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BACKGROUND: Accurate and comprehensive
measurements of a range of sustainable de-
velopment outcomes are fundamental inputs
into both research and policy. For instance,
good measures are needed to monitor prog-
ress toward sustainability goals and evaluate
interventions designed to improve develop-
ment outcomes. Traditional approaches to
measurement of many key outcomes rely on
household surveys that are conducted infre-
quently in many parts of the world and are
often of low accuracy. The paucity of ground
data stands in contrast to the rapidly growing
abundance and quality of satellite imagery.
Multiple public and private sensors launched
in recent years provide temporal, spatial, and
spectral information on changes happening
on Earth’s surface.

Here we review a rapidly growing scientific
literature that seeks to use this satellite im-
agery to measure and understand various out-
comes related to sustainable development. We
pay particular attention to recent approaches
that use methods from artificial intelligence
to extract information from images, as these
methods typically outperform earlier approaches
and enable new insights. Our focus is on set-
tings and applications where humans them-
selves, or what they produce, are the outcome
of interest and on where these outcomes are
being measured using satellite imagery.
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Increasing collection of satellite imagery can help measure livelihood out-
comes in areas where ground data are sparse. (Left) Interval between
nationally representative economic surveys over the past three decades shows long
lags in many developing countries. (Middle) Recently added public and private
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ADVANCES: We describe and synthesize the
variety of approaches that have been used to
extract information from satellite imagery, with
particular attention given to recent machine
learning-based approaches and settings in
which training data are limited or noisy. We
then quantitatively assess predictive perfor-
mance of these approaches in the domains of
smallholder agriculture, economic livelihoods,
population, and informal settlements. We show
that satellite-based performance in predicting
these outcomes is reasonably strong and im-
proving. Performance improvements have come
through a combination of more numerous and
accurate training data, more abundant and
higher-quality imagery, and creative applica-
tion of advances in computer vision to satellite
inputs and sustainability outcomes. Further,
our analyses suggest that reported model per-
formance likely understates true performance
in many settings, given the noisy data on which
predictions are evaluated and the types of noise
typically observed in sustainability applications.
For multiple outcomes of interest, satellite-based
estimates can now equal or exceed the accuracy
of traditional approaches to outcome measure-
ment. We describe multiple methods through
which the true performance of satellite-based
approaches can be better understood.
Integration of satellite-based sustainability
measurements into research has been broad,

Satellite resolution and revisit rate,

and we describe applications in agriculture,
fisheries, health, and economics. Documented
uses of these measurements in public-sector
decision-making are rarer, which we attribute
in part to the novelty of the approaches, their
lack of interpretability, and the potential ben-
efits to some policy-makers of not having
certain outcomes be measured.

OUTLOOK: The largest constraint to satellite-
based model performance is now training data
rather than imagery. While imagery has be-
come abundant, the scarcity and frequent un-
reliability of ground data make both training
and validation of satellite-based models diffi-
cult. Expanding the quantity and quality of
such data will quickly accelerate progress in
this field. Other opportunities for advance-
ment include improvements in model inter-
pretability, fusion of satellites with other
nontraditional data that provide complemen-
tary information, and more-rigorous evalua-
tion of satellite-based approaches (relative to
available alternatives) in the context of speci-
fic use cases.

Nevertheless, despite the current and future
promise of satellite-based approaches, we ar-
gue that these approaches will amplify rather
than replace existing ground-based data col-
lection efforts in most settings. Many outcomes
of interest will likely never be accurately es-
timated with satellites; for outcomes where
satellites do have predictive power, high-
quality local training data can nearly always
improve model performance.
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satellites have broken the traditional trade-off between temporal and spatial
resolution. (Right) Performance in measuring the presence of informal settlements,
crop yields on smallholder agricultural plots, and village-level asset wealth. R?,
coefficient of determination.
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Accurate and comprehensive measurements of a range of sustainable development outcomes are fundamental
inputs into both research and policy. We synthesize the growing literature that uses satellite imagery to
understand these outcomes, with a focus on approaches that combine imagery with machine learning. We
quantify the paucity of ground data on key human-related outcomes and the growing abundance and improving
resolution (spatial, temporal, and spectral) of satellite imagery. We then review recent machine learning
approaches to model-building in the context of scarce and noisy training data, highlighting how this noise
often leads to incorrect assessment of model performance. We quantify recent model performance across
multiple sustainable development domains, discuss research and policy applications, explore constraints
to future progress, and highlight research directions for the field.

umans have long sought to image their

habitat from above the ground. Socra-

tes purportedly stated in 500 BCE that

“Man must rise above the earth—to the

top of the atmosphere and beyond—for
only thus will he fully understand the world
in which he lives” (7). His lofty goal was taken
up in earnest after the advent of photography
in the mid-19th century CE, with earth ob-
servation data collected by strapping cameras
to balloons, Kites, airplanes, and pigeons. The
first known image of Earth from space was
taken nearly a century later (1946) by Am-
erican scientists using a captured Nazi rocket,
revealing blurry expanses of the American
Southwest (2). This was followed decades
later by the launch of the first civilian Earth-
observing satellite, Landsat I, in 1972, which
ushered in the modern era of satellite-based
remote sensing. As of early 2020, there are an
estimated 713 active nonmilitary earth obser-
vation satellites in orbit, 75% of which were
launched within the past five years (3). These
satellites are now capturing imagery of Earth
with unprecedented temporal, spatial, and
spectral frequency.

Here we review and synthesize a rapidly
growing scientific literature that seeks to use
this satellite imagery to measure and under-
stand various human outcomes, including a
range of outcomes directly linked to the United
Nation’s Sustainable Development Goals (4).
We pay particular attention to recent ap-
proaches that use methods from artificial
intelligence to extract information from im-
ages, as these methods typically outperform
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earlier approaches, enabling new insights. Our
focus is on settings and applications where
humans themselves, or what they produce,
are the outcome of interest and where these
outcomes are being predicted using satellite
imagery. We quantify existing performance
in these domains across a large set of studies,
explore Kkey constraints to future progress,
and highlight a number of research directions
that we believe are key if these approaches
are going to be improved and adopted by
practitioners.

We do not review and assess the large lit-
erature on using remote sensing for other
Earth observation tasks (e.g., environmental
monitoring) or efforts that use other sources
of nontraditional, unstructured data (e.g., data
from social media or cell phones) to measure
human-related outcomes unless these data are
combined with imagery. Our review comple-
ments existing sector-specific reviews, includ-
ing the use of remote sensing in agriculture
(5, 6), in economic applications (7), and in
the detection of informal settlements (8), draw-
ing common lessons across these and other
domains.

