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We develop numerically stable and accurate stochastic simulation approaches
for solving dynamic economic models. First, instead of standard least-squares
approximation methods, we examine a variety of alternatives, including least-
squares methods using singular value decomposition and Tikhonov regulariza-
tion, least-absolute deviations methods, and principal component regression
method, all of which are numerically stable and can handle ill-conditioned prob-
lems. Second, instead of conventional Monte Carlo integration, we use accurate
quadrature and monomial integration. We test our generalized stochastic simu-
lation algorithm (GSSA) in three applications: the standard representative–agent
neoclassical growth model, a model with rare disasters, and a multicountry model
with hundreds of state variables. GSSA is simple to program, and MATLAB codes
are provided.
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1. Introduction

Dynamic stochastic economic models do not generally admit closed-form solutions and
must be studied with numerical methods.1 Most methods for solving such models fall
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into three broad classes: projection methods, which approximate solutions on a pre-
specified domain using deterministic integration; perturbation methods, which find so-
lutions locally using Taylor expansions of optimality conditions; and stochastic simula-
tion methods, which compute solutions on a set of simulated points using Monte Carlo
integration. All three classes of methods have their relative advantages and drawbacks,
and the optimal choice of a method depends on the application. Projection methods
are accurate and fast when applied to models with few state variables; however, their
cost increases rapidly as the number of state variables increases. Perturbation methods
are practical to use in high-dimensional applications, but the range of their accuracy is
uncertain.2 Stochastic simulation algorithms are simple to program although they are
generally less accurate than projection methods and often numerically unstable.3 In
the present paper, we focus on the stochastic simulation class.4 We specifically develop
a generalized stochastic simulation algorithm (GSSA) that combines advantages of all
three classes, namely, it is accurate, numerically stable, tractable in high-dimensional
applications, and simple to program.

The key message of the present paper is that a stochastic simulation approach is
attractive for solving economic models because it computes solutions only in the part
of the state space which is visited in equilibrium—the ergodic set. In Figure 1, we plot
the ergodic set of capital and productivity level for a representative–agent growth model
with a closed-form solution (for a detailed description of this model, see Section 2.1).

The ergodic set takes the form of an oval and most of the rectangular area that sits
outside of the oval’s boundaries is never visited. In the two-dimensional case, a circle
inscribed within a square occupies about 79% of the area of the square, and an oval in-
scribed in this way occupies an even smaller area. Thus, the ergodic set is at least 21%
smaller than the square. In general, the ratio of the volume of a d-dimensional hyper-
sphere of diameter 1 to the volume of a d-dimensional hypercube of width 1 is

Vd =

⎧⎪⎪⎨
⎪⎪⎩
(π/2)(d−1)/2

1 · 3 · · ·d for d = 1�3�5� � � � �

(π/2)d/2

2 · 4 · · ·d for d = 2�4�6� � � � �
(1)

The ratio Vd declines very rapidly with the dimensionality of the state space. For exam-
ple, for dimensions 3, 4, 5, 10, and 30, this ratio is 0�52, 0�31, 0�16, 3 · 10−3, and 2 · 10−14,
respectively.

Aruoba, Fernandez-Villaverde, and Rubio-Ramírez (2006), Heer and Maussner (2008), Den Haan (2010),
and Kollmann, Maliar, Malin, and Pichler (2011).

2See Judd and Guu (1993), Gaspar and Judd (1997), and Kollmann et al. (2011) for accuracy assessments
of perturbation methods.

3See Judd (1992) and Christiano and Fisher (2000) for a discussion.
4Stochastic simulations are widely used in economics and other fields; see Asmussen and Glynn (2007)

for an up-to-date review of such methods. In macroeconomic literature, stochastic simulation methods
have been used to approximate an economy’s path (Fair and Taylor (1983)), a conditional expectation func-
tion in the Euler equation (Marcet (1988)), a value function (Maliar and Maliar (2005)), an equilibrium in-
terest rate (Aiyagari (1994)), and an aggregate law of motion of a heterogeneous-agent economy (Krusell
and Smith (1998)), as well as to make inferences about the parameters of economic models (Smith (1993),
among others).
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Figure 1. The ergodic set in the model with a closed-form solution.

The advantage of focusing on the ergodic set is twofold. First, when computing a so-
lution on an ergodic set that has the shape of a hypersphere, we face just a fraction of
the cost we would have faced on a hypercube grid, which is used in conventional projec-
tion methods. The higher is the dimensionality of a problem, the larger is the reduction
in cost. Second, when fitting a polynomial on the ergodic set, we focus on the relevant
domain and can get a better fit inside the relevant domain than conventional projection
methods, which face a trade-off between the fit inside and outside the relevant domain.5

However, to fully benefit from the advantages of a stochastic simulation approach,
we must first stabilize the stochastic simulation procedure. The main reason for the nu-
merical instability of this procedure is that polynomial terms constructed on simulated
series are highly correlated with one another even under low-degree polynomial approx-
imations. Under the usual least-squares methods, the multicollinearity problem leads to
a failure of the approximation (regression) step.

To achieve numerical stability, we build GSSA on approximation methods that are
designed to handle ill-conditioned problems. In the context of a linear regression model,
we examine a variety of such methods including least-squares (LS) methods using sin-
gular value decomposition (SVD) and Tikhonov regularization, the principal component
regression method, and least-absolute deviations (LAD) linear-programming methods
(in particular, we present primal and dual LAD regularization methods). In addition,
we explore how the numerical stability is affected by other factors such as a normaliza-
tion of variables, the choice of policy function to parameterize (capital versus marginal-
utility policy functions), and the choice of basis functions (ordinary versus Hermite
polynomials). Our stabilization strategies are remarkably successful: our approximation
methods deliver polynomial approximations up to degree 5 (at least), while the ordinary

5The importance of this effect can be seen from the results of the January 2010 special Journal of Eco-
nomic Dynamics and Control issue on numerical methods for solving Krusell and Smith’s (1998) model.
An Euler equation method based on the Krusell–Smith type of simulation by Maliar, Maliar, and Valli (2010)
delivered a more accurate aggregate law of motion than does any other method participating in the com-
parison analysis, including projection methods; see Table 15 in Den Haan (2010).
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least-squares method fails to go beyond the second-degree polynomial in the studied
examples.

We next focus on accuracy. We show that if Monte Carlo integration is used to ap-
proximate conditional expectations, the accuracy of solutions is dominated by sampling
errors from a finite simulation. The sampling errors decrease with the simulation length
but the rate of convergence is low, and high-accuracy levels are impractical. For exam-
ple, in a representative–agent model, Monte Carlo integration leads to accuracy levels
(measured by the size of unit-free Euler equation errors on a stochastic simulation) of
order 10−4–10−5 under the simulation length of 10�000. The highest accuracy is attained
under second- or third-degree polynomials. Thus, even though our stabilization strate-
gies enable us to compute a high-degree polynomial approximation, there is no point in
doing so with Monte Carlo integration.

To increase the accuracy of solutions, we replace the Monte Carlo integration
method with more accurate deterministic integration methods, namely, the Gauss–
Hermite quadrature and monomial methods. Such methods are unrelated to the esti-
mated density function and do not suffer from sampling errors. In the representative–
agent case, GSSA based on Gauss–Hermite quadrature integration delivers accuracy lev-
els of order 10−9–10−10, which are comparable to those attained by projection methods.
Thus, under accurate deterministic integration, high-degree polynomials do help in-
crease the accuracy of solutions.

Given that GSSA allows for a variety of approximation and integration techniques,
we can choose a combination of the techniques that takes into account a trade-off be-
tween numerical stability, accuracy, and speed for a given application. Some tenden-
cies from our experiments are as follows. LAD methods are generally more expensive
than LS methods; however, they deliver smaller mean absolute errors. In small- and
moderate-scale problems, the LS method using SVD is more stable than the method
using Tikhonov regularization, although the situation reverses in large-scale problems
(SVD becomes costly and numerically unstable). Gauss–Hermite quadrature (product)
integration rules are very accurate; however, they are practical only with few exogenous
random variables (shocks). Monomial (nonproduct) integration rules deliver compara-
ble accuracy and are feasible with many exogenous random variables. Surprisingly, a
quadrature integration method with just one integration node is also sufficiently accu-
rate in our examples; in particular, it is more accurate than a Monte Carlo integration
method with thousands of integration nodes.

We advocate versions of GSSA that use deterministic integration methods. Such
versions of GSSA construct a solution domain using stochastic simulations but com-
pute integrals using methods that are unrelated to simulations; these preferred versions
of GSSA, therefore, lie between pure stochastic simulation and pure projection algo-
rithms. Importantly, GSSA keeps the prominent feature of stochastic simulation meth-
ods, namely, their tractability in high-dimensional applications. To illustrate this fea-
ture, we solve a version of the neoclassical growth model with N heterogeneous coun-
tries (the state space is composed of 2N variables). For small-scale economies,N = 6, 4,
and 2, GSSA computes polynomial approximations up to degrees 3, 4, and 5 with maxi-
mum absolute errors of 0�001%, 0�0006%, and 0�0002%, respectively. For medium-scale
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economies, N = 8, 10, and 20, GSSA computes second-degree polynomial approxima-
tions with the maximum absolute errors of 0�01%, which is comparable to the highest
accuracy levels attained in the related literature; see Kollmann et al. (2011). Finally, for
large-scale economies, N = 100 and 200, GSSA computes first-degree polynomial ap-
proximations with the maximum absolute approximation errors of 0�1%. The running
time of GSSA depends on the cost of the integration and approximation methods. Our
cheapest setup delivers a second-degree polynomial solution to a 20-country model in
about 18 minutes using MATLAB and a standard desktop computer.

We present GSSA in the context of examples in which all variables can be expressed
analytically in terms of capital policy function, but GSSA can be applied in far more
general contexts. In more complicated models (e.g., with valued leisure), intratempo-
ral choices, such as labor supply, are not analytically related to capital policy functions.
One way to proceed under GSSA is to approximate intratemporal-choice policy func-
tions as we do with capital; however, this may reduce accuracy and numerical stabil-
ity. Maliar, Maliar, and Judd (2011) described two intertemporal-choice approaches—
precomputation and iteration-on-allocation—that make it possible to find intratem-
poral choices both accurately and quickly; these approaches are fully compatible with
GSSA. Furthermore, GSSA can be applied for solving models with occasionally binding
borrowing constraints; see, for example, Marcet and Lorenzoni (1999), Christiano and
Fisher (2000), and Maliar, Maliar, and Valli (2010). Finally, the approximation and inte-
gration methods described in the paper can be useful in the context of other solution
methods, for example, the simulation-based dynamic programming method of Maliar
and Maliar (2005).

GSSA is simple to program, and MATLAB codes are provided.6 Not only can the
codes solve the studied examples, but they can be easily adapted to other problems in
which the reader may be interested. In particular, the codes include generic routines
that implement numerically stable LS and LAD methods, construct multidimensional
polynomials, and perform multidimensional Gauss–Hermite quadrature and monomial
integration methods. The codes also contain a test suite for evaluating the accuracy of
solutions.

The rest of the paper is organized as follows: In Section 2, we describe GSSA using
an example of a representative–agent neoclassical growth model. In Section 3, we dis-
cuss the reasons for numerical instability of stochastic simulation methods. In Section 4,
we elaborate on strategies for enhancing the numerical stability. In Section 5, we com-
pare Monte Carlo and deterministic integration methods. In Section 6, we present the
results of numerical experiments. In Section 7, we conclude. The Appendices are avail-
able in a supplementary file on the journal website, http://qeconomics.org/supp/14/
supplement.pdf.

2. Generalized stochastic simulation algorithm

We describe GSSA using an example of the standard representative–agent neoclassical
stochastic growth model. However, the techniques described in the paper are not spe-
cific to this model and can be directly applied to other economic models including those

6The codes are available at http://www.stanford.edu/~maliars.

http://qeconomics.org/supp/14/supplement.pdf
http://www.stanford.edu/~maliars
http://qeconomics.org/supp/14/supplement.pdf
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with many state and control variables. In Section 7, we show how to apply GSSA for solv-
ing models with rare disasters and models with multiple countries.

2.1 The model

The agent solves the intertemporal utility-maximization problem

max
{kt+1�ct }t=0�����∞

E0

∞∑
t=0

βtu(ct) (2)

s.t. ct + kt+1 = (1 − δ)kt + atf (kt)� (3)

lnat+1 = ρ lnat + εt+1� εt+1 ∼ N (0�σ2)� (4)

where initial condition (k0� a0) is given exogenously. Here,Et is the expectation operator
conditional on information at time t; ct , kt , and at are, respectively, consumption, cap-
ital, and productivity level; β ∈ (0�1) is the discount factor; δ ∈ (0�1] is the depreciation
rate of capital; ρ ∈ (−1�1) is the autocorrelation coefficient; and σ ≥ 0 is the standard de-
viation. The utility and production functions, u and f , respectively, are strictly increas-
ing, continuously differentiable, and concave. The solution to (2)–(4) is represented by
stochastic processes {ct�kt+1}t=0�����∞ which are measurable with respect to {at}t=0�����∞.
At each time t, the solution to (2)–(4) satisfies the Euler equation

u′(ct)=Et
{
βu′(ct+1)[1 − δ+ at+1f

′(kt+1)]
}
� (5)

where u′ and f ′ are the first derivatives of the utility and production functions, respec-
tively. In a recursive (Markov) equilibrium, decisions of period t are functions of the cur-
rent state (kt� at). Our objective is to find policy functions for capital, kt+1 = K(kt�at),
and consumption, ct = C(kt�at), that satisfy (3)–(5).

2.2 The GSSA algorithm

To solve the model (2)–(4), we approximate the capital policy function kt+1 =K(kt�at).
We choose some flexible functional form Ψ(kt�at;b) and search for a vector of coeffi-
cients b such that

K(kt�at)≈Ψ(kt�at;b) (6)

for some set of points (kt� at) in the state space. We rewrite the Euler equation (5) in the
equivalent form

kt+1 =Et
{
β
u′(ct+1)

u′(ct)
[1 − δ+ at+1f

′(kt+1)]kt+1

}
� (7)

The condition (7) holds because u′(ct) �= 0 and because kt+1 is t-measurable.7 We now
have expressed kt+1 in two ways: as a choice implied by the policy function kt+1 =

7In a similar way, one can use the Euler equation (5) to express other t-measurable variables, for example,
ln(kt+1), ct , and u′(ct).
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K(kt�at) and as a conditional expectation of a time t + 1 random variable on the right
side of (7). This construction gives us a way to express the capital policy function as a
fixed point: substituting K(kt�at) into the right side of (7) and computing the condi-
tional expectation should give us kt+1 = K(kt�at) for all (kt� at) in the relevant area of
the state space.

