
Economics Letters 120 (2013) 262–266
Contents lists available at SciVerse ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

Envelope condition method versus endogenous grid method for
solving dynamic programming problems
Lilia Maliar ∗, Serguei Maliar
Hoover Institution, Stanford University, USA
University of Alicante, Spain
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• We introduce the envelope condition method (ECM) for solving dynamic programming problems.
• ECM simplifies rootfinding and is faster than conventional value function iteration.
• ECM is similar in accuracy and speed to Carroll’s (2005) endogenous grid method (EGM).
• We introduce accurate EGM and ECM that approximate derivatives of value function.
• Codes are available.
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a b s t r a c t

We introduce an envelope conditionmethod (ECM) for solving dynamic programming problems. The ECM
method is simple to implement, dominates conventional value function iteration and is comparable in
accuracy and cost to Carroll’s (2005) endogenous grid method. Codes are available.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Dynamic programming methods are an important tool in eco-
nomics; see Judd (1998), Santos (1999), Rust (2008) and Stachursky
(2009) for reviews. Conventional value function iteration (VFI) goes
backward: we guess a value function in period t + 1, and we
solve for a value function in period t using the Bellman equation.
Conventional VFI is expensive: it requires us to find a root to a
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non-linear equation in all grid points, which involves interpolating
value function off the grid and approximating conditional expec-
tation in a large number of candidate solution points; see Aruoba
et al. (2006) for examples assessing the cost of VFI.

Carroll (2005) introduces an endogenous grid method (EGM)
that simplifies rootfinding under time iteration. The idea is to con-
struct a grid on future endogenous state variables instead of cur-
rent endogenous state variables,which are treated as unknowns. In
a typical economic model, it is easier to solve for current endoge-
nous state variables given the future state variables than to solve
for future endogenous state variables given the current state vari-
ables. This is why EGM dominates conventional VFI.

In this paper, we have two contributions. First, we introduce
an envelope condition method (ECM), another solution method that

http://dx.doi.org/10.1016/j.econlet.2013.04.031
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mailto:maliarl@stanford.edu
http://dx.doi.org/10.1016/j.econlet.2013.04.031
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simplifies rootfinding in dynamic programming problems. ECM
does not perform conventional backward iteration on the Bellman
equation but iterates forward. Also, to construct policy functions,
ECM uses the envelope condition instead of the first-order con-
ditions used by conventional VFI and EGM. We find that systems
of equations produced by ECM are typically easier to solve than
those produced by conventional VFI. In this sense, ECM is similar
to EGM.

Second, we introduce versions of the EGM and ECM methods
that approximate derivatives of value function instead of value
function itself. We find that these versions produce far more
accurate solutions than do similarmethods that approximate value
function itself.

We compare the EGM and ECM methods using both analytical
arguments and numerical examples. We find that EGM and ECM
are nearly identical in terms of accuracy and speed in our test
problem, the neoclassical growth model with elastic labor supply.
Codes are available at http://www.stanford.edu/~maliarl.

2. The model

We study the standard neoclassical growth model with elastic
labor supply.

2.1. Bellman equation

We solve for value function V that satisfies the Bellman
equation,

V (k, a) = max
k′,c,ℓ


u (c, ℓ) + βE


V


k′, a′


(1)

s.t. k′
= (1 − δ) k + af (k, ℓ) − c, (2)

ln a′
= ρ ln a + ϵ′, ϵ′

∼ N

0, σ 2 , (3)

where k, c, ℓ and a are capital, consumption, labor andproductivity
level, respectively; β ∈ (0, 1) ; δ ∈ (0, 1] ; ρ ∈ (−1, 1) ; σ ≥

0; the utility and production functions, u and f , respectively, are
strictly increasing, continuously differentiable and concave; the
primes on variables denote next-period values, and E


V


k′, a′


is an expectation conditional on state (k, a).

2.2. Optimality conditions

We divide the optimality conditions in two blocks. The first
block identifies policy functions that correspond to a given value
function V , and the second block identifies a value function that
corresponds to given policy functions.

2.2.1. Block 1: identifying policy functions given a value function
If a solution to Bellman equation (1)–(3) is interior, the optimal

quantities satisfy first-order conditions (FOCs) with respect to
labor and consumption and the envelope condition, which,
respectively, are

uℓ (c, ℓ) = −uc (c, ℓ) afℓ (k, ℓ) , (4)

uc (c, ℓ) = βE

Vk


k′, a′


, (5)

Vk (k, a) = uc (c, ℓ) [1 − δ + afk (k, ℓ)] , (6)

as well as budget constraint (2). Here, Fx (. . . , x, . . .) denotes a
first-order partial derivative of function F (. . . , x, . . .)with respect
to variable x.