We make four main points. First, satellite-
based performance in predicting key sustain-
able development outcomes is reasonably
strong and appears to be improving. Indeed,
analyses suggest that reported model per-
formance likely understates true performance
in many settings, given the noisy data on
which predictions are evaluated. For multiple
outcomes of interest, satellite-based estimates
can now equal or exceed the accuracy of tra-
ditional approaches to outcome measurement.

Second, perhaps the largest constraint to
model development is now training data
rather than imagery. While imagery has be-
come abundant, the scarcity and, in many
settings, unreliability of ground data make
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both training and validation of satellite-based
models difficult. Third, despite the growing
power of satellite-based approaches, these ap-
proaches will likely amplify rather than fully
replace existing ground-based data collec-
tion efforts, given the necessity of training
data and the likelihood that many outcomes of
interest will likely never be accurately esti-
mated with satellites.

Finally, in the sustainable development do-
mains on which we focus, there remain few doc-
umented cases where satellites have been used
in public-sector decision-making processes—
with applications in population and agricul-
tural measurements being the main excep-
tions. Limited adoption is likely driven by a
number of forces, including the recency of the
technology, the lack of accuracy (perceived or
real) of the models, lack of model interpret-
ability, and entrenched interests in maintain-
ing the current data regime. We discuss how
some of these constraints might be overcome.

The availability and reliability of data
Key data are scarce, and often scarcest in
places where they are most needed

Household- or field-level surveys remain the
main data collection tool for key development-
related outcomes. Methodologies for such data
collection are well developed and are imple-
mented by national statistical agencies and
other organizations in nearly all countries of
the world. But their implementation and use
also face a number of important challenges.
First, nationally representative surveys are
expensive and time-consuming to conduct.
Conducting a Demographic and Health Sur-
vey (DHS) or Living Standards Measurement
Study (LSMS) in one country for one year
typically costs $1.5 million to $2 million USD
(9), with the entire survey operation taking
multiple years and involving the training and
deployment of enumerators to often remote
and insecure locations. Population censuses
are substantially more expensive, costing tens
to hundreds of millions of US dollars in a typ-
ical African country (10).

An implication of this expense is that many
countries conduct surveys infrequently, if at
all. In half of African nations, at least 6.5 years
pass between nationally representative liveli-
hood surveys (Fig. 1A), as compared with sub-
annual frequency in most wealthy countries.
Survey frequency is on average substantially
lower in less wealthy countries (Fig. 1B), mean-
ing that data on livelihood outcomes are often
lacking where they are arguably most needed.
Surveys are also much less common in less
democratic societies (Fig. 1C), which could at
least partly reflect the desire and ability of
some autocrats to limit awareness of poor eco-
nomic progress (11). The frequency of agricul-
tural and population censuses also varies
widely around the world (Fig. 1, D and G).
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Fig. 1. Nationally representative economic, agricultural, and population data are collected infre-
quently in much of the world. (A) The average interval between nationally representative economic
surveys (of average or high quality) for the period 1993-2018 from the UN World Income Inequality
Database (109). (B) Relationship between gross domestic product (GDP) per capita (110) and number of
surveys in the study period. Nations with higher GDP per capita tend to have more surveys. (C) Relationship
between the Polity score of each country (+10 is fully democratic, -10 is fully autocratic) (111) and the
number of surveys in the study period. (D) Years since last agricultural census, using data covering
1993-2018. (E and F) Relationship between GDP per capita, Polity score, and years since last agricultural
census. (G to I) As in (D) to (F), but for population censuses.

For instance, 24% of the world’s countries
(49 out of 206) have gone more than 15 years
since their last agricultural census, and 6%
(13 out of 206) have gone more than 15 years
since their last population census.

A second challenge is that survey samples
are typically only representative at the nation-
al or (sometimes) regional level, meaning that
they often cannot be used to generate accurate
summary statistics at a state, county, or more
local level. This represents a challenge for a
range of research or policy applications that
require individual- or local-level information,
for example, targeting an antipoverty program
or studying its impact.

Third, underlying data are not made pub-
licly available in many surveys, including near-
ly all the surveys that contribute to official
poverty statistics (such as those depicted in
Fig. 1A), and no geographic information is
publicly provided on where data were col-
lected. These factors further deepen the chal-
lenge of using such data to conduct local
research or policy evaluation or to train mod-
els to predict local outcomes using these data.
Even when local-level anonymized georefer-
enced data are made public in some form, data
are typically released more than a year after
survey completion, hampering real-time knowl-
edge of livelihood conditions on the ground.

Burke et al., Science 371, eabe8628 (2021)

Finally, as explored below, ground data can
have multiple sources of noise or bias, further
limiting their reliability and utility in research
and decision-making. This noise has impor-
tant implications for how satellite-based mod-
els trained on these data are validated and
interpreted.

Existing ground data can be unreliable

Even where ground data are present, several
key sources of error can limit their utility. First,
most outcomes are not measured directly but
rather are inferred from responses to surveys.
These responses can introduce large amounts
of both random and systematic measurement
error. For instance, in household consump-
tion expenditure surveys, changes to the
recall period or the list of items households
are questioned about can lead to household
expenditure estimates that are >25% too low
relative to gold-standard household diaries
(12). In agriculture, the World Bank noted that
the “practice of ‘eye observations’ or ‘desk-based
estimation’ is commonly used by agricultural
officers,” leading to often-conflicting estimates
of key agricultural outcomes by different gov-
ernment ministries and to variation over time
in published statistics that cannot easily
be reconciled with events on the ground
(18). Current practices are likely to have a
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bias toward overestimation, further weaken-
ing the quality of food security assessments
13, 14).

An additional key source of noise comes
from sampling variability. Surveys are typi-
cally designed to be representative at very
large scales (e.g., nationally), and this repre-
sentativeness is typically obtained by taking
small random samples of households or fields
across many cluster locations. Because most
agricultural and economic outcomes of inter-
est often exhibit substantial variation even at
very local levels (e.g., coefficients of variation
>1 at the village level), these small samples
thus represent an unbiased but potentially
very noisy measure of average outcomes in
a given locality.

The combined effects of both measurement
error and sampling variability can be appre-
ciated when comparing two independent mea-
sures of the same outcome for the same
administrative level. In Fig. 2, we compare
average maize yields at the first administrative
level (e.g., province or state) as obtained from
household surveys covered by the LSMS-
Integrated Surveys on Agriculture (ISA) pro-
gram versus by official government ministry
estimates in three African countries. This com-
parison reveals both a systematic bias toward
higher yields in official government data than
in household responses and a relatively low
correlation between the two measures, with
the highest observed correlation coefficient
7 of 0.39 for Ethiopia.