GSSA finds a solution by iterating on the fixed-point construction (7) via stochastic
simulation. To be specific, we guess a capital policy function (6), simulate a time-series
solution, compute conditional expectation in each simulated point, and use simulated
data to update the guess along iterations until a fixed point is found. The formal descrip-
tion of GSSA is as follows:

Stage 1
Initialization:

• Choose an initial guess b(1).

• Choose the initial state (k0� a0) for simulations.

• Choose a simulation length T , draw a sequence of productivity shocks {εt}t=1�����T ,
and compute {at}t=1�����T as defined in (4).

Step 1. At iteration p, use b(p) to simulate the model T periods forward:

kt+1 =Ψ (
kt�at;b(p)

)
�

ct = (1 − δ)kt + atf (kt)− kt+1�

Step 2. For t = 0� � � � �T − 1, define yt to be an approximation of the conditional ex-
pectation in (7) using J integration nodes and weights, {εt+1�j}j=1�����J and {ωt�j}j=1�����J ,
respectively:

yt =
J∑
j=1

{
ωt�j ·

(
β
u′(ct+1�j)

u′(ct)
[1 − δ+ at+1�jf

′(kt+1)]kt+1

)}
� (8)

where ct+1�j , the value of ct+1 if the innovation in productivity is εt+1�j , is defined for
j = 1� � � � � J by

at+1�j ≡ aρt exp(εt+1�j)�

kt+2�j ≡Ψ (
Ψ

(
kt�at;b(p)

)
� a
ρ
t exp(εt+1�j);b(p)

)
�

ct+1�j ≡ (1 − δ)kt+1 + at+1�jf (kt+1)− kt+2�j�

Step 3. Find b̂ that minimizes the errors εt in the regression equation

yt =Ψ(kt�at;b)+ εt (9)

according to some norm ‖ · ‖.

Step 4. Check for convergence and end Stage 1 if

1
T

T∑
t=1

∣∣∣∣k
(p)
t+1 − k(p−1)

t+1

k
(p)
t+1

∣∣∣∣<� (10)
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where {kt+1}t=1�����T and {k(p−1)
t+1 }t=1�����T are the capital series obtained on iterations p

and p− 1, respectively.

Step 5. Compute b(p+1) for iteration (p+ 1) using fixed-point iteration

b(p+1) = (1 − ξ)b(p) + ξb̂� (11)

where ξ ∈ (0�1] is a damping parameter. Go to Step 1.

Stage 2 The purpose of Stage 2 is to subject the candidate solution from Stage 1 to
an independent and stringent test. Construct a new set of T test points {kτ�aτ}τ=0�����T test

for testing the accuracy of the solution obtained in Stage 1 (this can be a set of simula-
tion points constructed with a new random draw or some deterministic set of points).
Rewrite the Euler equation (5) at (kτ�aτ) in a unit-free form:

E(kτ�aτ)≡Eτ
{
β
u′(cτ+1)

u′(cτ)
[1 − δ+ aτ+1f

′(kτ+1)]
}

− 1� (12)

For each point (kτ�aτ), compute E(kτ�aτ) by using a high-quality integration method
to evaluate the conditional expectation in (12). We measure the quality of a candidate
solution by computing various norms, such as the mean, variance, and/or supremum,
of the errors (12). If the economic significance of these errors is small, we accept the can-
didate b. Otherwise, we tighten up Stage 1 by using a more flexible approximating func-
tion, and/or increasing the simulation length, and/or improving the method used for
computing conditional expectations, and/or choosing a more demanding norm when
computing b̂ in Step 3.8

2.3 Discussion

GSSA relies on generalized notions of integration and approximation. First, in Step 2,
the formula (8) represents both Monte Carlo integration methods and deterministic
integration methods such as the Gauss–Hermite quadrature and monomial methods.
The choice of integration method is critical for the accuracy of GSSA and is analyzed in
Section 5. Second, explanatory variables in the regression equation (9) are often highly
collinear, which presents challenges to approximation methods. GSSA uses methods
that are suitable for dealing with collinear data, namely, the least-squares methods using
SVD and Tikhonov regularization, least-absolute deviations methods, and the principal
component regression method. The choice of approximation method is critical for nu-
merical stability of GSSA and is studied in Section 4.

GSSA is compatible with any functional form forΨ that is suitable for approximating
policy functions. In this paper, we examine Ψ of the form

Ψ(kt�at;b)=
n∑
i=0

biψi(kt� at) (13)

8For the models considered in the paper, errors in the Euler equation are the only source of approxima-
tion errors. In general, we need to check approximation errors in all optimality conditions, the solutions to
which are evaluated numerically.
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for a set of basis functions {ψi | i = 0� � � � � n}, where b ≡ (b0� b1� � � � � bn)
� ∈ R

n+1. In Ap-
pendix A, we examine cases where the coefficients b enterΨ in a nonlinear manner and
we describe nonlinear approximation methods suitable for dealing with collinear data.
The specification (13) implies that in Step 3, the regression equation is linear,

y =Xb+ ε� (14)

where y ≡ (y0� y1� � � � � yT−1)
� ∈ R

T ; X ≡ [1T �x1� � � � � xn] ∈ R
T×(n+1) with 1T being a

T × 1 vector whose entries are equal to 1 and xti = ψi(kt� at) for i = 1� � � � � n; and
ε≡ (ε0� ε1� � � � � εT−1)

� ∈ R
T . (Note that 1T in X means that ψ0(kt� at)= 1 for all t.) The

choice of a family of basis functions used to construct X can affect numerical stability
of GSSA. In Section 4.5.1, we consider families of ordinary and Hermite polynomials.9

The fixed-point iteration method in Step 4 is a simple derivative-free method for
finding a fixed point and is commonly used in the related literature. The advantage of
this method is that its cost does not considerably increase with the dimensionality of the
problem. The shortcoming is that its convergence is not guaranteed. One typically needs
to set the damping parameter ξ in (11) at a value much less than 1 to attain convergence
(this, however, slows down the speed of convergence). We were always able to find a
value for ξ that gave us convergence.10

Finally, our convergence criterion (10) looks at the difference between the time series
from two iterations. We do not focus on changes in b since we are interested in the func-
tion K(kt�at) and not in its representation in some basis. The regression coefficients
b have no economic meaning. The criterion (10) focuses on the economic differences
implied by different vectors b.

2.4 Relation to the literature

GSSA builds on the past literature on solving rational expectation models but uses a
different combination of familiar tools. GSSA differs from conventional deterministic-
grid methods in the choice of a solution domain: we solve the model on a relatively
small ergodic set instead of some, generally much larger, prespecified domains used,
for example, in parameterized expectations approaches (PEA) of Wright and Williams
(1984) and Miranda and Helmberger (1988) and projection algorithms of Judd (1992),

9GSSA can also use nonpolynomial families of functions. Examples of nonpolynomial basis functions are
trigonometric functions, step functions, neural networks, and combinations of polynomials with functions
from other families.

10Other iterative schemes for finding fixed-point coefficients are time iteration and quasi-Newton meth-
ods; see Judd (1998, pp. 553–558 and 103–119, respectively). Time iteration can be more stable than fixed-
point iteration; however, it requires solving costly nonlinear equations to find future values of variables.
Quasi-Newton methods can be faster and can help achieve convergence if fixed-point iteration does not
converge. A stable version of a quasi-Newton method for a stochastic simulation approach requires a good
initial condition and the use of line-search methods. Since derivatives are evaluated via simulation, an ex-
plosive or implosive simulated series can make a Jacobian matrix ill-conditioned and lead to nonconver-
gence; we had this problem in some of our experiments.
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Christiano and Fisher (2000), and Krueger and Kubler (2004).11 An ergodic-set domain
makes GSSA tractable in high-dimensional applications; see condition (1).12

To construct the ergodic set realized in equilibrium, GSSA uses stochastic simula-
tion. This approach is taken in Marcet’s (1988) simulation-based version of PEA used
in, for example, Den Haan and Marcet (1990), Marcet and Lorenzoni (1999), and Maliar
and Maliar (2003a). We differ from this literature in the following respects: We incorpo-
rate accurate deterministic integration methods, while the above literature uses a Monte
Carlo integration method, whose accuracy is limited. Furthermore, we rely on a variety
of numerically stable approximation methods, while the simulation-based version of
PEA relies on standard least-squares methods, which are numerically unstable in the
given context.13 In addition, GSSA differs from the literature in the use of a linear regres-
sion model that can be estimated with simple and reliable approximation methods.14

Unlike previous simulation-based methods, GSSA delivers high-degree polynomial ap-
proximations and attains accuracy comparable to the best accuracy attained in the lit-
erature.

3. Ill-conditioned LS problems

In this section, we discuss the stability issues that arise when standard least-squares (LS)
methods are used in the regression equation (14). The LS approach to the regression
equation (14) solves the problem

min
b

‖y −Xb‖2
2 = min

b
[y −Xb]�[y −Xb]� (15)

where ‖ · ‖2 denotes the L2 vector norm. The solution to (15) is

b̂= (X�X)−1X�y� (16)

The LS problem (15) is often ill-conditioned when X is generated by stochastic simula-
tion. The degree of ill-conditioning is measured by the condition number of the matrix
X�X , denoted by K(X�X). Let us order the eigenvalues λi, i= 1� � � � � n, ofX�X by their

11Krueger and Kubler’s (2004) method relies on a nonproduct Smolyak grid constructed in a multidimen-
sional hypercube. This construction reduces the number of grid points inside the hypercube domain but
not the size of the domain itself. Other methods using prespecified nonproduct grids are Malin, Krueger,
and Kubler (2011) and Pichler (2011).

12Judd, Maliar, and Maliar (2010) and Maliar, Maliar, and Judd (2011) developed a projection method that
operates on the ergodic set. The grid surrounding the ergodic set is constructed using clustering methods.

13Concerning the simulation-based PEA, Den Haan and Marcet (1990) reported that, even for a low
(second-degree) polynomial, cross terms are highly correlated with the other terms and must be removed
from the regression. See Judd (1992) and Christiano and Fisher (2000) for a discussion.

14The simulation-based PEA literature employs exponentiated polynomial specification Ψ(kt�at ;b) =
exp(b0 +b1 lnkt +b2 lnat +· · ·). The resulting nonlinear regression model is estimated with nonlinear least-
squares (NLLS) methods. The use of NLLS methods is an additional source of numerical problems, because
such methods typically need a good initial guess, may deliver multiple minima, and on many occasions
fail to converge. Moreover, nonlinear optimization is costly because it requires computing Jacobian and
Hessian matrices; see Christiano and Fisher (2000) for a discussion.
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magnitude λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The condition number of X�X is equal to the ra-
tio of its largest eigenvalue, λ1, to its smallest eigenvalue, λn, that is, K(X�X) ≡ λ1/λn.
The eigenvalues ofX�X are defined by the standard eigenvalue decompositionX�X =
V ΛV �, where Λ ∈ R

n×n is a diagonal matrix of eigenvalues of X�X and V ∈ R
n×n is an

orthogonal matrix of eigenvectors ofX�X . A large condition number implies thatX�X
is close to being singular and not invertible, and tells us that any linear operation, such
as (16), is very sensitive to perturbation and numerical errors (such as round-off errors).

Two causes of ill-conditioning are multicollinearity and poor scaling of the variables
that constitute X . Multicollinearity occurs when the variables that form X are signif-
icantly correlated. The following example illustrates the effects of multicollinearity on
the LS solution (we analyze the sensitivity to changes in y, but the results are similar for
the sensitivity to changes inX).

Example 1. Let X =
[

1+φ
1

1
1+φ

]
with φ �= 0. Then K(X�X)= (1 + 2

φ)
2. Let y = (0�0)�.

Thus, the ordinary least-squares (OLS) solution (16) is (b̂1� b̂2)= (0�0). Suppose y is per-
turbed by a small amount, that is, y = (ε1� ε2)

�. Then the OLS solution is

b̂1 = 1
φ

[
ε1(1 +φ)− ε2

2 +φ
]

and b̂2 = 1
φ

[
ε2(1 +φ)− ε1

2 +φ
]
� (17)

Sensitivity of b̂1 and b̂2 to perturbation in y is proportional to 1/φ (increases with
K(X�X)).

The scaling problem arises when the columns (the variables) ofX have significantly
different means and variances (due to differential scaling among either the state vari-
ables, kt and at , or their functions, for example, kt and k5

t ). A column with only very
small entries is treated as if it is a column of zeros. The next example illustrates the effect
of the scaling problem.

Example 2. Let X =
[

1
0

0
φ

]
with φ �= 0. Then K(X�X)= 1/φ. Let y = (0�0)�. Thus, the

OLS solution (16) is (b̂1� b̂2)= (0�0). Suppose y is perturbed by a small amount, that is,
y = (ε1� ε2)

�. The OLS solution is

b̂1 = ε1 and b̂2 = ε2

φ
� (18)

Sensitivity of b̂2 to perturbation in y is proportional to 1/φ (and K(X�X)).

A comparison of Examples 1 and 2 shows that multicollinearity and poor scaling
magnify the impact of perturbations on the OLS solution. Each iteration of a stochastic
simulation algorithm produces changes in simulated data (perturbations). In the pres-
ence of ill-conditioning, these changes together with numerical errors may induce large
and erratic jumps in the regression coefficients and failures to converge.
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4. Enhancing numerical stability

We need to make choices of approximation methods that ensure numerical stability of
GSSA. We face two challenges: first, we must solve the approximation step for any given
set of simulation data; second, we must attain the convergence of the iterations over b.
The stability of the iterations over b depends on the sensitivity of the regression coeffi-
cients to the data (each iteration of GSSA produces different time series and results in
large changes in successive values of b and nonconvergence). In this section, we present
approximation methods that can handle collinear data, namely, a LS method using a sin-
gular value decomposition (SVD) and least-absolute deviations (LAD) method. Further-
more, we describe regularization methods that not only can deal with ill-conditioned
data, but can also dampen movements in b by effectively penalizing large values of the
regression coefficients. Such methods are a LS method using Tikhonov regularization,
LAD regularization methods, and the principal component regression method. We fi-
nally analyze other factors that can affect numerical stability of GSSA, namely, data nor-
malization, the choice of a family of basis functions, and the choice of policy functions
to parameterize.

