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We introduce a unified deep learning method that solves dynamic economic models by 

casting them into nonlinear regression equations. We derive such equations for three fun- 

damental objects of economic dynamics – lifetime reward functions, Bellman equations 

and Euler equations. We estimate the decision functions on simulated data using a stochas- 

tic gradient descent method. We introduce an all-in-one integration operator that facil- 

itates approximation of high-dimensional integrals. We use neural networks to perform 

model reduction and to handle multicollinearity. Our deep learning method is tractable in 

large-scale problems, e.g., Krusell and Smith (1998). We provide a TensorFlow code that 

accommodates a variety of applications. 

© 2021 Elsevier B.V. All rights reserved. 

 

1. Introduction 

Artificial intelligence (AI) has remarkable applications, such as recognition of images and speech, facilitation of computer 

vision, operation of self-driving cars; see Goodfellow et al. (2016) for a review. At the same time, there are many interesting

problems that computational economists cannot solve yet, including high-dimensional heterogeneous-agent models, large- 

scale central banking models, life-cycle models, and expensive nonlinear estimation procedures, among others. We show 
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that it is possible to solve many challenging economic models by using the same AI technology, software and hardware 

that led to groundbreaking applications in data science. We specifically introduce an econometric-style deep learning (DL) 

method that solves dynamic economic models by reformulating them as nonlinear regression equations. Our four novel 

results are stated below: 

First, we offer a unified approach which allows us to cast three fundamental objects of economic dynamics – lifetime 

reward functions, Bellman equations and Euler equations – into objective functions for Monte Carlo simulation. Such objective 

functions are given by a weighted sum of all of the model’s equations, so we iterate on the entire model and solve for

all decision functions at once. To optimize the constructed objective functions, we use deep learning regression techniques 

from the fields of econometrics and data science. Once the regression coefficients are constructed, we infer the value and 

decision functions of the underlying dynamic economic models. 

Second, we show how to adapt a stochastic gradient descent method to training of the three constructed objective func- 

tions. In each iteration, we use just one or a few (batch) grid points, which are randomly drawn from the state space,

instead of a fixed grid with a large number of grid points used by conventional projection and value iterative methods.

In small problems, we draw grid points from an exogenous solution domain, but in large problems, we produce grid 

points by stochastic simulation which allows us to focus on the ergodic set in which the solution ”lives”, avoiding the

cost of computing solutions in those areas that are never visited in equilibrium. Thus, our DL framework aims not only

on convergence of decision and value functions along iterations but also on convergence of simulated series to the ergodic 

set. 

Third, we introduce the all-in-one (AiO) expectation operator for efficient approximation of integrals in Monte Carlo sim- 

ulation. The objective functions, which we derive from economic models, have two types of expectation operators. One is 

with respect to next-period shocks (which appears naturally in stochastic models), and the other is with respect to the 

current state variables (which we created ourselves by drawing grid points randomly from the state space). Approximat- 

ing these two nested expectation operators is costly, especially, in large-scale applications. The AiO method merges the 

two expectation operators into one, reducing the cost dramatically. It possesses a remarkable distributive property: a single 

composite Monte Carlo draw is used both for integration with respect to future shocks and for approximation of decision 

functions. 

The way we construct the AiO operator differs for the three objective functions considered. For the lifetime reward 

method, we draw randomly the initial condition, in addition to future shocks. For the Euler-equation method, we use two 

independent random draws (or two independent batches) for evaluating two terms of the squared residual – this method 

eliminates the correlation between the two terms and helps us pull the expectation operator out of the square. Finally, for

the Bellman-equation method, we introduce a value-iterative scheme that combines a minimization of residuals in the Bell- 

man equation with a maximization of the right side of the Bellman equation into a single weighted-sum objective function. 

We use the Fischer-Burmeister function for a smooth approximation of Kuhn-Tucker conditions. 

Our last important contribution is to implement the DL solution framework using the Google TensorFlow data platform–

the same software that lead to ground-breaking applications in data science. Our implementation is versatile and portable 

to a variety of economic models and applications. 3 

The solution framework we introduce is not tied to neural networks but can be used with any approximating family 

(e.g., polynomials, splines, radial basis functions). However, neural networks possess several features that make them an 

excellent match for high-dimensional applications; namely, they are linearly scalable, robust to ill-conditioning, capable of 

model reduction and well suited for approximating highly nonlinear environments including kinks, discontinuities, discrete 

choices, switching. 

We first illustrate our DL solution framework by using a simple one-agent consumption savings problem with a borrow- 

ing constraint. We implement three versions of the deep learning method based on lifetime reward, Bellman equation and 

Euler equation – they produce very similar solutions. Approximation errors do not exceed a fraction of a percentage point 

– an impressive accuracy level for a model with a kink in decision rules! Moreover, the computational expense increases 

practically linearly with the dimensionality of the state space – another outstanding feature of our DL method based on 

stochastic gradient and the AiO integration operator. 

We then solve Krusell and Smith (1998) model with heterogenous agents. Our solution procedure is conceptually straight- 

forward – we simulate a panel of heterogenous agents, and we feed a distribution of labor productivity and wealth into the

constructed objective functions for training. But there are two challenges: First, the decision function of each agent depends 

on the state variables of all agents, which makes the problem high dimensional. Second, the agent’s state variables appear 

twice in the decision function (as agent’s own state variables and as a part of the distribution), which leads to perfect

collinearity. Fortunately, a neural network can deal with these challenges: First, it performs model reduction by extracting 

and condensing information from high-dimensional distributions into a smaller set of features of the hidden layers. Second, 

it learns to ignore the presence of redundant collinear variables. We again implement deep learning methods based on life- 

time reward, Bellman equation and Euler equation and show that they produce very similar solutions. Our solution method 

is tractable in models with at least 10 0 0 agents (2,001 state variables) on a serial desktop computer! 
3 Jupyter notebooks illustrating the method are available from open-source QuantEcon.org site https://notes.quantecon.org/submission/ 

5ddb3c926bad3800109084bf . 
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We next propose a cheaper deep learning method that replaces the actual state space composed of distributions with 

a reduced state space composed of some aggregate statistics such the moments of wealth distribution studied in Krusell 

and Smith (1998) . Implementing such a method requires no modifications: as before, we simulate a panel of heteroge- 

neous agents, but we now feed in moments instead of distributions. In contrast, the method proposed by Krusell and

Smith (1998) is far more complicated: they alternate between constructing individual and aggregate decision rules. Also, 

they rely on a regression of current moments on past moments, which is unnecessary in our case. Having relatively 

few moments, like 10 or 20, implies lower computational expense and allows us to increase the number of agents (at

least) to 10,0 0 0 agents without a visible accuracy loss, so this cheaper method is a useful alternative to our baseline

method. 

We finally compare the solutions constructed with actual state space to those produced with a reduced state space. 

We find that the solution constructed by using the first moment of wealth distribution as in Krusell and Smith (1998) is

somewhat shifted up relatively to our baseline solution. We tried to add second and third moments, but it did not help

remove the shift. We then constructed a solution with the actual state space but using only 4 neurons which is parallel to 4

state variables in Krusell and Smith (1998) method with one moment. We find that the 4-neuron solution is also shifted up

near the kink area but the shift reduces for larger wealth levels. Furthermore, we find that having more neurons helps one

get closer to the reference solution, unlike having more moments. These findings suggest that moments are not the best 

reduced representation of the actual state space which is not surprising given that the moments are selected by a guess,

while neural networks are designed to search for the best possible reduced representation. 

Our solution method is related to supervised-learning (because we fit the decision and value functions to the data 

which are artificial in our analysis), to unsupervised learning (because the decision and value functions are not explic- 

itly labeled) and reinforcement learning (because we attempt to achieve the convergence of simulated series to the er- 

godic set, in addition to convergence of the neural network coefficients). We are not the only paper that uses machine

learning tools for analyzing dynamic economic models. There are numerous methods that solve dynamic economic mod- 

els on their ergodic sets approximated via stochastic simulation, such as the indirect inference procedure of Smith (1987) 

for maximizing the lifetime reward, a parameterized expectation algorithm (PEA) by Den Haan and Marcet (1990) for 

minimizing the Euler equation residuals and a value iterative method of Maliar and Maliar (2005) for minimizing the 

Bellman equation residuals. There are also methods that use unsupervised learning in order to aim to refine simulated 

points and determine the irregularly-shaped ergodic sets. In particular, Judd et al. (2011) uses clustering of simulated 

points, Maliar and Maliar (2015) combine simulated points in epsilon-distinguishable sets, Renner and Scheidegger (2018) 

and Scheidegger and Bilionis (2019) use Gaussian process machine learning to identify feasible sets. In turn, Jirniy and 

Lepetyuk (2011) show an early remarkable application of reinforcement learning for solving Krusell and Smith (1998) 

model. 

Furthermore, machine learning methods for model reduction and dealing with ill-conditioning are analyzed in Judd et al. 

(2011) including a principle component regression, a truncated SVD method, Tykhonov regularization and regularized least 

absolute deviation methods. The other methods that use model reduction for solving heterogeneous-agent models are Ahn 

et al. (2018) ; Reiter (2010) ; Winberry (2018) and Bayer and Luetticke (2020) . 

Finally, early applications of neural networks date back to Duffy and McNelis (2001) and more recent applications include 

Duarte (2018) ; Fernández-Villaverde et al. (2019) ; Lepetyuk et al. (2020) ; Villa and Valaitis (2019) ,. These papers use neural

networks for interpolation instead of polynomial functions. To the best of our knowledge, we are the first to cast an entire

economic model into the state-of-the-art DL framework and to construct a solution on simulated points by using stochastic 

gradient descent method. There is also a paper by Azinovic et al. (2020) that uses a related Euler-equation method to solve

a large-scale OLG problem. Like us, that paper uses deep neural network and random grid points but focuses only on the

method that minimizes the Euler equation residuals while we offer a unified approach that applies also to the lifetime 

reward and Bellman operator. Another difference is that Azinovic et al. (2020) assume a finite number of shocks in which

case integration is exact, while we show how to integrate stochastic processes with continuous transition density by using 

the AiO operator – a key contribution of our analysis. Finally, the techniques we developed in the present paper are used in

Maliar and Maliar (2020) for constructing a classification deep learning method for modeling non-convex labor choices, and 

in Gorodnichenko et al. (2020) for solving a version of heterogeneous-agent new Keynesian model with uncertainty shocks. 

The rest of the paper is organized as follows: Section 2 shows how to cast three main objects of economic dynam-

ics (lifetime reward, Bellman equation and Euler equations) into expectation functions. Section 3 presents a deep learn- 

ing solution method and provides a quick overview of its key ingredients (multilayer neural networks, stochastic gra- 

dient training method, etc.). Sections 4 and 5 analyze the one-agent consumption-saving model and Krusell and Smith 

(1998) heterogeneous-agent model, respectively. Finally, Section 7 concludes. 

2. Casting dynamic economic models into DL expectation functions 

Deep learning platforms such as TensorFlow or PyTorch provide efficient ways of numerically approximating expectation 

functions with large numbers of parameters. In this section, we show how to cast dynamic economic models into the 

form of expectation functions that can be suitable for deep learning platforms. Specifically, we show how to reformulate 

as expectation functions three key objects of economic dynamics: lifetime reward, Euler equation and Bellman equation. 
78 
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2.1. A class of dynamic economic models 

We consider a class of dynamic Markov economic models with time-invariant decision functions – the main framework 

in modern economic dynamics. An agent (consumer, firm, government, central bank, etc.) solves a canonical intertemporal 

optimization problem. 4 

Definition 2.1 (Optimization problem) . An exogenous state m t+1 ∈ R 

n m follows a Markov process driven by an i.i.d. innovation

process εt ∈ R 

m with a transition function M, 

m t+1 = M(m t , εt ) . (1) 

An endogenous state s t+1 is driven by the exogenous state m t and controlled by a choice x t ∈ R 

n x according to a transition

function S, 

s t+1 = S(m t , s t , x t , m t+1 ) . (2) 

The choice x t satisfies the constraint in the form 

x t ∈ X (m t , s t ) . (3) 

The state (m t , s t ) and choice x t determine the period reward r(m t , s t , x t ) . The agent maximizes discounted lifetime reward 

max 
{ x t ,s t+1 } ∞ t=0 

E 0 

[ 

∞ ∑ 

t=0 

βt r(m t , s t , x t ) 

] 

, (4) 

where β ∈ [ 0 , 1 ) is the discount factor and E 0 [ ·] is an expectation function across future shocks ( ε1 , ε2 , . . . ) conditional on the 

initial state (m 0 , s 0 ) . 