A third common source of error is noise
purposefully introduced to protect the privacy
of surveyed households. Adding jitter to vil-
lage coordinates is common practice for most
of the publicly released datasets based on
household surveys, for instance with up to
2 km of random jitter added in urban areas
and 5 km in rural areas. Below we explore
the implications of these three sources of error
for model development and evaluation.

Availability of satellite imagery
changing rapidly

Information from satellite imagery has been
used to a limited extent in both agricultural
and socioeconomic applications for decades
(15, 16). However, thanks to both public and
private sector investment, recent years have
seen a remarkable increase in the temporal,
spatial, and spectral information available
from satellites and a corresponding use of
this imagery in applications.

To quantify this increase in imagery and
understand how it varies across developing
and developed countries, we randomly sam-
pled 100 locations in Africa and 100 addition-
al locations across the US and EU (sampling
proportional to population) and queried the
availability of cloud-free imagery (defined as
<30% cloud cover) at each location in 2010
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Fig. 2. Government and household survey-based data on maize productivity are not well correlated at
the district level. Using government data from eAtlas and household-level yield data from LSMS-ISA
surveys, maize yields (metric tons per hectare) are compared by averaging across all households in a
given district. Data include 2011, 2013, and 2015 data in Ethiopia; 2013 data in Malawi; and 2010 and
2012 data in Nigeria. Comparison is restricted to district-years with at least 30 households. Gray line is 1:1
line, while black lines show linear fits within each country. Points are sized relative to the number of
households contributing to each estimate in the LSMS data.

and 2019 for all available optical sensors,
using multiple online query tools (17). We
calculated region- and year-specific average
revisit rates for each sensor and constructed
an imagery-resolution “frontier,” defined as
the overall revisit rate across sensors at or
below a given spatial resolution.

We found that the addition of many new
sensors has lessened the traditional trade-off
between temporal and spatial resolution
(Fig. 3A), particularly at resolutions =3 m. Al-
though the revisit rate of very-high-resolution
(<1 m) sensors over Africa has seen only slight
improvement over the past decade (Fig. 3B),
and very-high-resolution revisit rates remain
lower in Africa than in both the US and EU
(Fig. 3C), revisit rates for high-resolution (1 to
5 m) and moderate- to low-resolution sensors
have increased drastically and are globally
equitable.

We sampled and visualized additional im-
ages and sensors across populated African
locations (Fig. 3). Various types of human
activity are readily visible even with moderate-
resolution sensors (5 to 30 m), including
urban infrastructure development, agricul-
tural activity, and moisture availability (Fig.
3F). The increasingly high revisit rate of
such imagery also provides key insight into
development-relevant activities that change
seasonally, such as the location and produc-
tivity of croplands (Fig. 3G).

Modeling approaches using satellite imagery
to predict sustainability outcomes

Researchers have taken many different mod-
eling approaches in using this large amount of
new imagery to measure and understand sus-
tainable development. We use “model” to mean
any function or set of functions mapping inputs
(e.g., satellite images) to outputs (e.g., a wealth
index or crop yield estimates for an area). Such

Burke et al., Science 371, eabe8628 (2021)

models are often simple, such as linear regres-
sion models that relate satellite-derived vegeta-
tion indices to crop yields (I8) or that relate
nighttime lights (henceforth, “nightlights”) to
economic outcomes (79). When there is sub-
stantial prior knowledge of the likely relation-
ship between satellite-derived features and the
outcome of interest, as in the case of many
agricultural variables, such approaches can
often work well. However, even in these set-
tings, machine learning approaches that seek
to more flexibly learn, rather than specify, the
mapping of inputs to outputs can often im-
prove predictive performance. Here we pro-
vide an overview of the range of modeling
approaches that have been used to relate
satellite images to sustainable development
outcomes.

Shallow models based on
handcrafted features

In some domains, prior knowledge of the phys-
ics, chemistry, or biology of the relevant pro-
cesses suggest that certain functions of the
inputs are likely useful for prediction. This is
the case for numerous vegetation indexes,
which are computed from raw imagery as
simple ratios of reflectances at different wave-
lengths and are known to be related to veg-
etation health. Simple regression models such
as linear regression or random forests can be
used to make pixel-wise predictions directly
from these handcrafted features to the outputs
of interest [see (20) for a recent review in the
agricultural domain]. When the input has spa-
tial structure, simple aggregation strategies
can be used to map pixel-wise features to
image-wise features. These include simple
statistics such as taking the mean, quantiles
(e.g., minimum, median, or maximum), or his-
tograms of binned values as inputs to a re-
gression model. For example, Henderson et al.
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In computer vision, spatial context can often
greatly improve prediction accuracy for image
analysis tasks. Machine learning models with
filters designed to take into account spatial
structure, such as convolutional neural net-
works (CNNs), often perform much better
than handcrafted features and simple aggre-
gation strategies. Deep networks with residual
connections such as DenseNET or ResNet (21)
are often used. In this case, features are auto-
matically learned from the data rather than
handcrafted. This is currently the leading ap-
proach in most computer vision applications.
Use of this approach with satellite images in
sustainable development applications has pro-
liferated in recent years, including in the mea-
surement of population (22-24), economic
livelihoods (25-28), infrastructure quality
(29, 30), land use (31, 32), informal settlements
(33, 34), tfishing activity (35, 36), and many
others. In one example, a team hand-annotated
thousands of medium-resolution daytime im-
ages with the location of foreign fishing vessels
and then trained a CNN to predict the presence of
those vessels; predictions were then further hand-
validated using high-resolution imagery (36).

