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How to solve dynamic stochastic models
computing expectations just once
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We introduce a computational technique—precomputation of integrals—that
makes it possible to construct conditional expectation functions in dynamic
stochastic models in the initial stage of a solution procedure. This technique is
very general: it works for a broad class of approximating functions, including
piecewise polynomials; it can be applied to both Bellman and Euler equations;
and it is compatible with both continuous-state and discrete-state shocks. In the
case of normally distributed shocks, the integrals can be constructed in a closed
form. After the integrals are precomputed, we can solve stochastic models as if
they were deterministic. We illustrate this technique using one- and multi-agent
growth models with continuous-state shocks (and up to 60 state variables), as well
as Aiyagari’s (1994) model with discrete-state shocks. Precomputation of integrals
saves programming efforts, reduces computational burden, and increases the ac-
curacy of solutions. It is of special value in computationally intense applications.
MATLAB codes are provided.
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1. Introduction

Existing global methods for solving dynamic stochastic models compute conditional
expectation functions in their iterative cycles.1 Recomputing expectation functions in
each iteration is costly and the cost grows rapidly (i) when the number of random vari-
ables increases (because the dimensionality of integrals increases), (ii) when more accu-
rate integration methods are used (because the number of integration nodes increases),
and (iii) when models become more complex (because numerical solvers are used more
intensively, and this involves additional evaluations of integrals).

In this paper, we introduce a computational technique that makes it possible to con-
struct conditional expectation functions in the initial stage of the solution procedure;
we refer to this technique as precomputation of expectation functions or precomputa-
tion of integrals. The idea is simple and can be seen from the following example: As-
sume that the value function of a stylized growth model is approximated using a linear
polynomial function V (k�z) ≈ b0 + b1k+ b2z, where b0, b1, and b2 are polynomial co-
efficients, k is capital, and z is productivity that follows a first-order autoregressive pro-
cess, z′ = zρ exp(ε′), with ρ ∈ (−1�1) and ε′ being a random shock. The key step of our
precomputation analysis is to notice that expectation of an ordinary polynomial func-
tion can be derived in a closed form as E[b0 + b1k

′ + b2z
′] = b0 + b1k

′ + b2z
ρI , where

I ≡ E[exp(ε′)]. Given a distribution function of ε′, the integral I can be constructed
either analytically or numerically. In particular, it can be constructed analytically in
the case of normally distributed shocks, used by a vast majority of economic models,

namely, for ε′ ∼ N (0�σ2), we have I = exp(σ
2

2 ). Importantly, we need to construct I just
once, in the stage of initialization. Within the main iterative cycle on bs, expectation
functions can be evaluated by using a closed-form expression that contains no random
variables, that is, E[V (k′� z′)] ≈ b0 + b1k

′ + b2z
ρI . In effect, precomputation of integrals

allows us to solve a stochastic problem as if it was a deterministic problem.
In our example, the advantage of using precomputation of integrals is twofold: First,

we attain higher accuracy of numerical solutions because we construct integrals exactly,
whereas the related literature constructs integrals approximately, by using some numer-
ical integration method (e.g., Monte Carlo, quasi-Monte Carlo, quadrature, monomi-
als).2 Second, we are able to reduce the cost of constructing numerical solutions because
in the main iterative cycle we evaluate future value function in just one composite future
state, whereas the existing global solution methods approximate future value function
as a weighted average across a possibly large number of future states.

Of course, our example is very special. However, it turns out that integrals can be pre-
computed in a variety of other contexts: First, precomputation of integrals can be imple-
mented for any set of equations that contain conditional expectation functions, includ-
ing the Bellman and Euler equations. Second, integrals can be precomputed not only

1For reviews of methods for solving dynamic economic models, see Taylor and Uhlig (1990), Rust (1996,
2008), Gaspar and Judd (1997), Judd (1998), Marimon and Scott (1999), Santos (1999), Christiano and Fisher
(2000), Miranda and Fackler (2002), Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006), Stachursky
(2009), Den Haan (2010), Kollmann, Maliar, Malin, and Pichler (2011), and Maliar and Maliar (2014).

2See Judd, Maliar, and Maliar (2017) for a discussion of alternative accuracy measures of numerical so-
lutions.
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for ordinary polynomial functions but also for any other approximating families whose
bases are separable in endogenous and exogenous state variables, including orthogonal
polynomial families such as Chebyshev, Smolyak, Hermite, and piecewise polynomial
functions, as well as many nonpolynomial families.3 Third, precomputation of integrals
can be combined with other computational techniques used by existing global solution
methods, including a variety of solution domains, integration rules, fitting methods, and
iterative schemes for finding unknown parameters of approximating functions. Fourth,
precomputation of expectation functions is also possible for models with a discrete set
of shocks and a discrete set of controls. Fifth, integrals can be computed analytically not
only for univariate, but also for multivariate normally distributed shocks, including the
case when shocks are correlated. Finally, in those cases when integrals cannot be con-
structed analytically, we can construct them numerically using very accurate methods
since they should be constructed just once (i.e., this is a one time fixed cost).

We emphasize that precomputation of integrals is not a new solution method but
an analytical and numerical manipulation of the model’s equations that simplifies the
construction of conditional expectation functions. Moreover, precomputation of inte-
grals is not related to any specific solution method: any numerical solution method that
can be applied to solve the original model’s equations can also be applied to solve the
model’s equations, obtained after precomputing the integrals. In particular, we show
that the precomputation technique can enhance the performance of five existing solu-
tion methods: conventional value function iteration, the endogenous grid method of
Carroll (2006), the envelope condition method of Maliar and Maliar (2013), and two
versions of the Euler equation methods. In the context of the stylized one-agent neo-
classical growth model, we show that precomputation of integrals reduces the running
time of the value-iterative and Euler equation methods up to three and five times, re-
spectively, depending on the degree of the polynomial approximation and the specific
solution method considered. Furthermore, we show that precomputation of integrals
can be implemented in more complex models such as a growth model with elastic la-
bor supply. MATLAB codes are provided in a supplementary file on the journal website,
http://qeconomics.org/supp/329/code_and_data.zip. It is noteworthy that precompu-
tation of integrals leads to much larger gains in terms of accuracy and speed in models
with multiple shocks than in models with one shock. We solve a multicountry growth
model with up to 30 heterogeneous countries (60 state variables, including 30 corre-
lated shocks) using a generalized stochastic simulation algorithm (GSSA) in line with
Judd, Maliar, and Maliar (2011). In the latter paper, integrals are approximated numer-
ically using deterministic integration methods such as a Gauss Hermite product rule
and two monomial integration methods; for these methods, the number of integration
nodes grows with the number of shocks exponentially, quadratically, and linearly, re-
spectively. In contrast, precomputation of integrals always means just one integration
node. We find that precomputation of integrals can reduce the running time by many
orders of magnitude with multivariate shocks compared to numerical approximations

3See Judd (1998) for a survey of polynomial approximating functions. Also, see Krueger and Kubler
(2004), and Judd, Maliar, Maliar, and Valero (2014) for a discussion of Smolyak approximating functions.

http://qeconomics.org/supp/329/code_and_data.zip
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of integrals. In particular, in the model with 30 countries, only the solution method using
precomputation of integrals was able to deliver accurate second-order numerical solu-
tions, while similar solution methods, which use numerical approximations of integrals,
were too expensive.

Finally, we show that expectation functions can be also precomputed in models with
a discrete set of shocks. As an illustration, we use Aiyagari’s (1994) model in which de-
cision functions are parameterized by piecewise linear polynomial functions. Here, the
reduction in running time depends critically on the number of states in the associated
Markov chain for exogenous shocks. In our baseline case of a seven-state Markov chain,
the running time is reduced by around 50%, but far larger reductions in cost are possible
when the number of states increases. Our analysis suggests that the gains from precom-
putation of expectation functions will be especially large in models with multiple shocks
in which Markov chains are characterized by a very large number of states.

In the case of value-iterative methods, precomputation of integrals is always bene-
ficial: it does not affect the way in which value function iteration is implemented; it just
makes it faster. In the case of the Euler equation methods, precomputation has benefits
but may also have costs. To precompute expectation functions, we must reparameter-
ize the Euler equation in a particular way and we must construct a policy function for
a specific variable that is the integrand of the expectation function in the Euler equa-
tion.4 In some applications, it could happen that this new policy function is harder to
approximate accurately than conventional policy functions for capital or consumption.
We observe this effect in the context of Aiyagari’s (1994) model: an algorithm iterating on
the reparameterized Euler equation delivers slightly less accurate solutions than a simi-
lar algorithm iterating on the conventional Euler equation because the integrand has a
spike in the area of the kink. However, such an accuracy reduction is very minor, even in
this special case.

The rest of the paper is as follows. In Section 2, we introduce the technique of
precomputation of integrals in the context of an optimal growth model with one
continuous-state shock. In Section 3, we show the precomputation results for models
with multivariate continuous-state shocks. In Section 4, we show how to precompute
expectation functions in models with discrete-state shocks. In Section 5, we describe
possible generalizations of the precomputation technique, and we discuss some of its
limitations. Finally, in Section 6, we conclude. Appendices are available in a supplemen-
tary file on the journal website, http://qeconomics.org/supp/329/supplement.pdf.

2. Univariate continuous-state expectations

We show the technique for precomputing univariate (one-dimensional) continuous-
state integrals in the context of the standard one-agent neoclassical stochastic growth
model.

4It turns out that the reparameterization of the Euler equation that is necessary for precomputing inte-
grals leads to the same system of equations that does the version of the envelope condition method that
iterates on the derivative of the value function (ECM-DVF); see Maliar and Maliar (2013) and Arellano,
Maliar, Maliar, and Tsyrennikov (2016). Thus, our analysis suggests that the ECM method produces systems
of equations that are suitable for precomputation of integrals by construction.

http://qeconomics.org/supp/329/supplement.pdf
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2.1 Neoclassical stochastic growth model

The representative agent solves

max
{kt+1�ct }∞t=0

E0

∞∑
t=0

βtu(ct) (1)

s.t. ct + kt+1 = (1 − δ)kt + ztf (kt)� (2)

lnzt+1 = ρ lnzt + εt+1� (3)

where (k0� z0) is given, Et is an operator of conditional expectation, ct , kt , and zt are
consumption, capital, and productivity level, respectively, β ∈ (0�1), δ ∈ (0�1], and
ρ ∈ (−1�1) are parameters, εt+1 ∼ N (0�σ2) is a productivity shock, and u and f are the
utility and production functions, respectively, both of which are strictly increasing, con-
tinuously differentiable, and concave.

Bellman equation We can characterize a solution to the model (1)–(3) by using a dy-
namic programming approach. The Bellman equation is

V (k�z)= max
k′�c

{
u(c)+βE[

V
(
k′� z′)]} (4)

s.t. k′ = (1 − δ)k+ zf (k)− c� (5)

lnz′ = ρ lnz+ ε′� (6)

where ε′ ∼ N (0�σ2) and E[V (k′� z′)] ≡ E[V (k′� z′)|k�z] is expectation conditional on
state (k� z); here and later in the text, the primes on variables denote their next-period
values. We solve for value function V (k�z) that satisfies (4)–(6).

Euler equation We can also characterize a solution to (1)–(3) by a set of the first-order
conditions. The Euler equation is

u′(c)= βE[
u′(c′)(1 − δ+ z′f ′(k′))]� (7)

We solve for the policy functions such as c = C(k�z) and k′ =K(k�z) that satisfy (5), (6),
and (7).

Numerical approximation of expectation functions (integrals) To implement iteration
on Bellman and Euler equations, we must construct and evaluate expectation functions,
E[V (k′� z′)] and E[u′(c′)(1 − δ + z′f ′(k′))], respectively. The related literature approxi-
mates expectation functions using numerical integration methods, such as Monte Carlo,
quasi-Monte Carlo, quadrature, and monomial. All such methods approximate the value
of an integral of a given function G by a weighted sum of the integrand function evalu-
ated in a finite number of nodes,

E
(
G

(
ε′)) =

∫ +∞

−∞
G

(
ε′)ω(

ε′)dε′ ≈
J∑
j=1

wjG
(
ε′
j

)
� (8)
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where ω(·) is a probability density function of ε′, and {ε′
j} and {wj} are the integra-

tion nodes and weights, respectively, j = 1� � � � � J. However, integration methods differ
in the number and placement of the integration nodes and in the choice of integration
weights. Typically, there is a trade-off between the accuracy and cost: integration for-
mulas with more nodes (and thus, with a higher evaluation cost) lead to more accurate
approximations. Importantly, all the existing solution methods recompute expectation
functions using (8) each time when they are evaluated in the solution procedure, which
involves a substantial cost. We will show that this cost can be significantly reduced, while
attaining the highest possible accuracy in approximation of integrals.

2.2 Precomputation of univariate integrals under ordinary polynomial approximations

In this section, we show that for a class of ordinary polynomial functions, conditional ex-
pectation functions can be constructed prior to solving the model, that is, precomputed.
Our precomputation analysis builds on the following fact: If a state-contingent function
is parameterized by an ordinary polynomial function, then its conditional expectation
function can be analytically characterized for any vector of the polynomial coefficients
and any state of the world. (We had shown this result for a linear polynomial function in
the Introduction, and we now generalize this result for polynomials of higher degrees.)

Let a function P(k� z) be approximated with a complete ordinary polynomial func-
tion, that is,

P(k� z;b)= b0 + b1k+ b2z+ b3k
2 + b4kz+ b5z

2 + · · · + bnzL� (9)

where b≡ (b0� b1� � � � � bn) ∈ R
n+1 is a vector of polynomial coefficients and L is a degree

of polynomial. Taking into account that k′ =K(k�z) is known at present and that future
productivity depends on a random draw z′ = zρ exp(ε′), we can represent conditional
expectation of P(k′� z′;b) as

E
[
P

(
k′� z′;b)]

=E[
b0 + b1k

′ + b2z
ρ exp

(
ε′) + b3

(
k′)2 + b4k

′zρ exp
(
ε′) + · · · + bnzLρ exp

(
Lε′)]

= b0 + b1k
′ + b2z

ρE
[
exp

(
ε′)] + b3

(
k′)2 + b4k

′zρE
[
exp

(
ε′)] + · · ·

+ bnzLρE
[
exp

(
Lε′)]

= b0I0 + b1I1k
′ + b2I2z

ρ + b3I3
(
k′)2 + b4I4k

′zρ + · · · + bnInzLρ

= b′
0 + b′

1k
′ + b′

2z
ρ + b′

3
(
k′)2 + b′

4k
′zρ + · · · + b′

nz
Lρ

≡ P
(
k′� zρ;b′)�

(10)

where b′ ≡ (b′
0� b

′
1� � � � � b

′
n) ∈R

n+1. The coefficients b′
i and bi, for i= 0�1� � � � � n, are related

by

b′
i = biIi� (11)
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where

Ii =E
[
exp

(
liε

′)]� (12)

with li being a power on z′ in the ith monomial term. For example, z does not enter
in the monomial terms i = 0�1�3�6, so l0 = l1 = l3 = l6 = 0 and the corresponding Is
are I0 = I1 = I3 = I6 = 1; z does enter linearly in monomial terms i = 2�4�7, so that we
have l2 = l4 = l7 = 1 and I2 = I4 = I7 = E[exp(ε′)]; similarly, we obtain l5 = l8 = 2 and
I5 = I8 =E[exp(2ε′)], . . . , and In =E[exp(Lε′)].

The integrals I0� � � � �In depend only on the properties of exogenous shock ε′ and
can be computed up-front without specifying the values of the coefficients b (which are
unknown before the model is solved), that is, the integrals can be precomputed. Once
Is are constructed, evaluation of conditional expectation becomes trivial in the itera-
tive procedure. Namely, conditional expectation of a polynomial function is given by
the same polynomial function but evaluated at a different coefficients’ vector, that is,
E[P(k′� z′;b)] = P(k′� zρ;b′), where a relation between b′ and b is determined by (11)
and (12). In particular, for the case of normally distributed innovations ε′ ∼ N (0�σ2), the
integrals (12) can be computed exactly (in a closed form); we do this in Section 2.4. For
those probability distributions for which analytical characterizations are not possible,
integrals can be precomputed numerically very accurately, since we need to construct
them just once at the beginning of the iterative cycle (i.e., this is a one time fixed cost).