Without loss of generality, we assume that the constrained sets are re-mapped into a set of real numbers, so that the

transition and reward functions are defined for any succession of choices x t ∈ R 

n x . We focus on recursive Markov time-

invariant solutions. 

Definition 2.2 (Decision rules) . i) An optimal decision rule is a function ϕ : R 

n m × R 

n s → R 

n x such that x t = ϕ(m t , s t ) ∈ X(m t , s t )

for all t and the sequence { x t , s t+1 } ∞ 

t=0 maximizes the lifetime reward (4) for any initial condition (m 0 , s 0 ) ii) A parametric

decision rule is a member of a family of functions ϕ ( ·; θ ) parameterized by a real vector θ ∈ � such that for each θ , we have

ϕ : R 

n m × R 

n s → R 

n x and x t = ϕ(m t , s t ) ∈ X(m t , s t ) for all t. 

Our goal is to find a vector of parameters θ ∈ � under which the parametric decision rule ϕ ( ·; θ ) provides an accurate

approximation of the optimal decision rule ϕ on a relevant domain. We do not assume a smoothness of the approximation 

function ϕ ( ·; θ ) nor its linearity with respect to coefficients θ and state (m t , s t ) . But we do require the problem to be time

consistent, so that its solving amounts to finding time-invariant decision rules. 

2.2. Objective 1: Lifetime-reward maximization 

We first introduce a method that maximizes the lifetime reward (4) directly. 

Definition 2.3 (Value function) . For a given distribution of shocks ( ε1 , . . . , εT ) , value function V (m 0 , s 0 ) is a maximum expected

lifetime reward ( 4 ) that is attainable from a given initial condition (m 0 , s 0 ) : 

V (m 0 , s 0 ) ≡ max 
{ x t ,s t+1 } ∞ t=0 

E ( ε1 , ... ,εT ) 

[ 

∞ ∑ 

t=0 

βt r(m t , s t , x t ) 

] 

, (5) 

where transitions are determined by equations (1), (2) and (3) . 

For numerical approximation of V , we replace the infinite-horizon problem with a finite-horizon problem by truncating 

it at some finite T < ∞ . We then simulate time series solution forward under a fixed decision rule ϕ ( ·; θ ) and evaluate the

lifetime reward: 

V 

T (m 0 , s 0 ; θ ) ≡ E ( ε1 , ... ,εT ) 

[ 

T ∑ 

t=0 

βt r(m t , s t , ϕ ( m t , s t ; θ ) ) 

] 

. (6) 

Our first method constructs approximation ϕ ( ·; θ ) to the optimal decision rule by searching for a vector of coefficients θ
that maximizes the lifetime reward (6) . 
4 A general model formulation in this paper matches standard API used by modeling software Dolo available at https://github.com/econforge/dolo . This 

makes it easily feasible to compare various deep-learning approaches described here with more traditional iterative methods already implemented in Dolo. 

We leave it for further work. 
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A potential shortcoming of the objective function (6) depends on a specific initial condition (m 0 , s 0 ) . If we always start

simulation from the same initial condition, we get an accurate approximation in a neighborhood of this specific initial 

condition but not for the states further away from this initial condition. Although the simulated series { (m t , s t ) } T t=0 may 

pass many values, the contribution of future utility levels to the lifetime reward decreases with time due to discounting, 

so the initial condition still dominates accuracy. A possible way to achieve high accuracy on a larger domain would be to

construct a solution on a grid of initial conditions { (m 0 , s 0 ) } . However, here, we propose an alternative approach which is 

more suitable for Monte Carlo simulation implemented by deep learning tools, namely, we reformulate (6) as an expectation 

function. Instead of a fixed grid, we assume that initial condition (m 0 , s 0 ) is drawn randomly from the domain on which we

want the solution to be accurate, which yields the following objective function: 

�(θ ) ≡ E ( m 0 ,s 0 ) 

{ 

E ( ε1 , ... ,εT ) 

[ 

T ∑ 

t=0 

βt r(m t , s t , ϕ ( m t , s t ; θ ) ) 

] } 

. (7) 

By solving max 
θ∈ �

�(θ ) , we construct a decision rule ϕ ( ·; θ ) that maximizes the lifetime reward for a given distribution of

initial conditions. 

A new feature of the objective function �(θ ) is that it has two types of randomness: one is a random sequence of fu-

ture shocks ( ε1 , . . . , εT ) , which appears because the model is stochastic, and the other is a random state (m 0 , s 0 ) , which we

created ourselves because we converted the initial condition into a random variable. Approximating two nested expectation 

operators, one after the other, is costly, especially in high dimensional applications. That is, if we make n draws for evaluat-

ing expectation with respect to (m 0 , s 0 ) and if we make n ′ draws for evaluating expectation with respect to ( ε1 , . . . , εT ) , in

total, we must evaluate n × n ′ draws. 

To reduce the cost of nested integration, we introduce all-in-one (AiO) expectation operator that combines the two ex- 

pectation operators into one. 

Definition 2.4 (All-in-one expectation operator for lifetime reward) . Fix time horizon T > 0 , parametrize a decision rule

ϕ ( ·; θ ) and define the distribution of the random variable ω ≡ ( m 0 , s 0 , ε1 , . . . , εT ) . For given θ , lifetime reward (4) associated 

with the rule ϕ ( ·; θ ) is given by 

�(θ ) = E ω [ ξ ( ω; θ ) ] ≡ E ( m 0 ,s 0 ,ε1 , ... ,εT ) 

[ 

T ∑ 

t=0 

βt r(m t , s t , ϕ ( m t , s t ; θ ) ) 

] 

, (8) 

where transitions are determined by equations (1) , (2) and (3) , and ξ is an integrand. 

The AiO operator can significantly reduce the cost of evaluation expectations. Instead of making n × n ′ draws for the

two random vectors (m 0 , s 0 ) and ( ε1 , . . . , εT ) , we make just n draws for a composite random variable ( m 0 , s 0 , ε1 , . . . , εT ) .

Constructing the AiO operator is easy for the lifetime reward maximization studied in this section but it will be more

challenging for the Euler and Bellman methods studied in next sections. 

2.3. Objective 2: Euler-residual minimization 

We next introduce a DL method that constructs a solution to the Euler equations. We consider a class of economic models

in which the objective functions are differentiable, so that the solution is characterized by a set of first-order conditions 

(Euler equations). Such equations may follow from an optimal control problem of type (4) or from an equilibrium problem

and may include first-order conditions, equilibrium conditions, transition equations, constraints, market clearing conditions, 

etc. 

Definition 2.5 (Euler equations) . Euler equations are a set of equations written in the form: 

E ε
[

f j 
(
m, s, x, m 

′ , s ′ , x ′ 
)]

= 0 , j = 1 , . . . , J, (9) 

where the agent’s choice satisfies constraints (1) , (2) and (3) expressed in a recursive form m 

′ = M(m, ε) , s ′ = S(m, s, x, m 

′ ) and

x ∈ X(m, s ) , respectively; f j : R 

n m × R 

n s × R 

n x × R 

n m × R 

n s × R 

n x → R and E ε [ ·] is an expectation operator with respect to the

next-period shock ε . 

Equations (9) are again defined just for a given state ( m, s ) . The typical approach in computational economics is to solve

the Euler equation on a fixed grid that covers a relevant area of the state space. Like with lifetime reward, we do not follow

this approach but assume that states ( m, s ) are drawn randomly from a given distribution. The corresponding objective 

function is defined as an expected squared sum of residuals in the Euler equations for a given distribution of states. 

Definition 2.6 (Euler-residual minimization) . Select a decision rule ϕ ( ·; θ ) , and define a distribution of random variable ( m, s ) .

For given θ , the expected squared residuals in the Euler equations (9) associated with the rule ϕ ( ·; θ ) are given by 

�(θ ) = E ( m,s ) 

{ 

J ∑ 

j=1 

v j 
(
E ε
[

f j 
(
m, s, ϕ ( m, s ; θ ) , m 

′ , s ′ , ϕ 

(
m 

′ , s ′ ; θ
))])2 

} 

, (10) 
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where 
(
v 1 , . . . , v J 

)
is a vector of weights on J optimality conditions. 

Our goal is to construct a decision rule ϕ ( ·; θ ) that solves max 
θ∈ �

�(θ ) . 

Again, the objective function (10) has also two expectation operators, one with respect to the shocks E ε [ ·] and the other

is with respect to the state E ( m,s ) [ ·] . In the case of lifetime reward maximization, combining the two expectation operators

was easy because the expectation operators enter the objective linearly, so the AiO operator just merges them together, i.e., 

E ( m 0 ,s 0 ) 

[
E ( ε1 , ... ,εT ) 

r ( ·) 
]

= E ( m 0 ,s 0 ,ε1 , ... ,εT ) [ r ( ·) ] . However, in the Euler equations, E ε [ ·] is squared, so the two expectations cannot 

be naturally merged since E ( m,s ) 

(
E ε
[

f j (m, s, ε) 
])2 � = E ms E ε

[
f j (m, s, ε) 2 

]
. 

An important contribution of the present paper is to offer a technique that allows us to combine the expectation func-

tions E m,s [ ·] and E ε [ ·] in the AiO expectation operator in the presence of squares. The technique is very simple but effective,

namely, instead of using the same random draw ε for both terms in the square, we use two independent random draws or

two independent batches ε1 and ε2 which yields 

E ε1 [ f ( ε1 ) ] E ε2 [ f ( ε2 ) ] = E ( ε1 , ε2 ) [ f ( ε1 ) f ( ε2 ) ] . (11) 

With this approach, we are able to write the Euler-residual function (10) as an expectation function E ms E ε1 ε2 
[ ·] of a single

random vector. 

Definition 2.7 (Euler-residual minimization with all-in-one expectation operator) . Parametrize a decision rule ϕ ( ·; θ ) , and 

define a distribution of random variable ω ≡ ( m, s, ε1 , ε2 ) . For a given θ , the squared residuals in the Euler equations (9) asso-

ciated with the rule ϕ ( ·; θ ) are given by 

�(θ ) = E ω [ ξ ( ω; θ ) ] ≡ E ( m,s,ε1 ,ε2 ) 

{ 

J ∑ 

j=1 

v j 
[ 

f j 
(
m, s, x, m 

′ , s ′ , x ′ 
)∣∣

ε= ε1 

] [ 
f j 
(
m, s, x, m 

′ , s ′ , x ′ 
)∣∣

ε= ε2 

] } 

, (12) 

where 
(
v 1 , . . . , v J 

)
is a vector of weights on J optimality conditions. 

The method based on the AiO expectation operator is our main method. However, we also develop and test various 

hybrid methods that construct two expectations separately. For example, we use a Monte Carlo method for constructing 

E ( m,s ) [ ·] , and we use some other methods for constructing E ε [ ·] such as quadrature and monomial rules, sparse grids, low-

discrepancy sequences – we show these sensitivity results in Section 5 . Overall, we find that such hybrid methods are

useful for small problems in which the construction of E ε [ ·] is inexpensive but the AiO expectation operator is critical for

large problems, such as Krusell and Smith (1998) model studied in Section 6 . 

Objective 3: Bellman-residual minimization 

Our last DL method constructs the decision rule to satisfy the Bellman equation. 