4.1 Normalizing the variables

Data normalization addresses the scaling issues highlighted in Example 2. Also, our reg-
ularization methods require the use of normalized data. We center and scale both the
response variable y and the explanatory variables of X to have a zero mean and unit
standard deviation. We then estimate a regression model without an intercept to ob-
tain the vector of coefficients (b̂+

1 � � � � � b̂
+
n ). We finally restore the coefficients b̂1� � � � � b̂n

and the intercept b̂0 in the original (unnormalized) regression model according to b̂i =
(σy/σxi)b̂

+
i , i = 1� � � � � n, and b̂0 = y − ∑n

i=1 b̂
+
i xi, where y and xi are the sample means,

and σy and σxi are the sample standard deviations of the original unnormalized vari-
ables y and xi, respectively.15

4.2 LS approaches

In this section, we present two LS approaches that are more numerically stable than the
standard OLS approach. The first approach, called LS using SVD (LS-SVD), uses a sin-
gular value decomposition (SVD) of X . The second approach, called regularized LS us-
ing Tikhonov regularization (RLS-Tikhonov), imposes penalties based on the size of the
regression coefficients. In essence, the LS-SVD approach finds a solution to the original
ill-conditioned LS problem, while the RLS-Tikhonov approach modifies (regularizes) the
original ill-conditioned LS problem into a less ill-conditioned problem.

15To maintain a simple system of notation, we do not introduce separate notation for normalized and
unnormalized variables. Instead, we remember that when the regression model is estimated with normal-
ized variables, we have b ∈ R

n, and when it is estimated with unnormalized variables, we have b ∈ R
n+1.
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4.2.1 LS-SVD We can use the SVD of X to rewrite the OLS solution (16) in a way that
does not require an explicit computation of (X�X)−1. For a matrixX ∈ R

T×n with T > n,
an SVD decomposition is

X =USV �� (19)

where U ∈ R
T×n and V ∈ R

n×n are orthogonal matrices, and S ∈ R
n×n is a diagonal

matrix with diagonal entries s1 ≥ s2 ≥ · · · ≥ sn ≥ 0, known as singular values of X .16

The condition number of X is its largest singular value divided by its smallest singu-
lar value, K(X)= s1/sn. The singular values of X are related to the eigenvalues of X�X
by si = √

λi; see, for example, Golub and Van Loan (1996, p. 448). This implies that
K(X) = K(S) = √

K(X�X). The OLS estimator b̂ = (X�X)−1X�y in terms of the SVD
(19) is

b̂= V S−1U�y� (20)

With an infinite-precision computer, the OLS formula (16) and the LS-SVD formula (20)
give identical estimates of b. With a finite-precision computer, the standard OLS esti-
mator cannot be computed reliably if X�X is ill-conditioned. However, it is still possi-
ble that X and S are sufficiently well-conditioned so that the LS-SVD estimator can be
computed successfully.17

4.2.2 RLS-Tikhonov A regularization method replaces an ill-conditioned problem with
a well-conditioned problem that gives a similar answer. Tikhonov regularization is com-
monly used to solve ill-conditioned problems. In statistics, this method is known as
ridge regression and it is classified as a shrinkage method because it shrinks the norm
of the estimated coefficient vector relative to the nonregularized solution. Formally,
Tikhonov regularization imposes an L2 penalty on the magnitude of the regression-
coefficient vector; that is, for a regularization parameter η≥ 0, the vector b(η) solves

min
b

‖y −Xb‖2
2 +η‖b‖2

2 = min
b
(y −Xb)�(y −Xb)+ηb�b� (21)

where y ∈ R
T and X ∈ R

T×n are centered and scaled, and b ∈ R
n. The parameter η con-

trols the amount by which the regression coefficients shrink; larger values of η lead to
greater shrinkage.

Note that the scale of an explanatory variable affects the size of the regression coef-
ficient on this variable and hence, it affects how much this coefficient is penalized. Nor-
malizing all explanatory variables xi to zero mean and unit standard deviation allows us
to use the same penalty η for all coefficients. Furthermore, centering the response vari-
able y leads to a no-intercept regression model and, thus, allows us to impose a penalty

16For a description of methods for computing the SVD of a matrix, see, for example, Golub and Van
Loan (1996, pp. 448–460). Routines that compute the SVD are readily available in modern programming
languages.

17Another decomposition of X that leads to a numerically stable LS approach is a QR factorization; see,
for example, Davidson and MacKinnon (1993, pp. 30–31) and Golub and Van Loan (1996, p. 239).
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on the coefficients b1� � � � � bn without distorting the intercept b0 (the latter is recovered
after all other coefficients are computed; see Section 4.1).

Finding the first-order condition of (21) with respect to b gives us the estimator

b̂(η)= (X�X +ηIn)−1X�y� (22)

where In is an identity matrix of order n. Note that Tikhonov regularization adds a posi-
tive constant multiple of the identity matrix to X�X prior to inversion. Thus, if X�X is
nearly singular, the matrixX�X +ηIn is less singular, reducing problems in computing
b̂(η). Note that b̂(η) is a biased estimator of b. As η increases, the bias of b̂(η) increases
and its variance decreases. Hoerl and Kennard (1970) showed that there exists a value of
η such that

E
[
(b̂(η)− b)�(b̂(η)− b)]<E[(b̂− b)�(b̂− b)]�

that is, the mean squared error (equal to the sum of the variance and the squared bias)
of the Tikhonov-regularization estimator, b̂(η), is smaller than that of the OLS estimator,
b̂. Two main approaches to finding an appropriate value of the regularization parame-
ter in statistics are ridge trace and cross-validation. The ridge-trace approach relies on a
stability criterion: we observe a plot showing how b̂(η) changes with η (ridge trace) and
select the smallest value of η for which b̂(η) is stable. The cross-validation approach
focuses on a statistical-fit criterion. We split the data into two parts, fix some η, com-
pute an estimate b̂(η) using one part of the data, and evaluate the fit of the regression
(i.e., validate the regression model) using the other part of the data. We then iterate on
η to maximize the fit. For a detailed discussion of the ridge-trace and cross-validation
approaches used in statistics, see, for example, Brown (1993, pp. 62–71).

The problem of finding an appropriate value of η for GSSA differs from that in statis-
tics in two respects: First, in Stage 1, our data are not fixed and not exogenous to the
regularization process: on each iteration, simulated series are recomputed using a pol-
icy function that was obtained in the previous iteration under some value of the regu-
larization parameter. Second, our criteria of stability and accuracy differ from those in
statistics. Namely, our criterion of stability is the convergence of the fixed-point iteration
in Stage 1, and our criterion of fit is the accuracy of the converged solution measured by
the size of the Euler equation errors in Stage 2. In Section 6.1, we discuss how we chose
the regularization parameter for the RLS-Tikhonov method (as well as for other regular-
ization methods presented below) in the context of GSSA.

4.3 LAD approaches

LAD, or L1, regression methods use linear programming to minimize the sum of abso-
lute deviations. LAD methods do not depend on (X�X)−1 and avoid the ill-conditioning
problems of LS methods. Section 4.3.1 develops primal and dual formulations of the
LAD problem, and Section 4.3.2 proposes regularized versions of both. Section 4.3.3 dis-
cusses the advantages and drawbacks of the LAD approaches.
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4.3.1 LAD The basic LAD method solves the optimization problem

min
b

‖y −Xb‖1 = min
b

1�
T |y −Xb|� (23)

where ‖ · ‖1 denotes the L1 vector norm and | · | denotes the absolute value.18 Without a
loss of generality, we assume thatXand y are centered and scaled.

There is no explicit solution to the LAD problem (23), but this problem is equivalent
to the linear-programming problem

min
g�b

1�
T g (24)

s.t. −g ≤ y −Xb≤ g� (25)

where g ∈ R
T . The problem has n+ T unknowns. Although this formulation of the LAD

problem is intuitive, it is not the most suitable for a numerical analysis.

LAD: Primal problem (LAD-PP). Charnes, Cooper, and Ferguson (1955) showed that
a linear LAD problem can be transformed into a canonical linear programming form.
They expressed the deviation for each observation as a difference between two nonneg-
ative variables υ+

t and υ−
t , as in

yt −
n∑
i=0

bixti = υ+
t − υ−

t � (26)

where xti is the tth element of the vector xi. The variables υ+
t and υ−

t represent the mag-
nitude of the deviations above and below the fitted line ŷt =Xtb̂, respectively. The sum
υ+
t + υ−

t is the absolute deviation between the fit ŷt and the observation yt . Thus, the
LAD problem is to minimize the total sum of absolute deviations subject to the system
of equations (26). In vector notation, this problem is

min
υ+�υ−�b

1�
T υ

+ + 1�
T υ

− (27)

s.t. υ+ − υ− +Xb= y� (28)

υ+ ≥ 0� υ− ≥ 0� (29)

where υ+, υ− ∈ R
T . This is called the primal problem. A noteworthy property of its so-

lution is that both υ+
t and υ−

t cannot be strictly positive at a solution; if so, we could
reduce both υ+

t and υ−
t by the same quantity and reduce the value of the objective func-

tion without affecting the constraint (28). The advantage of (27)–(29) compared to (24)
and (25) is that the only inequality constraints in the former problem are the variable
bounds (29), a feature that often helps make linear programming algorithms more effi-
cient.

18LAD regression is a particular case of quantile regressions introduced by Koenker and Bassett (1978).
The central idea behind quantile regressions is the assignation of differing weights to positive versus neg-
ative residuals, y −Xb. A ςth regression quantile, ς ∈ (0�1), is defined as a solution to the problem of min-
imizing a weighted sum of residuals, where ς is a weight on positive residuals. The LAD estimator is the
regression median, that is, the regression quantile for ς = 1/2.
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LAD: Dual problem (LAD-DP). Linear programming tells us that every primal problem
can be converted into a dual problem.19 The dual problem corresponding to (27)–(29) is

max
q
y�q (30)

s.t. X�q= 0� (31)

−1T ≤ q≤ 1T � (32)

where q ∈ R
T is a vector of unknowns. Wagner (1959) argued that if the number of obser-

vations T is sizable (i.e., T � n), the dual problem (30)–(32) is computationally less cum-
bersome than the primal problem (27)–(29). Indeed, the dual problem contains only n
equality restrictions and the primal problem has contained T equality restrictions, while
the number of lower and upper bounds on unknowns is equal to 2T in both problems.
The elements of the vector b, which is what we want to compute, are equal to the La-
grange multipliers associated with the equality restrictions given in (31).

4.3.2 Regularized LAD (RLAD) We next modify the original LAD problem (23) to in-
corporate an L1 penalty on the coefficient vector b. We refer to the resulting problem
as a regularized LAD (RLAD). Like Tikhonov regularization, our RLAD problem shrinks
the values of the coefficients toward zero. Introducing an L1 penalty in place of the L2

penalty from Tikhonov regularization allows us to have the benefits of biasing coeffi-
cients to zero but to do so with linear programming. Formally, for a given regularization
parameter η≥ 0, the RLAD problem attempts to find the vector b(η) that solves

min
b

‖y −Xb‖1 +η‖b‖1 = min
b

1�
T |y −Xb| +η1�

n |b|� (33)

where y ∈ R
T and X ∈ R

T×n are centered and scaled, and b ∈ R
n. As in the case of

Tikhonov regularization, centering and scaling of X and y in the RLAD problem (33) al-
lows us to use the same penalty parameter for all explanatory variables and to avoid pe-
nalizing an intercept. Below, we develop a linear programming formulation of the RLAD
problem in which an absolute value term |bi| is replaced with a difference between two
nonnegative variables. Our approach is parallel to the one we used to construct the pri-
mal problem (27)–(29) and differs from the approach used in statistics.20

RLAD: Primal problem (RLAD-PP). To cast the RLAD problem (33) into a canonical
linear programming form, we represent the coefficients of the vector b as bi = ϕ+

i −ϕ−
i ,

with ϕ+
i ≥ 0, ϕ−

i ≥ 0 for i = 1� � � � � n. The regularization is done by adding to the objec-
tive a penalty linear in each ϕ+

i and ϕ−
i . The resulting regularized version of the primal

problem (27)–(29) is

min
υ+�υ−�ϕ+�ϕ− 1�

T υ
+ + 1�

T υ
− +η1�

n ϕ
+ +η1�

n ϕ
− (34)

s.t. υ+ − υ− +Xϕ+ −Xϕ− = y� (35)

19See Ferris, Mangasarian, and Wright (2007) for duality theory and examples.
20Wang, Gordon, and Zhu (2006) constructed a RLAD problem in which |bi| is represented as sign(bi)bi .
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υ+ ≥ 0� υ− ≥ 0� (36)

ϕ+ ≥ 0� ϕ− ≥ 0� (37)

where ϕ+�ϕ− ∈ R
n are vectors that define b(η). The above problem has 2T + 2n un-

knowns, as well as T equality restrictions (35) and 2T + 2n lower bounds (36) and (37).

RLAD: Dual problem (RLAD-DP). The dual problem corresponding to the RLAD-PP
(34)–(37) is

max
q
y�q (38)

s.t. X�q≤ η · 1n� (39)

−X�q≤ η · 1n� (40)

−1T ≤ q≤ 1T � (41)

where q ∈ R
T is a vector of unknowns. Here, 2n linear inequality restrictions are imposed

by (39) and (40), and 2T lower and upper bounds on T unknown components of q are
given in (41). By solving the dual problem, we obtain the coefficients of the vectors ϕ+
and ϕ− as the Lagrange multipliers associated with (39) and (40), respectively; we can
then restore the RLAD estimator using b(η)= ϕ+ −ϕ−.

4.3.3 Advantages and drawbacks of LAD approaches LAD approaches are more robust
to outliers than LS approaches because they minimize errors without squaring them
and, thus, place comparatively less weight on distant observations than LS approaches
do. LAD approaches have two advantages compared to LS approaches. First, the statis-
tical literature suggests that LAD estimators are preferable if regression disturbances are
nonnormal, asymmetric, or heavy-tailed; see Narula and Wellington (1982) and Dielman
(2005) for surveys. Second, LAD methods can easily accommodate additional linear re-
strictions on the regression coefficients, for example, restrictions that impose mono-
tonicity of policy functions. In contrast, adding such constraints for LS methods changes
an unconstrained convex minimization problem into a linearly constrained convex min-
imization problem and substantially increases the computational difficulty.