Remark 1. The precomputation result (11) and (12) also holds for piecewise polyno-
mial approximations. For example, let us parameterize P(k� z) on a rectangular grid
[k1� � � � �kM ]×[z1� � � � � zN ] by using a collection of piecewise linear polynomial functions.
Then, in each local area [km�km+1] × [zn� zn+1], we have a local polynomial function

P[km�km+1]×[zn�zn+1](k� z)= β(m�n)0 +β(m�n)1 k+β(m�n)2 z�

where n ∈ {1� � � � �N} and m ∈ {1� � � � �M}. The expectation function in each local area is
given by

E
[
P[km�km+1]×[zn�zn+1]

(
k′� z′)] = β(m�n)0 +β(m�n)1 k′ +β(m�n)2 zρE

[
exp

(
ε′)]�

i.e., (11) and (12) hold in each local area. The precomputation analysis can be general-
ized to higher-order piecewise polynomial approximations in a similar way.

2.3 Characterizing the solution under precomputation of integrals

In this section, we show how to precompute expectations in the Bellman and Euler equa-
tions.

2.3.1 Bellman equation with precomputation of integrals Precomputation of integrals
is straightforward in the Bellman equation. We parameterize the true value function
V (k�z) with a flexible functional form V̂ (k� z;b) given by polynomial (9). Using (10),
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we rewrite the Bellman equation (4)–(6) as

V̂ (k� z;b) �= max
k′�c

{
u(c)+βV̂ (

k′� zρ;b′)}� (13)

s.t. k′ = (1 − δ)k+ zf (k)− c� (14)

b′
i = biIi� i= 0�1� � � � � n� (15)

where
�= indicates that the equality is satisfied approximately, b≡ (b0� b1� � � � � bn) ∈R

n+1

and b′ ≡ (b′
0� b

′
1� � � � � b

′
n) ∈ R

n+1, and the Iis in (15) are determined by (12). In the trans-
formed Bellman equation (13)–(15), the effect of uncertainty on the solution is summa-
rized by expected values in (12) that determine a relation between b and b′. To solve the
transformed Bellman equation, we proceed in two steps. First, construct {I0� � � � �In} us-
ing (12); second, find b that solves (13)–(15). Apart from the fact that b and b′ differ, the
transformed Bellman equation (13)–(15) is standard and can be solved using a variety of
solution algorithms available in the literature; we show some algorithms in Section 2.5.
The only difference is that we are able to construct expectation functions faster and/or
more accurately.

2.3.2 Euler equation with precomputation of integrals Precomputation of integrals is
trickier in the Euler equation. The precomputation technique introduced in Section 2.2
assumes that a function we parameterize is the same as a function for which we need
to compute expectation. This is true for the Bellman equation approach when we pa-
rameterize V (k�z) and compute E[V (k′� z′)]. However, this is not true for the existing
Euler equation approaches that parameterize such policy functions as the expectation
function (Den Haan and Marcet (1990)), the capital function (Judd (1992)), and the labor
function (Maliar and Maliar (2005b)), because these functions do not coincide with the
integrand of the expectation function in the Euler equation E[u′(c′)(1 − δ + z′f ′(k′))].
None of these parameterizations allows us to precompute the integrals in the Euler
equation in the way we did in the Bellman equation.5

To adapt the precomputation technique to the Euler equation methods, we repa-
rameterize the Euler equation, namely, we introduce a new variable q that represents
the integrand of the expectation function in the Euler equation (7):

q≡ u′(c)
[
1 − δ+ zf ′(k)

]
� (16)

In terms of q and q′, the Euler equation (7) is

q

1 − δ+ zf ′(k)
= βE[

q′]� (17)

We now have the same function on the left side q = Q(k�z) as the one inside the ex-
pectation on the right side E[Q(k′� z′)] and we can use the precomputation result. By

5In particular, the parameterized expectation algorithm of Den Haan and Marcet (1990) parameterizes
the expectation function but to precompute integrals, we need to parameterize the integrand of the expec-
tation function.
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parameterizing Q(·) with a flexible functional form Q̂(·;b) given by polynomial (9), we
rewrite the Euler equation (17) as

Q̂(k� z;b)
1 − δ+ zf ′(k)

�= βQ̂(
k′� zρ;b′)� (18)

where b and b′ are related by (11). Again, after the integrals are precomputed, all the
effect of uncertainty on the solution is compressed into a mapping between vectors b
and b′. To solve the transformed Euler equation, we proceed in two steps. First, we con-
struct {I0� � � � �In} using (12); second, we find b that solves (5), (6), and (18). As in the
case of the Bellman equation, we can use a variety of solution algorithms to solve the
transformed problem; we show an example of such algorithms in Section 2.5.

In fact, the proposed change of variables makes it possible to precompute integrals
in any set of equations that contains expectation functions: we just need to introduce
new variables that represent the integrands of expectations functions and rewrite the
model’s equations in terms of these new variables.

2.3.3 Precomputation of integrals and envelope condition method There is a relation
between the technique of precomputation of integrals and the envelope condition
method (ECM) introduced in Maliar and Maliar (2013) and developed in Arellano et al.
(2016). If a solution to the Bellman equation (4)–(6) is interior, it satisfies a first-order
condition and envelope condition, which, respectively, are

u′(c) = βE
[
V1

(
k′� z′)]� (19)

V1(k� z) = u′(c)
[
1 − δ+ zf ′(k)

]
� (20)

where Fi denotes a first-order derivative of a function F with respect to the ith argument
and g′ denotes a first derivative of a function g. Combining (19) and (20) yields the Euler
equation (7) in terms of the derivatives of the value function:

V1(k� z)

1 − δ+ zf ′(k)
= βE[

V1
(
k′� z′)]� (21)

This is an equation that is used to implement a version of the ECM method iterat-
ing on the derivative of the value function (ECM-DVF). Notice that Euler equation (21)
used by ECM-DVF is identical (up to notation) to the Euler equation (18) reparameter-
ized for precomputation of integrals, namely, Q̂(k� z;b) and Q̂(k′� zρ;b′) coincide with
V̂1(k� z;b) and V̂1(k

′� zρ;b′), respectively. That is, the ECM method delivers systems of
equations that are directly suitable for precomputation of integrals.

2.4 Analytical versus numerical construction of integrals

In this section, we compare the accuracy and computational expense of analytical and
numerical approximation of integrals.
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Analytical construction of integrals under precomputation In our precomputation
analysis, integrals (12) can be constructed analytically for the case of normally dis-
tributed shock ε′ ∼ N (0�σ2), that is,

Ii =E
[
exp

(
liε

′)] = 1√
2πσ2

∫ +∞

−∞
exp

(
liε

′)exp
(

−
(
ε′)2

2σ2

)
dε′

= 1√
2πσ2

∫ +∞

−∞
exp

(
−

(
ε′ − liσ2)2

2σ2

)
exp

(
σ2l2i

2

)
dε′

= exp
(
σ2l2i

2

)
�

(22)

where, to obtain the last result, we use the fact
∫ +∞
−∞ f (x)dx = 1 for a density function

f of a normally distributed variable x with mean liσ2 and variance σ2. While this is a
special case, it is a very important one as the assumption of normally distributed shocks
is employed by nearly all the literature on dynamic economic models. Maliar and Maliar
(2004, 2005a) provide related examples of analytical precomputation of integrals in eco-
nomic models.

Numerical construction of integrals We consider two numerical integration methods
that are commonly used in the literature, namely, a Monte Carlo method and a Gauss
Hermite quadrature method. Both methods approximate integrals by a weighted aver-
age (8), but differ in the choice of the integration nodes and their weights. The Monte
Carlo method generates nodes by using a random draw and assigns equal weights to all
nodes, while the Gauss Hermite quadrature method uses a set of nodes and weights that
mimic the shape of the normal distribution. For the Monte Carlo method, we use 100
and 10,000 nodes, and for the Gauss Hermite quadrature method, we use 2, 5, and 10
nodes; we refer to these methods as MC(100), MC(10,000), GH(2), GH(5), and GH(10),
respectively; see Judd, Maliar, and Maliar (2011) for a description of these methods.

Comparison of the accuracy Since we have exact closed-form expressions for the inte-
grals, we can assess the accuracy of approximations produced by numerical integration
methods. Specifically, we compute a percentage difference between the exact value of
an integral (evaluated using analytical expression (22)) and its approximate value (com-
puted using a given numerical integration method).

As expected, the numerical integration methods become less accurate as the de-
grees of uncertainty increase. In Table 1, we report the exact value (22) of integral Ii for
li = 1� � � � �5 under the standard deviation of shocks σ = 0�2; this size of shocks roughly
corresponds to models with idiosyncratic risk such as Aiyagari’s (1994) model.

GH(10) delivers the most accurate results with 11 digits of accuracy; GH(5) guaran-
tees 4 digits of accuracy and MC(10,000) ensures 2 digits of accuracy, while the rest of the
methods are less accurate and produce errors of up to 6�4%. (For the Monte Carlo meth-
ods, the value of the integral is a random variable that depends on a specific random
draw, and the numbers in the table show a typical experiment.)
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Table 1. Accuracy of univariate numerical integration methods.

Numerical Integration Errors (%)

Integral
Exact Value Under
Precomputation GH(2) GH(5) GH(10) MC(100) MC(10,000)

E[exp(ε′)] 1�0202 −0�0132 −0�0000 0 1�7833 0�0327
E[exp(2ε′)] 1�0833 −0�2044 −0�0000 0 3�3320 0�0628
E[exp(3ε′)] 1�1972 −0�9816 −0�0000 0 4�4131 0�1425
E[exp(4ε′)] 1�3771 −2�8823 −0�0003 −0�0000 4�7574 0�3434
E[exp(5ε′)] 1�6487 −6�4074 −0�0025 −0�0000 4�0906 0�7724

Note: GH(2), GH(5), and GH(10) are Gauss Hermite quadrature methods with 2, 5, and 10 nodes, respectively; MC(100)
and MC(10,000) are Monte Carlo integration methods with 100 and 10,000 nodes, respectively.

We repeat the calculations under a lower standard deviation of shocks σ = 0�02; this
size of shocks is typical for business cycle models. Here, all deterministic methods are
very accurate: in particular, GH(10) and GH(5) guarantee more than 14 digits of accu-
racy, while GH(2) is slightly less accurate and guarantees 5 digits of accuracy. MC inte-
gration methods are considerably less accurate; for example, with 100 nodes, the abso-
lute unit-free errors range between 0�2 and 0�9%, respectively, and with 10,000 nodes,
they range between 0�005 and 0�02%, respectively, in a typical simulation. (To save on
space, the results for σ = 0�02 are not reported.)

Comparison of costs In Table 2, we illustrate the difference in costs between the exact
and approximate integration methods. Specifically, we report the factors that show how
much the time for evaluating expectation function (8) increases when we use numerical
integration methods relative to the case when we use the closed-form expression (22). In
particular, the first line of the table shows the results for the linear polynomial function
E[b0 + b1k

′ + b2z
′].

Our results show that evaluating integrals using precomputation can be consider-
ably faster than doing it numerically. The difference in costs is especially large for Monte
Carlo integration (orders of magnitude). Notice that the reported difference in costs is
just for a one time evaluation of integral. However, when constructing numerical so-
lutions to dynamic economic models, we must evaluate integrals many times in an it-

Table 2. Computational cost of univariate numerical integration methods.

Speedup From PrecomputationPolynomial
Degree

Evaluation Time Under
Precomputation (in sec) GH(2) GH(5) GH(10) MC(100) MC(10,000)

1st 0�1498(−3) ×1�39 ×2�10 ×2�64 ×17�24 ×1104�3
2nd 0�1652(−3) ×1�52 ×1�78 ×2�95 ×27�92 ×2254�8
3rd 0�1142(−3) ×1�69 ×1�59 ×2�94 ×31�63 ×2802�1
4th 0�0821(−3) ×1�72 ×2�69 ×5�92 ×52�24 ×5093�7
5th 0�0747(−3) ×1�78 ×4�04 ×7�95 ×74�69 ×7478�5

Note: GH(2), GH(5), and GH(10) are Gauss Hermite quadrature methods with 2, 5, and 10 nodes, respectively; MC(100)
and MC(10,000) are Monte Carlo integration methods with 100 and 10,000 nodes, respectively.
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erative cycle, and the corresponding cumulative difference in cost can be even more
substantial, as we will show in the next section.

2.5 Numerical assessment of gains from precomputation of integrals in Bellman and
Euler equation methods

We must emphasize that the technique of precomputation of integrals is not a new nu-
merical solution method but a computational technique that can improve the perfor-
mance of many existing solution methods in terms of their accuracy and computational
expense. As an illustration, we show how to precompute integrals in two publicly avail-
able MATLAB codes: one code solves a neoclassical growth model with inelastic labor
supply by using seven alternative solution methods described in Arellano et al. (2016);
the other code solves a similar model with elastic labor supply by using four alternative
solution methods, described in Maliar and Maliar (2013). We show that precomputation
of integrals can substantially reduce the cost of value-iterative methods, including con-
ventional value function iteration, the endogenous grid method of Carroll (2006), and
the envelope condition method of Maliar and Maliar (2013), as well as of two variants of
the Euler equation method. All the methods analyzed in this section are elaborated in
Appendices A and B.

2.5.1 Methodology and implementation details Tables 1 and 2 suggest that precom-
putation of integrals can both increase the accuracy and reduce the cost of analyzing
dynamic stochastic models. How large the gains from precomputation of integrals are
will critically depend on a numerical solution method used for comparison. In our com-
parison analysis, we solve the model (1)–(3) by using two otherwise identical numer-
ical solution methods: one method precomputes the integrals by using exact formula
(22) and the other recomputes the integrals on each iteration using an accurate Gauss
Hermite quadrature method with five integration nodes, GH(5). In both cases, the nu-
merical solutions will be essentially the same, and we will only observe the difference
in running times. Thus, we focus on savings in cost maintaining the same (high) accu-
racy of solutions. If a somewhat less accurate integration method is used for comparison
(e.g., Monte Carlo), there will be also considerable accuracy gains from precomputation
of integrals.

To parameterize the model (1)–(3), we assume u(ct)= c
1−γ
t −1
1−γ with γ = { 1

3 �3}, f (kt)=
Akαt with α = 0�36, and A = 1/β−(1−δ)

α (this value normalizes the deterministic steady
state of capital to unity), and we use β= 0�99, δ= 0�025, ρ= 0�95, and σ = 0�01.

We use the simplest possible solution domain, namely, a rectangular, uniformly
spaced grid of 10 × 10 points for capital and productivity within the ergodic range. We
compute polynomial approximations of degrees from 2 to 5. As a measure of accuracy,
we report the mean and maximum of absolute unit-free Euler equation residuals on a
stochastic simulation of 10,000 observations. We use MATLAB R2015b software and a
serial desktop computer with Intel Core i5 (3�2 GHz) and 16 MB RAM.

Remark 2. We draw attention to a novel methodological aspect of our accuracy evalu-
ation procedure that is derived from our precomputaion analysis. Namely, to construct
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the residuals, we use the transformed Euler equation

u′(c) �= βQ̂(
k′� zρ;b′) (23)

instead of the conventional Euler equation (7). This fact allows us to evaluate the ex-
pectation functions exactly when evaluating accuracy, while in the conventional Euler
equation, the analysis of residuals relies on approximate numerical integration, which
may contaminate the inferences about the accuracy.

2.5.2 Numerical results for value-iterative methods Conventional value function iter-
ation (VFI) is expensive; see Aruoba, Fernández-Villaverde, and Rubio-Ramírez (2006).
Two recent value-iterative methods help us to reduce the cost of iterating on value func-
tion, namely, the endogenous grid method (EGM) of Carroll (2006) and the envelope
condition method () of Maliar and Maliar (2013). We show that the technique of pre-
computation of integrals can reduce the cost of conventional value function iteration,
as well as the cost of these two recent methods. Notice that if it is used in the context of
the value-iterative methods, precomputation of integrals produces just benefits without
adding any costs, namely, it does not affect the way in which such methods are imple-
mented but it just makes them faster.

Conventional VFI Conventional VFI requires finding k′ that maximizes the right side
of Bellman equation (4) for each state (k� z). By combining (4) and (5), we get

V (k�z)= max
k′

{
u
(
(1 − δ)k+ zf (k)− k′) +βE[

V
(
k′� z′)]}� (24)

We must solve (24) with respect to k′ in each point of the grid (k� z). To find a maxi-
mizer k′ in (24), we must explore many different candidate points k′ and for each of
such points, we must interpolate V to future values (k′� z′) and approximate the cor-
responding conditional expectation function E[V (k′� z′)]. Precomputation of integrals
reduces the cost of VFI by constructing the conditional expectation function up-front,
before solving the model.