Definition 2.8 (Bellman equation) . Value function V : R 

n m × R 

n s → R associated with the problem (4) satisfies: 

V ( m, s ) = max 
x,s ′ 

{
r(m, s, x ) + βE ε

[
V 

(
m 

′ , s ′ 
)]}

, (13) 

subject to constraints (1) , (2) and (3) expressed in a recursive form m 

′ = M(m, ε) , s ′ = S(m, s, x, m 

′ ) and x ∈ X(m, s ) . 

Under the standard assumptions about r, M, S and X , the solution to (13) exists and is unique. Similar to the Euler-

equation method, we can find an approximate decision rule ϕ ( ·; θ ) by minimizing the squared residuals in the Bellman 

equation (13) on a conventional fixed grid but in the spirit of deep learning, we will make ( m, s ) a random variable which

is drawn from a given distribution. 

In the case of Bellman operator, we face an additional element – a nontrivial ”max ” operator appears inside the squared 

residuals: 

�(θ ) = E ( m,s ) 

[ 
V ( m, s ) − max 

x,s ′ 

{
r(m, s, x ) + βE ε

[
V 

(
m 

′ , s ′ 
)]}] 2 

. 

There are three approaches in the literature for constructing a solution to the maximum operator, namely, the FOCs, the 

envelope condition and a direct search of maximum: 

FOC: r x (m, s, x ) + β
{

E ε
[
V s ′ 
(
m 

′ , s ′ 
)]}

∂s ′ 
∂x 

= 0 , 

Envelope condition: r s (m, s, x ) = V s ( m, s ) , 

Direct optimization: max 
x,s ′ 

{
r(m, s, x ) + βE ε

[
V 

(
m 

′ , s ′ 
)]}

. 

FOCs and direct optimization are used in conventional value function iteration, e.g., Aruoba et al. (2006) ; Rust et al. (1996) ;

Santos et al. (1999) ; Stachurski (2009) while the envelope condition method is introduced in Maliar and Maliar (2013) and
81 
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developed in Arellano et al. (2016) . 5 Provided that any of these three conditions is enforced, we can eliminate the maxi-

mum operator from the Bellman equation. Consequently, we can formulate an objective function that solves for both value 

function and decision rule by combining minimization of the residuals in the Bellman equation with maximization of the 

right side of the Bellman equation. We focus on the FOC but the other two conditions can be treated in a similar way. 6 

Definition 2.9 (Bellman-residual minimization) . Parametrize a value function V ( ·; θ1 ) and decision rule x = ϕ ( ·; θ2 ) and de- 

fine a distribution of the random variable ω ≡ ( m, s ) . For given θ ≡ ( θ1 , θ2 ) , the squared residuals in the Bellman equations 

(13) associated with V ( ·; θ1 ) and ϕ ( ·; θ2 ) are given by 

�(θ ) ≡ E ( m,s ) 

{
V ( m, s ; θ1 ) − r(m, s, x ) − βE ε

[
V 

(
m 

′ , s ′ ; θ1 

)]}2 + v E ( m,s ) 

{
r x ( m, s, x ) + β

{
E ε
[
V s ′ 
(
m 

′ , s ′ ; θ1 

)]}∂s ′ 
∂x 

}2 

, 

(14) 

where v > 0 is a vector of exogenous relative weights of equations in the two objectives. 

Similar to the previous methods, the objective function for the Bellman equation has two expectation operators under 

the square. One expectation is taken with respect to the shocks E ε [ ·] and the other is with respect to the state E ( m,s ) [ ·] .
Fortunately, we again can use the method of uncorrelated shocks (11) for constructing the AiO expectation operator. 

Definition 2.10 (Bellman-residual minimization with all-in-one expectation operator) . . Select value function V ( ·; θ1 ) and 

decision rule x = ϕ ( ·; θ2 ) and define the distribution of the random variable ω ≡ ( m, s ) . For given θ ≡ ( θ1 , θ2 ) , the squared

residuals in the Bellman equations (13) associated with V ( ·; θ1 ) and ϕ ( ·; θ2 ) are given by 

�(θ ) = E ω [ ξ ( ω; θ ) ] ≡ E ( m,s,ε1 ,ε2 ) 

{ [ 
V ( m, s ; θ1 ) − r(m, s, x ) − β V 

(
m 

′ , s ′ ; θ1 

)∣∣
ε= ε1 

] 
×
[ 

V ( m, s ; θ1 ) − r(m, s, x ) − β V 

(
m 

′ , s ′ ; θ1 

)∣∣
ε= ε2 

] 
+ v 
[

r x (m, s, x ) + β V s ′ 
(
m 

′ , s ′ ; θ1 

)∣∣
ε= ε1 

∂s ′ 
∂x 

][
r x (m, s, x ) + β V s ′ 

(
m 

′ , s ′ ; θ1 

)∣∣
ε= ε2 

∂s ′ 
∂x 

]}
, (15) 

where v > 0 is a vector of exogenous relative weights of equations in the two objectives. 

Like for the Euler equation, our main Bellman-equation method is the one based on AiO expectation operator but we 

could also construct hybrid methods based on the objective (14) that would combine Monte Carlo integration for the state 

space with deterministic integration across future shocks. 

3. Deep learning solution method 

In each of the considered cases (lifetime reward, Euler and Bellman equations), we represent an economic model as a 

problem of minimizing an objective function �(θ ) with respect to a vector of parameters θ : 

min 

θ∈ �
�(θ ) = min 

θ∈ �
E ω [ ξ ( ω; θ ) ] , (16) 

where ω ≡ ( m, s, ε) includes exogenous state variables m , endogenous state variables s and future shocks ε. By construc- 

tion, �(θ ) contains all model’s equations (Euler and Bellman equations, constraints, market clearing conditions, transition 

equations, multipliers, prices), so by minimizing a single objective function, we solve the entire model. 

In computational economics, a common approach to solving dynamic economic models is to use a fixed grid of points 

in the state space ( m, s ) and to approximate expectation functions over future shock ε with quadrature nodes, see, e.g., 

a projection method of Judd (1992) . A distinctive feature of our analysis is that we interpret (16) not as a computational

problem but as an estimation / regression model studied in the fields of econometrics and machine learning. In particular, 

we treat ω as a vector of random variables, and we make no distinction between its components ( m, s, ε) . We simulate the

model to produce a set of random draws { ω i } n i =1 , and we replace the expected risk �(θ ) with empirical risk �n (θ ) – the

sample average of ξ across n random draws – to obtain the following nonlinear regression model: 

min 

θ∈ �
�n (θ ) = min 

θ∈ �
1 

n 

n ∑ 

i =1 

ξ ( ω i ; θ ) . (17) 

We construct a solution θ by training the machine to minimize the empirical risk �n (θ ) on the simulated data. Note that

our data { ω i } n i =1 are being constantly re-sampled during the training process, unlike the data in a typical regression model 

that are assumed to be fixed. As a result, a successful training means two types of convergence: first, the parameter vector
5 There is also a method of reformulating state space in terms of the future endogenous state variables by Carroll (2006) , which is known as endogenous- 

grid method. It is straightforward to generalize the proposed techniques to include this method as well. 
6 In the earlier version of the paper, we study a version of the method that relies on direct search of a maximum. 
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θ converges to a value that minimizes an objective function �n (θ ) on simulated data { ω i } n i =1 ; and second, the simulated 

data themselves, generated via the decision rule ϕ ( ·; θ ) , converge to the ergodic set. While our optimization problem is not

equivalent to the typical data science application, we can still solve it by using the same combination of techniques that led

to ground breaking applications in data science. Those techniques include deep neural networks, Monte Carlo simulation and 

stochastic optimization and they are discussed below in the context of a numerical method for solving dynamic economic 

models. In Supplement D, we discuss how our solution method is related to supervised, unsupervised and reinforcement 

learning literature. 

Neural network: effective approximation on unstructured data. We approximate the decision rules and value function 

with neural networks instead of conventional polynomial functions. Neural networks posses several properties that make 

them preferable to polynomial functions in high dimensional applications with unstructured data; namely, they are: (i) lin- 

early scalable, i.e., the number of parameters grows linearly with dimensionality; (ii) robust to multicollinearity and can 

automatically perform model reduction; and (iii) well suited for fitting highly nonlinear environments including kinks, dis- 

continuities, discrete choices, and switching. 

A neural network is a collection of connected nodes – artificial neurons. Each neuron receives a signal (input) from other 

neurons, processes it and transmits the processed signal to some other neurons connected to it. In Fig. 1 , we show an

example of neural network with three layers – an input layer, hidden layer and output layer. 

Fig. 1. A neural network with one hidden layer. 

The input layer consists of a constant term +1 and input features (x 1 , x 2 , x 3 ) which correspond to state variables of

an economic model. In that layer, we construct linear polynomial functions z (2) 
1 

,z (2) 
2 

and z (2) 
3 

on given inputs, for example,

z (2) 
1 

= θ (1) 
10 

+ θ (1) 
11 

x 1 + θ (1) 
12 

x 2 + θ (1) 
13 

x 3 , where the coefficient on a constant term θ (1) 
10 

is called a bias, and the coefficients on

features θ (1) 
11 

, θ (1) 
12 

and θ (1) 
13 

are called weights. We next pass z (2) 
1 

, z (2) 
2 

and z (2) 
3 

to the hidden layer, where we apply to them a

transformation τ1 , such as a sigmoid (logistic) activation function τ1 (x ) = 

1 
1+ e −x . 

7 Finally, in the output layer, we combine the

activated signals a (2) 
1 

= τ1 (z (2) 
1 

) , a (2) 
2 

= τ1 (z (2) 
2 

) and a (2) 
3 

= τ1 (z (2) 
3 

) with a constant term +1 into a new polynomial function

z (3) 
1 

= θ (2) 
10 

+ θ (2) 
11 

a (2) 
1 

+ θ (2) 
12 

a (2) 
3 

+ θ (2) 
13 

a (2) 
3 

, and we transform it into the final output using another activation function τ2 

which approximates our decision rule a (3) 
2 

= τ2 (z (2) 
1 

) ≈ ϕ ( x 1 , x 2 , x 3 ; θ ) , where θ ≡
{ 
θ ( 1 ) 

10 
, θ ( 1 ) 

11 
, . . . , θ ( 2 ) 

13 

} 
contains all biases 

and weights. The predicted output is a highly non-linear function of inputs. Hidden layers extract information and condense 

it in a more abstract way which makes neural-network approximations more flexible, compared to polynomial functions 

that relate inputs and outputs directly; see Supplement B for a general discussion of neural networks. 
7 This is a convenient choice since it allows for an easy construction of the derivative function σ ′ (x ) = σ (x )(1 − σ (x )) . See the online supplement for 

examples of other common activation functions such as hyperbolic tangent and leaky relu. 
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Generating data: solving the model where the solution lives. Judd et al. (2011) argue that stochastic simulation methods 

have a remarkable feature that makes them an ideal candidate for analyzing high dimensional applications: they solve the 

model only in the area of the state space in which the solution ”lives” - the ergodic set. Fig. 2 illustrates this point by

showing the ergodic set of a typical representative-agent neoclassical growth model (with two state variables, capital and 

productivity level). 

Fig. 2. Ergodic set of a neoclassical growth model. 

The ergodic set takes the form of an oval and most of the rectangular area that sits outside of the oval’s boundaries is

never visited. That means that a solution method that operates on a rectangular domain is wasting computational resources 

on evaluating points that never occur in equilibrium. In the two-dimensional case, a circle inscribed within a square occupies 

about 79% of the area of the square, so we save 21% of the total cost. The saving is not big in two-dimensional case but

Judd et al. (2011) argues that the ratio V d of the volume of a d− dimensional hypersphere to the volume of a d–dimensional

hypercube declines rapidly with the dimensionality of the state space 

V d = 

⎧ ⎪ ⎨ ⎪ ⎩ 

( π/ 2 ) 
d−1 

2 

1 ·3 ·... ·d for d = 1 , 3 , 5 . . . 