LAD approaches have two drawbacks compared to the LS approaches. First, a LAD
estimator does not depend smoothly on the data; since it corresponds to the median,
the minimal sum of absolute deviations is not differentiable in the data. Moreover, a
LAD regression line may not even be continuous in the data: a change in the data could
cause a solution switch from one vertex of the feasible set of coefficients to another
vertex. This jump will cause a discontinuous change in the regression line, which in
turn will produce a discontinuous change in the simulated path. These jumps might
create problems in solving for a fixed point. Second, LAD approaches require solving
linear-programming problems, whereas LS approaches use only linear algebra opera-
tions. Therefore, LAD approaches tend to be more costly than LS approaches.
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4.4 Principal component (truncated SVD) method

In this section, we describe a principal component method that reduces the multi-
collinearity in the data to a target level. LetX ∈ R

T×n be a matrix of centered and scaled
explanatory variables, and consider the SVD of X defined in (19). Let us make a linear
transformation ofX usingZ ≡XV , whereZ ∈ R

T×n and V ∈ R
n×n is the matrix of singu-

lar vectors ofX defined by (19). The vectors z1� � � � � zn are called principal components of
X . They are orthogonal, z�

i′ zi = 0 for any i′ �= i, and their norms are related to the singular
values si by z�

i zi = s2i . Principal components have two noteworthy properties. First, the
sample mean of each principal component zi is equal to zero, since it is given by a linear
combination of centered variables x1� � � � � xn, each of which has a zero mean; second,
the variance of each principal component is equal to s2i /T , because we have z�

i zi = s2i .
Since the SVD method orders the singular values from the largest, the first princi-

pal component z1 has the largest sample variance among all the principal components,
while the last principal component zn has the smallest sample variance. In particular, if
zi has a zero variance (equivalently, a zero singular value, si = 0), then all entries of zi are
equal to zero, zi = (0� � � � �0)�, which implies that the variables x1� � � � � xn that constitute
this particular principal component are linearly dependent. Therefore, we can reduce
the degrees of ill-conditioning ofX to some target level by excluding low-variance prin-
cipal components that correspond to small singular values.

To formalize the above idea, let κ represent the largest condition number of X that
we are willing to tolerate. Let us compute the ratios of the largest singular value to all
other singular values, s1s2 � � � � �

s1
sn

. (Recall that the last ratio is the actual condition number

of the matrix X ; K(X) = K(S) = s1
sn

.) Let Zr ≡ (z1� � � � � zr) ∈ R
T×r be the first r principal

components for which s1
si

≤ κ and let us remove the last n− r principal components for
which s1

si
> κ. By construction, the matrix Zr has a condition number which is smaller

than or equal to κ.
Let us consider the regression equation (14) and let us approximate Xb using Zr

such that Xb=XV V −1b≈XV r(V r)−1b(κ)=Zrϑr , where V r = (v1� � � � � vr) ∈ R
n×r con-

tains the first r singular vectors of X and ϑr ≡ (V r)−1b(κ) ∈ R
r . The resulting regression

equation is

y =Zrϑr + ε� (42)

where y is centered and scaled. The coefficientsϑr can be estimated by any of the meth-
ods described in Sections 4.2 and 4.3. For example, we can compute the OLS estimator
(16). Once we compute ϑ̂r , we can recover the coefficients b̂(κ)= V rϑ̂r ∈ R

n.
We can remove collinear components of the data using a truncated SVD method

instead of the principal component method. Let the matrix Xr ∈ R
T×n be defined by

a truncated SVD of X , such that Xr ≡ UrSr(V r)�, where Ur ∈ R
T×r and V r ∈ R

n×r are
the first r columns of U and V , respectively, and Sr ∈ R

r×r is a diagonal matrix whose
entries are the r largest singular values of X . As follows from the theorem of Eckart
and Young (1936), Xr is the closest rank r approximation of X ∈ R

T×n. In terms of
Xr , the regression equation is y =Xrb(r)+ ε. Using the definition of Xr , we can write
Xrb(r) = XrV r(V r)−1b(r) = XrV rϑr = UrSrϑr , where ϑr ≡ (V r)−1b(r) ∈ R

r . Again, we
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can estimate the resulting regression model y =UrSrϑr + εwith any of the methods de-
scribed in Sections 4.2 and 4.3 and recover b̂(r) = V rϑ̂r ∈ R

n. In particular, we can find
ϑ̂r using the OLS method and arrive at

b̂(r)= V r(Sr)−1(Ur)�y� (43)

We call the estimator (43) regularized LS using truncated SVD (RLS-TSVD). If r = n, then
RLS-TSVD coincides with LS-SVD described in Section 4.2.1.21 The principal compo-
nent and truncated SVD methods are related through Zr =XrV r .

We make two remarks. First, the principal component regression (42) is well suited
to the shrinkage type of regularization methods without additional scaling: the lower is
the variance of a principal component, the larger is the corresponding regression coef-
ficient and the more heavily such a coefficient is penalized by a regularization method.
Second, we should be careful removing low-variance principal components, since they
may contain important pieces of information.22 To rule out only the case of extremely
collinear variables, a safe strategy is to set κ to a very large number, for example, to 1014

on a machine with 16 digits of precision.

4.5 Other factors that affect numerical stability

We complement our discussion by analyzing two other factors that can affect numeri-
cal stability of GSSA: the choice of a family of basis functions and the choice of policy
functions to parameterize.

4.5.1 Choosing a family of basis functions We restrict attention to polynomial families
of basis functions in (13). Let us first consider an ordinary polynomial family Om(x) =
xm,m= 0�1� � � � � The basis functions of this family look very similar (namely, O2(x)= x2

looks similar to O4(x)= x4, and O3(x)= x3 looks similar to O5(x)= x5); see Figure 2(a).
As a result, the explanatory variables in the regression equation are likely to be strongly
correlated (i.e., the LS problem is ill-conditioned) and estimation methods (e.g., OLS)
may fail because they cannot distinguish between similarly shaped basis functions.

In contrast, for families of orthogonal polynomials (e.g., Hermite, Chebyshev, Legen-
dre), basis functions have very different shapes and, hence, the multicollinearity prob-
lem is likely to manifest to a smaller degree, if at all.23 In this paper, we consider the
case of Hermite polynomials. Such polynomials can be defined with a simple recur-
sive formula:H0(x)= 1,H1(x)= x, andHm(x)= xHm(x)−mHm−1(x). For example, for
m= 1� � � � �5, this formula yields H0(x)= 1, H1(x)= x, H2(x)= x2 − 1, H3(x)= x3 − 3x,

21A possible alternative to the truncated SVD is a truncated QR factorization method with pivoting of
columns; see Eldén (2007, pp. 72–74). The latter method is used in MATLAB to construct a powerful back-
slash operator for solving linear systems of equations.

22Hadi and Ling (1998) constructed an artificial regression example with four principal components,
for which the removal of the lowest variance principal component reduces the explanatory power of the
regression dramatically: R2 drops from 1�00 to 0�00.

23This useful feature of orthogonal polynomials was emphasized by Judd (1992) in the context of projec-
tion methods.
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(a) (b)

Figure 2. (a) Ordinary polynomials. (b) Hermite polynomials.

H4(x)= x4 − 6x2 + 3, andH5(x)= x5 − 10x3 + 15x. These basis functions look different;
see Figure 2(b).

Two points are in order. First, Hermite polynomials are orthogonal under the Gaus-
sian density function, but are not orthogonal under the ergodic measure of our simula-
tions. Still, Hermite polynomials are far less correlated than ordinary polynomials, which
may suffice to avoid ill-conditioning. Second, even though using Hermite polynomials
helps us avoid ill-conditioning in one variable, it does not help us to deal with multi-
collinearity across variables. For example, if kt and at happen to be perfectly correlated,
certain Hermite polynomial terms for kt and at , likeH2(kt)= k2

t −1 andH2(at)= a2
t −1,

are also perfectly correlated and, hence,X is singular. Thus, we may still need regression
methods that are able to treat ill-conditioned problems.24

4.5.2 Choosing policy functions to approximate The numerical stability of the approx-
imation step is a necessary but not sufficient condition for the numerical stability of
GSSA. It might happen that fixed-point iteration in (11) does not converge along iter-
ations even if the policy function is successfully approximated on each iteration. The
fixed-point iteration procedure (even with damping) is sensitive to the nature of nonlin-
earity of solutions. There exist many logically equivalent ways to parameterize solutions,
with some parameterizations working better than others. A slight change in the nonlin-
earity of solutions due to variations in the model’s parameters might shift the balance
between different parameterizations; see Judd (1998, p. 557) for an example. Switching
to a different policy function to approximate can possibly help stabilize fixed-point iter-
ation. Instead of capital policy function (6), we can approximate the policy function for
marginal utility in the left side of the Euler equation (5), u′(ct)=Ψu(kt�at;bu). This pa-
rameterization is common for the literature using Marcet’s (1988) simulation-based PEA
(although the parameterization of capital policy functions is also used to solve models
with multiple Euler equations; see, for example, Den Haan (1990)).

24Christiano and Fisher (2000) found that multicollinearity can plague the regression step even with
orthogonal (Chebyshev) polynomials as basis functions.
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5. Increasing accuracy of integration

In Sections 5.1 and 5.2, we describe the Monte Carlo and deterministic integration meth-
ods, respectively. We argue that accuracy of integration plays a determinant role in the
accuracy of GSSA solutions.

5.1 Monte Carlo integration

A one-node Monte Carlo integration method approximates an integral with the next-
period’s realization of the integrand; we call it MC(1). Setting εt+1�1 ≡ εt+1 and ωt�1 = 1
transforms (8) into

yt = βu
′(ct+1)

u′(ct)
[1 − δ+ at+1f

′(kt+1)]kt+1� (44)

This integration method is used in Marcet’s (1988) simulation-based version of PEA.
A J-node Monte Carlo integration method, denoted by MC(J), draws J shocks,

{εt+1�j}j=1�����J (which are unrelated to εt+1, the shock along the simulated path) and
computes yt in (8) by assigning equal weights to all draws, that is, ωt�j = 1/J for all j
and t.

An integration error is given by εIt ≡ yt − Et[·], where Et[·] denotes the exact value
of conditional expectation in (7).25 The OLS estimator (16) yields b̂ = b+ [(X)�X]−1 ×
(X)�εI , where εI ≡ (εI1� � � � � ε

I
T )

� ∈ R
T . Assuming that εIt is independent and identi-

cally distributed (i.i.d.) with zero mean and constant variance σ2
ε , we have the standard

version of the central limit theorem. For the conventional one-node Monte Carlo in-
tegration method, MC(1), the asymptotic distribution of the OLS estimator is given by√
T(b̂ − b) ∼ N (0� [X�X]−1σ2

ε), and the convergence rate of the OLS estimator is
√
T .

Similarly, the convergence rate for MC(J) is
√
TJ. To decrease errors by an order of mag-

nitude, we must increase either the simulation length T or the number of draws J by 2
orders of magnitude or do some combination of the two.

Since the convergence of Monte Carlo integration is slow, high accuracy is theoreti-
cally possible but impractical. In a typical real business cycle model, variables fluctuate
by several percent and so does the variable yt given by (44). If a unit-free integration
error | yt−Et [·]Et [·] | is on average 10−2 (i.e., 1%), then a regression model with T = 10�000 ob-

servations has errors of order 10−2/
√
T = 10−4. To reduce errors to order 10−5, we would

need to increase the simulation length to T = 1�000�000. Thus, the cost of accuracy im-
provements is prohibitive.26

5.2 One-dimensional quadrature integration

Deterministic integration methods are unrelated to simulations. In our model with
one normally distributed exogenous random variable, we can approximate a one-di-

25Other types of approximation errors are discussed in Judd, Maliar, and Maliar (2011).
26In a working-paper version of the present paper, Judd, Maliar, and Maliar (2009) developed a variant

of GSSA based on the one-node Monte Carlo integration method. This variant of GSSA is included in the
comparison analysis of Kollmann et al. (2011).
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mensional integral using Gauss–Hermite quadrature. A J-node Gauss–Hermite quadra-
ture method, denoted by Q(J), computes yt in (8) using J deterministic integration
nodes and weights. For example, a two-node Gauss–Hermite quadrature method, Q(2),
uses nodes εt+1�1 = −σ , εt+1�2 = σ and weights ωt�1 = ωt�2 = 1

2 ; a three-node Gauss–

Hermite quadrature method, Q(3), uses nodes εt+1�1 = 0, εt+1�2 = σ
√

3
2 , εt+1�3 = −σ

√
3
2

and weights ωt�1 = 2
√
π

3 , ωt�2 =ωt�3 =
√
π

6 . A special case of the Gauss–Hermite quadra-
ture method is a one-node rule, Q(1), which uses a zero node εt+1�1 = 0 and a unit
weight ωt�1 = 1. Integration errors under Gauss–Hermite quadrature integration can be
assessed using the Gauss–Hermite quadrature formula, see, for example, Judd (1998,
p. 261). For a function that is smooth and has little curvature, the integration error de-
creases rapidly with the number of integration nodes J. In particular, Gauss–Hermite
quadrature integration is exact for functions that are linear in the exogenous random
variable.

5.3 Multidimensional quadrature and monomial integration

We now discuss deterministic integration methods suitable for models with multiple
exogenous random variables (in Section 6.6, we extend our baseline model to include
multiple countries hit by idiosyncratic shocks). In this section, we just provide illustra-
tive examples; a detailed description of such methods is given in Appendix B.

With a small number of normally distributed exogenous random variables, we can
approximate multidimensional integrals with a Gauss–Hermite product rule, which
constructs multidimensional nodes as a tensor product of one-dimensional nodes. Be-
low, we illustrate an extension of the two-node quadrature rule to the multidimensional
case by way of example.

Example 3. Let εht+1 ∼ N (0�σ2), h = 1�2�3, be uncorrelated random variables. A two-
node Gauss–Hermite product rule Q(2) (obtained from the two-node Gauss–Hermite
rule) has 23 nodes, which are

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

ε1
t+1�j σ σ σ σ −σ −σ −σ −σ
ε2
t+1�j σ σ −σ −σ σ σ −σ −σ
ε3
t+1�j σ −σ σ −σ σ −σ σ −σ

where weights of all nodes are equal, ωt�j = 1/8 for all j.