In Table 3, we compare the performance of two versions of conventional VFI: one in
which conditional expectation is computed at each iteration and the other in which it is
precomputed up-front before starting the solution procedure.

Both versions of conventional VFI deliver the same levels of accuracy for all polyno-
mial approximations considered. However, VFI with precomputation is nearly two times
faster than the version without precomputation. The overall cost of finding a solution is
still high for both methods. Precomputation helps us to reduce the numerical cost of
the integral evaluation but there is still a large cost associated with solving a nonlinear
equation in each grid point.

Endogenous grid method Carroll (2006) introduces an EGM that reduces the cost of
conventional VFI. The key idea of EGM is to construct a grid on future endogenous state
variables k′ instead of current endogenous state variables k. By combining (4) and (5),
we get

V (k�z)= max
k′

{
u
(
(1 − δ)k+ zf (k)− k′) +βW (

k′� z
)}
� (25)



864 Judd, Maliar, Maliar, and Tsener Quantitative Economics 8 (2017)

Table 3. Accuracy and cost of conventional VFI with and without precomputation.

γ = 1/3 γ = 3

No Precomputation Precomputation No Precomputation PrecomputationPolynomial
Degree L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

2nd −4�02 −3�52 4�09 −4�02 −3�52 1�56 −3�43 −2�43 6�86 −3�43 −2�43 4�42
3rd −5�38 −4�64 6�45 −5�38 −4�64 3�00 −4�38 −3�11 12�19 −4�38 −3�11 7�87
4th −6�65 −5�77 7�92 −6�65 −5�77 3�87 −5�27 −3�82 16�33 −5�27 −3�82 10�37
5th −7�97 −6�85 8�73 −7�97 −6�85 4�36 −6�05 −4�45 19�76 −6�05 −4�45 12�41

Note: The statistics L1 and L∞ are, respectively, the average and maximum of absolute approximation errors across opti-
mality condition and test points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary
for computing a solution (in seconds); γ is the coefficient of risk aversion.

where W (k′� z)≡ E[V (k′� z′)] is an expectation function that EGM computes at the be-
ginning of each iteration (this is possible to do because the values of k′ are fixed). We
must solve (25) with respect to k in each point (k′� z) of the grid.6 Note that our tech-
nique of precomputation of integrals allows us to go one step further and to construct
integrals just once, at the beginning of the solution procedure.

In Table 4, we compare the performance of two versions of EGM: one in which con-
ditional expectation is recomputed in each iteration and the other in which it is precom-
puted up-front before starting the solution procedure.

The gains from precomputation are smaller under EGM than under conventional
VFI. This is because in the former case, conditional expectations are evaluated just once
per iteration on value function, while in the latter case, they are evaluated multiple times
per iteration when value function is evaluated for different candidate points k′. Still, the
savings from precomputation of integrals are sizable even for the EGM method.

Table 4. Accuracy and cost of the EGM algorithm with and without precomputation.

γ = 1/3 γ = 3

No Precomputation Precomputation No Precomputation PrecomputationPolynomial
Degree L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

2nd −3�89 −3�55 1�12 −3�89 −3�55 0�77 −3�43 −2�44 2�37 −3�43 −2�44 1�87
3rd −5�21 −4�56 2�09 −5�21 −4�56 1�52 −4�39 −3�12 4�25 −4�39 −3�12 3�40
4th −6�36 −5�61 2�76 −6�36 −5�61 2�00 −5�30 −3�84 5�80 −5�30 −3�84 4�60
5th −7�60 −6�65 3�13 −7�60 −6�65 2�32 −6�10 −4�48 7�13 −6�10 −4�48 5�62

Note: The statistics L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality condi-
tion and test points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing
a solution (in seconds); γ is the coefficient of risk aversion.

6This problem still requires a numerical solver. Carroll (2006) proposes a change of variables that can
avoid the use of a numerical solver for this specific model. Precomputation of integrals is also possible
with Carroll’s (2006) change of variables and can speed up computations there as well; we do not study this
method in the paper.
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Envelope condition method The ECM of Maliar and Maliar (2013) relies on a conven-
tional exogenous grid (k� z) and simplifies the root-finding using a different mechanism.
Namely, to construct policy functions, ECM uses the envelope condition instead of the
first-order conditions (FOCs) used by conventional VFI and EGM. For problem (4)–(6),
the envelope condition provides a convenient closed-form expression for consumption
policy function:

c = u′−1
(

V1(k� z)

1 − δ+ zf ′(k)

)
� (26)

Given c, we compute k′ from budget constraint (5) and, finally, evaluate E[V (k′� z′)] on
the right side of the Bellman equation (4) to construct V (k�z) on the left side. In this
model, ECM is simpler than Carroll’s (2006) EGM since all the policy functions can be
constructed analytically and a numerical solver need not be used at all (not even once).
We compare the accuracy and speed of the ECM with and without precomputation of
integrals in Table 5.

The gains from precomputation of integrals are higher for ECM than for previously
considered VFI and EGM. Since ECM avoids finding the roots of nonlinear equations,
the cost of approximating integrals constitutes a larger fraction of total costs. As a result,
savings in the cost of integration are also more substantial in percentage terms for ECM
than for the other methods.

Remark 3. Our results should not be interpreted as a comparison of ECM and EGM.
First, as we said earlier, the cost of EGM in this specific model can be reduced by using
the change of variables proposed in Carroll (2006); second, in more complicated models
(e.g., the one with valued leisure), neither ECM nor EGM can avoid root-finding com-
pletely, although they both can simplify it.7 Maliar and Maliar (2013, 2014) show that in

Table 5. Accuracy and cost of the ECM method with and without precomputation.

γ = 1/3 γ = 3

No Precomputation Precomputation No Precomputation PrecomputationPolynomial
Degree L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

2nd −4�02 −3�52 0�46 −4�02 −3�52 0�14 −3�43 −2�43 0�61 −3�43 −2�43 0�18
3rd −5�38 −4�64 0�62 −5�38 −4�64 0�19 −4�38 −3�11 1�03 −4�38 −3�11 0�32
4th −6�65 −5�77 0�83 −6�65 −5�77 0�26 −5�27 −3�82 1�48 −5�27 −3�82 0�46
5th −7�97 −6�85 0�87 −7�97 −6�85 0�27 −6�05 −4�45 1�83 −6�05 −4�45 0�59

Note: The statistics L1 and L∞ are, respectively, the average and maximum of absolute approximation errors across opti-
mality condition and test points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary
for computing a solution (in seconds); γ is the coefficient of risk aversion.

7For the studied model, Carroll’s (2006) technique requires us to introduce a new variable Y ′ ≡ z′f (k′)+
(1−δ)k′ and to rewrite the Bellman equation as V (Y�z)= max{u(Y −k′)+βE[V (Y ′� z′)]}. Using an endoge-
nous grid on k′ (instead of k) makes it possible to compute E[V (Y ′� z′)] with just one evaluation per itera-
tion. However, in a similar model with labor,Y ′ = z′f (k′� 
′)+(1−d)k′ depends on labor 
′, andE[V (Y ′� z′)]
cannot be computed without solving for labor policy function; see Barillas and Fernandez-Villaverde (2007)
for a method that recomputes the endogenous grid by iterating on the labor policy function, and see Maliar
and Maliar (2013) for a method that computes labor using a numerical solver.
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a model with valued leisure, the performance of ECM and EGM is very similar in terms
of both accuracy and computational expense. Our point is that for all such methods,
precomputation of integrals can help save on costs and increase the accuracy of solu-
tions.

2.5.3 Numerical results for Euler equation methods We next demonstrate that precom-
putation of integrals can also reduce the cost of Euler equation methods. Our bench-
mark solution method is similar to projection methods in Judd (1992) in that it uses a
rectangular grid and deterministic (quadrature) integration methods, but it also uses
fixed-point iteration with damping as in Den Haan and Marcet (1990) and Judd, Maliar,
and Maliar (2011).

Parameterizing Q function Our first Euler equation method parameterizes the new
variable q and uses a change of variables that eliminates consumption. In terms of q,
the Euler equation is given by (17), and the budget constraint is

k′ = (1 − δ)k+ zf (k)− u′−1
(

q

1 − δ+ zf ′(k)

)
� (27)

The results of our numerical experiments for the Euler equation algorithm consid-
ered are provided in Table 6.

The main finding in the table is that savings in costs from precomputation of inte-
grals are much larger for the Euler equation method than for the previously considered
VFI and EGM methods, and are similar to those under the ECM method. Here, the run-
ning time is typically reduced by a factor of 3. Such a large reduction in costs is due to
the fact that the considered Euler equation method avoids finding the roots of nonlinear
equations and spends the largest fraction of total costs on integration.

Parameterizing capital function jointly with Q function In some applications, it might
be preferable to approximate policy functions other than q because such policy func-
tions are better behaved or more convenient for some computational purposes.8 Also, it

Table 6. Accuracy and cost of the Euler equation algorithm, parameterizing Q function, with
and without precomputation.

γ = 1/3 γ = 3

No Precomputation Precomputation No Precomputation PrecomputationPolynomial
Degree L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

2nd −4�02 −3�52 0�53 −4�02 −3�52 0�16 −3�44 −2�46 0�76 −3�44 −2�46 0�23
3rd −5�38 −4�64 0�73 −5�38 −4�64 0�22 −4�38 −3�11 1�37 −4�38 −3�11 0�41
4th −6�65 −5�77 0�98 −6�65 −5�77 0�30 −5�26 −3�82 1�92 −5�26 −3�82 0�59
5th −7�97 −6�85 1�06 −7�97 −6�85 0�32 −6�05 −4�45 2�34 −6�05 −4�45 0�76

Note: The statistics L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality condi-
tion and test points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing
a solution (in seconds); γ is the coefficient of risk aversion.

8For example, a capital policy function may have less curvature than consumption and labor policy func-
tions and, hence, it can be approximated more accurately. Moreover, knowing the capital policy function
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could happen that recovering the decision variables such as c and k′ from q requires us
to solve some nonlinear equations numerically. In this case, the advantages of precom-
puting the integrals might be offset by disadvantages of numerical root-finding. While
precomputation of integrals is not directly suitable for approximating functions other
than q, it is still possible to approximate other policy functions jointly with q (and thus,
sidestep the root-finding step). As an example, we show how to use the precomputation
technique for approximating the capital policy function k′ =K(k�z).

Premultiplying both sides of Euler equation (17) by k′ and rearranging the terms, we
obtain an equivalent representation of the Euler equation (as long as k′ > 0),

k′ = βE
[
q′]
q

(
1 − δ+ zf ′(k)

)
k′ �= K̂(k� z;v)� (28)

where K̂(·;v) is a flexible functional form and v is the coefficients vector. Thus, we have
expressed k′ in two ways: one is as today’s choice variable k′ parameterized by K̂(·;v);
the other is as a combination of the model’s variables that involves conditional expec-
tation of a random variable E[q′]. We can compute the capital policy function as a fixed
point of (28) by iterating on v until convergence. However, to perform such iterations,
we also need to construct q, defined by (16), and E[q′]. We again compare two otherwise
identical numerical solution methods: one that recomputes E[q′] in each step of the it-
erative procedure using a five-node Gauss Hermite quadrature method; the other that
precomputes E[q′] in the beginning.

In Table 7, we provide the results for the Euler equation method approximating the
capital policy functionK jointly withQ.

The accuracy of this version of the Euler equation algorithm is similar to that of the
Euler equation algorithm that parameterizes onlyQ; however, the running time is some-
what larger. This is because such a method is less numerically stable than the other
methods and we had to use damping to enhance numerical stability, namely, we update
the policy function only by 15% from one iteration to another.

Table 7. Accuracy and speed of the Euler equation algorithm, jointly parameterizing functions
Q and K, with and without precomputation.

γ = 1/3 γ = 3

No Precomputation Precomputation No Precomputation PrecomputationPolynomial
Degree L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

2nd −4�02 −3�52 3�18 −4�02 −3�52 0�90 −3�44 −2�46 4�86 −3�44 −2�46 0�87
3rd −5�38 −4�64 3�69 −5�38 −4�64 1�05 −4�38 −3�11 7�26 −4�38 −3�11 1�56
4th −6�65 −5�77 4�36 −6�65 −5�77 1�26 −5�26 −3�82 9�44 −5�26 −3�82 2�24
5th −7�42 −6�53 4�46 −7�42 −6�53 1�33 −6�05 −4�45 10�77 −6�05 −4�45 2�70

Note: The statistics L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality condi-
tion and test points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing
a solution (in seconds); γ is the coefficient of risk aversion.

makes it possible to compute endogenous state variables in all grid points without solving for control vari-
ables, which is convenient for parallel computation.
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The gains from precomputation of integrals are even larger for this version of the Eu-
ler equation method than for the one parameterizing theQ function; in particular, under
high risk aversion coefficient, the running time is reduced by up to a factor of 5. Com-
bining precomputation of integrals with approximations of several functions simultane-
ously will be useful in more complex models in which there are several Euler equations
and several conditional expectation functions that need to be precomputed; this case is
studied in Section 3.

Conventional Euler equation method parameterizing the capital function In the case
of the Euler equation methods, precomputation of integrals has benefits, but may also
have costs. Specifically, to be able to precompute expectation functions, we must repa-
rameterize the Euler equation in a particular way and we must compute a decision func-
tion for a specific variable, which is the integrand of the expectation function. It could
happen that in some applications, this alternative implementation of the Euler equa-
tion iteration produces less accurate solutions than the conventional Euler equation
method.

To see whether or not this is the case in our model, we solve the model by using
the conventional Euler equation method that solves for the capital policy function k′ =
K(k�z) satisfying

k′ = (1 − δ)k+ zf (k)− u′−1(βE{
u′(c′(k′� z′))[1 − δ+ z′f ′(k′)]})� (29)

where the above Euler equation follows by combining (5) and (7). The results are shown
in Table 8. As we observe, the accuracy of the conventional Euler equation algorithm is
similar to that of other methods considered in this section. The running time for this
method is slightly smaller than that of the Euler equation method that parameterizes
capital policy function jointly with Q, however, is significantly larger than that of the
Euler equation method that parameterizes only functionQ. Thus, in this particular case,
a reparameterization of the Euler equation in terms ofQ has no negative side effects on
either accuracy or cost.

Table 8. Accuracy and cost of a conventional Euler equation
algorithm parameterizingK without precomputation.

γ = 1/3 γ = 3Polynomial
Degree L1 L∞ CPU L1 L∞ CPU

2nd −4�02 −3�53 0�54 −3�44 −2�46 0�79
3rd −5�38 −4�64 0�73 −4�38 −3�11 1�37
4th −6�65 −5�77 0�97 −5�26 −3�82 1�87
5th −7�94 −6�83 1�02 −6�05 −4�45 2�23

Note: The statistics L1 and L∞ are, respectively, the average and maximum
of absolute residuals across optimality condition and test points (in log 10 units)
on a stochastic simulation of 10,000 observations; CPU is the time necessary for
computing a solution (in seconds); γ is the coefficient of risk aversion.
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Model with elastic labor supply We finally show that precomputation of the expecta-
tion functions can simplify the construction of numerical solutions to more complex
models such as the model with elastic labor supply. In such a model, the representative
agent solves

V (k�z)= max
k′�c�l

{
u(c� l)+βE[

V
(
k′� z′)]} (30)

s.t. k′ = (1 − δ)k+ zf (k� l)− c� (31)

lnz′ = ρ lnz+ ε′� (32)

where l denotes labor, u is a utility function that is strictly increasing in consumption
and strictly decreasing in labor, f is a production functions that is strictly increasing in
both arguments, and both utility and production functions, are continuously differen-
tiable and concave. Our goal is to solve for value function V (k�z) and policy functions
c = C(k�z), l=L(k�z), and k′ =K(k�z).