Models that use spatial and temporal
structure in the imagery

When available, multiple images of the same
location over time can reduce ambiguity (e.g.,
ambiguity due to cloud cover) and provide
crucial information about changes occurring
on the ground. Such a sequence of images is
similar to a video, and architectures from
video prediction in computer vision can be
brought to bear for prediction and regression
tasks. These include long short-term memory
networks (LSTMs) (37), convolutional LSTMs
(88), and three-dimensional (3D) CNNs, where
images are fed in sequence into the model
before it makes a prediction. These models
have been successfully used for crop classi-
fication (39-41), crop yield prediction (42, 43),
predicting landslide susceptibility (44), and
assessing building damage after disasters
(45, 46), among many other applications. For
example, You et al. (42) assemble near-daily
coarse-resolution multispectral images across
the US Midwest, convert each band in each
image to a histogram of reflectance values,
and then train both a 3D CNN and an LSTM
to predict county-level soybean yields from
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Fig. 3. Spatial resolution, temporal frequency, and spectral availability of satellite imagery
have increased substantially since 2000. (A) Average revisit rate and sensor resolution of
cloud-free optical imagery in 2019, averaged across 100 populated African locations (randomly
sampled, proportional to population). (B) Blue line (“frontier”) shows overall revisit rate across

all available sensors at a given spatial resolution in 2010 for same 100 locations (e.g., at 1 m,

the line denotes average cloud-free revisit rate using all sensors <1 m); orange line shows same for
2019. Orange area denotes the new combinations of temporal and spatial resolution available

by 2019, which expanded greatly at resolutions >1 m. (C) Average 2019 coverage in Africa

(orange line) versus 100 locations in US or EU (gray line; locations randomly sampled, proportional
to population). Gray shaded area depicts inequalities in coverage between US or EU and Africa

in 2019, which are larger for imagery <3 m per pixel. (D) Calculated revisit periods for several
satellites over 500 randomly selected survey locations in Africa since 2000. Nightlights revisit
rate is set to 1 year given the stable yearly product. (E) Example imagery corresponding to

each sensor in a single location in central Zambia. Images are real color except for nightlights.
(F) Indices generated from various bands can convey different information, as depicted

here using Sentinel 2 data (yellow colors indicate higher values of the index). (G) Frequent revisit
rates of new public sensors capture temporal variation in human activity, including rapid changes
throughout the main agricultural season shown here.
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these histograms, outperforming previous
models.

Models that use several modalities

When multiple data modalities are available,
such as measurements from different satel-
lites, it is often possible to combine all the
inputs into a single deep learning model.
Approaches include stacking the inputs as ad-
ditional channels of a single network or multi-
branch architectures where data modalities
are processed separately to extract features
that are then concatenated before a final pre-
diction layer. One example of this approach
is a model that combined both daytime and
nighttime satellite imagery to predict village-
level asset wealth in Africa (28); separate CNNs
were trained to predict wealth using the two
types of imagery, and then the final layers of
each model were concatenated and used as
predictors in a final ridge regression. Additional
examples include models that combine imagery
with data from weather sensors (47), cell phones
(27), Wikipedia (48), social media (49), street-
level imagery (50), or Open Street Map (51) to
predict development-related outcomes.

Model development with limited training data

An additional set of techniques have been de-
veloped to utilize the above modeling ap-
proaches in the context of limited training
data—a common problem in sustainability
applications. For instance, standard convolu-
tional neural network architectures contain
millions to tens of millions of trainable pa-
rameters (52), whereas training data for spe-
cific sustainability tasks can often number in
the hundreds. This limited amount of labeled
data is often insufficient for “end-to-end” train-
ing of deep networks. Multiple strategies have
been deployed to address this problem.

Using synthetic data

A first approach is to generate and use syn-
thetic data to train models. In some cases,
domain knowledge about the relevant physi-
cal process exists in the form of validated
simulators. These simulators can be used to
provide synthetic training data, i.e., synthetic
inputs of what the process would look like
from space, paired with simulated outputs.
These synthetic pairs can be used to augment
the training data. For example, crop model
simulations can be used to estimate relation-
ships between crop yields and physical param-
eters (e.g., leaf area index, canopy nitrogen)
that have expected relationships with vegeta-
tion indices; model parameters can then be
combined with observed vegetation indices
from satellite imagery to predict yields. This
approach requires no ground data for training
and has been shown to perform as well as or
better than approaches that calibrate directly
to limited field data (I8, 53).
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Transfer learning

A second approach, transfer learning, first
trains a model on a different but related task
for which large amounts of labeled data are
available [such as ImageNet in computer vi-
sion or Functional Map of the World (54) and
WikiSatNet (55) for satellite images]. The
model is then “fine-tuned” on the target task
of interest. For example, Jean et al. (25) first
trained a neural network to predict night-
lights (a plentiful proxy for economic devel-
opment) from daytime imagery, thus learning
to recognize features in the high-resolution
daytime imagery related to economic activ-
ity. Features were then extracted for daytime
images in locations where a very small (<500)
number of observations of economic liveli-
hoods in Africa were available, and a simpler
model (e.g., regularized regression such as
ridge or lasso) used to predict livelihoods
from these features. Another recent approach
applied a trained object identifier to high-
resolution data to identify buildings, vehicles,
and other objects and then used these objects
as features in a regularized regression to pre-
dict economic well-being in Uganda with
high accuracy (56).

Transfer learning can also be done spatially,
with models trained in a region with plentiful
data and then fine-tuned to a target geography
where labels are sparse. For example, a model
trained to predict infrastructure quality in
Africa was fine-tuned to a specific country
using only a small amount of labeled data (30).
The main challenge with spatial transfer learn-
ing is that changes in the input data distri-
bution from one region to another (e.g., the
appearance of houses or crops) will decrease
predictive performance.

Unsupervised or semi-supervised learning

A third approach uses unsupervised or semi-
supervised learning to take advantage of large
amounts satellite imagery for which labels are
not available. Pretraining on unlabeled data
has shown great progress in computer vision
(567-59), narrowing the gap with fully super-
vised methods. For instance, two related re-
cent approaches train CNNs to use spatial
similarity between small patches of input im-
ages to derive representations of entire images
without any labeled training data. Represen-
tations learned this way perform well on a
range of tasks, such as crop-type classification
and prediction of wealth and population (60, 61).
Semi-supervised learning strategies attempt to
improve model performance by additionally
leveraging a small amount of labeled data. This
idea improved performance in predicting eco-
nomic well-being from satellite imagery (62).

Model development and evaluation with noisy data

The performance of satellite-based models,
particularly in settings beyond where they
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were trained, is perhaps the most important
concern for researchers and policy-makers
interested in potential applications in sustain-
able development. Noisy training data can de-
grade model performance in two ways. First, it
can diminish the ability of a model to learn
predictive features. Second, and more subtly,
the model might learn relevant features but
perform poorly in predicting test data, precise-
ly because the test data has noise. This latter
outcome would lead researchers to under-
state the model’s true performance. As noisy
datasets are increasingly used for model de-
velopment, researchers must contend with the
dual challenges of not overfitting to noise and
not underestimating model performance. While
existing work mainly highlights the former
challenge (63), we believe the latter is perhaps
more fundamental—and underappreciated.