Under a J-node Gauss–Hermite product rule, the number of nodes grows exponen-
tially with the number of exogenous random variablesN . Even if there are just two nodes
for each random variable, the total number of nodes is prohibitively large for largeN ; for
example, ifN = 100, we have 2N ≈ 1030 nodes. This makes product rules impractical.

With a large number of exogenous random variables, a feasible alternative to prod-
uct rules is monomial rules. Monomial rules construct multidimensional integration
nodes directly in a multidimensional space. Typically, the number of nodes under
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monomial rules grows polynomially with the number of exogenous random variables.
In Appendix B, we present a description of two monomial rules, denoted by M1 and
M2, which have 2N and 2N2 + 1 nodes, respectively. In particular,M1 constructs nodes
by considering consecutive deviations of each random variable from its expected value,
holding the other random variables fixed to their expected values. We illustrate this con-
struction using the setup of Example 3.

Example 4. Let εht+1 ∼ N (0�σ2), h= 1�2�3, be uncorrelated random variables. A mono-
mial nonproduct ruleM1 has 2 · 3 nodes, which are

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

ε1
t+1�j σ

√
3 −σ√

3 0 0 0 0
ε2
t+1�j 0 0 σ

√
3 −σ√

3 0 0
ε3
t+1�j 0 0 0 0 σ

√
3 −σ√

3

where weights of all nodes are equal, ωt�j = 1/6 for all j.

Since the cost of M1 increases with N only linearly, this rule is feasible for approxi-
mation of integrals with very large dimensionality. For example, with N = 100, the total
number of nodes is only 2N = 200.

The one-node Gauss–Hermite quadrature rule,Q(1), plays a special role in our anal-
ysis. This rule is even cheaper than the monomial rules discussed above since there
is just one node for any number of exogenous random variables. Typically, there is a
trade-off between accuracy and cost of integration methods: having more nodes leads
to a more accurate approximation of integrals, but is also more costly. In our numerical
experiments, the Gauss–Hermite quadrature rule and monomial rules lead to virtually
the same accuracy with an exception of the one-node Gauss–Hermite rule producing
slightly less accurate solutions. Overall, the accuracy levels attained by GSSA under de-
terministic integration methods are orders of magnitude higher than those attained un-
der the Monte Carlo method.27

6. Numerical experiments

In this section, we discuss the implementation details of GSSA and describe the results of
our numerical experiments. We first solve the representative–agent model of Section 2.1.
Then we solve two more challenging applications: a model with rare disasters and a
model with multiple countries.

6.1 Implementation details

Model’s parameters We assume a constant relative risk aversion utility function u(ct)=
c

1−γ
t −1
1−γ , with a risk-aversion coefficient γ ∈ (0�∞), and a Cobb–Douglas production func-

tion f (kt) = kαt , with a capital share α = 0�36. The discount factor is β = 0�99, and the

27Quasi-Monte Carlo integration methods based on low-discrepancy sequences of shocks may also give
more accurate solutions than Monte Carlo integration methods; see Geweke (1996) for a review.
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parameters in (4) are ρ= 0�95 and σ = 0�01. The parameters δ and γ vary across experi-
ments.

Algorithm’s parameters The convergence parameter  in the convergence criterion
(10) must be chosen by taking into account a trade-off between accuracy and speed
in a given application (a too strict criterion wastes computer time, while a too loose
criterion reduces accuracy). In our experiments, we find it convenient to adjust  to a
degree of the approximating polynomial m and to the damping parameter ξ in (11) by
= 10−4−mξ. The former adjustment allows us to roughly match accuracy levels attain-
able under different polynomial degrees in our examples. The latter adjustment ensures
that different values of ξ imply roughly the same degree of convergence in the time-
series solution (note that the smaller is ξ, the smaller is the difference between the se-
ries k(p)t+1 and k(p−1)

t+1 ; in particular, if ξ = 0, the series do not change from one iteration
to another). In most experiments, we use ξ = 0�1, which means that  decreases from
10−6 to 10−10 whenm increases from 1 to 5. To start iterations, we use an arbitrary guess
kt+1 = 0�95kt + 0�05kat , where k is the steady-state capital. To compute a polynomial
solution of degreem= 1, we start iterations from a fixed low-accuracy solution; to com-
pute a solution of degree m ≥ 2, we start from the solution of degree m− 1. The initial
condition is the steady state (k0� a0)= (k�1).

Regularization parameters For RLS-Tikhonov, RLAD-PP, and RLAD-DP, it is convenient
to normalize the regularization parameter by the simulation length T and the num-
ber of the regression coefficients n. For RLS-Tikhonov, this implies an equivalent rep-
resentation of the LS problem (21): minb 1

T (y −Xb)�(y −Xb)+ η
n b

�b, where η reflects
a trade-off between the average squared error 1

T (y − Xb)�(y − Xb) and the average
squared coefficient 1

nb
�b. Since η is constructed to be invariant to changes in T and

n, the same numerical value of η often works well for experiments with different T
and n (and thus, different polynomial degrees m). For the RLAD problem (33), we have
minb 1

T 1�
T |y −Xb| + η

n 1�
n |b|.

To select appropriate values of the regularization parameters for our regulariza-
tion methods, we use the approach that combines the ideas of ridge trace and cross-
validation, as described in Section 4.2.2. We specifically search for a value of the regular-
ization parameter that ensures both the numerical stability (convergence) of fixed-point
iteration in Stage 1 and the high accuracy of solutions in Stage 2. In our experiments,
we typically use the smallest degree of regularization that ensures numerical stability of
fixed-point iteration; we find that this choice also leads to accurate solutions.28

Results reported, hardware, and software For each experiment, we report the value of a
regularization parameter (if applicable) and time necessary for computing a solution, as
well as unit-free Euler equation errors (12) on a stochastic simulation of T test = 10�200

28We tried to automate a search of the regularization parameter by targeting some accuracy criterion in
Stage 2. The outcome of the search was sensitive to a realization of shocks and an accuracy criterion (e.g.,
mean squared error, mean absolute error, maximum error). In the studied models, accuracy improvements
were small, while costs increased substantially. We did not pursue this approach.
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observations (we discard the first 200 observations to eliminate the effect of initial con-
ditions); see Juillard and Villemot (2011) for a discussion of other accuracy measures.
To compute conditional expectations in the test, we use a highly accurate integration
methodQ(10). We run the experiments on a desktop computer ASUS with Intel� Core™
2 Quad CPU Q9400 (2.66 GHz). Our programs are written in MATLAB, version 7.6.0.324
(R2008a). To solve the linear-programming problems, we use a routine linprog under
the option of an interior-point method.29 To increase the speed of computations in MAT-
LAB, we use vectorization (e.g., we approximate conditional expectation in all simulated
points at once rather than point by point and compute all policy functions at once rather
than one by one).

6.2 Testing numerical stability

We consider a version of the representative–agent model under δ = 1 and γ = 1. This
model admits a closed-form solution, kt+1 = αβatk

α
t . To compute conditional expecta-

tions, we use the one-node Monte Carlo integration method (44). A peculiar feature of
this model is that the integrand of conditional expectation in the Euler equation (7) is
equal to kt+1 for all possible realizations of at+1. Since the integrand does not have a
forward-looking component, the choice of integration method has little impact on ac-
curacy. We can therefore concentrate on the issue of numerical stability of GSSA.

We consider four nonregularization methods (OLS, LS-SVD, LAD-PP, and LAD-DP)
and four corresponding regularization methods (RLS-Tikhonov, RLS-TSVD, RLAD-PP,
and RLAD-DP). The RLS-TSVD method is also a representative of the principal com-
ponent approach. We use both unnormalized and normalized data, and we consider
both ordinary and Hermite polynomials. We use a relatively short simulation length of
T = 3000 because the primal-problem formulations LAD-PP and RLAD-PP proved to be
costly in terms of time and memory. In particular, when T exceeded 3000, our computer
ran out of memory. The results are shown in Table 1.

Our stabilization techniques proved to be remarkably successful in the examples
considered. When the OLS method is used with unnormalized data and ordinary poly-
nomials, we cannot go beyond the second-degree polynomial approximation. Normal-
ization of variables alone allows us to compute degree 3 polynomial solutions. LS-SVD
and LAD with unnormalized data deliver the fourth-degree polynomial solutions. All
regularization methods successfully computed degree 5 polynomial approximations.
Hermite polynomials ensure numerical stability under any approximation method (all
methods considered lead to nearly identical results). The solutions are very accurate
with mean errors of order 10−9.

For the regularization methods, we compare the results under 2 degrees of regular-
ization. When a degree of regularization is low, the regularization methods deliver accu-
racy levels that are comparable or superior to those of the corresponding nonregulariza-
tion methods. However, an excessively large degree of regularization reduces accuracy

29A possible alternative to the interior-point method is a simplex method. Our experiments indicated
that the simplex method, incorporated in MATLAB, was slower than the interior-point method; occasion-
ally, it was also unable to find an initial guess. See Portnoy and Koenker (1997) for a comparison of interior-
point and simplex-based algorithms.
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Table 1. Stability of GSSA in the representative–agent model with a closed-form solution: the role of approximation method, data normaliza-
tion, and polynomial family.a

Ordinary Polynomials: Ordinary Polynomials: Hermite Polynomials:
Nonregularization Methods Regularization Methods Nonregularization Methods

Unnormalized Data Normalized Data Smaller Regularization Larger Regularization Unnormalized Data
Polynomial
Degree Emean Emax CPU Emean Emax CPU Emean Emax CPU Emean Emax CPU Emean Emax CPU

OLS RLS-Tikhonov, η= 10−10 RLS-Tikhonov, η= 10−7 OLS

1st −3�52 −2�45 0�8 −3�52 −2�45 1 −3�52 −2�45 1 −3�52 −2�45 1 −3�52 −2�45 1
2nd −5�46 −4�17 3�1 −5�46 −4�17 3 −5�46 −4�17 3 −5�46 −4�16 3 −5�46 −4�17 4
3rd – – – −6�84 −5�36 5 −6�84 −5�36 5 −5�85 −4�51 4 −6�84 −5�36 6
4th – – – – – – −6�97 −5�63 8 −6�12 −4�74 7 −7�97 −6�35 8
5th – – – – – – – – – −6�22 −4�75 11 −9�09 −7�29 10

LS-SVD RLS-TSVD, κ= 108 RLS-TSVD, κ= 106 LS-SVD

1st −3�52 −2�45 0�9 −3�52 −2�45 1 −3�52 −2�45 1 −3�52 −2�45 1 −3�52 −2�45 1
2nd −5�46 −4�17 3�1 −5�46 −4�17 3 −5�46 −4�17 3 −5�46 −4�17 3 −5�46 −4�17 4
3rd −6�84 −5�36 4�6 −6�84 −5�36 5 −6�84 −5�36 5 −6�84 −5�36 5 −6�84 −5�36 6
4th −7�98 −6�37 6�1 −7�97 −6�35 6 −7�97 −6�35 6 −7�20 −5�46 6 −7�97 −6�35 8
5th – – – −9�12 −7�43 10 −9�08 −7�25 8 −7�64 −5�97 9 −9�08 −7�25 9

LAD-PP RLAD-PP, η= 10−6 RLAD-PP, η= 10−4 LAD-PP

1st −3�57 −2�43 28�6 −3�52 −2�45 16 −3�52 −2�45 15 −3�52 −2�45 15 −3�57 −2�43 30
2nd −5�56 −4�11 246�5 −5�55 −4�12 92 −5�55 −4�12 127 −5�55 −4�11 100 −5�56 −4�11 243
3rd −6�98 −5�26 386�8 −6�97 −5�25 245 −6�98 −5�25 321 −6�93 −5�22 263 −6�98 −5�26 379
4th −7�62 −5�58 558�8 −8�16 −6�11 383 −8�17 −6�13 530 −6�75 −5�06 349 −8�16 −6�13 512
5th – – – −9�10 −7�02 560 −8�17 −6�15 706 −6�64 −4�97 936 −9�09 −7�05 670

LAD-DP RLAD-DP, η= 10−6 RLAD-DP, η= 10−4 LAD-DP

1st −3�57 −2�43 3�1 −3�52 −2�45 9 −3�52 −2�45 3 −3�52 −2�45 3 −3�57 −2�43 3
2nd −5�56 −4�11 9�3 −5�55 −4�12 34 −5�55 −4�12 10 −5�55 −4�12 11 −5�56 −4�11 9
3rd −6�98 −5�26 13�2 −6�97 −5�25 55 −6�98 −5�25 19 −6�93 −5�22 25 −6�98 −5�25 13
4th – – – −8�14 −6�12 74 −8�17 −6�13 45 −6�75 −5�06 30 −8�15 −6�18 18
5th – – – – – – −8�17 −6�15 71 −6�64 −4�97 62 −9�26 −7�04 21

a Emean and Emax are, respectively, the average and maximum absolute unit-free Euler equation errors (in log 10 units) on a stochastic simulation of 10,000 observations; CPU is the
time necessary for computing a solution (in seconds); η is the regularization parameter in RLS-Tikhonov, RLAD-PP, and RLAD-DP; κ is the regularization parameter in RLS-TSVD. In all
experiments, we use the one-node Monte Carlo integration method MC(1), simulation length T = 3000, and damping parameter ξ= 0�1.
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because the regression coefficients are excessively biased. Finally, under any degree of
regularization, RLS-Tikhonov leads to visibly less accurate solutions than the other LS
regularization method, RLS-TSVD. This happens because RLS-Tikhonov and RLS-TSVD
work with different objects: the former works with a very ill-conditioned matrix X�X ,
while the latter works with a better conditioned matrix S.30

6.3 Testing accuracy

We study a version of the model with γ = 1 and δ = 0�02. With partial depreciation of
capital, the integrand of conditional expectation in the Euler equation (7) does depend
on at+1, and the choice of integration method plays a critical role in the accuracy of
solutions. In all the experiments, we use ordinary polynomials and RLS-TSVD with κ=
107. This choice ensures numerical stability, allowing us to concentrate on the accuracy
of integration.

We first assess the performance of GSSA based on the Monte Carlo method, MC(J),
with J = 1 and J = 2000. (Recall that MC(1) uses one random draw, and MC(2000) uses
a simple average of 2000 random draws to approximate an integral in each simulated
point.) We consider four different simulation lengths, T ∈ {100�1000�10�000�100�000}.
The results are provided in Table 2.