As far as value-iterative methods are concerned, value function can be precomputed
in the model with elastic labor supply in the same way as in the model with inelastic
labor supply studied in Section 2.5.2. Let us show how the precomputation analysis can
be generalized to the Euler equation methods. An interior solution to (30)–(32) satisfies
first-order conditions

u1(c� l)= βE[
u1

(
c′� l′

)(
1 − δ+ z′f1

(
k′� l′

))]
� (33)

u2(c� l)= −u1(c� l)zf2(k� l)� (34)

Again, we rewrite the Euler equation in the form that is suitable for precomputation,

q

1 − δ+ zf1(k� l)
= βE[

q′]� (35)

where q denotes the integrand of the Euler equation (33),

q≡ u1(c� l)
[
1 − δ+ zf1(k� l)

]
� (36)

Since we must parameterize q in terms of the state variables q =Q(k�z), the construc-
tion of the intratemporal choice requires us to solve numerically two equations (34) and
(36) with respect to two unknowns c and l given (k� z). How does this problem compare
to the one we face under the conventional Euler equation methods? The answer de-
pends on what function is parameterized in terms of state variables. If we parameterize
the capital function k′ =K(k�z), we must also solve numerically two equations (31) and
(34) with respect to two unknowns c and l given (k� z), so the cost will be comparable;
the same is true if we parameterize the consumption function c = C(k�z). However, if
we parameterize the labor function l = L(k�z), the intratemporal choice c and k′ satis-
fying (31) and (34) can be derived in a closed form under conventional utility functions
such as Cobb–Douglas or addilog, and the cost will be considerably lower; see Maliar
and Maliar (2005b). Finally, it is possible to reduce the cost of iteration on either the
conventional or transformed Euler equations by constructing the intratemporal choice
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Table 9. Accuracy and cost of the ECM and Euler equation algorithms in the model with elastic
labor supply with and without precomputation.

γ = 1/3 γ = 3

No Precomputation Precomputation No Precomputation PrecomputationPolynomial
Degree L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

2nd −3�42 −2�43 5�73 −3�42 −2�43 3�73 −3�43 −2�47 4�13 −3�43 −2�47 3�39
3rd −4�44 −3�19 8�03 −4�44 −3�19 5�73 −4�44 −3�20 7�67 −4�44 −3�20 6�41
4th −5�41 −3�95 10�01 −5�41 −3�95 7�35 −5�41 −3�94 14�40 −5�41 −3�94 9�45
5th −6�28 −4�62 11�50 −6�28 −4�62 8�61 −6�28 −4�62 18�02 −6�28 −4�62 12�57

Note: The statistics L1 and L∞ are, respectively, the average and maximum of absolute approximation errors across opti-
mality condition and test points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary
for computing a solution (in seconds).

functions outside the main iterative cycle on some prespecified grid of points; see Maliar
and Maliar (2005b, 2014) for this different kind of precomputation results.

As in the case of inelastic labor supply, the transformed Euler equation (35) is identi-
cal to that under ECM-DVF (up to notation), and, therefore, we can use the code accom-
panying the paper of Maliar and Maliar (2013) as a basis for our precomputation analy-
sis. Following that paper, we parameterize the model (30)–(32) by an additively separable

utility function u(c� l) = c1−γ−1
1−γ + B(1−l)1−μ−1

1−μ for which the two equations (34) and (36)
can be combined into one equation relating q and l:

q= B(1 − l)−μ
zf2(k� l)

[
1 − δ+ zf1(k� l)

]
� (37)

We assume that the production function is Cobb–Douglas f (k� l) = Akαl1−α with
α= 0�33 and A= 1/β−(1−δ)

αl1−α (this value normalizes the deterministic steady state of cap-
ital to 1). We fix γ = 5 and μ = 5, and we calibrate the parameters β, δ, and B to repro-
duce the steady state labor, capital–output, and consumption–output ratios of l = 1/3,
πk = 10, and πc = 3/4, respectively, and we assume ρ = 0�95 and σ = 0�01. The imple-
mentation of the solution methods with elastic labor supply is similar to that with in-
elastic labor supply; see Appendix B for details. To solve for labor choices, we solve (37)
numerically in each grid point by using a Newton solver.

In Table 9, we compare the results for the value-iterative and Euler equation methods
with and without precomputation of integrals. Again, the introduction of precomputa-
tion of integrals has no effect on accuracy, but reduces the running time by about 30%
for both value-iterative and Euler equation methods. Here, the reduction in cost is not
as large as in the model with inelastic labor supply because a large fraction of the total
cost comes from applying a numerical solver to multiple grid points.

3. Multivariate continuous-state expectations

Although precomputation of integrals can visibly speed up computations even in mod-
els with just one shock, the real case of interest is models with multivariate shocks, in
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which the cost of integrals evaluation can increase rapidly with the dimensionality of the
problem. As an example, we describe a multicountry model withN stochastic shocks an-
alyzed in Judd, Maliar, and Maliar (2011). This model provides a convenient framework
for testing how the accuracy and cost of numerical solution methods change with the
number of state variables, in particular, with the number of exogenous shocks.

3.1 Heterogeneous neoclassical stochastic growth model

A social planner maximizes a weighted sum of the expected lifetime utilities ofN agents
(interpreted as countries) subject to the aggregate resource constraint, that is,

max
{cht �kht+1}h=1�����N

t=0�����∞
E0

N∑
h=1

τh

( ∞∑
t=0

βtu
(
cht

))
(38)

subject to

N∑
h=1

cht =
N∑
h=1

[
zht f

(
kht

) + (1 − δ)kht − kht+1
]
� (39)

where cht , kht , zht , u, f , and τh are consumption, capital, productivity level, utility func-
tion, production function, and welfare weight of a country h ∈ {1� � � � �N}, respectively,
β is the discount factor, and δ is the depreciation rate. The initial condition (k0�z0) is
given, where kt ≡ (k1

t � � � � �k
N
t ) and zt ≡ (z1

t � � � � � z
N
t ). The process for productivity shocks

in country h is given by

lnzht = ρ lnzht−1 + εht � (40)

where εt = (ε1
t � � � � � ε

N
t ) ∼ N (0N�Σ) is generated by a multivariate normal distribution

with zero mean 0N and variance–covariance matrix Σ. Here, we assume that all the
countries have identical utility and production functions; however, it is straightforward
to extend our analysis for the case when the utility and production functions differ
across countries; see Maliar, Maliar, and Judd (2011).

Bellman equation We can represent problem (38)–(40) in a dynamic programming
form,

V (k�z)= max
{(kh)′�ch}h=1�����N

{
N∑
h=1

τhu
(
ch

) +βE[
V

(
k′�z′)]} (41)

s.t.
N∑
h=1

ch =
N∑
h=1

[
zhf

(
kh

) + (1 − δ)kh − (
kh

)′]
� (42)

ln
(
zh

)′ = ρ lnzh + (
εh

)′
� (43)

where V is an optimal value function, ε′ = ((ε1)′� � � � � (εN)′) ∼ N (0N�Σ); k ≡ (k1� � � � �

kN), and z≡ (z1� � � � � zN).
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Euler equation An interior solution to the planner’s problem (38)–(40) satisfies a set of
N first-order conditions

u′(ch) = βE{
u′((ch)′)[1 − δ+ (

zh
)′
f ′((kh)′)]}

� (44)

where h = 1� � � � �N . Under the Euler equation approach, we solve for policy functions
ch = Ch(k�z) and (kh)′ =Kh(k�z), h= 1� � � � �N , that satisfy (39), (40), and (44).

3.2 Precomputation of multivariate integrals under polynomial approximations

It turns out that multivariate integrals can be precomputed in essentially the same way
as univariate integrals in Section 2.2. Let k = (k1� � � � �kN) and z = (z1� � � � � zN) be the
economy’s state variables and let a policy function P(k�z) be approximated with ordi-
nary polynomial function

P(k�z;b)= b0 + b1k
1 + · · · + bNkN + bN+1z

1 + · · ·
+ b2Nz

N + b1�1
(
k1)2 + · · · + bN�N

(
kN

)2

+
∑

i�j∈{1�����N}�i �=j
bi�jk

ikj +
∑

i∈{1�����N}�j∈{N+1�����2N}
bi�jk

izj

+
∑

i�j∈{N+1�����2N}
bi�jz

izj + · · ·

+ bN+1�����N+1
(
z1)L + · · · + b2N�����2N

(
zN

)L
�

(45)

where b= (b0� b1� � � � � b2N�b1�1� � � � � b2N�2N� � � � � b1�����1� � � � � b2N�����2N) ∈R
n+1 is a vector of

polynomial coefficients and L is a polynomial degree. Again, taking into account that
k′ ≡ ((k1)′� � � � � (kN)′) is known and that (zh)′ = (zh)ρ exp((εh)′) has a known distribu-
tion function, we can represent a conditional expectation of P(k′�z′;b) as

E
[
P

(
k′�z′;b)] =E

[
b0 + b1

(
k1)′ + · · · + bN

(
kN

)′ + bN+1
(
z1)′ + · · ·

+ b2N
(
zN

)′ + b1�1
((
k1)′)2 + · · · + bN�N

((
kN

)′)2

+
∑

i�j∈{1�����N}
bi�j

(
ki

)′(
kj

)′ +
∑

i∈{1�����N}�j∈{N+1�����2N}
bi�j

(
ki

)′(
zj

)′

+
∑

i�j∈{N+1�����2N}
bi�j

(
zi

)′(
zj

)′ + · · ·

+ bN+1�����N+1
((
z1)′)L + · · · + b2N�����2N

((
zN

)′)L]
= P

(
k′�zρ;b′)�

(46)

where b′ ≡ (b′
0� b

′
1� � � � � b

′
2N�b

′
1�1� � � � � b

′
2N�2N� � � � � b

′
1�����1� � � � � b

′
2N�����2N) ∈R

n+1, and the co-
efficients b′

i and bi are related by

b′
i = biIi� i= 0�1� � � � � n� (47)
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where

Ii =E
[
exp

(
l	i ε

′)] =E[
exp

(
l1i

(
ε1)′ + l2i

(
ε2)′ + · · · + lNi

(
εN

)′)]
� (48)

with (l1i � � � � � l
N
i ) ≡ li being the powers on (z1)′� � � � � (zN)′ in the ith monomial term, re-

spectively.
As in the one-dimensional case, {I0� � � � �In} depend only on the properties of ex-

ogenous shock ε′ and can be computed up-front (i.e., precomputed). Once Is are con-
structed, we again obtain that conditional expectation of a polynomial function is given
by the same polynomial function but evaluated at a different coefficients vector, that is,
E[P(k′�z′;b)] = P(k′�zρ;b′); this result is parallel to what we had in the univariate case
in Section 2.2.

3.3 Characterizing the solution under precomputation of integrals

We now show how to precompute expectations in the Bellman and Euler equations in
the case of multivariate shocks.

3.3.1 Bellman equation with precomputation of integrals Using the precomputation
result (46), we rewrite the Bellman equation (41) as

V̂ (k�z;b) �= max
{(kh)′�ch}h=1�����N

{
N∑
h=1

τhu
(
ch

) +β[
V̂

(
k′�zρ;b′)]}� (49)

s.t. (42), (43), and (46),

where a relation between b and b′ is summarized by (47) and (48). To solve the trans-
formed Bellman equation, we proceed in two steps. First, we construct {I0� � � � �In} using
(48); second, we find b that solves the Bellman equation (49).

3.3.2 Euler equation with precomputation of integrals Let us introduce a new variable
qh that represents the integrand of the expectation function in (44),

qh ≡ u′(ch)[1 − δ+ zhf ′(kh)]� (50)

where h= 1� � � � �N . In terms of qh and (qh)′, the Euler equation (44) is

qh

1 − δ+ zhf ′(kh) = βE[(
qh

)′]
� (51)

We parameterize the function qh =Qh(k�z) with a flexible functional form Q̂h(k�z;bh),
h= 1� � � � �N . Using the precomputation result (46), we formulate a version of the Euler
equation (51) in terms of Q̂h,

Q̂h
(
k�z;bh)

1 − δ+ zhf ′(kh) �= βQ̂h(k′�zρ; (bh)′)
� (52)

where bh and (bh)′ are related by (47) and (48) for all h = 1� � � � �N . To solve the trans-
formed Euler equation, we proceed in two steps. First, we construct {I0� � � � �In} using
(48); second, we find b that solves (42), (43), (47), (48), and (52).
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3.4 Analytical versus numerical construction of integrals

In this section, we compare the accuracy and computational expense of analytical and
numerical approximation of integrals.

Analytical construction of integrals under precomputation For an important special
case of a multivariate normal distribution ε′ = ((ε1)′� � � � � (εN)′) ∼ N (0N�Σ), we can
compute Ii analytically. As in the unidimensional case, we complete the square of the
expression inside of the exponential function,

Ii =E
[
exp

(
l1i

(
ε1)′ + · · · + lNi

(
εN

)′)] =E[
exp

(
l	i ε

′)]
= 1

(2π)N/2|Σ|1/2
∫ +∞

−∞
· · ·

∫ +∞

−∞
exp

(
l	i ε

′)exp
(

−1
2
(
ε′)	

Σ−1ε′
)
dε′

= 1

(2π)N/2|Σ|1/2
∫ +∞

−∞
· · ·

∫ +∞

−∞
exp

(
−1

2
{(
ε′)	

Σ−1ε′ − 2l	i ε
′})dε′

= 1

(2π)N/2|Σ|1/2
∫ +∞

−∞
· · ·

∫ +∞

−∞
exp

(
−1

2
{(
ε′ −Σli

)	
Σ−1(ε′ −Σli

) − l	i Σli
})
dε′

= exp
(
l	i Σli

2

)
�

(53)

where in the last equality, we use the fact that
∫ +∞
−∞ · · · ∫ +∞

−∞ f (x)dx = 1 for a density func-
tion f (x) of a normally distributed variable x with mean Σli and variance–covariance
matrix Σ.

Numerical construction of integrals Similarly to the univariate case, multivariate nu-
merical integration methods approximate integrals using a weighted sum (8), where the
integration nodes and weights are constructed in the multidimensional space. Gauss
Hermite quadrature can be extended to the multivariate case using a product rule; how-
ever, product rules are prohibitively costly even for a moderately large number of shocks
N ; in particular, the cost of GH(2), GH(5), and GH(10) grows exponentially as 2N , 5N ,
and 10N , respectively. A tractable and sufficiently accurate alternative to product rules is
nonproduct monomial integration methods; see Stroud (1971) for a collection of mono-
mial formulas, and see Judd, Maliar, and Maliar (2011) for a description of two monomial
integration methods with 2N and 2N2 + 1 nodes, referred to as M1 and M2, respectively.
A quasi-Monte Carlo method is another class of numerical integration methods that is
tractable in problems with high dimensionality; see Rust (1996) and Geweke (1996) for a
discussion (we do not study such methods).

Comparison of the accuracy Constructing the expectation functions of polynomial ap-
proximations (46) includes evaluation of expectations of exponents of different linear
combination of shocks in (48). Our numerical experiments show that for the same sum
of the powers on (z1)′� � � � � (zN)′ in the ith monomial term, l1i + · · · + lNi , numerical inte-
gration methods produce the largest approximation errors whenever all lis, except one,
are zeros. For example,E[exp(2ε1)] is approximated less accurately thanE[exp(ε1 +ε2)];
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Table 10. Accuracy of multivariate numerical integration methods.

Numerical Integration Errors (%)

Integral
Exact Value Under
Precomputation N = 2 N = 5 N = 10 N = 20 N = 30

M1
E[exp(ε′)] 1�0202 −0�0066 0�0132 0�0465 0�1145 0�1843
E[exp(2ε′)] 1�0833 −0�1044 0�2022 0�7353 1�8884 3�1659
E[exp(3ε′)] 1�1972 −0�5141 0�9569 3�6498 10�0497 18�0266
E[exp(4ε′)] 1�3771 −1�5615 2�7482 11�2132 34�0097 67�0056
E[exp(5ε′)] 1�6487 −3�6167 5�9206 26�3606 90�3823 200�4211

M2
E[exp(ε′)] 1�0202 −0�0000 −0�0001 −0�0003 −0�0014 −0�0035
E[exp(2ε′)] 1�0833 −0�0027 −0�0044 −0�0183 −0�0917 −0�2321
E[exp(3ε′)] 1�1972 −0�0296 −0�0471 −0�2024 −1�0700 −2�8572
E[exp(4ε′)] 1�3771 −0�1549 −0�2458 −1�0888 −6�2073 −17�8343
E[exp(5ε′)] 1�6487 −0�5399 −0�8522 −3�9235 −24�6011 −77�4623

Note: M1 and M2 are the monomial integration methods with 2N and 2N2 + 1 nodes, respectively.

similarly, E[exp(5ε1)] is approximated less accurately than E[exp(ε1 + ε2 + ε3 + ε4 + ε5)]
and E[exp(2ε1 + 3ε2)]. Therefore, the upper bound on the integration errors in the mul-
tivariate case can be seen from the univariate analysis reported in Table 1 for both the
Monte Carlo and Gauss Hermite quadrature methods, and this upper bound will be the
same for anyN .