Noisy training versus noisy test data

Studies in the broader deep learning domain
have demonstrated how models trained on
noisy but numerate labels can still perform
well when evaluated on high-quality test data
(64-67). In sustainable development settings,
although noisy training can certainly still de-
grade model performance when the amount
of training data is limited (68) or errors are
nonrandom, recent studies in agriculture and
infrastructure highlight how such noise can
be overcome by training on large noisy data-
sets and/or evaluating on high-quality test
data (563, 69, 70). For example, a satellite-based
crop classification model trained on labels
derived from millions of imperfectly geo-
located smartphone photos in India was able
to exceed the performance of benchmark
satellite-based classifiers (69).

To further explore this ability to overcome
noise, we used data from an earlier study of
African asset wealth (28) to explore the in-
fluence on model performance of three types
of errors common in publicly available train-
ing data: (i) random noise (“jitter”) purposely
added to village geocoordinates to protect pri-
vacy, (ii) sampling variability noise due to
small samples, and (iii) noise from household
misreporting. We trained models with each
type of noise added and evaluated perfor-
mance on the remaining test data that had
either been similarly degraded or unaltered.
When trained and evaluated on noisy data,
model performance degraded with added
noise (Fig. 4, A to C). Yet when evaluated
on undegraded test data, model performance
remained highly stable, even given large
amounts of training noise.

Accurately assessing model performance

Most existing work has focused on techniques
to avoid overstating model performance, in-
cluding strategies discussed above to avoid
overfitting during training and the typical
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practice of testing models on held-out data.
Here we discuss two strategies for dealing
with the opposite problem: understating model
performance resulting from noise in test data.

A first approach is to ensure that a small
amount of very high-quality ground data is
available for model testing. Training is done
on noisier, more numerous data, and testing is
done on the sparser high-quality data. A sec-
ond strategy is to identify an additional var-
iable associated with the outcome of interest,
such as weather, in the case of economic out-
put, or fertilizer, in the case of agricultural
productivity. The strength of association be-
tween this variable and model predictions—
as measured, for instance, by correlation—can
then be compared with the association be-
tween the variable and the (noisy) training
data for the model. To illustrate these strat-
egies, Fig. 4, D to F, draws on a recent study of
maize yields in Uganda (53). Agreement be-
tween satellite-based yield estimates and noisy
ground data from crop-cuts (i.e., harvests from
small, randomly selected portions of a field)
has a relatively modest explanatory power (co-
efficient of determination R? = 0.28) (Fig. 4D).
Model performance is much better when pre-
dictions are compared with the gold-standard
measure of full plot harvests, available for a
smaller number of randomly selected fields
(Fig 4E). Similarly, the correlation between
satellite estimates and independent third var-
iables (fertilizer use and soil quality) were the
same as the correlation between crop-cut yields
and these measures, suggesting that the “sig-
nal” in the satellite measures was as strong
as that from the ground measure (Fig. 4F). A
similar finding was obtained in Kenya when
pitting satellite-estimated maize yields against
self-reported yield data (18).

Another example of both strategies is given
in (28), where estimates of wealth from sat-
ellites and from ground data are each com-
pared against independent wealth measures
from census data (considered high quality)
and against a measure of annual temperature,
which has been shown to correlate strongly to
economic outcomes. Ground data and model
predictions showed similar correlation against
the independent wealth measure, and both
uncovered similar nonlinear relationships be-
tween temperature and wealth, suggesting that
the satellite-based wealth measure was roughly
as trustworthy as the original ground data.

Applications

Researchers are actively evaluating the use-
fulness of satellite imagery for a range of
sustainable development applications, with
more work thus far focused on whether satel-
lites can be used to make reliable measurements
and less devoted to using derived measures for
downstream research tasks or policy decisions.
We focus on four domains where recent work
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on satellite-based measurement has been par-
ticularly active and where comparable quanti-
tative results exist across studies. Our goal is to
provide rough performance benchmarks across
these domains and, where possible, diagnose
constraints to further improvement. We in-
clude all published or public preprint studies
where comparable test statistics could be ob-
tained for the outcome of interest in a
developing-world geography. We then review
the more limited set of cases where these and
other satellite-based measurements have been
used for research or policy tasks.

Smallholder agriculture

Roughly 2.5 billion individuals, and over half
of the world’s poor, are estimated to live in
“smallholder” households that primarily de-
pend on farming small plots of land for their
livelihoods (77). Although remote sensing has
been used in agricultural applications for de-
cades, coarse sensor resolutions and a paucity
of training data had until recently largely pre-
cluded its application in smallholder agricul-
ture, where field sizes are often <0.1 ha (or
roughly one 30-m Landsat pixel).

Here we assemble data from recent studies
attempting to predict yield at the field scale in
smallholder environments (table S1), a capabil-
ity useful for a range of development appli-
cations, including the targeting and evaluation
of agricultural interventions and the rapid mon-
itoring of rural livelihoods [yield prediction
performance at more-aggregate scales is
reviewed in (72)]. We found 11 studies with
comparable field-scale performance metrics,
spanning multiple continents and seven crops.
All studies used relatively simple models to
relate handcrafted features (typically, vegetation
indices constructed from ratios of reflectances
in the visible and near-infrared wavelengths) to
ground-measured yields, and nearly all eval-
uated models on training rather than held-out
test data. Although predictive performance dif-
fered widely across and within crops (Fig. 5A),
likely owing to the enormous temporal and spa-
tial heterogeneity present in smallholder agricul-
ture, our reanalysis of multiple studies for which
replication data were available allowed insight
into the determinants of model performance.

Models trained and evaluated on more “ob-
jective” ground data (i.e., harvest data col-
lected from crop-cuts or full plot harvests)
performed, on average, substantially better
than models trained on farmer self-reported
data (Fig. 5B), again highlighting the impor-
tance of ground-based measurement error in
model evaluation. Also, model performance
was much higher on larger fields (Fig. 5C),
likely because the same magnitude error can
be more consequential for smaller fields; a
10-m georeferencing error is more consequen-
tial for a 10-m-wide field than it is for a 100-m-
wide field. Finally, additional training samples
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Fig. 4. The role of noise in model performance and evaluation. (A to C) Performance of wealth prediction
model as noise is added to train and test data. Model trained to predict asset wealth from nightlights imagery
across 4000 African villages, using the dataset from (28). Performance is evaluated as three different types of
noise are added to training data: (A) random noise in village geocoordinates (starting from 2.5 km, the actual
noise in the survey data), (B) noise from constructing village-level wealth estimates from decreasing numbers of
households within the village to represent sampling variability, and (C) random noise added to village-level wealth
estimates, representing random response error from respondents. Green lines show performance evaluated on
test data where similar noise has been added, blue lines show performance on test data where noise has not been
added. Shaded areas indicate confidence intervals across 200 runs at a given level of added noise. As all types

of training noise increase, model performance degrades when evaluated against similarly noisy test data but does
not degrade when evaluated against unaltered test data. (D to F) Example from a study of maize yields in Uganda
(53) in which both ground-based and satellite-based measurements can have noise, and multiple approaches can
help adjudicate which is noisier. (D) Imperfect correlation between ground- and satellite-based yield measure does
not reveal source of noise. (E) Comparison of satellite measure with available gold-standard ground measure from full
plot harvest shows higher correlation, indicating ground measure in (D) responsible for at least some of the noise.
(F) Comparison of satellite measure and ground measure with independent third measures expected to correlate with
yields (here, fertilizer use and soil quality) suggests that the two yield measures in (D) are roughly equally noisy.

rapidly improved performance on held-out test
data (as measured by root mean square error)
(Fig. 5D), up to around 30 to 50 samples. Per-
formance was largely stable beyond that, sug-
gesting that, at least in the African settings
represented here, adequate performance for
yield prediction could be achieved with only
a few dozen high-quality training samples.