The performance of the Monte Carlo method is poor. Under MC(1), GSSA can
deliver high-degree polynomial approximations only if T is sufficiently large (if T is
small, Monte Carlo integration is so inaccurate that simulated series either explode
or implode). A 10 times increase in the simulation length (e.g., from T = 10�000 to
T = 100�000) decreases errors by about a factor of 3. This is consistent with a

√
T rate

of convergence of MC(1); see Section 5.1. Increasing the number of nodes J from 1 to
2000 augments accuracy by about

√
J and helps restore numerical stability. The most

accurate solution is obtained under the polynomial of degree 3, and corresponds to a
combination of T and J with the largest number of random draws (i.e., T = 10�000 and
J = 2000). Overall, high-degree polynomials do not necessarily lead to more accurate
solutions than low-degree polynomials because accuracy is dominated by large errors
produced by Monte Carlo integration. Thus, even though our stabilization techniques
enable us to compute polynomial approximations of 5 degrees, there is no gain in going
beyond the third-degree polynomial if Monte Carlo integration is used.

We next consider the Gauss–Hermite quadrature method Q(J) with J = 1�2�10. The
results change dramatically: all the studied cases become numerically stable and the
accuracy of solutions increases by orders of magnitude. Q(J) is very accurate even with
just two nodes: increasing the number of nodes from J = 2 to J = 10 does not visibly
reduce the approximation errors in the table. The highest accuracy is attained with the
degree 5 polynomials, T = 100�000, and the most accurate integration method Q(10).

30Alternatively, we can apply a Tikhonov-type of regularization directly to S by adding ηIn, that is, b̂(η)=
V (S + ηIn)

−1U ′y . This version of Tikhonov regularization produces solutions that are at least as accurate
as those produced by LS-SVD. However, in some applications, such as large-scale economies, computing
the SVD can be costly or infeasible, and the standard Tikhnonov regularization based on X ′X can still be
useful.
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Table 2. Accuracy of GSSA in the representative–agent model with partial depreciation of capital: the role of integration method (Monte Carlo
versus Gauss–Hermite quadrature methods).a

Monte Carlo Method Gauss–Hermite Quadrature Method

MC(1) MC(2000) Q(1) Q(2) Q(10)
Polynomial
Degree Emean Emax CPU Emean Emax CPU Emean Emax CPU Emean Emax CPU Emean Emax CPU

T = 100
1st −3�54 −2�80 0�2 −4�35 −3�40 56 −4�36 −3�37 3 −4�35 −3�36 1 −4�35 −3�36 2
2nd – – – −4�07 −3�06 112 −6�05 −4�93 4 −6�13 −4�90 3 −6�13 −4�90 5
3rd – – – −3�81 −2�52 200 −6�32 −5�85 5 −7�47 −5�94 4 −7�47 −5�94 6
4th – – – – – – −6�24 −5�25 6 −6�84 −5�26 6 −6�84 −5�26 8
5th – – – – – – −6�04 −4�73 7 −6�22 −4�72 10 −6�22 −4�72 11

T = 1000
1st −4�02 −3�21 0�4 −4�40 −3�47 425 −4�34 −3�48 3 −4�36 −3�47 3 −4�36 −3�47 3
2nd −3�71 −2�73 6 −5�52 −4�65 644 −6�06 −4�95 7 −6�16 −4�95 6 −6�16 −4�95 7
3rd – – – −5�33 −4�23 873 −6�32 −5�92 9 −7�57 −6�21 9 −7�57 −6�21 10
4th – – – −5�22 −3�81 1383 −6�31 −6�20 10 −8�92 −7�30 11 −8�92 −7�30 13
5th – – – −5�22 −3�80 1730 −6�32 −6�20 12 −8�53 −6�68 13 −8�53 −6�68 15

T = 10�000
1st −4�26 −3�37 1 −4�40 −3�48 1236 −4�35 −3�37 15 −4�36 −3�37 16 −4�36 −3�37 20
2nd −4�42 −3�69 11 −6�04 −4�93 1711 −5�99 −4�94 32 −6�13 −4�92 27 −6�13 −4�92 34
3rd −4�32 −3�37 25 −6�15 −5�07 2198 −6�32 −5�90 45 −7�48 −6�01 35 −7�48 −6�01 44
4th −4�31 −2�98 47 −6�08 −4�71 3337 −6�32 −6�18 53 −8�72 −7�10 44 −8�72 −7�10 54
5th −4�23 −3�30 80 −6�07 −4�70 4551 −6�32 −6�18 62 −8�91 −7�26 51 −8�91 −7�26 63

T = 100�000
1st −4�39 −3�40 4 – – – −4�36 −3�40 117 −4�37 −3�39 113 −4�37 −3�39 142
2nd −4�87 −3�96 79 – – – −6�03 −4�94 281 −6�16 −4�94 188 −6�16 −4�94 238
3rd −4�86 −3�60 184 Ran out of memory −6�32 −5�93 387 −7�52 −6�04 260 −7�52 −6�04 328
4th −4�72 −3�43 341 – – – −6�32 −6�19 470 −8�78 −7�18 335 −8�78 −7�18 421
5th −4�71 −3�44 623 – – – −6�32 −6�19 548 −8�98 −7�35 406 −8�98 −7�35 508

a Emean and Emax are, respectively, the average and maximum absolute unit-free Euler equation errors (in log 10 units) on a stochastic simulation of 10�000 observations; CPU is the time
necessary for computing a solution (in seconds); T is the simulation length; MC(J) and Q(J) denote J-node Monte Carlo and Gauss–Hermite quadrature integration methods, respectively.
In all experiments, we use RLS-TSVD with κ= 107 , the ordinary polynomial family, and damping parameter ξ= 0�1.
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The mean absolute error is around 10−9 and is nearly 3 orders of magnitude lower than
that attained under Monte Carlo integration. Thus, high-degree polynomials do help
increase the accuracy of solutions if integration is accurate.

Note that even the least accurate solution obtained under the Gauss–Hermite
quadrature method with T = 100 and J = 1 is still more accurate than the most, ac-
curate solution obtained under the Monte Carlo method with T = 10�000 and J = 2000.
The simulation length T plays a less important role in accuracy and numerical stability
of GSSA underQ(J) than under MC(J) becauseQ(J) uses simulated points only to con-
struct the domain, while MC(J) uses such points both to construct the domain and to
evaluate integrals. To decrease errors from 10−5 to 10−9 under the Monte Carlo method
MC(1), we would need to increase the simulation length from T = 104 to T = 1012.

6.4 Sensitivity of GSSA to the risk-aversion coefficient

We test GSSA in the model with very low and very high degrees of risk aversion, γ = 0�1
and γ = 10. We restrict attention to three regularization methods RLS-Tikhonov, RLS-
TSVD, and RLAD-DP (in the limit, these methods include nonregularization methods
OLS, LS-SVD, and LAD-DP, respectively). We omit RLAD-PP because of its high cost. In
all experiments, we use T = 10�000 and an accurate integration methodQ(10) (however,
we found that Q(2) leads to virtually the same accuracy). The results are presented in
Table 3.

Under γ = 0�1, GSSA is stable even under large values of the damping parameter
such as ξ = 0�5. In contrast, under γ = 10, GSSA becomes unstable because fixed-point
iteration is fragile. One way to enhance numerical stability is to set the damping param-
eter ξ to a very small value; for example, ξ = 0�01 ensures stability under both ordinary
and Hermite polynomials. Another way to do so is to choose a different policy function
to approximate; see the discussion in Section 4.5.2. We find that using a marginal-utility
policy function (instead of the capital policy function) ensures the stability of GSSA un-
der large values of ξ such as ξ= 0�5.

Overall, the accuracy of solutions is higher under γ = 0�1 than under γ = 10. How-
ever, even in the latter case, our solutions are very accurate: we attain mean errors of
order 10−8. The accuracy levels attained under the capital and marginal-utility policy
functions are similar. RLAD-DP and RLS-TSVD deliver more accurate solutions than
RLS-Tikhonov. As for the cost, RLAD-DP is more expensive than the other methods. Fi-
nally, the convergence to a fixed point is considerably faster under the capital policy
function than under the marginal-utility policy function.

6.5 Model with rare disasters

We investigate how the performance of GSSA depends on specific assumptions about
uncertainty. We assume that, in addition to standard normally distributed shocks, the
productivity level is subject to large negative low-probability shocks (rare disasters). We
modify (4) as lnat+1 = ρ lnat + (εt+1 + ζt+1), where εt+1 ∼ N (0�σ2), ζt+1 takes values
−ζσ and 0 with probabilities p and 1 −p, respectively, and ζ > 0. We assume that ζ = 10
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Table 3. Sensitivity of GSSA to the risk-aversion coefficient in the representative–agent model.a

RLS-Tikhonov RLS-TSVD RLAD-DP
Polynomial
Degree η Emean Emax CPU κ Emean Emax CPU η Emean Emax CPU

γ = 0�1 (capital policy function, ordinary polynomial, dampening ξ= 0�5)
1st 10−7 −4�95 −3�91 8 107 −4�95 −3�91 8 10−7 −4�95 −3�90 19
2nd −6�57 −5�32 14 −6�57 −5�32 15 −6�61 −5�31 45
3rd −6�47 −5�14 22 −7�93 −6�32 22 −7�99 −6�28 154
4th −6�94 −5�52 35 −9�06 −7�42 30 −9�08 −7�37 317
5th −6�98 −5�50 86 −8�92 −7�16 39 −9�57 −7�46 885

γ = 10 (capital policy function, ordinary polynomial, dampening ξ= 0�01)
1st 10−7 −2�87 −1�76 92 107 −2�87 −1�76 89 10−7 −2�87 −1�77 194
2nd −4�25 −2�95 214 −4�25 −2�95 218 −4�24 −2�91 757
3rd −5�37 −3�99 374 −5�36 −3�96 332 −5�35 −3�89 1799
4th −5�60 −3�93 681 −6�36 −4�83 448 −6�34 −4�77 4278
5th – – – −7�13 −5�63 580 −7�25 −5�49 7107

γ = 10 (capital policy function, Hermite polynomial, dampening ξ= 0�01)
1st 10−7 −2�87 −1�76 102 107 −2�87 −1�76 109 10−7 −2�87 −1�77 217
2nd −4�25 −2�95 318 −4�25 −2�95 332 −4�24 −2�91 809
3rd −5�36 −3�96 517 −5�36 −3�96 503 −5�35 −3�89 1859
4th −6�36 −4�83 693 −6�36 −4�83 710 −6�34 −4�77 4267
5th −7�31 −5�60 921 −7�30 −5�61 926 – – –

γ = 10 (marginal-utility policy function, ordinary polynomial, dampening ξ= 0�5)
1st 10−10 −2�84 −2�79 256 107 −2�84 −2�79 442 10−7 −2�72 −2�68 1206
2nd −3�67 −3�58 645 −3�67 −3�58 1017 −3�55 −3�50 2596
3rd −4�06 −4�06 1120 −4�06 −4�06 1674 −5�38 −5�37 4331
4th −4�63 −4�61 1568 −4�81 −4�75 2274 −5�21 −5�18 9093
5th – – – −5�41 −5�30 3102 −7�75 −6�57 18�596

a Emean and Emax are, respectively, the average and maximum absolute unit-free Euler equation errors (in log 10 units) on
a stochastic simulation of 10�000 observations; CPU is the time necessary for computing a solution (in seconds); γ is the coef-
ficient of risk aversion; η is the regularization parameter in RLS-Tikhonov and RLAD-DP; κ is the regularization parameter in
RLS-TSVD. In all experiments, we use the simulation length T = 10�000, and the 10 node Gauss–Hermite quadrature integration
method, Q(10).

and p= 0�02, that is, a 10% drop in a productivity level occurs with a probability of 2%.
These values are in line with the estimates obtained in recent literature on rare disasters;
see Barro (2009).

We solve the model with γ = 1 using three regularization methods (RLS-Tikhonov,
RLS-TSVD, and RLAD-DP). We consider both ordinary and Hermite polynomials. We
implement a quadrature integration method with 2J nodes and weights. The first J
nodes are the usual Gauss–Hermite nodes {εt+1�j}j=1�����J and the remaining J nodes cor-
respond to a rare disaster {εt+1�j−ζσ}j=1�����J ; the weights assigned to the former J nodes
and latter J nodes are adjusted to the probability of a rare disaster by {(1 −p)ωt�j}j=1�����J

and {pωt�j}j=1�����J , respectively. We use J = 10 and T = 10�000.
In all cases, GSSA is successful in finding solutions; see Table 4. Overall, the errors

are larger than in the case of the standard shocks because the ergodic set is larger, and
solutions must be approximated and tested on a larger domain; compare Tables 2 and 4.
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Table 4. The model with rare disasters (10% negative productivity shocks occur with probability
0.01).a

RLS-Tikhonov RLS-TSVD RLAD-DP
Polynomial
Degree η Emean Emax CPU κ Emean Emax CPU η Emean Emax CPU

Ordinary Polynomials
1st 10−6 −3�97 −2�87 50 108 −3�97 −2�87 40 10−6 −3�98 −2�80 81
2nd −5�47 −4�09 79 −5�47 −4�09 67 −5�61 −4�08 152
3rd −6�63 −4�70 110 −6�64 −4�71 97 −6�81 −4�67 257
4th −7�67 −5�89 134 −7�67 −5�83 118 −7�88 −5�50 642
5th −8�16 −6�30 158 −8�66 −6�54 143 −8�86 −6�12 1193

Hermite Polynomials
1st 10−6 −3�97 −2�87 49 108 −3�97 −2�87 49 10−6 −3�98 −2�80 88
2nd −5�47 −4�09 77 −5�47 −4�09 77 −5�61 −4�08 164
3rd −6�64 −4�71 108 −6�64 −4�71 108 −6�81 −4�67 266
4th −7�67 −5�83 131 −7�67 −5�83 131 −7�88 −5�51 516
5th −8�66 −6�54 156 −8�66 −6�54 156 −8�87 −6�42 1013

a Emean and Emax are, respectively, the average and maximum absolute unit-free Euler equation errors (in log 10 units)
on a stochastic simulation of 10�000 observations; CPU is the time necessary for computing a solution (in seconds); η is the
regularization parameter in RLS-Tikhonov and RLAD-DP; κ is the regularization parameter in RLS-TSVD. In all experiments, we
use simulation length T = 10�000, the 10 node Gauss–Hermite quadrature integration method, Q(10), and damping parameter
ξ= 0�1.