2.2.2. Block 2: identifying a value function given policy functions
In the optimum, value function V and its derivative Vk satisfy

V (k, a) = u (c, ℓ) + βE

V


k′, a′


, (7)

Vk (k, a) = β [1 − δ + afk (k, ℓ)] E

Vk


k′, a′


. (8)
Condition (7) is Bellman equation (1) evaluated under the optimal
policy functions (which makes a maximization sign unnecessary),
and condition (8) follows by combining (5) and (6).

2.3. Discussion

Envelope condition (6) is central to our analysis.1 Observe that
we have two conditions that describe the relation between Vk and
the policy functions: one is FOC (5) and the other is envelope condi-
tion (6). Conventional VFI and EGM of Carroll (2005) approximate
policy functions using FOC (5), namely, they solve the system (2),
(4) and (5). In contrast, our ECM method will approximate policy
functions using envelope condition (6), namely, it will solve the
system (2), (4) and (6). In Sections 3 and 4,we show that the system
of equations built on envelope condition (6) is easier to solve than
the system of equations built on conventional FOC (5), in which
case ECM is a preferred choice.

Furthermore, the envelope condition provides a basis for
condition (8). This condition allows us to approximate Vk without
finding V . Under our construction, all methods described in the
paper can approximate a solution by iterating on either (7) or (8) or
both, whereas the previous literature including conventional VFI
and EGM of Carroll (2005) iterate only on Bellman equation (7).
In Section 5, we show that the iteration on (8) leads to far more
accurate solutions than iteration on (7).

3. The model with inelastic labor supply

We first consider a model with inelastic labor supply under the
following assumptions

u (c, ℓ) =
c1−γ

− 1
1 − γ

and f (k, ℓ) = kα, (9)

where γ > 0 and α ∈ (0, 1). In this case, we have ℓ = 1, and FOC
(4) is absent.

3.1. Conventional VFI

The conventional VFI methodmakes a guess on the future value
function V


k′, a′


and identifies policy functions using budget

constraint (2) and FOC (5). By substituting c from (2) into (5) under
the assumptions (9), we obtain

βE

Vk


k′, a′


=


k′

− (1 − δ) k − akα
−γ

. (10)
We must solve (10) for k′ in each grid point (k, a). Finding a solu-
tion to (10) is expensive. For example, if we parameterize V with
a polynomial function, then solving (10) includes interpolation of
Vk to new values


k′, a′


, as well as approximation of conditional

expectation E

Vk


k′, a′


. We must explore many different candi-

date values of

k′, a′


until we find a solution to (10).

3.2. Endogenous grid method

TheEGMof Carroll (2005) alsomakes a guess on the future value
function V


k′, a′


and identifies policy functions using budget

constraint (2) and FOC (5). The difference is that EGM treats the
future endogenous state variable as fixed, and it treats the current
endogenous state variable as unknown. Since the values for k′ are
fixed, it is possible to compute up-front E


V


k′, a′


≡ W


k′, a


and E


Vk


k′, a′


≡ Wk


k′, a


.

1 Typically, the envelope condition is used to derive the Euler equation (namely,
(6) is updated to get Vk


k′, a′


and the result is substituted into (5) to eliminate the

unknown derivative of the value function). In the present paper, we do not derive
the Euler equation but concentrate on the envelope condition in the form (6).

http://www.stanford.edu/~maliarl
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Consider again the system (2), (4) and (5) under assumptions
(9). Now, we find c directly from (5), c =


βWk


k′, a

−1/γ , and
we are left to solve for k that satisfies budget constraint (2) given
k′, a


(1 − δ) k + akα

=

βWk


k′, a

−1/γ
+ k′. (11)

Observe that (11) is easier to solve numerically than (10) because
it does not involve either interpolation or approximation of
conditional expectation.
Carroll’s (2005) change of variables. Still, Eq. (11) must be solved
numerically. However, Carroll (2005) finds a clever change of
variables that makes unnecessary solving (11) on each iteration.
He introduces a new variable Y ≡ (1 − δ) k+ akα

= c + k′, which
allows us to rewrite Bellman equation (1) as

V (Y , a) = max
k′


c1−γ

− 1
1 − γ

+ βW

Y ′, a


, (12)

where W

Y ′, a


= E


V


Y ′, a′


. The FOC of this problem is

c−γ
= βE


VY


Y ′, a′

 
1 − δ + αa′


k′

α−1


. (13)

Since we know that Y ′
≡ (1 − δ) k′

+ a′

k′

α , we can find the
expectation in the right side of (13) and hence, we can compute
c and Y = k′

+ c. Therefore, we can iterate on Bellman equation
(12) without using a solver. Once V is computed, we find k that
corresponds to Y = (1 − δ) k + akα using a numerical solver (just
once).