( π/ 2 ) 
d 
2 

2 ·4 ·... ·d for d = 2 , 4 , 6 . . . 

. (18) 

For example, for dimensions three, four, five, ten and thirty, this ratio is 0.52, 0.31, 0.16, 3 · 10 −3 and 2 · 10 −14 , respectively.

Thus, when focusing on the ergodic set, we face just a tiny fraction of the cost that we would have faced on a fixed hyper-

cube grid. The higher is the dimensionality of a problem, the larger is the reduction in cost. 

AiO integration operator: we need just two integration nodes. The AiO operator is a critical technique for solving mod- 

els with a large number of stochastic shocks. As an illustration, consider the Euler-equation method in the model with �

heterogeneous agents who face idiosyncratic shocks ε1 , . . . , ε� . In the absence of the AiO operator, the objective function 

(10) has the form �(θ ) = E ( m,s ) 

(
E ε1 , ... ,ε� [ f (m, s, ε1 , . . . , ε� ; θ ) ] 

)2 
, so for each state ( m, s ) , we need to approximate integral of 

f across ε1 , . . . , ε� . If we consider p integration nodes for each of � idiosyncratic shock, we obtain a tensor product grid

with p � nodes, running into a severe curse of dimensionality. The AiO method addresses the curse of dimensionality in a

remarkably simple manner. By using two independent random draws (ε′ 
1 , . . . , ε

′ 
� ) and 

(
ε′′ 

1 , . . . , ε
′′ 
� 

)
, we obtain: 

E ( m,s ) ( E ε1 , ... ,ε� [ f (m, s, ε1 , . . . , ε� ) ] ) 
2 = E ( m,s,ε′ 

1 
, ... ,ε′ 

� ,ε
′′ 
1 
, ... ,ε′′ 

� ) 

[
f (m, s, ε′ 

1 , . . . , ε
′ 
� ) f (m, s, ε′′ 

1 , . . . , ε
′′ 
� ) 
]
. 

Independently of the number of shocks in the economy, we need only two random draws (or two batches) for approximating

expectation function for each state ( m, s ) considered. Of course, the AiO approximation of the double integral is crude in 

any given iteration, but the approximation is unbiased and thus, converges to the true integral over the iterative process. In

sum, the AiO method makes numerical integration very cheap. 

Stochastic gradient descent method for training: we need just one grid point. Training of multilayer neural network 

is referred to as deep learning because such networks have interconnected topologies with coefficients and weights buried 

deeply in multiple layers. In data science application, neural networks are typically trained by using variants of a gradient 

descent method θk +1 ← θk − λk ∇�( θk ) , where k is iteration, ∇ f is a gradient of f and λk is a learning rate. Our definition
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of (17) means that expectation and gradient operators are commutable, so that we can approximate the gradient of the 

integral ∇ �( θ ) = ∇ E ω [ ξ ( ω; θ ) ] with a sample average of the gradient of the integrand 

1 
n 

∑ n 
i =1 ∇ θ ξ ( ω i ; θk ) : 

θk +1 ← θk − λk 

[ 

1 

n 

n ∑ 

i =1 

∇ θ ξ ( ω i ; θk ) 

] 

. (19) 

The limiting case of n = 1 in (19) corresponds to a stochastic gradient descent (SGD) method that approximates the gra-

dient of the integral with the gradient of the integrand evaluated in just one randomly selected point, i.e., ∇�( θk ) =
∇ θ E ω [ ξ ( ω; θk ) ] ≈ ∇ θ ξ ( ω i ; θk ) . While stochastic gradient is very imprecise in each given step, it is an unbiased estimate 

of the true gradient and its cumulative average converges to the true gradient over K iterations 1 
K 

∑ K 
k =1 ∇ θ ξ ( ω k ; θk ) → 

∇ θ�(θk ) , provided that the network parameters converge to their true values θk → θ . Thus, an extreme version of our

DL method requires just one random grid point for approximation (and just two random nodes for integration). There are 

other versions of the SGD method, in particular, we will be using a method called ADAM in our numerical analysis; see

Supplement C for a review of SGD methods and their convergence properties. 

DL solution algorithm. We now combine the above numerical techniques into a DL solution algorithm. 

Algorithm 1 has multiple hyperparameters including the topology of neural network, the learning rate, the number of 

simulation points and integration nodes, and the training method. The algorithm may also include additional hyperparame- 

Algorithm 1 DL algorithm for solving dynamic economic models. 

Step 1. Initialize the algorithm: 

i). construct theoretical risk �(θ ) = E ω [ ξ ( ω; θ ) ] (lifetime reward, Euler/Bellmanequations); 

ii). define empirical risk �n (θ ) = 

1 
n 

∑ n 
i =1 ξ ( ω i ; θ ) ; 

iii). define a topology of neural network ϕ ( ·, θ ) ; 

iv). fix initial vector of the coefficients θ . 

Step 2. Train the machine, i.e., find θ that minimizes theempirical risk �n (θ ) : 

i). simulate the model to produce data { ω i } n i =1 by using the decision rule ϕ ( ·, θ ) ; 

ii). construct the gradient ∇ �n (θ ) = 

1 
n 

∑ n 
i =1 ∇ ξ ( ω i ; θ ) ; 

iii). update the coefficients ̂ θ = θ − λk ∇�n (θ ) and go to step 2.i); 

End Step 2 if the convergence criterion 

∥∥̂ θ − θ
∥∥ < ε is satisfied. 

Step 3. Assess the accuracy of constructed approximation ϕ ( ·, θ ) on a new sample. 

ters such as Tykhonov and Lasso regularization parameters for dealing with overfitting and ill-conditioning; see Judd et al. 

(2011) for a discussion of numerical stability of stochastic simulation methods. Finally, objective function (17) has its own 

hyperparameters, namely, the relative weights of different model equations. To select the hyperparameters, we use the usual 

validation procedure of assessing the algorithm performance under different hyperparameter combinations and by selecting 

those that dominate others in accuracy and speed. 

Finally, to implement the DL solution method, we use the Python programming language and Google TensorFlow data 

platform. Such a platform represents operations on a computational graph, which is automatically optimized. The elements 

of the graphs, tensors , are multidimensional arrays manipulated by efficient vectorized symbolic engines. In particular, gradi- 

ent computations are performed using automatic differentiation in a numerically stable way, without any user input. More- 

over, the graph operations are massively parallelizable on multiple CPU and GPU cores. This is a particularly useful property 

for our Monte Carlo simulation, in which we evaluate the same function with many draws of shocks for computing condi-

tional expectation functions. 

How our deep learning method differs from the conventional projection method. To appreciate the advantages of our 

DL algorithm, let us recall a canonical projection method of Judd (1992) . That method approximates decision rules ϕ(·; θ ) ≈
ϕ with a tensor product of Chebyshev polynomial basis functions and constructs a solution on a fixed tensor-product grid 

of zeros of Chebychev polynomials. The expectation function E ε [ ·] is approximated using Gauss-Hermite quadrature. The 

algorithm finds θ by minimizing the squared sum of Euler equation residuals 
(
E ε
[

f j 
(
m, s, x, m 

′ , s ′ , x ′ 
)])2 

using a Newton- 

style method. The method is remarkably fast for small problems but becomes increasingly costly as the dimensionality of 

the problem increases. 

What makes the canonical projection method expensive in high dimensional applications? i) The volume of a hypercube 

domain increases exponentially with the number of state variables; ii) the number of points in tensor-product grid covering 

that domain grows exponentially with the number of state variables; iii) the volume of a hypercube set for integration 

across future shocks grows exponentially with the number of shocks; iv) the number of quadrature nodes in the tensor 

product grid grows exponentially with the number of shocks; v) for each grid point in state space, there are multiple nodes

for approximating expectation functions; vi) for more complex models, the cost is higher because we have more equations 

and more variables to solve for; vii) the number of approximation functions is paired with the number of grid points, so the
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number of coefficients in θ grows exponentially as well; viii) the least square approximation suffers from ill-conditioning 

and numerical instability; ix) the code written by individual researchers is not always optimized for the best performance. 

Our DL analysis addresses all these shortcomings: i) our simulation-based domain focuses on the ergodic set in which 

the solution lives; ii) within that reduced domain, we consider just one or few random grid points on each iteration; iii)

we approximate integrals with simulated shocks that again come from the ergodic set; iv) we consider only two random 

integration nodes on each iteration; v) our AiO operator reduces the cost of integration even further by using a composite

random draw for both improving the approximation and evaluating the integral; vi) we collect all the model’s equations 

in one objective function, so that we iterate on all decision rules at once; vii) we use a deep learning neural network, in

which we control the topology and number of coefficients; viii) neural networks perform the model reduction and automat- 

ically deal with ill conditioning and multicollinearity. ix) we use the state-of-the-art combination of software and hardware 

that allows for effective GPU parallelization and that leads to remarkable applications in data science. Taken together, these 

methods will allow us to analyze problems with much larger dimensionality (thousands of state variables) than those stud- 

ied in the related literature. 

4. Numerical analysis of the consumption-saving problem 

In this section, we solve a one-agent consumption-saving problem with an occasionally binding borrowing constraint. 

We show the deep learning method for three different objective function: the lifetime reward, and the Euler- and Bellman- 

equation residuals. Our experiments are designed to illustrate the role of hyperparameters in the solution, as well as to 

emphasize some useful features of the proposed method, in particular, its ability to accurately approximate kinks, its capac- 

ity to handle ill-conditioned problems and its scalability. 

4.1. The consumption-saving problem 

We consider a simple consumption-saving problem with a borrowing constraint: 

max 
{ c t ,w t+1 } ∞ t=0 

E 0 

[ 

∞ ∑ 

t=0 

βt u ( c t ) 

] 

(20) 

s.t. w t+1 = r ( w t − c t ) + e y t , (21) 

c t ≤ w t , (22) 

where c t and w t are consumption and cash-on-hand, respectively; u is a utility function, which is strictly increasing and 

concave; β ∈ [ 0 , 1 ) is a discount factor; r ∈ 

(
0 , 1 

β

)
is an interest rate, and initial condition w 0 is given. Exogenous income

shock y t follows an AR(1) process, 

y t+1 = ρy t + σεt and εt ∼ N ( 0 , 1 ) , (23) 

where | ρ| < 1 and σ > 0 . The borrowing limit in (22) is set to zero without loss of generality. We parameterize the model

by u ( c ) = 

c 1 −γ −1 
1 −γ with a risk-aversion coefficient of γ = 2 , and we assume β = 0 . 9 and r = 1 . 04 . 

To facilitate the exposition of the algorithm, we make two simplifying assumptions: First, we assume that the income 

shock is temporary y t = σεt , where σ = 0 . 1 . Then, we have just one state variable w , which is convenient for illustrating

decision functions on two-dimensional plots. Second, we assume that y is drawn from its ergodic (Normal) distribution, but 

w is drawn from a uniform distribution in an interval [ w 1 , w 2 ] . That allows us to abstract from the convergence of simulated

series for w and to concentrate on the convergence of the coefficients θ . Later in the paper, we consider models with a large

number of state variables, and we draw both endogenous and exogenous state variables from their ergodic distributions. 

Euler equation. The solution to (20) –(23) can be characterized by Kuhn-Tucker conditions 

A ≥ 0 , H ≥ 0 and AH = 0 , (24) 

where A = w − c and H ≡ u ′ (c) − βrE ε
[
u ′ 
(
c ′ 
)]

is a Lagrange multiplier. To construct a DL objective function, we rewrite Kuhn

Tucker conditions that have inequality constraints (24) as the Fischer-Burmeister (FB) function that holds with equality 

�F B ( a, h ) = a + h −
√ 

a 2 + h 

2 = 0 , (25) 

where a ≡ 1 − c 
w 

and h ≡ 1 − βrE ε[ u ′ ( c ′ ) ] 
u ′ ( c ) are expressed in unit-free form. The FB function is similar to the minimum function

min { a, h } = 0 and leads to the same solution (24) as the Kuhn Tucker conditions but it is differentiable; see, e.g., Jiang

(1996) for a discussion. Even though the two terms a and h are in unit free form, it might be necessary to add a weight
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v that reflects the relative importance of the two objectives a and h , i.e., in general, we may need to consider �F B ( a, v h ) ,
where v ∈ ( 0 , ∞ ) . 