Population

Accurate knowledge of where people are phys-
ically located is a critical input into an immense
range of research and policy applications. Be-
cause population censuses are infrequent in many
developing countries and fine-scale data from
existing censuses are often not made public,
generating fine-scale estimates of population
locations has been a research focus for decades.

The traditional top-down approach to local-
level population estimation uses satellites
and other inputs to redistribute available ag-
gregate census data down to a finer-scale grid
(1 km or finer), typically using a model trained
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on the available coarse-scale data (73, 74). Anoth-
er approach generates a binary population
mask at fine scale using estimates of building
or settlement locations derived from imagery
and applies this mask to the coarse-scale data
(75). For either approach, predictions can only
be readily evaluated at coarse scale. In the ab-
sence of clear evaluation opportunities, a
consortium of data producers have built use-
ful tools in which different gridded estimates
can be visually compared at local scale (https://
popgrid.org).

For additional quantitative comparison, we
studied three commonly used population ras-
ters that used satellite data as at least one in-
put in their production: WorldPop (74), Global
Human Settlement Layer (GHSL) (75), and
LandScan (73). We harmonized each to a con-
sistent 1-km grid and compared population
estimates for grid cells with nonzero estimates
across all three rasters. Estimates showed mod-
est agreement (7 = 0.62 to 0.78) when com-
paring across all global pixels (Fig. 6), with
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lowest agreement between LandScan and the
other rasters and lower overall agreement in
Africa (r = 0.45), perhaps owing to limited
census data on which to train models. Agree-
ment improves when comparisons are made
at increasingly aggregate levels (Fig. 6E), with
correlations approaching 7 = 1.0 when esti-
mates are aggregated to 100-km pixels.

Validation studies in settings where fine-
scale population data are available found sim-
ilar correlations among datasets, e.g., cell-wise
correlations between the admin data and
GHSL, WorldPop, and LandScan of = 0.83,
0.82, and 0.7, respectively, in Sweden (76).
Other studies in China and Europe found
similar or higher performance of individual
gridded datasets evaluated at somewhat more
aggregate scales but (as in Fig. 6) found that
performance was not uniform and tended to
degrade at finer spatial scales (77, 78).

Because a standard approach to generating
these estimates is to disaggregate official cen-
sus estimates, final estimates are unavoidably
affected by any inaccuracies in the official cen-
sus data, for instance, owing to the most re-
cent census having occurred a decade or more
prior. An alternative that does not present this
problem is to train bottom-up models to di-
rectly predict local-level population estimates.
These approaches have shown promise in
multiple settings (10, 24, 79), are beginning to
be incorporated into global gridded products
(e.g., WorldPop) for countries where censuses
are particularly out of date (80) and have
been shown to be a cost-effective way of gen-
erating reliable national-scale population esti-
mates (10).

Economic livelihoods

Predicting variation in local-level economic
outcomes is another active domain, motivated
by the paucity of existing data (Fig. 1) and the
broad range of applications for which such
data could be useful. As in the agricultural
setting, existing work spans diverse geogra-
phies and seeks to predict a range of out-
comes, making quantitative comparison of
different models or sensors difficult.

We focused on 12 studies that used imagery—
either alone or in combination with other data—
to predict asset wealth at a local level in the
developing world. Asset wealth is a commonly
used measure of households’ longer-run eco-
nomic well-being and is consistently measured
in a number of georeferenced nationally rep-
resentative household surveys. Figure 6F
shows existing estimates, all of which derive
from studies that applied convolutional neural
networks to imagery to generate features used
to predict wealth and reported evaluation sta-
tistics on held-out test data.

‘While study intercomparison remained chal-
lenging owing to the varied geographic settings
(spanning Africa, Asia, and the Caribbean),
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Fig. 5. Performance of satellite-based approaches to measuring smallholder yield at field scale.

(A) Performance across all known published studies where coefficient of determination (R?) was reported
(32 estimates across 11 studies); R? estimates are “in-sample,” i.e., for data on which model was trained.
(B) Difference in performance for models trained and evaluated on crop-cut, self-reported, or full-plot harvest
data suggest that more objective crop measures improve performance. First three estimates are for studies
that compared at least two types of ground data in the same setting. “All studies” estimates pool across
estimates in (A). (C) Performance generally increases when sample is restricted to larger fields, particularly
in East African settings where field sizes are very small. (D) Performance on test data improves rapidly
with additional training examples up to ~30 data points, and then improves more gradually thereafter.
Performance measured as average root mean square error between predicted and observed yields in the test
set, averaged over 100 different random subsets of training samples at each size of the training set.

spatial scales (from village level to district
level), and varying inclusion of nonsatellite
data, results allowed some generalizations.
First, satellite information could always ex-
plain more than half, and often more than
75%, of the variation in the survey-measured
asset wealth, with performance appearing to
trend upward over time. Again, these esti-
mates likely understate true model perfor-
mance, as test data almost always derive from
public data with known sources of noise. Sec-
ond, studies that made predictions at more-
aggregate spatial scales and studies that
combined satellite information with data from
other sources tended to outperform village-
level satellite-only models. These data fusion
approaches have become increasingly com-
mon, with researchers demonstrating how
combining imagery with data from cell phones
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(27), Wikipedia (48), social media (49), or
Open Street Map (51) can improve predictions.

Table S2 describes results from additional
studies that looked at other measures of eco-
nomic livelihoods, including consumption ex-
penditure and multidimensional poverty
indices. Prediction performance for consump-
tion expenditure (the measure on which offi-
cial poverty estimates are based) was typically
lower than that for asset wealth, a difference
that has been in part attributed to relatively
higher noise in the consumption data (25, 28)
and the extreme paucity of public georefer-
enced public consumption data on which to
train models.