3.3. Envelope condition method

Like the conventional VFI, our ECM method also operates on
an exogenous grid however makes a guess on the current value
function V (k, a) (or its derivative Vk(k, a)) instead of the future
value function. This enables us to solve for c using envelope
condition (6) instead of FOC (5). Under assumptions (9), c can be
derived explicitly from (6),

c =


Vk (k, a)

1 − δ + αa(k)α−1

−1/γ

. (14)

We can next compute k′ directly from budget constraint (2). In this
example, ECM is simpler than Carroll’s (2005) EGM as all policy
functions can be constructed analytically and a solver must never
be used (not even once).

3.4. Discussion

Four combinations are possible from two alternative conditions
for Vk (FOC (5) and envelope condition (6)) and two alternative
grids (exogenous and endogenous). So far, we have distinguished
two competitive methods: one is EGM of Carroll (2005) (FOC
(5) and endogenous grid) and the other is our ECM (envelope
condition (6) and exogenous grid). The conventional VFI (FOC (5)
and exogenous grid) is not competitive. Therefore, we are left to
explore the remaining combination (envelope condition (6) and
endogenous grid). Combining (2) and (14) yields

(1 − δ) k + akα
=


Vk (k, a)

1 − δ + αa(k)α−1

−1/γ

+ k′. (15)

We must solve (15) for k given

k′, a


. This involves evaluations of

Vk (k, a) formany candidate solution points (k, a), which are costly.
We conclude that the combination of the envelope condition and
endogenous grid does not lead to a competitive method. Our
results are suggestive for other applications.
4. The model with elastic labor supply

We now consider themodel with elastic labor supply under the
following assumptions:

u (c, ℓ) =
c1−γ

− 1
1 − γ

+ B
(1 − ℓ)1−µ

− 1
1 − µ

and

f (k, ℓ) = kαℓ1−α,

(16)

where γ > 0, µ > 0 and α ∈ (0, 1). We restrict attention to EGM
and ECM that we found to be competitive.

4.1. Endogenous grid method

Under EGM,wemust solve Eqs. (2), (4) and (5) for (c, ℓ, k) given
k′, a


. As in the model with inelastic labor supply, we compute

E

V


k′, a′


≡ W


k′, a


, E


Vk


k′, a′


≡ Wk


k′, a


given V , and

we find c =

βWk


k′, a

−1/γ using (4). Under (16), we can ex-
press k from (4) and substitute it into (2) to get

k′
= (1 − δ)


B (1 − ℓ)−µ

βWk (k′, a) a (1 − α)

1/α

ℓ

+
B (1 − ℓ)−µ ℓ

βWk (k′, a) (1 − α)
−


βWk


k′, a

−1/γ
. (17)

Eq. (17) must be solved numerically for one unknown ℓ. This equa-
tion is relatively cheap as it does not involve either interpolation
or approximation of expectations.

4.2. Envelope condition method

Under ECM,wemust solve Eqs. (2), (4) and (6) for

c, ℓ, k′


given

(k, a). By substituting c−γ from (4) into envelope condition (6), we
obtain

Vk (k, a) =
B (1 − ℓ)−µ

a (1 − α) kαℓ−α


1 − δ + aαkα−1ℓ1−α


. (18)

We must solve Eq. (18) for ℓ. Like (17), Eq. (18) does not involve
either interpolation or approximation of expectations.

4.3. Discussion

Under our implementation, the rootfinding problems under
EGM and ECM are comparable in their complexity. In both cases,
wemust find a solution to a non-linear equation in each grid point.
Such an equation is relatively cheap to solve as it does not involve
either interpolation or approximation of expectations.

In themodelwith elastic labor supply, Carroll’s (2005) change of
variables does not avoid rootfinding. The variable Y ′

= a′f

k′, ℓ′


+ k′ depends on future labor ℓ′, and E


V


Y ′, a′


cannot be

computed without specifying labor policy functions. Barillas and
Fernández-Villaverde (2007) propose a way of extending EGM to
themodel with elastic labor supply. Namely, they fix a policy func-
tion for labor ℓ = L


k′, a


, construct the grid of


Y ′, a


, solve the

model on that grid holding L fixed and use the solution to reevalu-
ate L; and they iterate on these steps until L converges.