Hence, in the multivariate case, we restrict attention to assessing the accuracy of
nonproduct monomial integration methods that we did not study in the univariate case.
The results for two monomial rules are reported in Table 10. For σ = 0�2, we observe
three tendencies: First, the M1 monomial rule with 2N nodes produces less accurate ap-
proximation than the M2 rule with 2N2 +1 nodes; this result is not surprising since more
nodes normally provide a more accurate representation of functions for constructing av-
erages. Second, the accuracy decreases with the order of exponentiation; this is because
monomial formulas are constructed to integrate accurately some low-order monomials
but not high-order monomials. Finally, the accuracy of approximation of integrals de-
creases with the number of shocks N ; presumably, this is because the number of nodes
grows less rapidly withN than the volume of multidimensional space.

For low volatility of shocks σ = 0�02, the monomial methods are very accurate; in
particular, M1 and M2 deliver respectively three and six digits of accuracy even for N =
30. The Monte Carlo integration methods are considerably less accurate and unit-free
residuals can be 100% or larger in a typical simulation (again, the results for σ = 0�02 are
not reported).

Comparison of costs In Table 11, we report the cost of evaluation of expectation of
complete ordinary polynomial (46). In the second column, we provide the time for the
evaluation of the expectation function using analytical result (53), and in the remain-
ing columns, we report the factors by which the analytical precomputation of integrals
differs from considered numerical integration methods. The cost of product rules GH(2)
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Table 11. Cost of multivariate numerical integration methods.

Speedup From PrecomputationPolynomial
Degree

Evaluation Time Under
Precomputation (sec) GH(2) GH(5) M1 M2 MC(100) MC(10,000)

N = 2
1st 0�1802(−3) ×2�04 ×5�27 ×1�93 ×2�81 ×17�23 ×1469�1
2nd 0�1841(−3) ×2�30 ×7�06 ×1�88 ×2�88 ×27�86 ×2383�3
3rd 0�1838(−3) ×2�70 ×12�85 ×2�38 ×4�49 ×49�07 ×4443�7
4th 0�2941(−3) ×2�92 ×17�01 ×2�80 ×6�02 ×66�28 ×6040�4
5th 0�5122(−3) ×3�44 ×21�61 ×3�39 ×7�69 ×84�47 ×7979�9

N = 5
1st 0�1835(−3) ×4�59 ×471�8 ×2�04 ×5�73 ×10�63 ×1034�9
2nd 0�1786(−3) ×10�12 ×922�6 ×2�52 ×9�90 ×19�14 ×3026�8
3rd 0�1158(−2) ×28�71 ×3309�4 ×6�84 ×34�88 ×68�86 ×10,595�3
4th 0�1923(−2) ×28�54 ×3369�5 ×6�86 ×34�87 ×68�52 ×10,477�9

N = 10
1st 0�2088(−3) ×112�2 – ×3�64 ×23�45 ×12�32 ×1320�7
2nd 0�2210(−3) ×227�1 – ×5�19 ×47�49 ×22�05 ×2553�7
3rd 0�2523(−2) ×1170�9 – ×19�42 ×233�99 ×95�96 ×11,509�3

N = 20
1st 0�1556(−3) ×182,255�0 – ×8�29 ×124�33 ×16�10 –
2nd 0�1780(−3) ×527,079�2 – ×19�36 ×364�32 ×42�07 –

N = 30
1st 0�1661(−3) – – ×10�04 ×246�32 ×15�43 –
2nd 0�2361(−3) – – ×32�89 ×923�70 ×53�68 –

Note: The second column shows the time for evaluating a complete polynomial of a given degree by using the precom-
putation method (in seconds). Numbers in the third through seventh columns are factors by which the evaluation time of the
given integration method differ from that of the precomputation method. GH(2) and GH(5) are the Gauss Hermite quadrature
methods with 2 and 5 nodes, respectively; M1 and M2 are the monomial integration methods with 2N and 2N2 + 1 nodes,
respectively; MC(100) and MC(10,000) are the Monte Carlo integration methods with 100 and 10,000 nodes, respectively.

and GH(5) increases exponentially, and these methods become too expensive forN = 10
and N = 20, even for low-order polynomials. In contrast, the cost of monomial formu-
las M1 and M2 grows polynomially, linearly, and quadratically, respectively. The mono-
mial formulas are tractable for very large N although they can become orders of mag-
nitude more expensive than precomputation of integrals. Finally, the cost of the Monte
Carlo integration methods does not grow rapidly with the number of shocks because
the number of nodes is fixed but the computer runs out of memory for largeN . We must
emphasize that to construct numerical solutions to dynamic economic models, we must
evaluate integrals many times in an iterative cycle and the corresponding difference in
costs will be much larger.

3.5 Numerical assessment of gains from precomputation in the multi-agent model

In the context of the generalized stochastic simulation method (GSSA), Judd, Maliar,
and Maliar (2011) found that there is a significant trade-off between the accuracy and
cost of numerical solutions depending on the integration method used (Monte Carlo,
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Gaussian quadrature, and monomial integration methods). Precomputation of integrals
eliminates this trade-off: it allows us to produce the most accurate solutions (where in-
tegrals are evaluated exactly using closed-form expressions) at the lowest possible cost.
We introduce precomputation of integrals into a MATLAB code accompanying the pa-
per by Judd, Maliar, and Maliar (2011), and we assess the improvements in the accuracy
and cost in the model with up to N = 30 heterogeneous countries (60 state variables).
The numerical methods used in this section are elaborated in Appendix C.

3.5.1 Generalized stochastic simulation algorithm In the representative agent model,
we construct numerical solutions on two-dimensional tensor product grids. However,
tensor product grids are not tractable for problems with a large number of state vari-
ables. Therefore, for the multicountry model, we use a grid of points produced by
stochastic simulation. The advantage of such a grid is that it covers only the high proba-
bility area of state space, and we avoid constructing the solution in an enormously large
set of points that have extremely low probability of occurrence; see Judd, Maliar, and
Maliar (2011) for a discussion.

However, the critical issue is how to evaluate expectation functions in the context
of simulation-based methods. For example, Den Haan and Marcet (1990) propose a
parameterized expectation algorithm (PEA) that approximates the expectation func-
tion in (8) by using a Monte Carlo method with a single random draw, MC(1), that is,
Et[G(ε′

t+1)] ≈ G(ε′
t+1), where ε′

t+1 ∼ N (0�σ2). To some extent, the sampling errors of
this crude integration method are offset by one another on the regression step; how-
ever, the low quality of approximation of integrals still dramatically restricts the over-
all accuracy of the PEA solutions; see Judd, Maliar, and Maliar (2011) and Maliar and
Maliar (2014) for numerical illustrations. Judd, Maliar, and Maliar (2011) propose the
GSSA algorithm that also uses simulation points as a grid for constructing a solution
but that approximates integrals accurately by using deterministic integration methods
(such as quadrature and monomial methods). GSSA produces highly accurate solu-
tions, and we use it as a benchmark for comparison to the precomputation-based meth-
ods.

3.5.2 Methodology and implementation details We parameterize the model by u(cht )=
ln cht , f (kt)=Akαt with α= 0�36, andA= 1/β−(1−δ)

α ; this value normalizes the determin-
istic steady state of capital to unity for each country. We assume that β= 0�99, δ= 0�025,
ρ= 0�95, andσ = 0�01, and we use equal Pareto weights across all countries τh = 1, which
implies that all countries have identical consumption, cht = ct for all h= 1� � � � �N . We as-
sume that each country’s shock in (40) has both common-for-all-countries and country-
specific components, εht ≡ εt +�h

t with εt ∼ N (0�σ2) and�h
t ∼ N (0�σ2). That is, coun-

tries’ shocks follow a multivariate normal distribution (ε1
t � � � � � ε

N
t ) ∼ N (0N�Σ), where

0N ∈R
N is a vector of zero means and

Σ=
⎛⎜⎝2σ2 � � � σ2

� � � � � � � � �

σ2 � � � 2σ2

⎞⎟⎠ ∈ R
N×N

is a variance–covariance matrix.
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3.5.3 Euler equation algorithm with precomputation of integrals For the multicountry
case, we implement an Euler equation method that approximatesN capital policy func-
tions kht+1 = Kh(kt �zt ) jointly with N expectation functions Qh(kt �zt ) for h = 1� � � � �N
(this method is similar to the Euler equation method that parameterizes both capital
function K and the integrand function Q in the univariate case). We parameterize each
capital and integrand function by a polynomial function of type (45), K̂h(kt �zt;vh) and
Q̂h(kt �zt;bh), respectively, where vh and bh are the coefficients vectors, and we rewrite
(51) as

kht+1
�= βE

[
Q̂h

(
kt+1�zt+1;bh

)]
Q̂h

(
kt �zt;bh

) [
1 − δ+ zht f ′(kht )]kht+1� (54)

Our first solution method is a variant of GSSA that recomputes expectation functions in
(54) at each iteration using one of the following three numerical integration methods:
(i) a Gauss Hermite quadrature rule with 2N nodes, (ii) monomial rules with 2N nodes,
and (iii) monomial rule 2N2 + 1 nodes, referred to as GH(2), M1 and M2, respectively.

Our second solution method relies on precomputation of integrals in (54), namely,
we use (52) that is rewritten in a way parallel to (54):

kht+1
�= βQ̂

h
(
kt+1�z

ρ
t ;

(
bh

)′)
Q̂h

(
kt �zt;bh

) [
1 − δ+ zht f ′(kht )]kht+1� (55)

Integrals {I0� � � � �In} in Q̂h(kt+1�z
ρ
t ; (bh)′) of (55) are precomputed using closed-form

expression (53).
In Table 12, we report the solution to the model with N = 2, 5, 10, 20, and 30 coun-

tries. As a measure of accuracy, we report the mean and maximum of absolute unit-
free Euler equation residuals on a stochastic simulation of 10,000 observations. Again, to
avoid approximation errors from numerical integration when evaluating accuracy, we
construct residuals in the transformed Euler equation (55) by using the precomputation
of integrals. We observe the following tendencies. First, all integration methods consid-
ered produce the same mean and maximum Euler equation residuals at least up to the
third digit. The solutions are very accurate: for N = 2, the maximum residuals range
from about −3 to −6 for polynomial approximations of degrees from 2 to 5, respectively.
Therefore, in this case, gains from precomputation of integrals come primarily in terms
of a cost reduction.

As we see in the table, the savings in costs from precomputation of integrals depend
on the dimensionality of the problem, the degree of polynomial approximation, and
a specific numerical integration method used for comparison. The cost of the GH(2)
method grows exponentially with N ; as expected, this method is intractable even for
moderately large models. The cost of the M1 and M2 methods grows polynomially with
N , but these methods still become increasingly expensive relatively to the precompu-
tation method. Only precomputation-based method was able to produce a quadratic
solution to the model withN = 30 countries in a reasonable time.



Quantitative Economics 8 (2017) How to solve dynamic stochastic models 879

Table 12. Accuracy and cost of the Euler equation algorithm for the multicountry model: GSSA
parameterizing Q and K.

Precomputation M1 M2 GH(2)Polynomial
Degree L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

N = 2
1st −2�77 −1�81 61 −2�77 −1�81 83 −2�77 −1�81 98 −2�77 −1�81 87
2nd −3�88 −2�61 223 −3�88 −2�61 379 −3�88 −2�61 605 −3�88 −2�61 397
3rd −4�94 −3�55 382 −4�94 −3�55 558 −4�94 −3�55 811 −4�94 −3�55 583
4th −6�05 −4�68 574 −6�05 −4�68 1361 −6�05 −4�68 1215 −6�05 −4�68 1164
5th −7�15 −5�79 738 −7�15 −5�79 2068 −7�15 −5�79 1829 −7�15 −5�79 1728

N = 5
1st −2�86 −1�94 75 −2�86 −1�94 159 −2�86 −1�94 467 −2�86 −1�94 291
2nd −3�99 −2�81 319 −3�99 −2�81 927 −3�99 −2�81 3443 −3�99 −2�81 2294
3rd −5�10 −3�84 2550 −5�10 −3�84 10,349 −5�10 −3�84 13,179 −5�10 −3�84 6246
4th −6�18 −4�89 7033 −6�18 −4�89 22,876 – – – – – –

N = 10
1st −2�87 −1�89 125 −2�87 −1�89 385 −2�87 −1�89 3308 −2�87 −1�89 12,405
2nd −4�00 −2�80 666 −4�00 −2�80 2465 −4�00 −2�80 20,989 – – –
3rd −4�99 −3�88 14,837 −4�99 −3�88 20,006 – – – – – –

N = 20
1st −3�12 −2�09 152 −3�12 −2�09 1324 −3�12 −2�09 22,084 – – –
2nd −4�36 −3�26 3303 −4�36 −3�26 13,840 – – – – – –

N = 30
1st −3�15 −2�08 221 −3�15 −2�08 2784 – – – – – –
2nd −4�22 −3�22 13,543 – – – – – – – – –

Note: The main columns correspond to variants of GSSA that evaluate integrals by using the precomputation method, the

monomial integration methods with 2N and 2N2 +1 nodes and the Gauss Hermite quadrature method with two nodes, respec-
tively; the statistics L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality condition
and test points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing a
solution (in seconds).

3.5.4 Conventional Euler equation algorithm without precomputation For the sake of
comparison, we also implement the conventional GSSA method as in Judd, Maliar,
and Maliar (2011). Such a method parameterizes N capital policy functions kht+1 =
Kh(kt �zt;vh) using

kht+1 = βE
[
u′(ct+1)

u′(ct)
[
1 − δ+ zt+1f

′(kht+1
)]]
kht+1� (56)

GSSA recomputes expectation functions in each iteration by using some numerical in-
tegration method. To save on space, we report the results for this method in Table C.1 of
Appendix C. For this method, we also compute the solutions to the model withN = 2, 5,
10, 20, and 30 countries.

The accuracy of solutions produced by conventional GSSA is very similar to that
produced by the Euler equation method with precomputation of integrals. The run-
ning time depends on the specific experiment considered and it is generally larger for
the conventional GSSA method than for the GSSA method with precomputation of in-
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tegrals. Importantly, the running time of conventional GSSA increases far more rapidly
with the dimensionality of the problem than the time of the GSSA method with precom-
putation of integrals. Again, only a precomputation-based method was able to produce a
quadratic solution to the model withN = 30 countries in a reasonable time. We conclude
that precomputation of integrals can significantly reduce the computational expense of
high-dimensional problems and it can help us solve models that are intractable with
conventional solution methods.

4. Discrete-state expectations

In the previous sections, we focused on precomputing expectation functions in models
in which shocks belong to continuous intervals. In this section, we show precomputa-
tion results for the discrete-shock case. As an example, we analyze a general equilibrium
growth model that has idiosyncratic but no aggregate risk, in line with Bewley (1977),
Deaton (1991), Carroll (1992), Huggett (1993), and Aiyagari (1994); our analysis is closest
to the last paper.

4.1 A growth model with discrete shocks

The economy is populated by a continuum of ex ante identical agents uniformly dis-
tributed on interval [0�1]. The agents supply inelastically their total time endowment
(equal to 1) to the market. The labor productivities of agents follow a first-order Markov
chain. The agents maximize expected lifetime utility by choosing consumption and as-
set holdings (to simplify notation, we omit the agent’s subscript)

max
{ct �kt+1}∞t=0

E0

[ ∞∑
t=0

βtut(ct)

]
(57)

s.t. ct + kt+1 =W zt + (1 +R)kt� (58)

πj
 = Pr(zt+1 = zj|zt = z
) is given, (59)

kt+1 ≥ −φ� (60)

where ct , kt , and zt denote consumption, capital, and labor productivity, respectively,
R and W are the interest rate and real wage, respectively, φ > 0 is a borrowing limit,
β ∈ (0�1) is the discount factor, zt ∈ {z1� � � � � zJ}, and J is a finite number of possible pro-
ductivity states, 0 < z1 < · · · < zJ <∞. Transition probability πj
 shows the probability
that tomorrow’s state is j given that today’s state is 
, where j� 
 ∈ {1� � � � � J}. To ensure
the existence of a solution, we assume that β(1 + R) < 1 and that kt is bounded from
above by k. The production side consists of a representative firm that owns a produc-
tion technology f (Kt�Nt)+ (1−δ)Kt and maximizes period-by-period profits, whereKt
is capital, Nt is labor, δ ∈ (0�1], and u and f are strictly increasing, continuously differ-
entiable, and strictly concave.
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Bellman equation In the model (57)–(60) with J exogenous states, the optimal value
function can be represented by J state-contingent value functions V j(k) that satisfy the
Bellman equation

V 
(k)= max
k′�c

{
u(c)+β

J∑
j=1

πj
V
j
(
k′)}� (61)

s.t. k′ =W z
 + (1 +R)k− c� (62)

k′ ≥ −φ� (63)

where j� 
 ∈ {1� � � � � J} and πj
 satisfies (59).