Informal settlements

A final related area where there has been much
recent work is in the detection of informal
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settlements (sometimes called slums). Urban
populations are growing rapidly throughout
much of the developing world, and ~30% of
developing-country urban populations are es-
timated to live in slums—settled areas where
inhabitants lack access to essential services,
durable housing, and/or tenure security (81).
Systematic data on the location and size of
such settlements is lacking, making it difficult
to monitor and target service delivery and to
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protect residents against eviction, among other
challenges (8).

Because the spatial structure (e.g., density,
size, and type of buildings) can differ substan-
tially between informal settlements and sur-
rounding regions, researchers have sought to
use imagery to measure the location and size
of these settlements [see (8) for a recent re-
view]. We focus on 23 studies that used satel-
lite imagery to segment or classify informal
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settlements in the developing world. These
studies use a variety of methods, with some
focused on creating rule bases for classifica-
tion and others on directly using machine
learning for classification.

As with the other domains discussed, studies
span diverse geographies where settlements
can be very structurally dissimilar from each
other, making study intercomparison difficult.
However, in 17 studies that reported classi-
fication accuracy (evaluated against typically
small numbers of ground observations), accu-
racy exceeded 80% in most studies and ap-
peared to be improving over time (Fig. 6G).
Table S3 shows results from additional studies
that reported alternate performance metrics.

Application in research

Here we highlight a number of settings in
which measures derived from satellite-based
remote sensing, including those discussed
above, are being used for some downstream
research task in the developing world. The
widest adoption of satellite-derived measures
in research and policy has been in the realm
of population estimates, with existing gridded
population data being used in public health,
disaster response, economic development, and
climate change research (10, 80, 82). Satellite
imagery has also been widely used to better
understand agricultural productivity, includ-
ing why some fields or some regions are more
productive than others (6), whether particular
management practices have been adopted
(83), and the impact of infrastructure invest-
ments on productivity (84, 85). Satellite esti-
mates are also increasingly being used to
identify fields most likely to respond to a
particular input (78, 53) or new management
practice (86).

Fisheries and animal production are addi-
tional food-related domains where satellite
imagery is increasingly used in research and
policy. Recent work shows how multiple satel-
lite sensors and deep learning can shed light
on overall patterns of global fishing activity
(85) as well as on specific activities, such as
illegal fishing (36, 87).

Researchers in economics also increasingly
use satellite imagery, and particularly night-
lights imagery, for a variety of applications
(7). Nightlights have been used to assess the
validity of official government statistics (19, 88);
to understand the growth and activity of urban
versus rural areas (89, 90); and to assess the
role of local and federal institutions, trans-
port costs, and other factors on economic
development (91-94). While the use of optical
imagery beyond nightlights remains some-
what more limited, recent papers have shown
how high-resolution optical imagery can be
used to measure compliance with conservation
programs (95) and to understand how ethnic
favoritism shapes economic investment (96).
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Recent work also shows how satellites can
be useful in the experimental evaluation of
interventions, including measuring the het-
erogeneous impact of new agricultural tech-
nologies on productivity (86), measuring the
impacts of cash transfers on household live-
lihoods (97), and measuring compliance in a
payment-for-forest-protection program (95).
While each of these studies focus on settings
where changes induced by an intervention
are readily apparent in imagery—an aspect
that might not hold in other settings—they
demonstrate the large potential for satellite
imagery to contribute to the quantitative eval-
uation of many development interventions.

Use in decision-making

Although satellite-based measures are now
being used in a variety of research applica-
tions, documented examples of their opera-
tional use in public-sector decision-making
and policy in the developing world is much
more limited. Thus, imagery has so far done
more to help understand sustainable devel-
opment, and less to promote it. Systematic in-
formation on operational use in the private or
military sector is even more sparse, although
use is likely widespread and growing. Here we
only consider public-sector nonmilitary use.

As in research, the widest application of
satellite-based measures in public-sector
decision-making is in the population domain.
For instance, the United Nations World Food
Programme and the US government both use
gridded population estimates to inform needs
assessments and target humanitarian response
after natural disasters (80). Gridded population
data are also being used to inform sampling
strategies for ground surveys (80).

In agriculture, remote-sensed vegetation in-
dices and satellite-derived rainfall estimates
are key inputs into short-term forecasting of
food insecurity, which directly informs food
aid and other humanitarian resource alloca-
tion (98). Numerous systems that track agri-
cultural conditions around the world also
make ample use of remote-sensing informa-
tion, and output from these systems are used
in a wide array of tasks, including in early
warning alerts, foreign aid decisions, analysis
of commercial trends, and trade policy (99).
Data from remote detection of fishing activity
is also being used by numerous governments
and other organizations to manage fisheries
and design protected areas (100).

Documented use in other livelihoods mea-
surement appears limited, although anecdot-
ally there is rapidly growing interest in the
policy community in exploring these mea-
sures (101). The simplest explanation for lim-
ited adoption is that the combination of
satellite information and machine learning
is still new and decision-makers are unfam-
iliar with these approaches or are not con-
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vinced that they are “good enough.” Our view
is that, in many settings, including small-
holder agricultural and livelihood measure-
ment, the true accuracy of satellite-derived
estimates can rival or exceed that of tradi-
tional survey-based measures. It remains the
job of the research community to help make
this clear, and the job of the user community
to transparently define the counterfactual: If
not satellite-based data, what alternative data
would be used to make a decision, and what
do we know about its reliability?

Even if satellite-based measures are accu-
rate, they might not yet be operational. To our
knowledge, there exist no updated, global-scale
estimates of smallholder crop productivity,
economic well-being, or informal settlements
that a decision-maker could immediately use
(estimates are beginning to exist for individual
countries). The research community is arguably
not well positioned to generate and update
such estimates over time, and partnerships
with public-sector institutions or the private
sector to scale and operationalize these esti-
mates could be important in enabling their
sustained use.

Even when models are operational, decision-
makers might be understandably hesitant to
adopt a measure they cannot fully explain.
Deep learning models tend to sacrifice inter-
pretability for predictive performance, but
understanding why a model makes the pre-
dictions it does can help build trust that pre-
dictions are accurate and fair. Well-publicized
instances of algorithmic bias in other settings
[e.g., predictive policing, sentencing, and hir-
ing decisions (102)] and concerns by civil rights
groups that further deployment of algorithmic
decision-making might worsen racial and
socioeconomic inequalities (103, 104) under-
standably amplify worries that predictions
from these new approaches could be either
inaccurate or unfair.