Our implementation of EGM for the model with elastic la-
bor supply differs from that in Barillas and Fernández-Villaverde
(2007). First, we use future endogenous state variables for con-
structing grid points but we do not use Carroll’s (2005) change
of variables. Second, to deal with rootfinding, we use a numerical
solver while Barillas and Fernández-Villaverde (2007) iterate on a
state contingent policy function for labor L


k′, a


.

5. Numerical analysis

We compare the performance of EGM and ECM in the context
of the model with elastic labor supply.
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Table 1
Accuracy and speed of EGM-VF and ECM-VF in themodel with elastic labor supply.a

Polynomial degree EGM-VF ECM-VF
L1 L∞ CPU L1 L∞ CPU

1st – – – – – –
2nd −3.28 −2.81 8.3 −3.34 −2.75 5.8
3rd −4.31 −3.99 8.9 −4.38 −3.87 7.2
4th −5.32 −4.96 7.3 −5.45 −4.86 5.8
5th −6.37 −5.85 6.5 −6.57 −5.72 4.7
a Notes: L1 and L∞ are, respectively, the average and maximum of absolute

residuals across optimality condition and test points (in log10 units) on a stochastic
simulation of 10,000 observations; CPU is the time necessary for computing a
solution (in s).

Table 2
Accuracy and speed of EGM-DVF and ECM-DVF in the model with elastic labor
supply.a

Polynomial degree EGM-DVF ECM-DVF
L1 L∞ CPU L1 L∞ CPU

1st −3.03 −2.87 8.1 −3.08 −2.92 7.2
2nd −4.13 −3.82 7.2 −4.18 −3.91 6.5
3rd −5.06 −4.77 7.3 −5.20 −4.87 6.7
4th −6.09 −5.64 7.4 −6.29 −5.72 6.8
5th −7.12 −6.26 7.6 −7.36 −6.32 6.9
a Notes: L1 and L∞ are, respectively, the average and maximum of absolute

residuals across optimality condition and test points (in log10 units) on a stochastic
simulation of 10,000 observations; CPU is the time necessary for computing a
solution (in s).

5.1. Methodology

We calibrate the model (1)–(3) under (16) such that in the
steady state, the capital–output ratio is πk = 10, the consump-
tion–output ratio is πc = 3/4, the steady state labor is ℓ = 1/3
and α = 1/3; this implies β = 0.99, δ = 0.025 and B =

(1 − α) π
(1−γ )α/(1−α)

k π
−γ
c (1 − ℓ)µ ℓ−γ . In the benchmark case,we

use (γ , µ) = (2, 2). The parameters in (3) are ρ = 0.95 and σ =

0.01. Our design of EGM and ECM is similar. As a solution domain,
we use a rectangular, uniformly spaced grid of 10 × 10 points for
capital and productivity within an ergodic range. We use a 3-node
Gauss–Hermite quadrature rule for approximating integrals. We
parameterize value function with complete ordinary polynomials
of degrees up to 5. To solve for the polynomial coefficients, we use
fixed-point iteration. To solve non-linear equations (17) and (18),
weuse a solver csolvewritten byChristopher Sims.WeuseMATLAB
software, version 7.6.0.324 (R2008a) and a desktop computer ASUS
with Intel(R) Core(TM)2 Quad CPU Q9400 (2.66 GHz), 6 GB RAM.
A detailed description of the algorithms is provided in the
Appendix.

5.2. Results for the model with elastic labor supply

We first solve for V by iterating on Bellman equation (7); we
refer to the corresponding methods as EGM-VF and ECM-VF. The
results are shown in Table 1. The performance of EGM-VF and ECM-
VF is very similar. EGM-VF produces slightly smaller maximum
residuals, while ECM-VF produces slightly smaller average resid-
uals. EGM-VF is somewhat slower than ECM-VF.

We next solve for Vk by iterating on (8); we call these methods
EGM-DVF and ECM-DVF. The results are provided in Table 2. Again,
EGM-DVF and ECM-DVF perform very similarly. Both methods
deliver accuracy levels that are about an order ofmagnitude higher
than those of EGM-VF and ECM-VF. Overall, we attain accuracy
levels that are comparable to the best accuracy attained in the
related literature.
Iterating on (8) produces more accurate solutions than iterat-
ing on (7) because the object that is relevant for accuracy is Vk and
not V (namely, Vk identifies the model’s variables from (2)–(6)).
Approximating a supplementary object V and computing its
derivative Vk involves an accuracy loss compared to the case when
we focus on the relevant object Vk directly. For example, if we
approximate V with a polynomial, we effectively approximate Vk
with a polynomial which is one degree lower, i.e., we ‘‘lose’’ one
polynomial degree.