Euler equation The policy functions for the problem (57)–(60) can also be represented
as J state-contingent functions. A consumption policy function Cj(k) satisfies the Euler
equation

u′(C
(k)) −η= β
J∑
j=1

πj

{
u′(Cj(k′))(1 +R)}� (64)

where j� 
 ∈ {1� � � � � J} and η ≥ 0 is a Lagrange multiplier, which is associated with the
borrowing constraint (63), that satisfies a Kuhn–Tucker condition η(k′ +φ)= 0.

4.2 Precomputation of expectation functions

Let us show how to precompute conditional expectation functions under the assump-
tion of ordinary polynomial approximation. Each state-contingent value or policy func-
tion is approximated by a polynomial function

P
(
k;b
) = b
0 + b
1k+ b
2k2 + · · · + b
nkL� (65)

where 
= 1� � � � � J, b
 ≡ (b
0� b
1� � � � � b
n) ∈R
n+1 is a vector of polynomial coefficients, and

L is the degree of polynomial. Given today’s state 
, conditional expectation of (65) is

E
[
P

(
k′;bj)|k�z
] =

J∑
j=1

πj
P
(
k′;bj) = π1
P

(
k′;b1) + · · · +πJ
P

(
k′;bJ)

= π1

[
b1

0 + b1
1k

′ + · · · + b1
n

(
k′)L] + · · ·

+πJ

[
bJ0 + bJ1k′ + · · · + bJn

(
k′)L]

= [
π1
b

1
0 + · · · +πJ
bJ0

] + [
π1
b

1
1 + · · · +πJ
bJ1

]
k′ + · · ·

+ [
π1
b

1
n + · · · +πJ
bJn

](
k′)L

= P
(
k′; (b
)′)

�

(66)
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where (b
)′ ≡ ((b
0)′� (b
1)′� � � � � (b
n)′) ∈R
n+1 is given by

(
b
i

)′ =
J∑
j=1

πj
b
j
i � i= 0�1� � � � � n� (67)

Condition (67) provides a basis for precomputation of conditional expectation functions
in the discrete-state case. As in the continuous-state case, conditional expectation of a
polynomial function is given by the same polynomial function, but evaluated at a differ-
ent coefficients vector, that is, E[P(k′;bj)|k�z
] = P(k′; (b
)′), where (b
)′ is determined
by (67).

Remark 4. Similar to the continuous-state case, the precomputation result (66) and
(67) also holds for piecewise polynomial approximations. As an example, consider again
a collection of piecewise linear polynomial functions on a grid [k1� � � � �kM ] such that in
each state 
= 1� � � � � J, we have a local polynomial function

P[km�km+1]
(
k;b(
�m)) = b(
�m)0 + b(
�m)1 k�

wherem ∈ {1� � � � �M}. Then the expectation function in each interval [km�km+1] is given
by

E
[
P[km�km+1]

(
k′;b(
�m))] =

J∑
j=1

πj

(
b
(j�m)
0 + b(j�m)1 k′) = (

b(
�m)0

)′ + (
b(
�m)1

)′
k′�

where (b(
�m)0 )′ = [π1
b
(1�m)
0 + · · · +πJ
b(J�m)0 ] and (b(
�m)1 )′ = [π1
b

(1�m)
1 + · · · +πJ
b(J�m)1 ],

i.e., (66) and (67) hold in each local area. The precomputation results for higher-order
piecewise polynomial approximations can be shown in a similar manner.

4.3 Characterizing the solution under precomputation of expectation functions

In this section, we show how to precompute expectations in the Bellman and Euler equa-
tions in the discrete-shock case.

4.3.1 Bellman equation with precomputation of expectation functions Using precom-
putation result (66), we rewrite the Bellman equation (61)–(63) as

V̂
(
k;b
) �= max

k′�c

{
u(c)+βV̂ (

k′; (b
)′)}
(68)

s.t. (62), (63), (66), and (67),

where 
 ∈ {1� � � � � J}. In the transformed Bellman equation (68), the effect of uncertainty
on the solution is captured by a relation between bj and (b
)′, which is described by (66)
and (67).
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4.3.2 Euler equation with precomputation of expectation functions To make the Euler
equation (64) suitable for precomputation of expectation functions, we use the same
change of variables as in the continuous-state case:

q≡ u′(c)[1 +R]� (69)

We next rewrite the Euler equation (64) and budget constraint (62) by eliminating c and
by expressing them in terms of q approximated using a polynomial functionQ(k;bj),

Q
(
k;b
)

1 +R −η= β
J∑
j=1

πj
Q
(
k′;bj)� (70)

where j� 
 ∈ {1� � � � � J} and Lagrange multiplier η satisfies the same conditions as in (64).
Finally, under polynomial approximation (65), we can use the precomputation result
(66) to rewrite the Euler equation (70) as

Q̂
(
k;b
)

1 +R −η �= βQ̂(
k′; (b
)′)

� (71)

where 
 ∈ {1� � � � � J} and (b
)′ is determined by (67). Again, after expectation functions
are precomputed, all the effect of uncertainty on the solution is compressed into a map-
ping between the vectors b
 and (b
)′, which is described by (66) and (67).

4.4 Numerical assessment of gains from precomputation of expectation functions in
Aiyagari’s (1994) model

We assess gains from precomputation of expectation functions in Aiyagari’s (1994)
model. With discrete-state shocks, expectation functions are computed exactly both
with and without precomputation analysis. Thus, all the gains will come in terms of a
cost reduction, unlike in the case of continuous-state shocks, in which we may have both
a lower cost and higher accuracy. We consider a version of the Euler equation solution
method described in Maliar and Maliar (2006), and we show how to precompute expec-
tation functions in the MATLAB code accompanying that paper. A detailed description
of the solution algorithm is provided in Appendix D.

4.4.1 Methodology and implementation details Following the literature, we study a
stationary equilibrium in which aggregate variables are constant over time. A station-
ary equilibrium is defined as a stationary probability measure x, optimal consumption
and capital policy functions Cj(k) andKj(k), respectively, j = 1� � � � � J, and positive real
number (R�W ) such that

(i) x satisfies x= ∫
K×Z P(k�z�B)dx for all B ∈ B,

(ii) Cj(k) andKj(k) solve (57)–(60) for given (R�W ),

(iii) R= f1(K�N)− δ andW = f2(K�N),

(iv) N = ∫
Z zt dx andK = ∫

K×Z K(k�z)dx,
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where Z ≡ {z1� � � � � zJ} is a set of all possible productivity levels, K ≡ [−φ�k] is an interval
of possible asset holdings, B is a collection of Borel subsets of all possible individual
states K × Z , and P(k�z�B) is conditional probability that an agent with today’s state
(k� z) will be in a set B ∈ B in the next period.

To approximate the capital decision functions Kj(k), j = 1� � � � � J, we use piecewise
linear polynomial approximation. We use an unevenly spaced grid of 1000 points: we
placed a dense grid of 900 grid point in the area of the borrowing limit in which the so-
lution is highly nonlinear, and we placed the remaining 100 grid points to cover the rest
of the solution domain. Precomputation of expectation functions can be easily imple-
mented in MATLAB in the one-dimensional case by using a routine interp1, which pro-
duces linear, cubic, and spline approximations, and which returns both the knots and
coefficients. We take these coefficients as input, and we construct the precomputation
coefficients as implied by (66) and (67).

In our calibration procedure, we follow Aiyagari (1994). The model’s period is 1

year. We assume u(ct) = c
1−γ
t −1
1−γ with γ ∈ { 1

3 �3} and f (K�N) = KαN1−α with α = 0�36
(we use a normalization N = 1 for convenience). We use β = 0�96 and δ = 0�08. We set
the debt limit at φ = 0 and the upper bound on capital at k = δ1/(α−1). As in Aiyagari
(1994), we assume that idiosyncratic shocks follow an AR(1) process: logzt+1 = ρ logzt +
σ(1 − ρ2)1/2εt+1, where ρ ∈ {0�6�0�9}, σ ∈ {0�2�0�4}, and εt+1 ∼ N (0�1), and we discretize
this process into a seven-state Markov chain using Tauchen’s (1986) procedure; see also
Tauchen and Hussey (1991) for a discussion of this method.9 We solve for the equilib-
rium interest rate by using stochastic simulation and a bisection method as in Aiyagari
(1994), and we construct stationary probability distribution as in Rios-Rull (1997). Fi-
nally, as a measure of accuracy, we report the mean and maximum of absolute unit-free
residuals in the transformed Euler equation (71) on a stochastic simulation of 10,000
observations.

4.4.2 Numerical results We illustrate a numerical solution to Aiyagari’s (1994) model in
Figure 1.

The properties of the solution to Aiyagari’s (1994) model are well known. The capital
function is close to linear except in the kink area, and the consumption function has
strong nonlinearities in the area of the kink. The constructed probability distribution
indicates that our upper bound is chosen large enough so that probability of reaching
this bound is low (in our simulations, it was actually never reached). But the limit on
borrowing is important and is occasionally reached.

In Table 13, we compare the accuracy and cost for two versions of the algorithm with
and without precomputation of expectation functions.

As we can see, the residuals are again practically identical for the methods with and
without precomputation. The solutions are very accurate everywhere in the solution do-
main (average error is of order 10−6 percent), except for a very close neighborhood of the

9We discretize the process for shocks to provide a numerical illustration of the precomputation tech-
nique for discrete-state shocks. Alternatively, we could have solved Aiyagari’s (1994) model by applying the
precomputation technique to the original AR(1) process with continuous-state shock.



Quantitative Economics 8 (2017) How to solve dynamic stochastic models 885

Figure 1. Numerical solution to Aiyagari’s (1994) model.

borrowing limit, where the maximum residuals are much larger and sensitive to small
changes in the construction of the numerical solutions.

To gain insight into the accuracy deterioration near the kink, we note that q has a
spike in the lowest asset and productivity states in Figure 1. As follows from the ECM
analysis in Section 2.3.3, q is the marginal value function, and it is largest when con-
sumption is lowest. It is typically better to approximate numerically functions that do
not have much curvature, for example, it is usually better to approximate consumption
rather than the marginal utility of consumption (especially with high risk aversion). This
reasoning suggests that a highly nonlinear variable q may not be the best candidate for
approximating in the context of Aiyagari’s (1994) model.

To check on this conjecture, namely, to see how the choice of a function to param-
eterize affects the accuracy of solutions, we also solved the model by using the stan-

Table 13. Accuracy and cost of the Euler equation algorithm with and without precomputation.

γ = 1/3 γ = 3

No Precomputation Precomputation No Precomputation Precomputation

Parameterization L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

ρ= 0�6, σ = 0�2 −6�34 −2�99 150�3 −6�34 −2�99 72�6 −4�93 −2�42 154�7 −4�93 −2�42 72�8
ρ= 0�6, σ = 0�4 −6�18 −3�58 140�6 −6�18 −3�58 70�0 −4�67 −1�87 143�3 −4�67 −1�87 68�1
ρ= 0�9, σ = 0�2 −6�78 −3�14 151�0 −6�78 −3�14 68�8 −5�36 −2�71 155�6 −5�36 −2�71 71�2
ρ= 0�9, σ = 0�4 −6�62 −3�17 135�7 −6�62 −3�17 65�9 −5�04 −1�96 134�4 −5�04 −1�96 65�1

Note: The statistics L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality condi-
tion and test points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary for computing
a solution (in seconds); γ is the coefficient of risk aversion.
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Table 14. Accuracy and cost of the Euler equation algorithm
parameterizing K.

γ = 1/3 γ = 3

Parameterization L1 L∞ CPU L1 L∞ CPU

ρ= 0�6, σ = 0�2 −6�23 −3�04 111�5 −4�75 −3�02 115�4
ρ= 0�6, σ = 0�4 −6�05 −3�67 104�2 −4�46 −1�88 106�6
ρ= 0�9, σ = 0�2 −6�67 −3�16 109�3 −5�15 −2�93 115�3
ρ= 0�9, σ = 0�4 −6�47 −3�07 100�9 −4�82 −2�10 100�0

Note: The statistics L1 and L∞ are, respectively, the average and maximum
of absolute residuals across optimality condition and test points (in log 10 units)
on a stochastic simulation of 10,000 observations; CPU is the time necessary for
computing a solution (in seconds); γ is the coefficient of risk aversion.

dard Euler equation algorithm that parameterizes only the capital policy function and
that sidesteps precomputation. In Table 14, we report the average and maximum Euler
equation errors produced by this standard method.

The maximum residuals produced by the method parameterizing k′ are somewhat
smaller than those produced by the algorithm parameterizing q, although the average
residuals are very similar. These results suggest that both methods are very accurate
away from the kink, but their accuracy deterioration near the kink is somewhat larger
for the method parameterizing q than for the method parameterizing k′. More gener-
ally, these result suggest that in some problems, it might be preferable to approximate
decision functions others than q and to compute expectations in the conventional way
even if this implies a higher cost.

Our main result is that precomputation of expectation functions reduces the run-
ning time by about 50%. This reduction in running times corresponds to a Markov chain
with seven states that we used following Aiyagari (1994); see also Maliar, Maliar, and Valli
(2010). If we use a Markov chain with more states, the savings in costs from precompu-
tation of expectation functions will be much larger. We conjecture that the gains from
precomputation of expectations functions will be especially sizable in models with mul-
tivariate shocks in which Markov chains may have a very large number of states.

5. Approximating functions consistent with precomputation

of expectation functions

All our precomputation results are obtained for ordinary polynomial functions. In this
section, we establish other families of approximating functions for which expectation
functions can be precomputed. The cases of continuous-state and discrete-state exoge-
nous shocks are analyzed in Sections 5.1 and 5.2, respectively.

5.1 Continuous-state problems

Let x ∈R
nx and z ∈R

nz be vectors of endogenous and exogenous state variables, respec-
tively. We make the following three assumptions.
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Assumption 1. Each basis function of an approximating polynomial is multiplicatively
separable in x and z, that is,

P(x� z;b)=
n∑
i=0

biψi(x)ϕi(z)� (72)

where b ≡ (b0� � � � � bn) ∈ R
n+1, ψi(x)ϕi(z) is the ith basis function, by convention,

ψ0(x)ϕ0(z) is equal to 1, and ψi : Rnx →R and ϕi :Rnz → R for i= 1� � � � � n.

Assumption 2. Next-period endogenous state variables x′ are t-measurable.

Assumption 3. Exogenous state variables follow a stochastic process z′ = Z(z�ε′),
where ε′ ∈ Ω ⊆ R

nε is a vector of disturbances with a density function w : Rnε → R
+

that is known at t and that satisfies
∫
ε′∈Ωw(ε

′)dε′ = 1. Moreover, all integrals of type∫
ε′∈Ωϕi(Z(z�ε

′))w(ε′)dε′ exist and are finite, up to the order of approximation in (72).

Proposition 1. Under Assumptions 1–3, we have

E
[
P

(
x′� z′;b)|x�z] = P

(
x′�Z(z�μ);b′(z)

)
� (73)

where μ≡E[ε′] and b′(z)≡ (b′
0(z)� � � � � b

′
n(z)), and b are related by

b′
i(z)= bi

∫
ε′∈Ω

ϕi
(
Z

(
z�ε′))

ϕi
(
Z(z�μ)

)w(
ε′)dε′� (74)

Proof. This result is obtained as

E
[
P

(
x′� z′;b)|x�z] =

∫
ε′∈Ω

P
(
x′� z′;b)w(

ε′)dε′

Assumption 1=
∫
ε′∈Ω

n∑
i=0

biψi
(
x′)ϕi(z′)w(

ε′)dε′

Assumption 2=
n∑
i=0

biψi
(
x′)∫

ε′∈Ω
ϕi

(
Z

(
z�ε′))w(

ε′)dε′

Assumption 3=
n∑
i=0

biψi
(
x′)ϕi(Z(z�μ)) ∫

ε′∈Ω
ϕi

(
Z

(
z�ε′))

ϕi
(
Z(z�μ)

)w(
ε′)dε′

(74)=
n∑
i=0

b′
i(z)ψi

(
x′)ϕi(Z(z�μ)) (72)= P

(
x′�Z(z�μ);b′(z)

)
�

�

A few comments about our assumptions are in order. Assumption 1 holds not only
for ordinary polynomials (9), but also for orthogonal polynomial families (like Cheby-
shev, Hermite, and Legendre families), as well as for many nonpolynomial families (for
example, ψi(x) and ϕi(z) can be trigonometric functions). Assumption 1 also holds for
piecewise approximations such as piecewise linear functions and cubic splines, as well
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as mixed approximations that combine higher-order polynomials for some variables
with piecewise functions for others. Furthermore, Assumption 1 is also consistent with
anisotropic approximating functions that allow use for different degrees of polynomial
approximation in different model’s variables; see, for example, an anisotropic Smolyak
method introduced in Judd et al. (2014). Anisotropic families may be especially useful in
high-dimensional problems if there is more curvature in some directions than in others
or if some of the state variables are exogenous so that higher-order smoothness in those
variables is not really required.

