaded region indicate the 
estimated baseline response shown in Fig. 2a and the bootstrapped 95% 
confidence interval. Splines in c have knots at 10 µg m−3 (single knot 
spline) or evenly spaced knots (three- and four-knot splines).
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Extended Data Fig. 4 | Piecewise linear and cross-sectional 
relationships between post-birth PM2.5 exposure and infant mortality. 
a, Piecewise linear estimates of the effect of PM2.5 exposure below and 
above the WHO PM2.5 guideline of 10 µg m−3. Shaded regions represent 
bootstrapped 95% confidence intervals. Slopes above and below the 
10 µg m−3 threshold are very similar, although confidence intervals are 
wider below the threshold due to smaller sample sizes. b, Cross-sectional 
and panel models give similar estimated effects of post-birth PM2.5 

exposure on infant mortality. Blue line shows baseline panel model, orange 
line shows a cross-sectional model that relates cluster-average mortality 
to cluster-average PM2.5 exposure. Each response function is centred at 
sample median exposure (25 µg m−3). Histograms at the bottom show 
counts of exposure at different PM2.5 levels, for the panel sample (blue) 
and cross-sectional sample (orange); cross-sectional exposures are slightly 
narrower given that year-to-year variation has been averaged out.
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Extended Data Fig. 5 | Heterogeneous effects of post-birth PM2.5 
exposure. Effects are estimated by interacting a dummy for each 
modifying variable with linear PM2.5, and are measured as the percentage 
change in infant mortality per 10 µg m−3 increase in PM2.5 exposure, 

relative to baseline mortality rates in each subgroup. Circles indicate point 
estimates, and whiskers the 95% confidence interval on the point estimate. 
The last column shows the baseline estimate from the full (uninteracted) 
linear model.
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Extended Data Fig. 6 | Linear effect of post-birth PM2.5 exposure 
by year for different time periods. Panels are the same as Fig. 2e 
but replicated for different time periods, showing effects in each year 
independently. Circles indicate point estimates, and whiskers the 95% 

confidence interval on the point estimate. For each time period  
2001 − year t, the sample was restricted to births between 2001 and year 
t and to surveys that were conducted after year t. These steps help to 
approximate a consistent geographical sample across the time periods.
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Extended Data Fig. 7 | Effect of different assumed counterfactual PM2.5 
levels on the estimated share of infant deaths attributable to PM2.5. Each 
point represents the same calculation described in the Methods, under 
different counterfactual minimum PM2.5 exposure levels. Data are from 
Cohen et al.2, Burnett et al.4 and the WHO guidelines16.
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Arceo, Hanna, Oliva 201526  1997-2006 Mexico City  1987     8.8
Chay and Greenstone 2003a24 1978-1982 US   1226    11.0
Chay and Greenstone 2003b25 1969-1974 US   1899    11.3
Cesur et al 201629   2001-2011 Turkey   900    21.6
He et al 201627    2006-2010 China (urban)  NA    27.1
Knittel et al 201628   2002-2007 California  280    34.3
This study    2001-2015 Africa   7076    9.2

Study Period Location Baseline mortality 
rate (per 100,000)

Effect size (% increase in infant 
mortality rate per 10µg/m3  PM2.5 )

Extended Data Fig. 8 | Effect of PM2.5 on non-respiratory mortality and 
mortality risk factors. a–c, Effect of in utero PM2.5 exposure on low birth 
weight, low birth size as reported by mothers on a scale from 1 to 5, and 
neonatal mortality (NMR). d, e, Effect of post-birth PM2.5 exposure on 
height-for-age and diarrhoeal incidence for living children. In each case, 
higher PM2.5 concentrations worsen health outcomes. f–h, Placebo tests 
that relate PM2.5 exposures to child outcomes that should be unaffected: 

child sex, whether child was born in a multiple birth, and child’s use of a 
bed net. i, PM2.5 exposure in the 13–24 months after birth has no effect 
on mortality in the first 12 months after birth. Shaded regions represent 
bootstrapped 95% confidence intervals in each panel. j, Estimates of 
the effect of PM2.5 on all-cause infant mortality from published quasi-
experimental studies24–29, expressed as the percentage change in the infant 
mortality rate per 10 µg m−3 increase in PM2.5.
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Extended Data Table 1 | Regression results for main specification and for subsample of households with asset data

a, Full sample. b, Subsample of households with asset data. Mortality is modelled as either a linear or quadratic function of PM2.5 (results from additional specifications modelling mortality as a more 
flexible nonlinear function of PM2.5 are shown in Extended Data Fig. 3). The outcome measure is a binary variable equal to one if the child did not survive until 12 months of age. The mean of the  
outcome variable = 0.071. Standard errors are in parentheses and are clustered at the DHS Cluster level, and asterisks denote statistical significance (two-sided): *P < 0.10, **P < 0.05, ***P < 0.01.
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Extended Data Table 2 | Understanding potential bias from unobserved indoor air pollution exposure

a, Potential bias at the household level in the estimated effect of PM2.5 exposure on infant health α! as a function of the relationship between indoor and outdoor pollution exposure. Cells show the 
expected relative magnitudes of time-averaged differences in PMin versus PMout for all combinations of δ0 and δ. b, Relationship between ambient PM2.5 and fraction of households using clean cooking 
fuels at the DHS cluster level. Standard errors are in parentheses, and asterisk denote statistical significance (two-sided): *P < 0.10, **P < 0.05, ***P < 0.01. RMSE, root mean squared error.
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