Bellman equation. The solution to (20) –(23) can be also characterized by Bellman equation: 

V ( y, w ) = max 
c,w 

′ 

{
u (c) + βE ε

[
V 

(
y ′ , w 

′ )]}, (26) 

subject to constraints (21) and (22) and transition equation (23) written in recursive form. The maximum operator of the 

Bellman equation is also characterized by the Kuhn-Tucker conditions (24) however the Lagrange multiplier is defined here 

in terms of the derivative of the value function H ≡ u ′ (c) − βE ε

[ 
∂V ( y ′ ,w 

′ ) 
∂w 

′ 
] 

. Consequently, we can get rid of the inequality

constraints in the Kuhn-Tucker conditions by using the same FB function (25) as we did for the Euler-equation method. The

first term of the FB function is the same, i.e, a ≡ 1 − c 
w 

but the second term will be defined in terms of the derivative of the

value function h ≡ 1 −
βE ε

[
∂V ( y ′ ,w ′ ) 

∂w ′ 
]

u ′ ( c ) . 

4.2. Deep learning solution method 

To implement the lifetime reward, Euler and Bellman methods, we used Algorithm 1 formulated in Section 2 . The only

difference between three methods consists in how we simulate the model in Step 2i). We will describe this step separately

for each of the method considered. 

We construct the solutions using a neural network with two identical hidden layers, composed of (leaky) relu (rectified 

linear units) neurons. We compare the results under four neural networks with 8 × 8 , 16 × 16 , 32 × 32 and 64 × 64 neurons

in two hidden layers, respectively. We parameterize consumption to wealth ratio c t 
w t 

, unit-free Lagrange multiplier h t and 

value function V t : 

c t 

w t 
= σ ( ζ0 + η( y t , w t ;ϑ ) ) ≡ ϕ ( y t , w t ; θ ) , 

h t = exp ( ζ0 + η( y t , w t ;ϑ ) ) ≡ h ( y t , w t ; θ ) , 

V t = ζ0 + η( y t , w t ;ϑ ) ≡ V ( y t , w t ; θ ) , 

where η( ·;ϑ ) is a neural network, θ ≡ ( ζ0 , ϑ ) and σ ( x ) = 

1 
1+ e −x is a sigmoid transformation. Our lifetime reward method 

will use only ϕ ( y t , w t ; θ ) , the Euler method will use both ϕ ( y t , w t ; θ ) and h ( y t , w t ; θ ) and finally, the Bellman method will

use all three of them. 

Our parametrization is constructed to take into account the properties of economic variables. A sigmoid transformation 

used for c t 
w t 

ensures that the consumption share in wealth ϕ ( ·; θ ) is bounded to be in an interval [ 0 , 1 ] and exponentiation

used for h t ensures that it is always nonnegative; and finally, for value function we used a linear activation, i.e., we place

no restrictions on V ( ·; θ ) range. We initialize at ζ0 = 0 for all parametrized functions. The remaining parameters ϑ are 

initialized randomly: we used the ”he ” and ”glorot ” uniform distributions for the biases and weights, respectively. 

We train the model using a version of the stochastic gradient descent method, called ADAM , with an overall learning

rate of λ = 0 . 001 (in that method, the overall learning rate is optimally adjusted for each coefficient; see Appendix B for

details). We perform training over K = 50 , 0 0 0 epochs (iterations); and in each epoch, we draw 64 random grid points by

using the interval for wealth [ w 1 , w 2 ] = [ 0 . 1 , 4 ] . To evaluate the accuracy, we produce 8,192 random draws and use the 

constructed decision rules to produce the lifetime reward and unit-free Euler equation residuals. To approximate integrals in 

the accuracy test, we use an accurate 10-node Gauss-Hermite quadrature rule. We wrote the code in Python using Google 

TensorFlow platform version 1.14.0, and we use a laptop with Intel(R) Core(TM) i7-7500U (2.70 GHz), RAM 16GB with 4 

physical (and 8 virtual) cores. 

4.3. Lifetime reward 

The objective function for the lifetime reward for the model (20) –(23) follows directly from our general exposition (8) .

For a random draw ω = ( y 0 , w 0 , ε1 , . . . , εT ) and time horizon T , the objective function associated with the decision rule 
c t 
w t 

= ϕ ( y t , w t ; θ ) is given by 

�(θ ) = E ω [ ξ ( ω; θ ) ] ≡ E ( y 0 ,w 0 ,ε1 , ... ,εT ) 

[ 

T ∑ 

t=0 

βt u ( c t ) 

] 

. (27) 

To construct (27) , i.e., to implement Step 2i) of Algorithm 1, we use the assumed decision rule c t 
w t 

= ϕ ( y t , w t ; θ ) and simulate

the model forward together with transitions (21) –(23) . 
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Fig. 3 displays the outcome of training of neural network on the objective function (27) (on the horizontal axis, K =
50 , 0 0 0 epochs appears as 4 · log 10 5 ). 

Fig. 3. Lifetime reward in the consumption-saving model. 

In the first panel of the figure, we illustrate how the objective function – lifetime reward – changes over the epochs; in

the second panel, we show the size of the Euler equation residuals constructed on 8,192 test points using the FB function

(25) and accurate quadrature integration, and finally, in the last panel, we plot the evolution of lifetime reward. As is seen

from the second panel, the Euler residuals are smaller for a neural network with a larger number of neurons (the smallest

residuals are for the one with 64 × 64 neurons in two hidden layers). They are of order 10 −2 . 75 (i.e., 0 . 18% ), which is fairly

low, given that we solve the model with a kink in the decision rule. In terms of the lifetime reward, all the solutions

gradually converge to the same level. 

4.4. Euler-equation method with Kuhn-Tucker conditions 

For our model with borrowing constraint, the Euler-residual (10) objective function is given by the Fischer-Burmeister 

function (25) : 

E ( y,w ) 

[ 

�F B 

( 

1 − c 

w 

, 1 −
βrE ε

[
u 

′ (c ′ )]
u 

′ ( c ) 

) ] 2 

. (28) 

In Section 1.3, we constructed an AiO expectation operator that makes it possible to combine the two expectation opera- 

tors E ( y,w ) [ ·] and E ε [ ·] in one by approximating E ε [ ·] using two uncorrelated shocks (11) . However, the Fischer-Burmeister 

function has expectation term E ε
[
u ′ 
(
c ′ 
)]

inside of the square root, in addition to the squared residual. To extend the AiO

operator for the FB function, we introduce a separate approximation for the Lagrange multiplier h and rewrite (28) as a

composite objective 

E ( z,w ) 

[ 
�F B 

(
1 − c 

w 

, 1 − h 

)] 2 
+ v h 

[ 

βrE ε
[
u 

′ (c ′ )]
u 

′ ( c ) 
− h 

] 2 

, (29) 

where v h is an exogenous weight. Using the technique of two uncorrelated shocks (11) , we then arrive to an objective

function with the AiO operator that combines integration with respect to z, w and ε : 

�(θ ) = E ω [ ξ ( ω; θ ) ] = E ( z,w,ε1 , ε2 ) 

{[ 
�F B 

(
1 − c 

w 

, 1 − h 

)] 2 
+ v h 

[ 

βr u 

′ (c ′ )∣∣
ε= ε1 

u 

′ ( c ) 
− h 

] [ 

βr u 

′ (c ′ )∣∣
ε= ε2 

u 

′ ( c ) 
− h 

] } 

. (30) 

The objective function (30) is the one that we minimize by deep learning Algorithm 1. To construct the objective function

�(θ ) in Step 2i) of Algorithm 1, we produce a random draw ω = ( y, w, ε1 , ε2 ) and use the decision rules for consumption

share c = ϕ ( y, w ; θ ) and Lagrange multiplier h = h ( y, w ; θ ) and transition equations (21) and (23) . 
w 
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Fig. 4. Euler-equation method in the consumption-saving model. 
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The results of training under the objective (30) are shown in Fig. 4 . 

Again, as in the previous figure, we plot the objective function – Euler residuals, the size of the Euler equation residuals

on the test data, and the evolution of the lifetime reward in the first, second and third panels, respectively. As is evident

from the second panel, the Euler-equation method is slightly more accurate than the lifetime reward method. We again 

observe that the deep learning method with a larger number of neurons is more accurate. 

4.5. Objective 3: Bellman equation 

For the Bellman-equation method, the objective function (14) includes the residuals in the Bellman equation and the 

residuals in the Fischer-Burmeister function that characterize the maximum operator in the Bellman equation 

E ( z,w ) 

[
V ( z, w ; θ1 ) − u ( c ) − βE ε

[
V 

(
z ′ , w 

′ ; θ1 

)]]2 + v E ( y,w ) 

[ 

�F B 

( 

1 − c 

w 

, 1 −
βE ε

[
∂ 

∂w 

′ V 

(
z ′ , w 

′ ; θ
)]

u 

′ ( c ) 

) ] 2 

. (31) 

By following the same approach as in the case of the Euler-equation method, we introduce a separate approximation for the

Lagrange multiplier h and apply the method of two uncorrelated shocks to obtain the following objective function for the 

Bellman-equation method: 

�(θ ) = E ω [ ξ ( ω; θ ) ] ≡ E ( y,w,ε1 ,ε2 ) 

{ [ 
V ( y, w ; θ ) − u ( c ) − β V 

(
y ′ , w 

′ ; θ
)∣∣

ε= ε1 

] 
×
[ 

V ( y, w ; θ ) − u ( c ) − β V 

(
y ′ , w 

′ ; θ
)∣∣

ε= ε2 

] 
+ v 
[ 
�F B 

(
1 − c 

w 

, 1 − h 

)] 2 
+ v h 

[ 

β ∂ 
∂w 

′ V 

(
y ′ , w 

′ ; θ
)∣∣

ε= ε1 

u 

′ ( c ) 
− h 

] [ 

β ∂ 
∂w 

′ V 

(
y ′ , w 

′ ; θ
)∣∣

ε= ε2 

u 

′ ( c ) 
− h 

] } 

. (32) 

The objective function (32) is the one that we use as an input for deep learning Algorithm 1. To implement Step 2i), i.e, to

construct the objective function (32) , we produce a random draw ω = ( y, w, ε1 , ε2 ) , use the decision rules for value function

 ( y, w ; θ ) , consumption share c 
w 

= ϕ ( y, w ; θ ) and Lagrange multiplier h = h ( y, w ; θ ) and transition equations (21) and (23) . 

The choice of weights v and v h is a nontrivial problem. While in the previous methods, we expressed the residuals in

unit free form, so that we could use unit weights, it is not a feasible approach here. Value function for our model has the

range from negative to positive numbers. If we do it unit free, we will get sometimes a division by numbers close to zero.

Additionally, the residuals can switch from positive to negative leading to spurious iterations of the gradient algorithm. In 

our application, we choose weights so that the size of the residuals was approximately the same in all three equations. 

Fig. 5 plots the training process for Objective 3 when neural networks have different number of neurons. 

Fig. 5 displays the changes in the objective function over the epochs (the first panel), the size of test Euler-equation

residuals (the second panel), and the size of the lifetime reward (the third panel). The value iterative method is less accurate

than the two previous methods. This fact is not surprising: Coleman et al. (2018) compare the conventional VFI method 

which solves the Bellman equation by constructing the decision function via direct maximization, as we do here, versus 

otherwise identical methods that use derivatives of the value function via first-order and envelope conditions. They find 

that the methods that approximate the derivatives of V are far more accurate than the methods that approximate V alone.