Assumption 2 means that next-period endogenous state variables such as k′ are
known with certainty at present. There are some interesting economic models in which
this assumption is not satisfied, including asset-pricing models, dynamic games, input–
output models with private shocks, and research and development models. It would be
of interest to extend precomputation technique to the case when all or some endoge-
nous state variables are random.

Finally, Assumption 3 means that endogenous state variables have finite moments,
which is normally satisfied in economic models. The assumption that the random
shocks have a density function w is used for expositional convenience: it is sufficient
to assume instead that random shocks have a distribution function that produces finite
integrals in all basis functions considered.

To construct an expectation function, we choose the next-period reference point
Z(z�0). This choice is a matter of convenience. In our precomputation examples (as
well as in many macroeconomic models), the stochastic process for an exogenous state
variable is multiplicatively separable in the current state term and future disturbances,
which makes the integral (74) independent of the current economy’s state z, that is,
b′
i(z) = b′

i for all z. For example, in (22), the process is Z(z�ε′) = zρ exp(ε′) and, hence,

we have b′
i(z)= bi

∫
ε′∈Ω

zρ exp(ε′)
zρ exp(0) w(ε

′)dε′ ≡ b′
i for all z. However, in general, the precom-

puted integral b′
i(z)will depend on the current economy’s state z, and we must construct

a mapping b′
i(z), either analytically or numerically.

5.2 Discrete-state problems

Let x ∈R
nx and z ∈ {z1� � � � � zJ} ∈R

nz be vectors of endogenous and exogenous state vari-
ables, respectively. We formulate a set of Assumptions 1′–3′ for the discrete-shock case
that are parallel to Assumptions 1–3 for the continuous-shock case.

Assumption 1′ . For each state 
 ∈ {1� � � � � J}, an approximating function is given by

P
(
x;b
) =

n∑
i=0

b
iψi(x)� (75)

where b
 ≡ (b
0� � � � � b


n) ∈ R

n+1; ψi(x) is the ith basis function, by convention, ψ0(x) is
equal to 1, and ψi :Rnx →R for i= 1� � � � � n.

Assumption 2′ . Next-period endogenous state variables x′ are t-measurable.



Quantitative Economics 8 (2017) How to solve dynamic stochastic models 889

Assumption 3′ . Exogenous state variables follow a stochastic process that has a count-
able number of states z ∈ [z1� � � � � zJ] and transition probabilities are given by πj
 =
Pr(z′ = zj|z = z
), where 
 ∈ {1� � � � � J}.

Proposition 2. Under Assumptions 1′–3′, we have

E
[
P

(
x′;bj)|x�z
] = P

(
x′; (b
)′)

� (76)

where (b
)′ ≡ ((b
0)′� (b
1)′� � � � � (b
n)′) ∈R
n+1 and the coefficients (b
)′ and bj are related by

(
b
i

)′ =
J∑
j=1

πj
b
j
i � i= 0�1� � � � � n� (77)

The proof follows the derivations in (67).
In the case of discrete-state shocks, our generalizations go in two dimensions. First,

we allow for any additively separable approximating family, in addition to the ordinary
polynomial functions used in (65). Second, we allow for multiple endogenous and ex-
ogenous state variables. This means that if each shock i ∈ {1� � � � �N} has Ji states, then
we need to approximate J = J1 × · · · × JN decision functions of exogenous state vari-
ables.10 In this case, the number of exogenous states grows exponentially with the num-
ber of shocks. To alleviate the curse of dimensionality, one can use some nonproduct
rules for selecting a smaller set of states that can approximate the process for multivari-
ate shocks sufficiently well; see, for example, a cluster grid and epsilon distinguishable
set techniques introduced in Maliar and Maliar (2015).

Finally, integrals can also be precomputed in models with discrete control variables
or a mixture of discrete and continuous control variables. Indeed, precomputation re-
sults (10), (46), and (66) hold independently of whether control variables are continuous
or discrete. Discrete controls are used in the recent literature on structural estimation in
which dynamic stochastic models must be solved repeatedly a large number of times,
and savings on cost from precomputation of expectation functions can be of value in
this computationally intense class of problems.

6. Conclusion

A vast majority of the existing solution methods in the economics literature use ap-
proximating families of functions studied in the present paper. For such methods, we
can precompute integrals in the stage of initialization and in effect, we can transform a
stochastic problem into a deterministic problem. The technique of precomputation of
integrals is very general and can be applied to essentially any set of equations that con-
tains expectation functions. It works for both continuous- and discrete-state shocks, and
it can be combined with other computational techniques used by the existing solution

10In the multivariate case, it is also possible to start from a continuous-state multivariate Markov process
and to discretize this process into a Markov chain with a countable number of states by using the analysis
of Tauchen (1986) and Tauchen and Hussey (1991).
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methods, including a variety of solution domains, integration rules, fitting methods, and
iterative schemes for finding unknown parameters of the approximating functions. Inte-
grals can be constructed in a closed form for models with uni- or multivariate normally
distributed shocks, which is the case of special interest to economics. In those cases in
which integrals cannot be constructed analytically, we can precompute them numer-
ically by applying very accurate computational methods since this is a one time fixed
cost. In addition, precomputation of integrals is very simple to implement.

For small problems with few shocks that must be solved just once, precomputa-
tion of integrals is useful but not critical. Nevertheless, some interesting economic
models in the recent literature may have dozens of exogenous shocks, including large-
scale new Keynesian models used by central banks for projection and policy analysis,
large-scale overlapping generation models, heterogeneous agents models, and climate
change models; see Maliar and Maliar (2014) for a discussion and further examples of
large-scale applications.11 Furthermore, the literature on structural estimation must re-
compute a solution to dynamic economic models a large number of times under differ-
ent parameter vectors. For these and other computationally intense applications, pre-
computation of integrals can be the only tractable alternative.
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Algorithm 1a. Value function iteration

Initialization.
a. Choose an approximating function V̂ (·;b)≈ V .
b. Choose integration nodes, εj , and weights,ωj , j = 1� � � � � J.
c. Construct a grid Γ = {km�zm}Mm=1.
d. Make an initial guess on b(1).

Iterative cycle. Computation of a solution.

At iteration i, perform the following steps:
Step 1. Computation of values of V on the grid.

Form= 1� � � � �M:
a. Solve for k′

m satisfying
u′((1 − δ)km + zmf(km)− k′

m)= β∑J
j=1ωjV̂1(k

′
m�z

ρ
m exp(εj);b(i)).

b. Find cm satisfying
cm = (1 − δ)km + zmf(km)− k′

m.
c. Find value function on the grid
v̂m ≡ u(cm)+β∑J

j=1ωjV̂ (k
′
m�z

ρ
m exp(εj);b(i)).

Step 2. Computation of b that fits value function on the grid.
Run a regression to find b̂:
b̂= arg minb

∑M
m=1 ‖̂vm − V̂ (km�zm;b)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i≥ 2: end Step 2 if
1
M

∑M
m=1 | (k′

m)
(i)−(k′

m)
(i−1)

(k′
m)(i−1) |< 10−9.

b. Use damping with ξ= 1 to compute b(i+1) = (1 − ξ)b(i) + ξb̂.

Algorithm 1b. Value function iteration with precomputation

Initialization.
. . .
b. Precompute {I0� � � � �In} using (12).
. . .

Step 1. Computation of values of V on the grid.
At iteration i, form= 1� � � � �M:
a. Given b(i), find b′(i) from (11) and compute V̂1(k

′
m�z

ρ
m;b′(i)).

b. Solve for k′
m satisfying

u′((1 − δ)km + zmf(km)− k′
m)= βV̂1(k

′
m�z

ρ
m;b′(i)).

. . .
d. Find value function on the grid
v̂m ≡ u(cm)+βV̂ (k′

m�z
ρ
m;b′(i)).

. . .
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Algorithm 2a. Endogenous grid method

Initialization.
a. Choose an approximating function V̂ (·;b)≈ V .
b. Choose integration nodes, εj , and weights,ωj , j = 1� � � � � J.
c. Construct grid Γ = {k′

m�zm}Mm=1.
d. Make an initial guess on b(1).

Iterative cycle. Computation of a solution.

At iteration i, perform the following steps:
Step 1. Computation of values of V on the grid.

Form= 1� � � � �M:
a. Compute Ŵ (k′

m�zm;b(i))≡ ∑J
j=1ωjV̂ (k

′
m�z

ρ
m exp(εj);b(i))

and Ŵ1(k
′
m�zm;b(i))≡ ∑J

j=1ωjV̂1(k
′
m�z

ρ
m exp(εj);b(i)).

b. Find cm = u′−1[βŴ1(k
′
m�zm;b(i))].

c. Use a solver to find km satisfying
(1 − δ)km + zmf(km)= cm + k′

m.
d. Find value function on the grid
v̂m ≡ u(cm)+βŴ (k′

m�zm;b(i)).
Step 2. Computation of b that fits value function on the grid.

Run a regression to find b̂:
b̂= arg minb

∑M
m=1 ‖̂vm − V̂ (km�zm;b)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i≥ 2: end Step 2 if
1
M

∑M
m=1 | (km)(i)−(km)(i−1)

(km)(i−1) |< 10−9.

b. Use damping with ξ= 1 to compute b(i+1) = (1 − ξ)b(i) + ξb̂.

Algorithm 2b. Endogenous grid method with precomputation

Initialization.
. . .
b. Precompute {I0� � � � �In} using (12).
. . .

Step 1. Computation of values of V on the grid.
At iteration i, form= 1� � � � �M:
a. Given b(i), find b′(i) from (11) and compute Ŵ (k′

m�z
ρ
m;b′(i))

and Ŵ1(k
′
m�z

ρ
m;b′(i)).

b. Find cm = u′−1[βŴ1(k
′
m�z

ρ
m;b′(i))].

. . .
d. Find value function on the grid
v̂m ≡ u(cm)+βŴ (k′

m�z
ρ
m;b′(i)).

. . .
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Algorithm 3a. Envelope condition method

Initialization.
a. Choose an approximating function V̂ (·;b)≈ V .
b. Choose integration nodes, εj , and weights,ωj , j = 1� � � � � J.
c. Construct grid Γ = {km�zm}Mm=1.
d. Make an initial guess on b(1).

Iterative cycle. Computation of a solution.

At iteration i, perform the following steps:
Step 1. Computation of values of V on the grid.

Form= 1� � � � �M:
a. Use b(i) to compute V̂1(km�zm;b(i)).
b. Compute the corresponding values of cm using
cm = u′−1[V̂1(km�zm;b(i))(1 − δ+ zmf ′(km))−1].
c. Find k′

m using
k′
m = (1 − δ)km + zmf(km)− cm.

d. Find value function on the grid
v̂m ≡ u(cm)+β∑J

j=1ωjV̂ (k
′
m�z

ρ
m exp(εj);b(i)).

Step 2. Computation of b that fits the value function on the grid.
Run a regression to find b̂:
b̂= arg minb

∑M
m=1 ‖̂vm − V̂ (km�zm;b)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i≥ 2: end Step 2 if
1
M

∑M
m=1 | (k′

m)
(i)−(k′

m)
(i−1)

(k′
m)(i−1) |< 10−9.

b. Use damping with ξ= 1 to compute b(i+1) = (1 − ξ)b(i) + ξb̂.

Algorithm 3b. Envelope condition method with precomputation

Initialization.
. . .
b. Precompute {I0� � � � �In} using (12).
. . .

Step 1. Computation of values of V on the grid.
At iteration i, form= 1� � � � �M:
a. Given b(i), find b′(i) from (11); use b(i) to compute V̂1(km�zm;b(i))
and use b′(i) to compute V̂ (k′

m�z
ρ
m;b′(i)).

. . .
d. Find value function on the grid
v̂m ≡ u(cm)+βV̂ (k′

m�z
ρ
m;b′(i)).

. . .
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Algorithm 4a. Euler equation algorithm parameterizingQ

Initialization.
a. Choose an approximating function Q̂(·;b)≈Q.
b. Choose integration nodes, εj , and weights,ωj , j = 1� � � � � J.
c. Construct grid Γ = {km�zm}Mm=1.
d. Make an initial guess on b(1).

Iterative cycle. Computation of a solution.

At iteration i, perform the following steps:
Step 1. Computation of values of Q on the grid.

Form= 1� � � � �M:
a. Use b(i) to compute Q̂(km�zm;b(i)).
b. Find k′

m using

k′
m = (1 − δ)km + zmf(km)− u′−1( Q̂(km�zm;b(i))

1−δ+zmf(km) ) .

c. Find the values of qm on the grid
q̂m ≡ β∑J

j=1ωjQ̂(k
′
m�z

ρ
m exp(εj);b(i))[1 − δ+ zf ′(km)].

Step 2. Computation of b that fits the Q function on the grid.
Run a regression to find b̂:
b̂= arg minb

∑M
m=1 ‖q̂m − Q̂(km�zm;b)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i≥ 2: end Step 2 if
1
M

∑M
m=1 | (k′

m)
(i)−(k′

m)
(i−1)

(k′
m)(i−1) |< 10−9.

b. Use damping with ξ= 1 to compute b(i+1) = (1 − ξ)b(i) + ξb̂.

Algorithm 4b. Euler equation algorithm parameterizingQ
with precomputation

Initialization.
. . .
b. Precompute {I0� � � � �In} using (12).
. . .

Step 1. Computation of values of Q on the grid.
At iteration i, form= 1� � � � �M:
a. Given b(i), find b′(i) from (11); compute Q̂(km�zm;b(i)) and Q̂(k′

m�z
ρ
m;b′(i)).

. . .
c. Find the values of q̂m on the grid
q̂m ≡ βQ̂(k′

m�z
ρ
m;b′(i))[1 − δ+ zf ′(km)].

. . .
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Algorithm 5a. Euler equation algorithm parameterizingQ andK

Initialization.
a. Choose approximating functions K̂(·;v)≈K and Q̂(·;b)≈Q.
b. Choose integration nodes, εj , and weights,ωj , j = 1� � � � � J.
c. Construct grid Γ = {km�zm}Mm=1.
d. Make an initial guess on v(1).

Iterative cycle. Computation of a solution.

At iteration i, perform the following steps:
Step 1. Computation of values of Q on the grid.

Form= 1� � � � �M:
a. Use v(i) to compute K̂(km�zm;v(i)).
b. Find cm using
cm = (1 − δ)km + zmf(km)− K̂(km�zm;v(i)).
c. Find the values of qm on the grid
q̂m ≡ u′(cm)[1 − δ+ zmf ′(km)].

Step 2. Computation of v that fits the capital function on the grid.
a. Run a regression to find b̂:
b̂= arg minb

∑M
m=1 ‖q̂m − Q̂(km�zm;b)‖,

and compute Q̂(km�zm; b̂).
b. Compute the values of next-period capital on the grid

k̂′
m ≡ β

∑J
j=1ωjQ̂(K̂(km�zm;v(i))�zρm exp(εj);b̂)

Q̂(km�zm;b̂) (1 − δ+ zf ′(km))K̂(km�zm;v(i)).
c. Run a regression to find v̂:
v̂= arg minv

∑M
m=1 ‖k̂′

m − K̂(km�zm;v(i))‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i≥ 2: end Step 2 if
1
M

∑M
m=1 | (k′

m)
(i)−(k′

m)
(i−1)

(k′
m)(i−1) |< 10−9.

b. Use damping with ξ= 0�15 to compute v(i+1) = (1 − ξ)v(i) + ξv̂.
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Algorithm 5b. Euler equation algorithm parameterizingQ andK
with precomputation

Initialization.
. . .
b. Precompute {I0� � � � �In} using (12).
. . .