We finally implement versions of EGM and ECMwhich approx-
imate V jointly with Vk by iterating on both (7) and (8); we call
them EGM-VF&DVF and ECM-VF&DVF. We specifically fit a poly-
nomial approximation for V on the grid using a constrained linear
least-squares that imposes a linear restriction on the coefficients
of a polynomial that approximates Vk. This procedure is similar
in spirit to a Hermite interpolation method described in Cai and
Judd (2012). In our simple example, approximating V jointly with
Vk leads to the same results as those obtained approximating V
alone. However, in more complex models in which value function
has many endogenous arguments, fitting both V and Vk on the grid
may improve accuracy of solutions because it imposes consistency
on cross derivatives of V .

6. Conclusion

The conventional VFI is expensive. Carroll (2005) introduces the
EGM method that reduces the cost of value iteration dramatically.
In this paper, we propose the ECM method that can compete
with Carroll’s (2005) method. In our simple application, EGM and
ECM perform similarly. But in more complex applications, one
method may lead to a more simple system of equations and thus,
be preferable to the other. One application in which ECM can be
a useful choice is models of sovereign default; see, e.g., Villemot
(2012).

In this paper,we build ECMand EGMusing tensor product grids.
However, ECM and EGM can be implemented using non-product
techniques that are tractable in high dimensional applications;
see Maliar and Maliar (2005) for a numerical method that solves
for a value function on simulated series, and see Judd et al.
(2011, 2012) for effective non-product grid constructions, low-
cost monomial integration formulas and numerically stable fitting
methods. In particular, Maliar and Maliar (2012) show versions
of ECM that solve dynamic programming problems with up to 16
state variables.
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Appendix

We first provide a description of 3 versions of the ECM used.

ECM-VF, ECM-DVF, ECM-VF&DVF

Step 0. Initialization.
a. Choose an approximating functionV (·; b) ≈ V .
b. Choose integration nodes, ϵj, and weights,

ωj, j = 1, . . . , J .
c. Construct a grid Γ = {km, am}m=1,...,M

d. Make an initial guess on b(1).
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Step 1. Computation of a solution forV .
At iteration i, form = 1, . . . ,M ,
a. Solve for ℓm that satisfies
B (1 − ℓm)−µ


1 − δ + aαkα−1

m ℓ1−α
m


= Vk


km, am; b(i)


a (1 − α) kα

mℓ−α
m ;

b. Compute cm ≡

 Vkkm,am;b(i)


1−δ+aαkα−1
m ℓ1−α

m

−1/γ

;

c. Compute k′
m = (1 − δ) km + amkα

mℓ1−α
m − cm;

ECM-VF. Find value function on the grid

vm ≡
c1−γ
m −1
1−γ

+ B (1−ℓm)1−µ
−1

1−µ

+ β
J

j=1 ωjV 
k′
m, aρ

m exp

ϵj

; b(i)


;

ECM-DVF. Find the derivative of value function on the
grid

dm = β

1 − δ + αakα−1

m ℓ1−α
m

 J
j=1 ωjVk


k′
m, aρ

m exp

ϵj

; b(i)


.

Step 2. Computation of b that fits the value function on the
grid.
a. Run a regression to findb
ECM-VF.b = argminb

M
m=1

vm − V (km, am; b)
.

ECM-DVF.b = argminb
M

m=1

dm − Vk (km, am; b)
.

ECM-VF&DVF.b = argminb
M

m=1

vm − V (km, am; b)


s.t. dm = Vk (km, am; b).
b. Use damping to compute b(i+1) = (1 − ξ) b(i)

+ ξb.
c. Check for convergence: end Step 2 if

1
M

M
m=1

 (k′m)
(i+1)

−(k′m)
(i)

(k′m)
(i)

 < ϖ .

We now provide a description of 3 different versions of EGM
used (steps that are identical under ECM and EGM are omitted).
EGM-VF, EGM-DVF, EGM-VF&DVF
. . . c. Construct a grid Γ =


k′
m, am


m=1,...,M

. . .At iteration i, for m = 1, . . . ,M ,

a. Find cm =


β

J
j=1 ωjVk


k′
m, aρ

m exp

ϵj

; b(i)

−1/γ

b. Solve for ℓm that satisfies

k′
m = (1 − δ)


B(1−ℓm)−µ

c−γ
m a(1−α)

1/α
ℓm +

B(1−ℓm)−µℓm
c−γ
m (1−α)

− cm;

c. Compute km ≡


B(1−ℓm)−µ

c−γ
m a(1−α)ℓ−α

m

1/α
;. . .
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