In the second panel, Euler residuals are higher for this objective function than for the other two, although they decrease to

10 −2 (i.e., 1% ) when the number of neurons in two hidden layers increases to 64 × 64 . 
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Fig. 5. Bellman-equation method in the consumption-saving model. 

Fig. 6. Comparison of methods in the consumption-saving model. 

 

 

 

 

 

 

4.6. Comparing decision rules 

In Fig. 6 , we plot decision rules for the three methods and simulated series for wealth. 

We observe that the decision rule for the Bellman method appears to be less accurate than the other two methods,

however, simulated series are remarkably close to one another across the three methods. What is surprising that the three 

methods visually coincide in the area of kink. The second panel shows that there is a substantial variability in wealth (cash-

on-hand) over a simulation of 100 periods. 

4.7. Euler-equation method: Sensitivity results 

We now limit attention to the Euler-equation method and dummyTXdummy– consider how its performance is affected 

by specific techniques used. In Fig. 7 , we plot the convergence of the objective function. 

In the first panel, we show the results in which we vary an integration method, namely, we consider the AiO method

with 2 nodes, Monte Carlo (MC) method with 10 random draws, MC method with 100 random draws and very accurate

Gauss Hermite quadrature with 10 nodes. We observe that the integration method we use plays a visible role in convergence.

A very accurate quadrature method leads to the fastest convergence while low accuracy MC leads to slower convergence 

than the AiO method. In the second panel, we consider four training methods, namely, SGD with an updating parameter 

λ ∈ { 0 . 01 , 0 . 005 , 0 . 001 } and ADAM. We see that ADAM leads to the fastest convergence even though the convergence is 

noisier at the end with ADAM than with the other methods. Finally, in the last panel, we compare the convergence with

different activation functions, namely, relu, lrely, sigmoid and tanh, and we document that they lead to comparable results. 
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Fig. 7. Comparison of integration, SGD and activation methods. 

Fig. 8. Effects of the batch size on the accuracy and speed. 

 

 

 

 

 

 

In Fig. 8 , we illustrate the scalability of the Euler-equation method. TensorFlow has a possibility of using batches where

the same estimation is ran in parallel on multiple virtual cores. We vary the batch size from N = 8 to N = 8 , 192 draws and

we document running time and Euler-equation residuals. 

In the left panel, we see that the training time changes roughly linearly with the batch size. In the right panel, we

observe that a larger batch size leads to more accurate solutions although the convergence rate is similar for all batch sizes.

The same is true for all the methods built on the AiO operator. 

4.8. Multicollinearity, ill-conditioning and model reduction 

We consider a version of the consumption-saving problem with multiple shocks, 

max 
{ c t ,w t+1 } ∞ t=0 

E 0 

[ 

∞ ∑ 

t=0 

βt e χt u ( c t ) 

] 

(33) 

s.t. w t+1 = re � t ( w t − c t ) + e y t e p t , (34) 

c t ≤ w t , (35) 

where { y t , p t , � t , χt } ≡ z t is a v ect or of exog enous state variables, which includes a temporary income shock y t , a long-

lasting income shock p t , an interest-rate shock � t and a preference shock χt . We assume that each exogenous state variable

z j ∈ { y, p, �, χ} follows an AR(1) process, 

z j,t+1 = ρ j z j,t + σ j ε j,t and ε j,t ∼ N ( 0 , 1 ) , (36) 
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where 
∣∣ρ j 

∣∣ < 1 and σ j > 0 . We parameterize the model by u ( c ) = 

c 1 −γ −1 
1 −γ with a risk-aversion coefficient of γ = 2 , and we

assume β = 0 . 9 , r = 1 . 04 , ρy = 0 . 9 and σy = 0 . 1 ; ρp = 0 . 999 and σp = 0 . 001 ; ρ� = 0 . 2 and σ� = 0 . 001 ; and ρχ = 0 . 9 and

σχ = 0 . 01 . 

The lifetime-reward objective function (27) is built on the AiO operator and it is directly suitable for high-dimensional 

applications. In Fig. 9 , we present the results obtained with reward maximization for the multistate model (20) –(23) . We

use 64 relu nodes in each of the two hidden layers, and the training method was ADAM. 

Fig. 9. Multicollinearity and model reduction in the multishock model. 

Three cases are considered in the figure. The main case is the multi-shock model denoted by ”multidim”. The other two

cases, ”lowdim” and ”multidim0”, correspond to a version of the model with only one income shock. But the two models 

differ in the inputs that we supply to the neural network: in the ”lowdim” model, the irrelevant shocks other than income

shock are not supplied at all, while in ”multidim0”, they are supplied to the neural network by setting all of them equal

to zero. Thus, the latter model has perfect multicollinearity, so that the inverse problem is ill-conditioned and cannot be 

solved with conventional regression or approximation methods, such as ordinary-least squares (OLS). 

There are two main results to learn from this experiment: First, neural-network approximations do not suffer from multi- 

collinearity and ill conditioning, unlike the conventional polynomial approximation. Training of the model with zero shocks 

leads to the same solution and has roughly the same convergence rate as those of the other two models. This experiment

illustrates how neural networks can do the model reduction: they learn to ignore the effect of nonexisting shocks although 

at some additional initial cost (i.e., the residuals of the last model are slightly larger in the beginning of training than those

of the other models). Second, training in the multi-shock model has approximately the same convergence rate as that of the

other models. The cost of iteration in the multi-shock model is slightly larger than in the unishock model but this difference

is relatively small. This finding indicates that the proposed solution method is potentially tractable in problems with high 

dimensionality. 

5. Numerical analysis of Krusell and Smith’s (1998) model 

We now use our deep learning method to solve Krusell and Smith (1998) model. We formulate the model in terms of

cash-in-hand to make it comparable to the consumption-saving problem studied in Section 4 . 

5.1. Krusell and Smith (1998) model 

The economy consists of a set of heterogeneous agents i = 1 , . . . , � that are identical in fundamentals but differ in pro-

ductivity and capital. Each agent i solves 

max { c i t ,k i t+1 } ∞ t=0 

E 0 

[ 

∞ ∑ 

t=0 

βt u 

(
c i t 
)] 

(37) 

s.t. w 

i 
t+1 = R t+1 

(
w 

i 
t − c i t 

)
+ W t+1 exp 

(
y i t+1 

)
, (38) 

c i t ≤ w 

i 
t , (39) 
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where c i t , w 

i 
t , y 

i 
t , R t , W t and k i 

t+1 
= w 

i 
t − c i t are consumption, cash-on-hand, labor productivity, interest rate, wage and next-

period capital, respectively. Initial condition 

(
y i 

0 
, w 

i 
0 

)
is given. The individual productivity evolves as 

y i t+1 = ρy y 
i 
t + σy ε

i 
t with ε i 

t ∼ N ( 0 , 1 ) . (40) 

The production side of the economy is described by a Cobb-Douglas production function z t k 
α
t , where α ∈ ( 0 , 1 ) and z t is an

aggregate productivity shock, 

z t+1 = ρz t + σεt with εt ∼ N ( 0 , 1 ) . (41) 

Initial condition z 0 is given. The equilibrium prices are 

R t = 1 − d + z t αk α−1 
t 

[ 

� ∑ 

i =1 

exp 

(
y i t 
)] 

and W t = z t ( 1 − α) k αt 

[ 

� ∑ 

i =1 

exp 

(
y i t 
)] 

, (42) 

where k t = 

∑ � 
i =1 k 

i 
t is aggregate capital, and d ∈ ( 0 , 1 ] is the depreciation rate. Note that (38) implies that w 

i 
t = R t k 

i 
t +

 t exp 

(
y i t 
)
. We parametrize the model by u ( c ) = 

c 1 −γ −1 
1 −γ with a risk-aversion coefficient of γ = 1 and assume β = 0 . 96 ,

ρ = 0 . 95 , σ = 0 . 01 , ρy = 0 . 9 , and σy = 0 . 2 
(
1 − ρ2 

y 

)1 / 2 
. 

5.2. Deep learning solution algorithm 

Our analysis of Krusell and Smith (1998) model parallels that of the consumption-saving problem of Section 4 . We again

construct the solution using the lifetime reward, Euler and Bellman objectives. 

State space. The state space consists of the state variables of all agents 
{

y i t , w 

i 
t 

}� 

i =1 
, as well as the aggregate shock z t . Since

agents are homogeneous in fundamentals, as in Krusell and Smith (1998) , we need just one 2 � + 1 –dimensional decision and

value functions to characterize the choices of all � agents. 8 If agents were heterogenous in fundamentals, we would need to

construct separate decision and value functions for each heterogenous agent; each of such functions has 2 � + 1 dimensions.

Parameterization. Like in the consumption-saving problem, we parametrize the consumption to wealth ratio 
c i t 
w 

i 
t 

, unit-free 

Lagrange multiplier h i t and value function V i t : 

c i t 
w 

i 
t 

= σ
(
ζ0 + η

(
y i t , w 

i 
t , D t , z t ;ϑ 

))
≡ ϕ ( ·; θ ) , 

h 

i 
t = exp 

(
ζ0 + η

(
y i t , w 

i 
t , D t , z t ;ϑ 

))
≡ h ( ·; θ ) , 

V 

i 
t = ζ0 + η

(
y i t , w 

i 
t , D t , z t ;ϑ 

)
≡ V ( ·; θ ) , 

where η( ·;ϑ ) is a neural network, D t ≡
{

y i t , w 

i 
t 

}� 

i =1 
is the distribution, θ ≡ ( ζ0 , ϑ ) and σ ( x ) = 

1 
1+ e −x . 

9 

A sigmoid transformation of ϕ ( ·; θ ) ensures that 
c i t 
w 

i 
t 

is in the interval [ 0 , 1 ] ; the exponentiation of h t ensures that it

is nonnegative; there is no restriction on the range of V ( ·; θ ) . The parameter ζ0 is calibrated, and the biases and weights

are initialized randomly by using ”he ” and ”glorot ” uniform distributions, respectively. In the baseline case, we use a neural 

network with a sigmoid activation function and two hidden layers of 64 × 64 neurons. 

Simulation. Our implementation of the deep learning solution method follows Algorithm 1 we used for the consumption- 

saving problem. The algorithm is remarkably straightforward: we simulate a panel of heterogeneous agents forward and 

train their decision functions as we go. For the given economy’s state ( 
{

w 

i , y i 
}� 

i =1 
, z) and neural network coefficients θ ≡

( ζ0 , ϑ ) , we do the following calculations to implement the simulation step 2i): 

1. Compute 
c i t 
w 

i 
t 

= ϕ 

(
y i t , w 

i 
t , D t , z t ; θ

)
and k i 

t+1 
= w t − c t for each agent i = 1 , . . . , � . 

2. Draw y i 
t+1 

for i = 1 , . . . , � and z t+1 using (40) and (41) , respectively. 

3. Compute prices R t+1 and W t+1 from (42) given k t+1 = 

∑ � 
i =1 k 

i 
t+1 

. 

4. Compute next period cash-in-hand w 

i 
t+1 

= R t+1 k 
i 
t+1 

+ W t+1 exp 

(
y i 

t+1 

)
. 
8 Since the true decision and value functions are invariant to any permutation of 
{

y i t , w 

i 
t 

}� 

i =1 
, neural networks should eventually learn this symmetry. In 

general, a faster learning speed could be achieved if the symmetry is imposed in the solution method. For instance, because of unequal initial asset levels, 

some agents are given higher weight in the objective functions than the others. By reshuffling randomly the positions of agents, we can prevent overfitting 

during the training. 
9 We do not use a recursive representation for Krusell and Smith (1998) model but keep the time subscripts which is more appropriate for describing a 

solution constructed on stochastic simulation. 

93 



L. Maliar, S. Maliar and P. Winant Journal of Monetary Economics 122 (2021) 76–101 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Compute 
c i 

t+1 

w 

i 
t+1 

= ϕ 

(
y i 

t+1 
, w 

i 
t+1 

, D t+1 , z t+1 ; θ
)

for i = 1 , . . . , � . 