Step 2. Computation of v that fits the capital function on the grid.
a. Run a regression to find b̂,
b̂= arg minb

∑M
m=1 ‖q̂m − Q̂(km�zm;b)‖,

and compute Q̂(km�zm; b̂).
Given b̂, find b̂′ from (11), and compute Q̂(K̂(km�zm;v(i))� zρm; b̂′).
b. Compute the value of next-period capital on the grid

k̂′
m ≡ βQ̂(K̂(km�zm;v(i))�zρm;b̂′)

Q̂(km�zm;b̂) (1 − δ+ zf ′(km))K̂(km�zm;v(i)).
. . .

Algorithm 6. Euler equation algorithm parameterizingK
(not compatible with precomputation)

Initialization.
a. Choose approximating functions K̂(·;v)≈K.
. . .

Step 1. Computation of values of k̂′ on the grid.
Form= 1� � � � �M:
a. Use v(i) to compute K̂(km�zm;v(i)) and
k′′
m�j = K̂(K̂(km�zm;v(i))� zρm exp(εj);v(i)), j = 1� � � � � J.

b. Find c′m�j using

c′m�j = (1 − δ)K̂(km�zm;v(i))+ zmf(K̂(km�zm;v(i)))− k′′
m�j .

c. Find the values of cm on the grid
u′(cm)= β∑J

j=1ωju
′(c′m�j)[1 − δ+ zρm exp(εj)f ′(K̂(km�zm;v(i)))].

d. Find the values of k′
m on the grid

k̂′
m = (1 − δ)km + zmf(km)− cm.

Step 2. Computation of v that fits the capital function on the grid.
a. Run a regression to find v̂:
v̂= arg minv

∑M
m=1 ‖k̂′

m − K̂(km�zm;v(i))‖.

. . .
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Appendix B: ECM and Euler equation algorithms for solving a growth

model with elastic labor supply

In Algorithms 7 and 8, we provide a description of ECM and Euler equation algorithms,
which we use to solve the neoclassical stochastic growth model with valued leisure de-
scribed in Section 2.

Algorithm 7a. Envelope condition method

Initialization.
a. Choose an approximating function V̂ (·;b)≈ V .
b. Choose integration nodes, εj , and weights,ωj , j = 1� � � � � J.
c. Construct grid Γ = {km�zm}Mm=1.
d. Make an initial guess on b(1).

Iterative cycle. Computation of a solution.

At iteration i, perform the following steps:
Step 1. Computation of values of V on the grid.

Form= 1� � � � �M:
a. Use b(i) to compute V̂1(km�zm;b(i)).
b. Solve for lm that satisfies
B(1 − lm)−μ[1 − δ+ zmf1(km� lm)] = V1(km�zm;b(i))zmf2(km� lm).
c. Compute the corresponding values of cm using

cm = u−1
1 [ B(1−lm)−μ

zmf2(km�lm)
].

d. Find k′
m using

k′
m = (1 − δ)km + zmf(km� lm)− cm.

e. Find value function on the grid
v̂m ≡ u(cm� lm)+β∑J

j=1ωjV̂ (k
′
m�z

ρ
m exp(εj);b(i)).

Step 2. Computation of b that fits the value function on the grid.
Run a regression to find b̂:
b̂= arg minb

∑M
m=1 ‖̂vm − V̂ (km�zm;b)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i≥ 2: end Step 2 if
1
M

∑M
m=1 | (k′

m)
(i)−(k′

m)
(i−1)

(k′
m)(i−1) |< 10−9.

b. Use damping with ξ= 1 to compute b(i+1) = (1 − ξ)b(i) + ξb̂.
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Algorithm 7b. Envelope condition method with precomputation

Initialization.
. . .
b. Precompute {I0� � � � �In} using (12).
. . .

Step 1. Computation of values of V on the grid.
At iteration i, form= 1� � � � �M:
a. Given b(i), find b′(i) from (11); use b(i) to compute V̂1(km�zm;b(i))
and use b′(i) to compute V̂ (k′

m�z
ρ
m;b′(i)).

. . .
e. Find value function on the grid
v̂m ≡ u(cm� lm)+βV̂ (k′

m�z
ρ
m;b′(i)).

. . .
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Algorithm 8a. Euler equation algorithm parameterizingQ

Initialization.
a. Choose an approximating function Q̂(·;b)≈Q.
b. Choose integration nodes, εj , and weights,ωj , j = 1� � � � � J.
c. Construct grid Γ = {km�zm}Mm=1.
d. Make an initial guess on b(1).

Iterative cycle. Computation of a solution.

At iteration i, perform the following steps:
Step 1. Computation of values of Q on the grid.

Form= 1� � � � �M:
a. Use b(i) to compute Q̂(km�zm;b(i)).
b. Solve for lm that satisfies
B(1 − lm)−μ[1 − δ+ zmf1(km� lm)] = Q̂(km�zm;b(i))zmf2(km� lm).
c. Compute the corresponding values of cm using

cm = u−1
1 [ B(1−lm)−μ

zmf2(km�lm)
].

d. Find k′
m using

k′
m = (1 − δ)km + zmf(km� lm)− cm.

e. Find the values of qm on the grid
q̂m ≡ β∑J

j=1ωjQ̂(k
′
m�z

ρ
m exp(εj);b(i))[1 − δ+ zf1(km� lm)].

Step 2. Computation of b that fits the Q function on the grid.
Run a regression to find b̂:
b̂= arg minb

∑M
m=1 ‖q̂m − Q̂(km�zm;b)‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i≥ 2: end Step 2 if
1
M

∑M
m=1 | (k′

m)
(i)−(k′

m)
(i−1)

(k′
m)(i−1) |< 10−9.

b. Use damping with ξ= 1 to compute b(i+1) = (1 − ξ)b(i) + ξb̂.
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Algorithm 8b. Euler equation algorithm parameterizingQ
with precomputation

Initialization.
. . .
b. Precompute {I0� � � � �In} using (12).
. . .

Step 1. Computation of values of Q on the grid.
At iteration i, form= 1� � � � �M:
a. Given b(i), find b′(i) from (11); compute Q̂(km�zm;b(i)) and Q̂(k′

m�z
ρ
m;b′(i)).

. . .
e. Find the values of q̂m on the grid
q̂m ≡ βQ̂(k′

m�z
ρ
m;b′(i))[1 − δ+ zf2(km� lm)].

. . .
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Appendix C: Euler equation algorithm for solving the multicountry model

In this section, we describe the Euler equation methods that we use to analyze the mul-
ticountry model in Section 3.

Algorithm 9a. Euler equation algorithm parameterizingQh andKh

Initialization.

a. Choose approximating functionsKh(·;vh)≈Kh, h= 1� � � � �N , andQh(·;bh)≈Qh.
b. Choose integration nodes, εj = (ε1

j � � � � � ε
N
j ), and weights,ωj , j = 1� � � � � J.

c. Fix simulation length T = 2000 and (k0�z0)= (1�1), where 1 ≡(1� � � � �1) ∈ R
N .

d. Draw and fix a sequence of productivity levels {zt}t=1�����T using (40).
e. Construct integration nodes, zt+1�j = (z1

t+1�j� � � � � z
N
t+1�j)with zht+1�j = (zht )ρ exp(εhj ).

f. Make an initial guess on (v1)(1)� � � � � (vh)(1).

Iterative cycle. Computation of a solution.

At iteration i, given (v1)(i)� � � � � (vh)(i):
Step 1. Computation of values of Q on the simulated points.
For t = 1� � � � �T :

a. Use kht+1 = K̂h(kt� zt; (vh)(i)), h= 1� � � � �N , to recursively calculate {kt+1}t=0�����T .
b. Compute {ct}t=0�����T satisfying cht = (∑N

h=1 c
h
t )/N .

c. Compute qht from
q̂ht ≡ u′(cht )[1 − δ+ zht f ′(kht )].

Step 2. Computation of vh that fits the values of capital on the simulated points.
a. Run a regression to find b̂h,
b̂h = arg minbh

∑M
m=1 ‖q̂ht − Q̂h(kt �zt;bh)‖,

and compute Q̂h(kt �zt; b̂h).
b. Compute the values of next-period capital on the simulated points

k̂ht+1 ≡ β
∑J
j=1ωjQ̂

h(kt+1�zt+1�j;b̂h)
Q̂h(kt �zt ;b̂h) [1 − δ+ zht f ′(kht )]Kh(kt �zt;vh), h= 1� � � � �N .

c. Run a regression to find v̂h:
v̂h ≡ arg minvh

∑T
t=1 ‖k̂ht+1 − K̂h(kt �zt; (vh)(i))‖.

Step 3. Convergence check and fixed-point iteration.
a. Check for convergence for i≥ 2; end Step 2 if

1
TN

∑T
t=1

∑N
h=1 | (k

h
t+1)

(i)−(kht+1)
(i−1)

(kht+1)
(i−1) |< 10−10.

b. Use damping with ξ= 0�1 to compute (vh)(i+1) = (1 − ξ)(vh)(i) + ξv̂h.
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Algorithm 9b. Euler equation algorithm parameterizingQh andKh

with precomputation

Initialization.

. . .
b. Precompute {I0� � � � �In} using (53).
. . .

Step 2. Computation of vh that fits the values of capital on the simulated points.
a. Run a regression to find b̂h,
b̂h = arg minb

∑M
m=1 ‖q̂ht − Q̂h(kt �zt;bh)‖,

and compute Q̂h(kt �zt; b̂h).
Given b̂, find b̂′ from (47), and compute Q̂h(kt+1�z

ρ
t ; (b̂h)′).

b. Compute the values of next-period capital on the simulated points

k̂ht+1 ≡ βQ̂h(kt+1�z
ρ
t ;(b̂h)′)

Q̂h(kt �zt ;b̂h) [1 − δ+ zht f ′(kht )]Kh(kt �zt;vh), h= 1� � � � �N .

. . .

Algorithm 10. Euler equation algorithm parameterizingKh

(not compatible with precomputation)

Initialization.

a. Choose approximating functionsKh(·;vh)≈Kh, h= 1� � � � �N .
. . .

Step 1. Computation of values of k̂ht+1 on the simulated points.
For t = 1� � � � �T :

a. Use kht+1 = K̂h(kt� zt; (vh)(i)), h= 1� � � � �N , to recursively calculate {kt+1}t=0�����T .
b. Compute {ct}t=0�����T satisfying cht = (∑N

h=1 c
h
t )/N .

c. Compute kht+2�j = K̂h(kt+1� z
ρ
t exp(εj); (vh)(i)).

d. Find {ct+1�j}t=0�����T satisfying cht+1�j = (∑N
h=1 c

h
t+1�j)/N .

Step 2. Computation of vh that fits the values of capital on the simulated points.
a. Compute the values of next-period capital on the simulated points
for h= 1� � � � �N :
k̂ht+1 ≡ β∑J

j=1ωju
′(cht+1�j)(u

′(cht ))−1[1 − δ+ (zht )ρ exp(εhj )f
′(kht+1)]Kh(kt �zt;vh).

b. Run a regression to find v̂h:
v̂h ≡ arg minvh

∑T
t=1 ‖k̂ht+1 − K̂h(kt �zt; (vh)(i))‖.

. . .
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Table C.1. Accuracy and cost of the Euler equation algorithm for the multicountry model: GSSA
parameterizing K.

Precomputation M1 M2 GH(2)Polynomial
Degree L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU

1st −2�77 −1�81 61 −2�77 −1�80 92 −2�77 −1�80 105 −2�77 −1�80 86
2nd −3�88 −2�61 223 −3�88 −2�61 418 −3�88 −2�61 621 −3�88 −2�61 389
3rd −4�94 −3�55 382 −4�95 −3�55 614 −4�95 −3�55 818 −4�95 −3�55 567
4th −6�05 −4�68 574 −6�04 −4�67 840 −6�04 −4�67 1499 −6�04 −4�67 1241
5th −7�15 −5�79 738 −7�15 −5�78 938 −7�15 −5�78 1875 −7�15 −5�78 1551

N = 5
1st −2�86 −1�94 75 −2�86 −1�93 184 −2�86 −1�93 687 −2�86 −1�93 396
2nd −3�99 −2�81 319 −3�99 −2�82 958 −3�99 −2�82 3955 −3�99 −2�82 2456
3rd −5�10 −3�84 2550 −5�13 −3�83 8893 −5�13 −3�83 7349 −5�13 −3�83 12,221
4th −6�18 −4�89 7033 −6�31 −4�92 16,640 – – – – – –

N = 10
1st −2�87 −1�89 125 −2�87 −1�89 515 −2�87 −1�89 4889 −2�87 −1�89 18,263
2nd −4�00 −2�80 666 −4�01 −2�78 2681 −4�01 −2�78 23,610 – – –
3rd −4�99 −3�88 14,837 −5�18 −3�92 14,232 – – – – – –

N = 20
1st −3�12 −2�09 152 −3�12 −2�08 1803 −3�12 −2�08 32434 – – –
2nd −4�36 −3�26 3303 −4�40 −3�32 13,204 – – – – – –

N = 30
1st −3�15 −2�08 221 −3�16 −2�08 4688 – – – – – –
2nd −4�22 −3�22 13,543 – – – – – – – – –

Note: The main result columns correspond to variants of GSSA that evaluate integrals by using the precomputation

method, the monomial integration methods with 2N and 2N2 + 1 nodes, and the Gauss Hermite quadrature method with
two nodes, respectively; the statistics L1 and L∞ are, respectively, the average and maximum of absolute residuals across op-
timality condition and test points (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the time necessary
for computing a solution (in seconds).
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Appendix D: Euler equation algorithm for solving the Aiyagari model

In this section, we describe a solution algorithm for Aiyagari’s (1994) model analyzed in
Section 4. We focus on the algorithm for solving the individual problem in which the pre-
computation results appear. The rest of the algorithm is standard and relies on stochas-
tic simulation and a bisection technique as in Aiyagari (1994).

Algorithm 11a. Euler equation algorithm parameterizingQ andK

Initialization.

a. GivenK, compute R= αKα−1 − δ andW = (1 − α)(K)α.
b. Choose an approximating function K̂(·;b
)≈K and Q̂(·;v
)≈Q for 
 ∈ {1� � � � � J}.
c. Construct grid Γ = {km�zm}Mm=1.
d. Make an initial guess onK(·;b
)(1).

Iterative cycle. Computation of a solution.

At iteration i, perform the following steps:
Step 1. Computation of values of K on the grid.

Form= 1� � � � �M:
a. Find cm�
 using
cm�
 =W z
 + (1 +R)km − K̂(·;b
).
b. Compute qm�
 = c−γm�
(1 +R).
c. Run a regression to find v̂
 for 
 ∈ {1� � � � � J}:
v̂
 = arg minvl

∑M
m=1 ‖q̂m�
 − Q̂(km;v)‖.

d. Find k̂′
m�
 using

k̂′
m�
 =W z
 + (1 +R)km − u′−1[β∑

j πjlQ̂(k
′
m�
; v̂j)].

Step 2. Convergence check and fixed-point iteration.
a. Check for convergence for i≥ 2; end Step 1 if

maxm�l | (cm�
)
(i−1)−(cm�
)(i)
(cm�
)(i−1) |< 10−10.

b. Use damping with ξ= 0�5 to compute
(K̂(·;b
))(i+1) = (1 − ξ)(K̂(·;b
))(i) + ξ(k̂′

m�
)
(i).
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Algorithm 11b. Euler equation algorithm parameterizing
Qwith precomputation

Initialization.

. . .
Iterative cycle. Computation of a solution.

Step 1. Computation of values of K on the grid.
At iteration i, form= 1� � � � �M:
. . .
d. Given v̂l, l= 1� � � � � J, find (̂v
)′ from (67).
e. Find k̂′

m�
 using
k̂′
m�
 =W z
 + (1 +R)km − u′−1[βQ̂(k′

m�
; (̂v
)′)].
. . .

Algorithm 12. Euler equation algorithm for
Aiyagari’s (1994) model parameterizingK
(not compatible with precomputation)

Initialization.

. . .
b. Choose an approximating function K̂(·;b
)≈K for 
 ∈ {1� � � � � J}.
. . .

Iterative cycle. Computation of a solution.

Step 1. Computation of values of K on the grid.
At iteration i, form= 1� � � � �M:
. . .
For 
= {1� � � � � J}:
b. Compute k′′

m�j = K̂(k′
m�
;bj) for j = {1� � � � � J}.

c. Find c′m�j for j = {1� � � � � J} using

c′m�j =W zj + (1 +R)k′
m�
 − k′′

m�j .

d. Find k̂′
m�
 using

k̂′
m�
 =W z
 + (1 +R)km − u′−1[β∑

j πjl(c
′
m�j)

−γ[1 +R]].
. . .
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