The accuracy levels are still high: the mean absolute errors are of order 10−8. We perform
further sensitivity experiments and find that GSSA is numerically stable and delivers
accurate solutions for a wide range of the parameters σ , ρ, ζ, and p.

6.6 Multicountry model

We demonstrate the tractability of GSSA in high-dimensional problems. For this, we ex-
tend the representative–agent model (2)–(4) to include multiple countries. Each coun-
try h ∈ {1� � � � �N} is characterized by capital kht and productivity level aht (i.e., the state
space contains 2N state variables). The productivity level of a country is affected by both
country-specific and worldwide shocks. The world economy is governed by a planner
who maximizes a weighted sum of utility functions of the countries’ representative con-
sumers. We represent the planner’s solution with N capital policy functions and com-
pute their approximations,

kht+1 =Kh({kht � aht }h=1�����N)≈Ψh({kht � aht }h=1�����N ;bh)� h= 1� � � � �N� (45)

where Ψh and bh are, respectively, an approximating function and a vector of the ap-
proximation parameters of country h. A formal description of the multicountry model
and implementation details of GSSA are provided in Appendix C. The results are shown
in Table 5.

We first compute solutions using GSSA with the one-node Monte Carlo method
MC(1). We use RLS-Tikhonov with η= 10−5 and T = 10�000. The performance of Monte
Carlo integration is again poor. The highest accuracy is achieved under the first-degree
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Table 5. Accuracy and cost of GSSA in the multicountry model: the effect of dimensionality.a

RLS-Tikh., MC(1) RLS-TSVD,M2/M1, RLAD-DP,M1 RLS-Tikh.,Q(1),
T = 10�000�η= 10−5 T = 1000�κ= 107 T = 1000�η= 10−5 T = 1000�η= 10−5

Number of Polynomial Number of
Countries Degree Coefficients Emean Emax CPU Emean Emax CPU Emean Emax CPU Emean Emax CPU

N = 2 1st 5 −4�70 −3�13 251 −4�65 −2�99 37 −4�67 −3�01 127 −4�64 −2�99 28
2nd 15 −4�82 −3�11 1155 −6�01 −3�99 407 −6�06 −4�02 680 −5�79 −4�04 167
3rd 35 −4�59 −2�42 3418 −7�09 −4�83 621 −7�10 −4�83 1881 −5�50 −3�55 385
4th 70 −4�57 −2�53 9418 −7�99 −5�63 978 −8�12 −5�60 14�550 −5�73 −3�81 897
5th 126 −4�53 −2�38 24�330 −8�00 −5�50 2087 −8�17 −5�65 48�061 −5�76 −3�85 2463

N = 4 1st 9 −4�59 −3�06 280 −4�72 −3�17 102 −4�73 −3�17 290 −4�71 −3�18 36
2nd 45 −4�46 −2�87 1425 −6�05 −4�15 1272 −6�08 −4�16 3912 −5�67 −4�22 189
3rd 165 −4�29 −2�52 11�566 −7�06 −4�89 5518 −7�00 −4�89 95�385 −5�64 −4�03 1092
4th 495 −4�20 −2�31 58�102 −7�46 −5�23 37�422 – – – −5�64 −4�39 4858

N = 6 1st 13 −4�58 −3�12 301 −4�71 −3�08 225 −4�72 −3�10 562 −4�69 −3�09 41
2nd 91 −4�30 −2�73 1695 −6�06 −4�21 2988 −5�94 −4�11 13�691 −5�62 −4�26 224
3rd 455 −4�04 −2�29 30�585 −6�96 −4�88 65�663 – – – −5�55 −3�87 3219

N = 8 1st 17 −4�56 −3�14 314 −4�73 −3�08 430 −4�74 −3�07 996 −4�72 −3�09 42
2nd 153 −4�19 −2�63 1938 −6�06 −4�20 5841 −6�08 −4�20 78�928 −5�59 −4�29 278

N = 10 1st 21 −4�54 −3�15 341 −4�73 −3�08 773 −4�74 −3�08 1609 −4�72 −3�09 44
2nd 231 −4�07 −2�59 2391 −6�05 −4�20 10�494 −5�97 −4�14 183�046 −5�56 −4�32 292

N = 20 1st 41 −4�55 −3�12 390 −4�77 −2�93 344 −4�79 −2�94 9727 −4�75 −2�93 56
2nd 861 −3�88 −2�36 7589 −5�48 −3�99 6585 – – – −5�40 −3�94 1079

N = 100 1st 201 −4�17 −2�77 1135 −4�63 −3�04 13�846 – – – −4�64 −3�05 225

N = 200 1st 401 −3�97 −2�56 2232 −4�60 −3�10 105�121 – – – −4�59 −3�10 1008
a Emean and Emax are, respectively, the average and maximum absolute unit-free Euler equation errors (in log 10 units) on a stochastic simulation of 10�000 observations; CPU is the

time necessary for computing a solution (in seconds); N is the number of countries; Number of Coefficients is the number of polynomial coefficients in the policy function of one country;
T is the simulation length. In all experiments, we use ordinary polynomials and normalized data. For RLS-TSVD, we use M2 for N < 20 and M1 for N = 20, 100, and 200. For N = 200 in
experiments RLS-TSVD,M2/M1 and RLS-Tikh., Q(1), we use T = 2000.
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polynomials. This is because polynomials of higher degrees have too many regression
coefficients to identify for a given sample size T . Moreover, when N increases, so does
the number of coefficients, and the accuracy decreases even further. For example, going
from N = 2 to N = 20 increases the size of the approximation errors by about a factor of
10 under the second-degree polynomial. Longer simulations increase the accuracy but
at a high cost.

We next compute solutions using GSSA with the deterministic integration methods.
Since such methods do not require long simulations for accurate integration, we use a
relatively short simulation length of T = 1000 (except for the case of N = 200 in which
we use T = 2000 for enhancing numerical stability). We start with accurate but expen-
sive integration methods (namely, we use the monomial rule M2 with 2N2 + 1 nodes
for 2 ≤ N ≤ 10 and we use the monomial rule M1 with 2N nodes for N > 10). The ap-
proximation method was RLS-TSVD (with κ = 107). For small-scale economies, N = 2,
4, and 6, GSSA computes the polynomial approximations up to degrees 5, 4, and 3, re-
spectively, with maximum absolute errors of 10−5�5, 10−5�2, and 10−4�9, respectively. For
medium-scale economies, N ≤ 8, 10, and 20, GSSA computes the second-degree poly-
nomial approximations with maximum absolute error of 10−4. Finally, for large-scale
economies, N = 100 and 200, GSSA computes the first-degree polynomial approxima-
tions with maximum absolute error of 10−2�9.

We then compute solutions using RLAD-DP (with η= 10−5) combined with M1. We
obtain accuracy levels that are similar to those delivered by our previous combination
of RLS-TSVD andM2. We observe that RLAD-DP is more costly than the LS methods but
is still practical in medium-scale applications. It is possible to increase the efficiency of
LAD methods by using techniques developed in the recent literature.31

We finally compute solutions using GSSA with a cheap one-node quadrature
method, Q(1), and RLS-Tikhonov (with η = 10−5). For polynomials of degrees larger
than 2, the accuracy of solutions is limited. For the first- and second-degree polynomi-
als, the accuracy is similar to that under more expensive integration methods, but the
cost is reduced by an order of magnitude or more. In particular, when N increase from
2 to 20, the running time increases only from 3 to 18 minutes. Overall, RLS-Tikhonov is
more stable in large-scale problems than RLS-TSVD (because SVD becomes costly and
numerically unstable).

The accuracy of GSSA solutions is comparable to the highest accuracy attained in
the comparison analysis of Kollmann et al. (2011). GSSA fits a polynomial on a relevant
domain (the ergodic set) and as a result, can get a better fit on the relevant domain than
methods fitting polynomials on other domains.32 A choice of domain is especially im-
portant for accuracy under relatively rigid low-degree polynomials. In particular, linear
solutions produced by GSSA are far more accurate than the first- and second-order per-
turbation methods of Kollmann, Kim, and Kim (2011) that in a similar model produce

31Tits, Absil, and Woessner (2006) proposed a constraint-reduction scheme that can drastically reduce
computational cost per iteration of linear-programming methods.

32An advantage of focusing on the ergodic set is illustrated by Judd, Maliar, and Maliar (2010) in the
context of a cluster grid algorithm. In a model with only two state variables, solutions computed on the
ergodic set are up to 10 times more accurate than those computed on the rectangular grid containing the
ergodic set.



206 Judd, Maliar, and Maliar Quantitative Economics 2 (2011)

approximation errors of 10−1�7 and 10−2�66, respectively; see Table 2 in a web appendix
of the comparison analysis of Kollmann et al. (2011), http://www.sciencedirect.com/
science/journal/01651889.33 The cost of GSSA depends on the integration and approx-
imation methods and the degree of the approximating polynomial, as well as the sim-
ulation length. There is a trade-off between accuracy and speed, and cheap versions of
GSSA are tractable in problems with very high dimensionality. Finally, GSSA is highly
parallelizable.34

7. Conclusion

Methods that operate on an ergodic set have two potential advantages compared to
methods that operate on domains that are exogenous to the models. The first advantage
is in terms of cost: ergodic-set methods compute solutions only in a relevant domain—
the ergodic set realized in equilibrium—while exogenous-domain methods compute so-
lutions both inside and outside the relevant domain, and spend time computing solu-
tions in unnecessary points. The second advantage is in terms of accuracy: ergodic-set
methods fit a polynomial in a relevant domain, while exogenous-domain methods fit the
polynomial in generally larger domains, and face a trade-off between the fit (accuracy)
inside and outside the relevant domain.

Stochastic simulation algorithms in previous literature (based on standard LS ap-
proximation methods and Monte Carlo integration methods) did not benefit from the
above advantages. Their performance was severely handicapped by two problems: nu-
merical instability (because of multicollinearity) and large integration errors (because
of low accuracy of Monte Carlo integration). GSSA fixes both of these problems: First,
GSSA relies on approximation methods that can handle ill-conditioned problems; this
allows us to stabilize stochastic simulation and to compute high-degree polynomial ap-
proximations. Second, GSSA uses a generalized notion of integration that includes both
Monte Carlo and deterministic (quadrature and monomial) integration methods; this
allows us to compute integrals very accurately. GSSA has shown great performance in
the examples considered. It extends the speed–accuracy frontier attained in the related
literature, it is tractable for problems with high dimensionality, and it is very simple to
program. GSSA appears to be a promising method for many economic applications.
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Appendix A: Nonlinear regression model and nonlinear

approximation methods

In this section, we extend the approximation approaches that we developed in Sec-
tions 4.2 and 4.3 to the case of the nonlinear regression model

y =Ψ(k�a;b)+ ε� (A.1)

where b ∈ R
n+1, k ≡ (k0� � � � �kT−1) ∈ R

T , a ≡ (a0� � � � � aT−1) ∈ R
T , and Ψ(k�a;β) ≡

(Ψ(k0� a0;β)� � � � �Ψ(kT−1� aT−1;β))� ∈ R
T .1 We first consider a nonlinear LS (NLLS)

problem and then formulate the corresponding LAD problem.
The NLLS problem is

min
b

‖y −Ψ(k�a;b)‖2
2 = min

b
[y −Ψ(k�a;b)]�[y −Ψ(k�a;b)]� (A.2)

The typical NLLS estimation method linearizes (A.2) around a given initial guess b by
using a first-order Taylor expansion of Ψ(k�a;b) and makes a step �b toward a solution

b̂� b+�b� (A.3)

Using the linearity of the differential operator, we can derive an explicit expression for
the step �b. This step is given by a solution to the system of normal equations

J �J �b = J ��y� (A.4)
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Lilia Maliar: maliarl@stanford.edu
Serguei Maliar: maliars@stanford.edu

1The regression model with the exponentiated polynomial Ψ(kt�at ;b)= exp(b0 +b1 lnkt +b2 lnat +· · ·),
used in Marcet’s (1988) simulation-based PEA, is a particular case of (A.1).
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where J is a Jacobian matrix of Ψ ,

J ≡
⎛⎝ ∂Ψ(k0�a0;b)

∂b0
· · · ∂Ψ(k0�a0;b)

∂bn· · · · · · · · ·
∂Ψ(kT−1�aT−1;b)

∂b0
· · · ∂Ψ(kT−1�aT−1;b)

∂bn

⎞⎠ �

and

�y ≡ (y0 −Ψ(k0� a0;b)� � � � � yT−1 −Ψ(kT−1� aT−1;b))��
Typically, the NLLS estimation method does not give an accurate solution b̂ in a single
step �b, and must instead iterate on the step (A.3) until convergence.2

A direct way to compute the step �b from (A.4) is to invert the matrix J �J , which
yields the well known Gauss–Newton method

�b = (J �J )−1 J ��y� (A.5)

This formula (A.5) has a striking resemblance to the OLS formula b̂ = (X�X)−1X�y,
namely, X , y, and b in the OLS formula are replaced in (A.5) by J , �y, and �b, respec-
tively. If J �J is ill-conditioned, as is often the case in applications, the Gauss–Newton
method experiences the same difficulties in computing (J �J )−1 and �b that the OLS
method does in computing (X�X)−1 and b.

To deal with the ill-conditioned matrix J �J in the Gauss–Newton method (A.5),
we can employ the LS approaches similar to those developed for the linear regression
model in Sections 4.2.1 and 4.2.2 of the paper. Specifically, we can compute an inverse of
the ill-conditioned matrix J �J by using LS methods based on SVD or QR factorization
of J . We can also use the Tikhonov type of regularization, which leads to the Levenberg–
Marquardt method

�b(η)= (J �J +ηIn+1)
−1 J ��y� (A.6)

where η≥ 0 is a regularization parameter.3

Furthermore, we can replace the ill-conditioned NLLS problem (A.2) with a nonlin-
ear LAD (NLLAD) problem

min
b

‖y −Ψ(k�a;b)‖1 = min
b

1�
T |y −Ψ(k�a;b)|� (A.7)

As in the NLLS case, we can proceed by linearizing the nonlinear problem (A.7) around
a given initial guess b. The linearized version of the NLLAD problem (A.7) is

min
�b

1�
T |�y − J �b|� (A.8)

The problem (A.8) can be formulated as a linear-programming problem: specifically, we
can set up the primal and dual problems, as well as regularized primal and dual prob-
lems, analogous to those considered in Sections 4.3.1 and 4.3.2 of the paper.