Existing guidelines for Fairness, Account-
ability, and Transparency in Machine Learn-
ing (FAT ML) (105), if followed, could help
navigate these issues. These guidelines aim to
ensure that researchers are aware of potential
discriminatory effects of their algorithms and
are able to investigate and provide redress
should issues arise. While implementation
of the guidelines certainly has its own chal-
lenges (106) (e.g., defining “fairness”), we are
not aware of any of the papers we review
above—our own included—having fully en-
gaged with these guidelines.

A final reason for limited adoption is that
some actors might see benefit in not having
certain outcomes be measured. Autocratic
regimes already collect less data (Fig. 1), and
certain countries have passed laws (since
reversed) that make it a crime to publish in-
dependent estimates of key economic out-
comes (107).
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Conclusions and directions for future work
We draw four main conclusions from the
above analysis and lay out open challenges
and directions for future work. First, satellite-
based performance in predicting key sustain-
able development outcomes is reasonably
strong and appears to be improving. Estimates
are being used in a wide variety of research
applications and, in some cases, are already
actively informing decision-making. Indeed,
analyses suggest that reported model perfor-
mance likely understates true performance in
many settings, given the noisy data on which
predictions are evaluated, and that satellite-
based estimates can equal or exceed the ac-
curacy of traditional approaches to measuring
key outcomes. For certain outcomes, satellite-
based approaches can already add substantial
information at broad scale and low cost com-
pared with what can be collected on the
ground. Numerous quantitative approaches
now exist to assist researchers and practitioners
in better understanding and not underestimat-
ing the performance of satellite-based ap-
proaches relative to traditional alternatives.

Second, perhaps the largest constraint to
model development is now training data rath-
er than imagery. While imagery has become
abundant, the scarcity and (in many settings)
unreliability of quality labels make both training
and validation of satellite-based models difficult.
Expanding the quantity and, in particular, the
quality of labels will quickly accelerate progress
in this field and will allow both researchers and
practitioners to measure new outcomes and to
accurately assess model performance.

Third, despite the growing power of satellite-
based approaches, there are many domains
where such approaches are likely to contrib-
ute little in the near term—for instance, in
measuring female empowerment, educational
outcomes, or conflict events. Even in settings
where satellites are likely to be useful, satellite-
based approaches will likely amplify rather
than replace existing ground-based data col-
lection efforts. High-quality local training data
can nearly always improve model performance
and will remain essential for convincing both
researchers and decision-makers that satellite-
based approaches are working.

Finally, there remain limited documented
cases where satellites have been operationalized
into decision-making processes in the sustain-
able development domains where we focus—
with satellite-informed population estimates
being the main exception. Limited adoption is
likely driven by a number of forces, including
the recency of the technology, the lack of ac-
curacy (perceived or real) of the models, lack of
model interpretability, and entrenched interests
in maintaining the current data regime.

Helping to overcome these constraints con-
stitutes a key task for researchers and policy-
makers going forward. We suggest nine specific
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areas where we believe future work would be
particularly useful:

1) More accurate and more numerous train-
ing data: Many applications of deep learning
outside sustainable development have been
advanced by the curation of public reference
datasets, which lower barriers to entry and
enable comparison of different approaches.
Such datasets are a major public good but are
rare in sustainable development. Particularly
needed are datasets that track outcomes over
time so that models can be optimized to detect
changes. Collecting and publishing location
data from existing or new ground surveys
(using appropriate privacy safeguards already
widely in use) could be mandated by survey
funders.

2) More evaluation in the context of specific
use cases: Most evaluations of satellite estimates
have focused on agreement with a ground-
based measure of a particular outcome. Fewer
studies have then gone the next step to eval-
uate the actual application of the outcome
measure, such as to test the impact of a ran-
domized control trial or target an interven-
tion to a subpopulation. These downstream
tasks often provide a more tangible example
of the utility to potential users and can help
avoid the pitfalls of direct comparisons to
noisy ground measures.

3) Improved model interpretability and
transparency: Interpretable predictions and
transparent decisions based on these predic-
tions are important in settings where people
could be affected. Applying FAT ML or similar
guidelines to research output will also be im-
portant as research is operationalized.

4) Creative data fusion: Combining infor-
mation from optical sensors of different tem-
poral and spatial resolutions, different types of
imagery (e.g., optical and radar), and/or alter-
nate data streams (e.g., from cell phones) ap-
pears to be a particularly promising approach
to improving model performance. As much of
these additional data are collected by the pri-
vate sector, sustained and enforceable data-
sharing agreements between companies and
researchers will be key (108).

5) Scaling estimates: Researchers typically
have more incentive to innovate on methods
than to apply validated methods across large
geographies or to update estimates as new
data come in, limiting the utility of method-
ological advances to downstream use. Part-
nerships between academic researchers and
public- or private-sector organizations that
have the skills and resources to do this scaling
will be key to operationalizing promising re-
search advances.

6) Measuring changes over time: Much of
the literature reviewed above makes predic-
tions at a given point in time, but many ap-
plications require measuring changes over
time. As few ground datasets repeatedly and

Burke et al., Science 371, eabe8628 (2021)

reliably measure the same locations over time,
curating these datasets and using them to
develop and validate temporal predictions
will be key for tracking the evolution of key
sustainability outcomes.

7) Using imagery to actively guide ground
data collection: Improved satellite predictions
could be used to optimally guide further data
collection on the ground—for instance, to col-
lect data in locations where model predictions
are least certain. Research should explore
whether such sampling strategies could im-
prove outcome measurement as compared with
traditional sampling approaches.

8) Understanding potential pitfalls in causal
inference applications: For instance, can pov-
erty predictions from a satellite-based model
be used to study the impact of new road con-
struction on poverty, if there is a chance that
the model looks for a road to decide whether a
location is poor? How do we proceed if we are
concerned that image-derived proxies for a
dependent variable of interest are themselves
the independent variable of interest?

9) Improved guidelines for privacy: As pre-
dictions become increasingly granular and ac-
curate, who has access to these data? How can
precisely georeferenced ground data (which is
increasingly collected) be used to train or val-
idate models without undermining privacy?
Guidelines for navigating these issues are in-
creasingly critical as models improve.
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Satellite monitoring of development

Recent years have witnessed rapid growth in satellite-based approaches to quantifying aspects of land use,
especially those monitoring the outcomes of sustainable development programs. Burke et al. reviewed this recent
progress with a particular focus on machine-learning approaches and artificial intelligence methods. Drawing on
examples mostly from Africa, they conclude that satellite-based methods enhance rather than replace ground-based data
collection, and progress depends on a combined approach.
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