6. Evaluate the objective function (lifetime reward, Euler and Bellman residuals), train the neural networks and go to 

next iteration. 

We simulate the model over K = 30 0 , 0 0 0 periods, however, we perform the training only each 10th period. 10 In each

iteration, we use 100 simulated points in each iteration. We use ADAM with the learning rate of λ = 0 . 001 . As the machine

is trained and the panel is simulated, the decision functions are refined jointly with the ergodic distribution. 

Perfect multicollinearity. To parameterize the decision and value functions, we represent the state space as 

(y i t , w 

i 
t , 
{

y i t , w 

i 
t 

}� 

i =1 
, z t ) , i.e., we list the individual variables twice, as the state variables of a agent i and as a part of the

distribution 

{
y i t , w 

i 
t 

}� 

i =1 
. A repetition implies perfect multicollinearity in explanatory variables, so that the inverse problem 

is not well defined. Such a multicollinearity would break down a conventional numerical method which solves the inverse 

problem but neural networks can learn to ignore redundant colinear variables, as we saw earlier. Even though it is possi-

ble to design a transformation that avoids a repetition of variables, it would require cumbersome permutations. We find it 

easier to keep the repeated variables. 

Model reduction. We solve the models with � = 1 , 0 0 0 agents which corresponds to 2 � + 1 = 2 , 001 state variables. How

can the DL method deal with such a huge state space? In addition to focusing on the ergodic set, cheap AiO integration

and stochastic optimization, we invoke the remarkable property of neural networks to perform model reduction. When we 

supply a large number of state variables to the input layer, the neural network condenses the information into 64 neurons

in two hidden layers, making it more abstract and compact. In a sense, this procedure is similar to the photo compression or

principal component transformation when a large set of variables is condensed into a smaller set of principal components 

without losing essential information; see Goodfellow et al. (2016) for a discussion of neural networks. 

5.3. Lifetime reward 

The objective function for the lifetime reward for the model (37) –(41) follows directly from our general exposition (8) : 

�(θ ) = E ω [ ξ ( ω; θ ) ] ≡ E ( Y 0 ,W 0 ,z 0 , �,ε) 

[ 

T ∑ 

t=0 

βt u ( c t ) 

] 

, (43) 

where the transitions are determined by (38) –(41) ; Y 0 = 

(
y 1 

0 
, . . . , y � 

0 

)
, W 0 = 

(
w 

1 
0 
, . . . , w 

� 
0 

)
and z are the economy’s state

produced over stochastic simulation; � ≡
(
ε1 

1 
, . . . , ε� 

1 
, . . . , ε1 

T 
, . . . , ε� 

T 

)
represents shocks to productivity of all heterogenous 

agents i = 1 , ., � over the periods t = 1 , ., T ; and ε = ( ε1 , . . . , εT ) is the sequence of innovations to aggregate productivity. 

There is an important conceptual question on how to train the objective function (43) . We are solving for competitive

equilibrium so we must maximize the utility of each agent with respect to her own variables but not with respect to

variables of other agents. In practice, we achieve this by ”muting” in TensorFlow the gradient of the objective function of a

given agent with respect to variables of the other agents. 

Fig. 10 displays the outcome of training of neural network on the objective function (43) . 

Fig. 10. Lifetime reward in Krusell and Smith (1998) model. 

In the first panel, we illustrate how the loss function changes during training; in second panel, we show the consump-

tion functions depending on individual wealth under 7 different productivity levels ranging from -2 to 2 of the standard 
10 Since random variables are autocorrelated in our model, the stochastic gradient is correlated over time and hence, it is biased. To reduce the bias, we 

train the model on cross-sections which are sufficiently separated in time instead of using all consecutive periods. 
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deviations of productivity (to produce these decision rules, we set the aggregate state and productivity of all other agents to

their steady state levels). Finally, in the last panel, we show a simulated wealth series for 5 heterogeneous agents selected

randomly from the sample. We see that the consumption decision function is similar to the one shown in Fig. 3 for the one-

consumer problem. We also observe that the simulated series for wealth are stationary; they fluctuate within a reasonable 

range, occasionally reaching the borrowing limit. 

5.4. Euler-equation method with Kuhn-Tucker conditions 

The Euler objective function for Krusell and Smith (1998) model is parallel to the objective (30) of the consumption-

saving problem. Using the technique of two uncorrelated shocks (11) to facilitate the AiO operator, we obtain: 

�(θ ) = E ω [ ξ ( ω; θ ) ] = E ( Y t ,W t ,z t , �1 , �2 ,ε1 ,ε2 ) 

{ [
�F B 

(
1 − c i t 

w 

i 
t 

, 1 − h 

i 
t 

)]2 

+ v 

[ 

βR t+1 u 

′ (c i t+1 

)∣∣
�=�1 ,ε= ε1 

u 

′ (c i t ) − h 

i 
t 

] [ 

βR t+1 u 

′ (c i t+1 

)∣∣
�=�2 ,ε= ε2 

u 

′ (c i t ) − h 

i 
t 

] } 

. (44) 

where the transitions are determined by (38) –(41) ; Y t = 

(
y 1 t , . . . , y 

� 
t 

)
and W t = 

(
w 

1 
t , . . . , w 

� 
t 

)
and z t are the economy’s state

produced stochastic simulation; �1 = 

(
ε1 

1 
, . . . , ε� 

1 

)
, �2 = 

(
ε1 

2 
, . . . , ε� 

2 

)
are two uncorrelated random draws of individual pro- 

ductivity shocks; and ε1 , ε2 are two uncorrelated random draws for the aggregate productivity innovations. 

The results of training under the objective (44) are shown in Fig. 11 . 

Fig. 11. Euler-equation method in Krusell and Smith’s (1998) model. 

For the Euler-equation method, the residuals are generally below 10 −3 (i.e., a fraction of a percentage point). The solutions 

are very similar to those produced by the lifetime reward maximization method and presented in the previous section. 

5.5. Objective 3: Bellman equation 

The Bellman objective function for Krusell and Smith (1998) model is also parallel to the objective function (32) derived

for the consumption-saving problem. In particular, using the technique of two uncorrelated shocks (11) , we then arrive to

an objective function with the AiO operator: 

�(θ ) = E ω [ ξ ( ω; θ ) ] ≡ E 
( Y t ,W t ,z t , �1 , �2 ,ε1 ,ε2 ) 

{ [ 
V 

(
s i t ; θ

)
− u 

(
c i t 
)

− β V 

(
s i t+1 ; θ

)∣∣
�=�1 ,ε= ε1 
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, (45) 

where s i is a vector of the state variables and all other variables are defined as in (44) . 
t 
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Fig. 12. Bellman-equation method in Krusell and Smith (1998) model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of training under the objective (45) are shown in Fig. 12 . 

To initialize the algorithm, we pre-train the value function during the first 10 0,0 0 0 iterations holding initial decision

functions for consumption and multiplier fixed – this explains the initial flat area in the loss function. In the figure, we

also plot the resulting value function under 7 different individual productivity levels ranging from -2 to 2 of the standard

deviations of productivity. The constructed decision functions and simulated series look very similar to those produced by 

the two previous methods. 

5.6. Comparison of the solutions produced by three methods 

To make a more conclusive judgement, we compare the decision rules produced by the three methods. In the first panel,

we plot the decision rules of one agent for the thee methods by assuming that all other individual and aggregate state vari-

ables are in the steady state. In the second panel, we show simulation of individual wealth for all three methods under an

identical sequence of shocks and in the last panel, we show simulation of aggregate wealth. The constructed decision rules 

and time series solutions are visually close, and they produce very similar statistics such as the first and second moments.

We should take into account that some of the differences between these three solutions are explained by randomness that is

innate to stochastic optimization, namely, the constructed decision rules may somewhat fluctuate along iterations depending 

on the specific sequence of random shocks. 

Fig. 13. Comparison of methods in Krusell and Smith (1998) model. 

5.7. Euler-equation method: The properties of the solution 

In Table 1 , we present some statistics for the model with different number of agents produced by the Euler-equation

version of our solution method. 

In the first column, we show that all the studied models have practically the same standard deviation of output equal

to std(y ) ≈ 1 . 64 . This is because we normalize the mean of individual shocks to one in every period to eliminate the effect

on idiosyncratic shocks on the aggregate economy. In the second column, we provide the correlation between output and 

aggregate consumption, which visibly decreases with the number of agents. There is literature that tries to understand 

why real business cycle models overstate the correlation between these two variables and our analysis suggests that the 

heterogeneity can be a clue. 

Columns 3–6 report the Gini coefficient of the wealth distribution and the share of income by quantiles. Here, the num-

bers are comparable across the models and are similar to those obtained in Aiyagari (1994). This fact is not particularly
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Table 1 

Selected statistics for Krusell and Smith (1998) model. 

� std(y ) cor r (y, c) Gini (k ) Bottom 40% Top 20% Top 1% T ime , sec. R 2 

1 1.69 0.862 - - - - 522 0.9837 

5 1.69 0.681 0.403 0.143 0.446 0.034 678 0.9910 

10 1.64 0.671 0.443 0.115 0.469 0.037 805 0.9934 

50 1.64 0.681 0.447 0.113 0.473 0.036 1721 0.9898 

100 1.66 0.708 0.430 0.123 0.460 0.036 3297 0.9936 

500 1.63 0.699 0.438 0.119 0.467 0.037 21,823 0.9965 

1000 1.66 0.707 0.430 0.118 0.465 0.037 43,241 0.9977 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

surprising since our calibration closely follows the one used in that paper. We differ from that paper in that we also intro-

duce the aggregate shocks but this is not a sufficiently strong mechanism to change the distributional implications of the 

baseline Aiyagari’s (1994) model. 

Column 7 reports the running time. We see that the time varies from 522 to 43,241 seconds which is not prohibitively

large. We conclude that much larger models can be solved using a more powerful hardware beyond a laptop. In fact, the

bottleneck is actually not the running time but memory: manipulating large neural networks becomes increasingly expensive 

as the number of agents increases. 

Finally, column 8 contains the most interesting and controversial statistic which is R 2 of Krusell and Smith (1998) style

regression: 

ln ( k t+1 ) = ξ0 + ξ1 ln ( k t ) + ξ2 ln ( z t ) , (46) 

i.e., a regression of aggregate capital on the past aggregate capital and aggregate productivity; see Den Haan (2010) for a

discussion. Krusell and Smith (1998) find that R 2 in their model was in excess of 0.99999, which means that the aggregate

capital k t+1 , and hence, the prices, can be accurately predicted by using just aggregate state variables k t and z t . This result

is referred to as approximate aggregation . In Table 1 , we see that R 2 is also relatively large, e.g., it is in excess of 0.98 for

all models. However, it is not as large as the one reported by Krusell and Smith (1998) and other papers that implemented

related methods, e.g., Maliar et al. (2010) . 

However, our analysis is not exactly identical to the one studied by Krusell and Smith (1998) . They had two aggregate

shocks and solve for two state-contingent rules ln ( k t+1 ) = ξ g 
0 

+ ξ g 
1 

ln ( k t ) and ln ( k t+1 ) = ξ b 
0 

+ ξ b 
1 

ln ( k t ) , where ”g” and ”b”

denote the good and bad aggregate-productivity states. In their state-contingent regressions, the sampling errors are associ- 

ated only with the aggregate capital. We have a more complicated setup with a continuum of aggregate states. Our sampling

errors in (46) are driven by both the aggregate capital and aggregate productivity. Possibly, if we split the data by the level

of aggregate productivity to mimic Krusell and Smith (1998) state-contingent regressions, we would get R 2 which is closer 

to theirs. 