2Instead of the first-order Taylor expansion of Ψ(k�θ;b), we can consider a second-order Taylor expan-
sion, which leads to Newton’s class of nonlinear optimization methods in which the step �b depends on a
Hessian matrix; see Judd (1992, pp. 103–117) for a review.

3This method was proposed independently by Levenberg (1944) and Marquardt (1963).
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Example. Let us formulate a regularized primal problem for (A.8) that is parallel to
(34)–(37) in the paper. Fix some initial ϕ+ and ϕ− (which determine initial b(η) =
ϕ+ −ϕ−), and solve for �ϕ+ and �ϕ− from the linear-programming problem

min
υ+�υ−��ϕ+��ϕ− 1�

T υ
+ + 1�

T υ
− +η1�

n �ϕ
+ +η1�

n �ϕ
− (A.9)

s.t. υ+ − υ− + J�ϕ+ − J�ϕ+ = �y� (A.10)

υ+ ≥ 0� υ− ≥ 0� (A.11)

�ϕ+ ≥ 0� �ϕ− ≥ 0� (A.12)

Compute ϕ̂+ � ϕ+ + �ϕ+ and ϕ̂− � ϕ− + �ϕ−, and restore the regularized NLLAD es-
timator b̂(η) � (ϕ+ + �ϕ+) − (ϕ− + �ϕ−). As in the case of NLLS methods, we do not
typically obtain an accurate solution b̂ in a single step, but must instead solve the prob-
lem (A.9)–(A.12) iteratively until convergence.

To set up a regularized dual problem for (A.8), which is analogous to (38)–(41) in the
paper, we must replace X and y with J and �y, respectively.

Notice that the NLLS and NLLAD regularization methods described in this section
penalize all coefficients equally, including an intercept. Prior to applying these methods,
we need to appropriately normalize the explanatory variables and to set the penalty on
the intercept to zero.

Appendix B: Multidimensional deterministic integration methods

In this section, we describe deterministic integration methods suitable for evaluating
multidimesional integrals of the form

∫
RN G(ε)w(ε)dε, where ε≡ (ε1� � � � � εN)� ∈ R

N fol-
lows a multivariate Normal distribution ε ∼ N (μ�Σ), where μ ≡ (μ1� � � � �μN)� ∈ R

N is
a vector of means and Σ ∈ R

N×N is a variance–covariance matrix, and w(ε) is a density
function of the multivariate Normal distribution,

w(ε) = (2π)−N/2 det(Σ)−1/2 exp
[
−1

2
(ε−μ)�Σ−1(ε−μ)

]
� (B.1)

with det(Σ) denoting the determinant of Σ.4

B.1 Cholesky decomposition

The existing deterministic integration formulas are constructed under the assumption
of uncorrelated random variables with zero mean and unit variance. If the random
variables ε1� � � � � εN are correlated, we must rewrite the integral in terms of uncorre-
lated variables prior to numerical integration. Given that Σ is symmetric and positive-
definite, it has a Cholesky decomposition, Σ = ΩΩ�, where Ω is a lower triangular

4Such integration methods are used in Step 2 of GSSA to compute conditional expectation of the form
Et{Gt(εt+1)} = ∫

RN Gt(ε)w(ε)dε in each simulated point t, in particular, for the representative–agent model
(2)–(4), Gt(εt+1) is the integrand in (7).
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matrix with strictly positive diagonal entries. The Cholesky decomposition of Σ allows
us to transform correlated variables ε into uncorrelated ν with the linear change of vari-
ables

ν = Ω−1(ε−μ)√
2

� (B.2)

Note that dε = (
√

2)N det(Ω)dν. Using (B.2), and taking into account that Σ−1 =
(Ω−1)�Ω−1 and that det(Σ) = [det(Ω)]2, we obtain∫

RN
G(ε)w(ε)dε = π−N/2

∫
RN

G(
√

2Ων +μ)exp(−ν�ν)dν� (B.3)

Deterministic integration methods approximate the integral (B.3) by a weighted sum
of the integrand G evaluated in a finite set of nodes

∫
RN

G(ε)w(ε)dε ≈ π−N/2
J∑

j=1

ωjG(
√

2Ωνj +μ)� (B.4)

where {νj}j=1�����J and {ωj}j=1�����J are integration nodes and integration weights, respec-
tively. In the remaining section, we assume μ = 0N , where 0N is an N × 1 vector whose
entries are equal to 0.

B.2 Gauss–Hermite quadrature

In a one-dimensional integration case, N = 1, the integral (B.4) can be computed using
the Gauss–Hermite quadrature method. To be specific, we have

∫
R

G(ε)w(ε)dε ≈ π−1/2
J∑

j=1

ωjG(
√

2Ωνj)� (B.5)

where {νj}j=1�����J and {ωj}j=1�����J can be found using a table of Gauss–Hermite quadra-
ture nodes and weights (see, e.g., Judd (1998, p. 262)).

We can extend the one-dimensional Gauss–Hermite quadrature rule to the multidi-
mensional case by way of a tensor-product rule∫

RN
G(ε)w(ε)dε

(B.6)

≈ π−N/2
J1∑

j1=1

· · ·
JN∑

jN=1

ω1
j1

· · ·ωN
jN

·G(√
2Ω · (ν1

j1
� � � � � νNjN

)�)
�

where {ωh
jh

}jh=1�����Jh and {νhjh}jh=1�����Jh are, respectively, weights and nodes in a dimen-
sion h derived from the one-dimensional Gauss–Hermite quadrature rule (note that, in
general, the number of nodes in one dimension Jh can differ across dimensions). The
total number of nodes is given by the product J1J2 · · · JN . Assuming that Jh = J for all
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dimensions, the total number of nodes JN grows exponentially with the dimensional-
ity N .

B.3 Monomial rules

Monomial integration rules are nonproduct: they construct a relatively small set of
nodes distributed in some way within a multidimensional hypercube. The computa-
tional expense of monomial rules grows only polynomially with the dimensionality of
the problem, which makes them feasible for problems with large dimensionality.

We describe two monomial formulas for approximating the multidimensional inte-
gral (B.3). Monomial formulas are provided for the case of uncorrelated variables, for
example, in Stroud (1971, pp. 315–329) and Judd (1998, p. 275). Here, we adapt them to
the case of correlated random variables using the change of variables (B.2).

The first formula, denoted by M1, has 2N nodes,

∫
RN

G(ε)w(ε)dε ≈ 1
2N

N∑
h=1

G(±Rιh)� (B.7)

where R ≡ √
NΩ, and ιh ∈ R

N is a vector whose hth element is equal to 1 and the re-
maining elements are equal to 0, that is, ιh ≡ (0� � � � �1� � � � �0)�.

The second formula, denoted by M2, has 2N2 + 1 nodes,∫
RN

G(ε)w(ε)dε ≈ 2
2 +N

G(0� � � � �0)

+ 4 −N

2(2 +N)2

N∑
h=1

[G(Rιh)+G(−Rιh)] (B.8)

+ 1
(N + 2)2

N−1∑
h=1

N∑
s=h+1

G(±Dιh ±Dιs)�

where R≡ √
2 +NΩ and D ≡

√
2+N

2 Ω.

B.4 An example of integration formulas for N = 2

In this section, we illustrate the integration formulas described above using a two-
dimensional example, N = 2. We assume that the variables ε1 and ε2 are uncorrelated,
have zero mean, and have unit variance. The integral (B.3) is then given by

E{G(ε)} = 1
π

∫
R2

G(
√

2ν1�
√

2ν2)exp[−(ν1)2 − (ν2)2]dν1 dν2� (B.9)

(a) The Gauss–Hermite product rule (B.6) with three nodes in each dimension, Q(3),

uses one-dimensional nodes and weights given by νh1 = 0, νh2 =
√

3
2 , νh3 = −

√
3
2 , and ωh

1 =
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2
√
π

3 , ωh
2 = ωh

3 =
√
π

6 for each h= 1�2:

E{G(ε)} ≈ 1
π

3∑
j1=1

3∑
j2=1

ω1
j1
ω2

j2
G

(√
2ν1

j1
�
√

2ν2
j2

)
= 4

9
G(0�0)+ 1

9
G(0�

√
3)+ 1

9
G(0�−√

3)

+ 1
9
G(

√
3�0)+ 1

36
G(

√
3�−√

3)+ 1
36

G(
√

3�−√
3)

+ 1
9
G(−√

3�0)+ 1
36

G(−√
3�

√
3)+ 1

36
G(−√

3�−√
3)�

(b) The Gauss–Hermite product rule (B.6) with one node in each dimension, Q(1),
uses a node νh1 = 0 and a weight ωh

1 = √
π for each h= 1�2:

E{G(ε)} ≈ 1
π

1∑
j1=1

1∑
j2=1

ω1
j1
ω2

j2
G

(√
2ν1

j1
�
√

2ν2
j2

) =G(0�0)�

(c) The monomial formula M1, given by (B.7), has four nodes:

E{G(ε)} ≈ 1
4
[G(

√
2�0)+G(−√

2�0)+G(0�
√

2)+G(0�−√
2)]�

(d) The monomial formula M2, given by (B.8), has nine nodes:

E{G(ε)} ≈ 1
2
G(0�0)+ 1

16
[G(2�0)+G(−2�0)+G(0�2)+G(0�−2)]

+ 1
16

[G(
√

2�
√

2)+G(
√

2�−√
2)+G(−√

2�
√

2)+G(−√
2�

√
2)]�

Appendix C: Multicountry model

In this section, we provide a formal description of the multicountry model studied in
Section 6.6 of the paper. A world economy consists of a finite number of countries N .
Each country h ∈ {1� � � � �N} is populated by a representative consumer. A social planner
solves the maximization problem

max
{cht �kht+1}h=1�����N

t=0�����∞
E0

N∑
h=1

λh

[ ∞∑
t=0

βtuh(cht )

]
(C.1)

subject to the aggregate resource constraint

N∑
h=1

cht +
N∑

h=1

kh
t+1 =

N∑
h=1

kh
t (1 − δ)+

N∑
h=1

aht Afh(kh
t ) (C.2)
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and to the process for the countries’ productivity levels

lnaht+1 = ρ lnaht + εht+1� h= 1� � � � �N� (C.3)

where initial condition {kh
0 � a

h
0 }h=1�����N is given exogenously, and the productivity shocks

follow a multivariate Normal distribution (ε1
t+1� � � � � ε

N
t+1)

� ∼ N (0N�Σ) with 0N ∈ R
N be-

ing a vector of zero means and Σ ∈ R
N×N being a variance–covariance matrix. We as-

sume that shocks of different countries are given by εht+1 = ςht+1 + ςt+1 and h = 1� � � � �N ,

where ςht+1 ∼ N (0�σ2) is a country-specific component and ςt+1 ∼ N (0�σ2) is a world-
wide component. The resulting variance–covariance matrix is

Σ=
⎛⎝2σ2 · · · σ2

· · · · · · · · ·
σ2 · · · 2σ2

⎞⎠ �

In the problem (C.1)–(C.3), Et denotes conditional expectation; cht , kh
t , aht , and λh are

a country h’s consumption, capital, productivity level, and welfare weight, respectively;
β ∈ (0�1) is the discount factor; δ ∈ (0�1] is the depreciation rate; A is a normalizing
constant in the production function; and ρ ∈ (−1�1) is the autocorrelation coefficient.
The utility and production functions uh and f h, respectively, are strictly increasing, con-
tinuously differentiable, and concave. We assume that all countries have identical pref-
erences and technology, that is, uh = u and fh = f for all h. Under these assumptions,
the planner assigns equal weights λh = 1, and, therefore, equal consumption to all coun-
tries, cht = ct for all h= 1� � � � �N .

The solution to the model (C.1)–(C.3) satisfies N Euler equations

kh
t+1 =Et

{
β
u′(ct+1)

u′(ct)
[1 − δ+ aht+1Af ′(kh

t+1)]kh
t+1

}
� h= 1� � � � �N� (C.4)

where u′ and f ′ are the first derivatives of u and f , respectively.
We approximate the planner’s solution in the form of N capital policy functions

(45). Note that our approximating functions Ψh({kh
t � a

h
t }h=1�����N ;bh), h = 1� � � � �N , are

country-specific. Therefore, we treat countries as completely heterogeneous even if they
are identical in fundamentals and have identical optimal policy functions. This allows us
to assess costs associated with computing solutions to models with heterogeneous pref-
erences and technology.

GSSA, described in Section 2 for the representative–agent model, can be readily
adapted to the case of the multicountry model. In the initialization step of Stage 1, we
choose an initial guess for the matrix of the coefficients B ≡ [b1� � � � � bN ] ∈ R

(n+1)×N in
the assumed approximating functions Ψh({kh

t � a
h
t }h=1�����N ;bh), h = 1� � � � �N . In Step 1,

at iteration p, we use a matrix B(p) to simulate the model T periods forward to ob-

tain {kh
t+1}h=1�����N

t=0�����T and calculate the average consumption {ct}t=0�����T using the re-

source constraint (C.2). In Step 2, we calculate the conditional expectation in (C.4)
using a selected integration method to obtain {yht }h=1�����N

t=0�����T−1. In Step 4, we run N re-

gressions yht = Ψh({kh
t � a

h
t }h=1�����N ;bh) + εht to obtain a new matrix of the coefficients

B̂ = [b̂1� � � � � b̂N ]; as in the representative–agent case, we assume that Ψh is linear in bh,
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which leads to a linear regression model yh =Xbh+εh, where yh ≡ (yh0 � � � � � y
h
T−1)

� ∈ R
T ,

εh ≡ (εh0 � � � � � ε
h
T−1)

� ∈ R
T , and X ∈ R

T×(n+1) is a matrix of explanatory variables con-
structed with the basis functions of the state variables. Finally, in Step 4, we update the
coefficients B using fixed-point iteration, B(p+1) = (1−ξ)B(p) +ξB̂. In Stage 2, we evalu-
ate the Euler equation errors on a simulation of T test = 10�200 observations using a high-
quality integration method: for N ≤ 20, we use the monomial rule M2 and for N > 20,
we use the monomial rule M1. To solve the model, we assume u(ct) = ln ct , f (kt) = kα

t

with α = 0�36, β = 0�99, δ = 0�025, ρ = 0�95, and σ = 0�01.
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