5.8. Deep learning method with a reduced state space 

To reduce the computational expense, Krusell and Smith (1998) came up with a simple and effective idea of replacing the

distributions of state variables D t ≡
{

y i t , w 

i 
t 

}� 

i =1 
by a set of moments m t . To implement this idea, they designed a fixed-point

iterative procedure that alternates between constructing the individual decision rules on a grid (by taking the law of motion 

of the moments as given) and solving for the law of motion for the moments (by taking the individual decision rules as

given). An essential part of their solution method is a regression of moments on lagged moments shown in Table 1 . If such

regression has a high explanatory power, the agents can accurately predict future prices without knowing the distributions 

which reduces the individual state space to just four state variables 
(
y i t , w 

i 
t , m t , z t 

)
if only first moment is used. Krusell and

Smith (1998) approach proved to work remarkably well in a variety of models and applications. 11 

Our deep learning framework provides a simple way to incorporate Krusell and Smith (1998) idea of using a reduced

state space. As before, we simulate a panel of heterogeneous agents but we feed moments in the decision functions instead

of distributions. Under our implementation, there is no need to alternate between constructing the individual and aggregate 

solutions as we solve the entire model at once. Moreover, the regression step of Krusell and Smith (1998) analysis is also

unnecessary, which allows us to use our method in those models in which the explanatory power of such regression is

insufficient. Our deep learning method admits any other statistics instead of and in addition to moments and provides a 

cheap alternative to our baseline deep learning operating on the actual state space. Having relatively few moments, like 10 

or 20, makes our method tractable even with larger number of agents, in particular, we are able to increase the number of

agents to 10,0 0 0. To save on space, we do not show the results since the statistics and figures are practically the same as in
the baseline case. 

11 Other early approaches to solving heterogeneous agent models are offered by Den Haan (1997) ; Judd (1998) ; Reiter (2010) ; see Den Haan (2010) for a 

review. 
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5.9. Deep learning versus moments 

Krusell and Smith (1998) discovered that a single statistic – the mean of the wealth distribution – can effectively char- 

acterize the state space of their heterogeneous-agent economy. An interesting question is how their solution compares to 

our analysis. To address this question, we compare a solution produced when using the first moment of wealth distribution 

(KS1) with our baseline solution produced when using the actual state space ( 64 × 64 neurons). We find that the one-

moment KS1 solution is systematically shifted up relative to our baseline 64 × 64 solution (although the difference is not 

quantitatively important). We then compute a deep learning solution with two hidden layers composed of 64 and 4 neu- 

rons, respectively, so that the second hidden layer has same dimensionality as the one-moment solution. We find that the 

64 × 4 –neuron solution is also shifted up near the kink but it gradually approaches our reference solution for larger levels

of capital; see Fig. 14 . 

Fig. 14. Comparison of one-moment, 64 × 64 and 64 × 4 neuron solutions. 

We tried to add second and third moments but it did not help remove the shift (we explore both ordinary and or-

thogonal Hermite polynomials). In fact, a Krusell and Smith (1998) solution constructed using two moments of the wealth 

distribution, KS2, was even further away from our reference 64 × 64 solution than the one-moment solution KS1. We next 

consider a solution with seven neurons in the hidden layer 64 × 7 which has the same dimensionality as Krusell and Smith

(1998) solution with first and second moments KS2, and we find that additional neurons do help get closer to the reference

solution, see Fig. 15 . 
Fig. 15. Comparison of two-moment, 64 × 64 and 64 × 7 neuron solutions. 
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Why does adding neurons help but adding more moments does not? This is because the second moments do not have

additional explanatory power relative to the first moment, for example, they do not increase R 2 of Krusell and Smith

(1998) regression. Adding such redundant moments does not increase the fit but does increase the variance In contrast, 

neural network is designed to perform model reduction: it considers many possible ways of extracting the information 

contained in the distribution and condensing it into a relatively small set of hidden layers. Not surprisingly, it can find rep-

resentations that are more efficient than a set of moments postulated ad-hoc and it can use additional neurons to improve

on the quality of representation. 

6. Discussion: Deep learning in economic dynamics 

In this section, we discuss a broad set of issues related to applying deep learning in economic dynamics and explain how

these issues differ from those arising in data science. 

The main novelty: computational technology! There is not much methodological novelty in the canonical AI analysis. 

The gradient descent method is known since Newton and its stochastic optimization version was developed in early 1950s. 

Neural networks were also discovered long ago ( Rosenblatt (1958) ). There are even remarkable early applications of neural

networks to solving dynamic economic models ( Duffy and McNelis (2001) ). 

However, machine learning is so technology intensive that DL methods were put aside until platforms like TensorFlow 

and Pytorch were developed to facilitate their implementation. Google has developed its own TPU units too. High-end GPUs 

feature thousands of powerful CUDA cores, which can all operate at the same time. Also, commercial interest is high and

the surge of cloud computing has made it possible to rent vast amounts of computing power, e.g., Amazon. 

Learning is always deep in economic models. In data science, learning is called ”deep” because neural networks have 

interconnected topologies with multiple layers of coefficients. In economic dynamics, there is another reason for calling 

learning ”deep”. Specifically, objective functions derived from dynamic economic models contain variables of multiple periods 

and nested decision functions which lead to multilayer interconnected topologies and approximation coefficients buried in 

several layers of intertemporal optimization, similar to those observed in multilayer neural network. In that sense, learning 

is always ”deep” in dynamic economic models, even for simple one-layer approximating functions such as polynomial or 

piecewise linear functions. 

Data are truly random in economic dynamics. In data science, a data set is usually fixed and batches are not really

random but a pseudo-random bootstrap of the given data. In such applications, we split the available data into 3 samples,

namely, for construction of a solution, validation and accuracy assessment. When solving dynamic models, we do not use 

real-world economic data but generate artificial data by simulating the model. In this case, we just need to fix the distribu-

tion for random draws. We then are able to simulate the model at will and we can generate as much artificial data as we

want. In that sense, our data are truly random. 

Antithetic variates improve efficiency of Monte Carlo integration. Monte Carlo integration has a low square-root rate 

of convergence. We can increase the efficiency of SGD by using variance reduction techniques; see Cheng (1982) . One sim-

ple method is antithetic variates: assuming a zero mean, for every realization ( ω 1 , . . . , ω n ′ ) , we also consider its antithetic 

realization ( −ω 1 , . . . , −ω n ′ ) . Another possibility is a tensor-product antithetic variates, i.e., to consider all possible combina- 

tions ( ±ω 1 , . . . , ±ω n ′ ) . In the lifetime reward function, the sequence ( ±ε1 , . . . , ±εT ) may be expensive to analyze, so we can 

consider a truncated sequence with antithetic variates just for the first τ periods, namely, ( ±ε1 , . . . , ±ετ , ετ+1 , . . . , εT ) . The 

distant future terms are discounted so that making the first few draws antithetic can still bring a considerable increase in

accuracy. 

Lifetime reward maximization with deterministic integration of shocks. For the Euler- and Bellman-equation meth- 

ods, we had two versions: one in which we compute integrals with respect to state variables and future shocks separately

and the other is the AiO expectation version. For the lifetime reward, we only have the version with the AiO expectation

operator. But we can also implement a method that computes the two expectation functions separately, for example, one 

that uses Monte Carlo integration for evaluating E ( m 0 ,s 0 ) [ ·] , and the other that uses deterministic integration for evaluating 

E ( ε1 , ... ,εT ) 
, i.e., we compute sequentially the two expectation operators in E ( m 0 ,s 0 ) 

[
E ( ε1 , ... ,εT ) 

∑ T 
t=0 β

t r(·) 
]
. To evaluate E ( ε1 , ... ,εT ) 

, 

we can use a deterministic integration method suggested in Adjemian and Juillard (2013) . In each period t , we construct n

integration nodes (by using quadrature, monomials, etc.) This leads to an exploding tensor-product tree. For example, a tree 

with just 2 Gaussian nodes ±ε, results in sequence ±ε0 , ±ε1 , ±ε2 , . . . that has exponentially growing number of nodes 2, 4,

8,.... But Adjemian and Juillard (2013) propose a clever refinement that makes the problem tractable by eliminating those 

branches of the tree whose probabilities are low. 

Nested local approximations and deterministic models. Each of the three constructed objective functions contains two 

nested models: One is the model in which the solution is approximated locally around the given state, and the other is the

deterministic model. In the former case, state (m, s ) is fixed in (8), (10), (12), (14) , and (15) and expectation is computed
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only with respect to exogenous shocks ε. Such a solution may be interesting per se, for example, for studying transitions

of a developing economy to the steady state because the solution constructed just in the ergodic set may be insufficiently

accurate. In turn, the deterministic model is the one in which a realization of shocks ε is fixed and the state ( m, s ) is

random. 

Accuracy tests in economic dynamics are indirect. In a canonical supervised learning regression, we assess the quality 

of approximation by looking at the difference between the true and predicted output out-of-sample. In a logistic regression 

(e.g., the problem of handwritten digits classification), the success can be also measured by the fraction of times the machine

classifies the digits correctly, e.g., it recognizes the handwritten digits correctly in 80 percent of the cases. 

In the context of economic dynamics, a parallel direct accuracy test would require us to compare approximate and exact 

solutions. This is generally infeasible since the exact solutions are unknown. One way to deal with this complication is 

to construct a more accurate reference solution by using more flexible approximation functions, more precise solvers and 

more accurate numerical integration methods. However, such a reference solution may be infeasible or excessively costly; 

see Judd et al. (2017) for a discussion and examples of cheaper direct testing methods that rely on numerical construction

of the error bounds. 

Following the economic literature, we concentrate on indirect approaches to the accuracy evaluation. Specifically, we 

will check certain properties that an accurate solution is known to satisfy, such as zero residuals in the Euler or Bellman

equation. Indirect accuracy tests are simple to design and they can be implemented in an out-of-sample way which is 

characteristic for AI applications. Moreover, we can define indirect accuracy measures to reflect the economic significance of 

accuracy. For example, we can express approximation errors in percentage terms of consumption. 

7. Concluding comments 

In the paper, we propose an AI technology that is tractable in large scale applications – a deep learning method based

on Monte Carlo simulation. Our analysis is technology driven: we do not aim to design AI approaches that would work best

for a certain class of economic models but rather we adapt the economic models themselves to available AI technologies. 

The modern data-science tools are ubiquitous, well developed, free of errors and optimized – these may be sufficient to 

compensate for potential inefficiencies. We have shown the promise of the DL approach by solving the Krusell and Smith

(1993) model with thousands of state variables without resorting to a simplifying assumption about the economy’s state 

space – such analysis has been infeasible up to now. Consequently, it seems to be a promising direction to explore. 

Our solution framework was designed to take advantage of existing DL technology. ”Is this the best possible technology 

for solving dynamic economic models?” – the answer to this question is not clear. 

First, neural networks are powerful universal approximators, but their training is expensive and their convergence to the 

solutions is not guaranteed. It is actually an open question whether there is much value in using deep neural networks for

approximating decision rules in economics which often can be well approximated by simple functions like polynomials and 

splines. 

Second, Monte Carlo simulation lying at the basis of DL framework has a low square-root rate of convergence. It is

possible to improve on the Monte Carlo method by engineering sequences that deliver more accurate approximations to 

integrals (e.g., quadrature, monomials, quasi-random sequence, sparse grids, clusters, epsilon-distinguishable sets), as well 

as by applying variance-reduction techniques such as antithetic variates; see Maliar et al. (2014) for a review. 

Third, instead of stochastic optimization, we can use other numerical solvers, e.g., fixed-point iteration, conventional 

GD methods, Gauss-Jacobi, Gauss-Siedel and linear programming; see Judd (1998) . These techniques are commonly used in 

computational economics, and we expect them to be useful alternatives to our baseline SGD in some applications. 

Finally, there are other AI-style methods that can be used for solving economic models, in particular, unsupervised and 

reinforcement learning methods. These methods offer a possibility of online learning and additional powerful approximation 

techniques such as alternating of learning, exploration or exploitation – such techniques are absent in our static offline 

supervised learning framework. 
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