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NOTES AND COMMENTS

LOWER BOUNDS ON APPROXIMATION ERRORS TO NUMERICAL
SOLUTIONS OF DYNAMIC ECONOMIC MODELS

BY KENNETH L. JUDD, LILIA MALIAR, AND SERGUEI MALIAR1

We propose a novel methodology for evaluating the accuracy of numerical solutions
to dynamic economic models. It consists in constructing a lower bound on the size of
approximation errors. A small lower bound on errors is a necessary condition for accu-
racy: If a lower error bound is unacceptably large, then the actual approximation errors
are even larger, and hence, the approximation is inaccurate. Our lower-bound error
analysis is complementary to the conventional upper-error (worst-case) bound analysis,
which provides a sufficient condition for accuracy. As an illustration of our methodol-
ogy, we assess approximation in the first- and second-order perturbation solutions for
two stylized models: a neoclassical growth model and a new Keynesian model. The er-
rors are small for the former model but unacceptably large for the latter model under
some empirically relevant parameterizations.

KEYWORDS: Approximation errors, error bound, forward error analysis, backward
error analysis, Euler equation residuals, upper error bound, lower error bound, accu-
racy, numerical solution, approximate solution, new Keynesian model.

1. INTRODUCTION

DYNAMIC ECONOMIC MODELS DO NOT TYPICALLY ADMIT CLOSED-FORM SOLUTIONS and
must be studied with numerical methods. A numerical method approximates the exact
solution up to some degree of accuracy. The control over the quality of approximation is
critical if we want to get valid inferences from numerical experiments. That is, the con-
structed approximate solution must have a minimum acceptable quality for the questions
studied; otherwise, it could happen that conclusions and policy implications are just driven
by approximation errors.

Thus, an important question is: “How different is the approximate solution from the
exact solution?” There is literature that focuses on an upper bound on approximation er-
rors by assuming the worst-case scenario; see Peralta-Alva and Santos (2014) for a review.
The present paper complements this literature by introducing lower-bound error analysis.
A lower error bound delivers an optimistic, best-case scenario view about accuracy of an
approximate solution. Our main insight is that it is generally quite easy to provide lower
bounds on approximation errors by focusing on a strict subset of the model’s equations
and by determining minimal perturbations to the approximate solution that are necessary
to solve the given subset of equations exactly.

The lower and upper error bounds are complementary and both of them are useful—
they provide necessary and sufficient conditions for accuracy, respectively. Namely, if an
upper error bound is small, then the actual approximation errors are even smaller, and we
can conclude that a given approximate solution is sufficiently accurate. In turn, if a lower
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error bound is unacceptably large, then the actual approximation errors are even larger,
and hence, we conclude that a numerical solution is inaccurate.2

Our methodology of constructing lower error bounds is quite general: it is independent
of a specific solution method and is applicable to both dynamic programming and equi-
librium problems. In contrast, upper-error-bound analysis requires special assumptions
and is limited to dynamic programming problems. It is not possible to conduct systematic
upper-bound error analysis in many stochastic dynamic economic models that are used in
practice.

As an illustration, we apply our methodology to assess the size of approximation er-
rors in the first- and second-order perturbation solutions for two stylized models: a neo-
classical optimal growth model and a variant of the new Keynesian model in line with
Christiano, Eichenbaum, and Evans (2005), and Smets and Wouters (2007). The stud-
ied model features physical capital, adjustment costs to investment, variable utilization of
capital, habit formation in consumption, as well as sticky wages and prices. For the growth
model, we find that the approximation errors of the first-order perturbation solutions (lin-
earization) are at most of order 0.1%, and they are even lower for the second-order per-
turbation solution. These errors are sufficiently small, and thus we cannot claim that per-
turbation methods are insufficiently accurate for the standard growth model. However,
for a calibrated version of the new Keynesian model, the approximation errors exceed a
hundred percent, which is unacceptably large; this is true even in the absence of an active
zero lower bound (ZLB) on nominal interest rates. This is significant because linear per-
turbation methods are commonly used by central banks for solving their large-scale new
Keynesian macroeconomic models for forming monetary policy and projections.

The related literature proposes several approaches to the accuracy evaluation. The for-
ward error analysis poses the following question: “Given an economic model, how much
must an approximate solution be modified to satisfy all model’s conditions exactly?” The
upper and lower error bounds are particular implementations of forward error analy-
sis. There is also backward error analysis that inverts the question: “Given an approx-
imate solution, how much must an economic model itself (in terms of parameters) be
modified in order to make an approximate solution to satisfy all model’s equations?”
The backward error analysis was introduced in Wilkinson (1963); there was also mixed
forward-backward error analysis introduced in Higham (1996); see also Sims (1990) and
Kubler and Schmedders (2003, 2005) for related methods. Another common approach to
the accuracy evaluation in the literature is the analysis of residuals in the model’s equa-
tions; see Judd (1992). The existing approaches to accuracy evaluation have their pros
and cons. The advantage of upper- and lower-bound error analysis is that they are di-
rect approaches, namely, they explicitly show the size of the approximation errors in the
model’s variables. A potential shortcoming of the upper-bound error analysis is that it
may be too pessimistic and may reject solutions that are sufficiently accurate. In turn,
the lower-bound error analysis may be too optimistic and may fail to reject solutions that
are insufficiently accurate. The other approaches do not suffer from these shortcomings
but they are indirect: they provide some statistics related to accuracy but not the size of
approximation errors itself.

The rest of the paper is organized as follows: In Section 2, we introduce the lower-
error bound analysis and illustrate it with examples. In Section 3, we evaluate accuracy of

2A low quality of numerical approximation can be possibly due to analytical / coding errors. Geweke (2004)
constructed a statistical test that explicitly aims at detecting such errors in the context of Bayesian estimation.
Our lower-bound error analysis does not allow us to tell what exactly accounts for a poor quality of approxi-
mation but just signals that the quality is poor.
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perturbation solutions for the neoclassical growth model. In Section 4, we compare the
lower-bound error analysis to other approaches to accuracy evaluation in the literature.
In Section 5, we show accuracy results for the new Keynesian model. In Section 6, we
conclude.

2. A LOWER BOUND ON APPROXIMATION ERRORS

In this paper, we follow a direct approach to accuracy evaluation which is known as for-
ward error analysis. Forward error analysis poses the following question: “Given a system
of equations, how much must an approximate solution be modified to satisfy all equations
exactly?”

A conventional way of implementing forward error analysis consists in constructing
an upper bound on the size of approximation errors (see, e.g., Bertsekas and Tsitsiklis
(1996), Santos and Vigo-Aguiar (1998), Santos (2000), Schmitt-Grohé and Uribe (2004),
and Santos and Peralta-Alva (2005), among others); see Peralta-Alva and Santos (2014)
for a review of this literature. An upper error bound corresponds to a pessimistic—worst-
case—scenario. Specifically, this literature asks: “What are the largest possible approx-
imation errors that correspond to a given numerical solution?” The upper-bound error
analysis provides a sufficient condition for accuracy: If an upper bound on approxima-
tion errors is small, we conclude that an approximate solution is accurate since the actual
errors can never be larger than their upper bound.

We propose a complementary version of the forward error analysis that aims at con-
structing a lower bound on the size of approximation errors. The lower bound corre-
sponds to an optimistic—best-case—scenario. Here, we ask: “How small can approxima-
tion errors potentially be made if we allow to violate some of the model’s equations?” If
the resulting lower error bound is still unacceptably large, we conclude that a numerical
solution is inaccurate since the actual approximation errors can never be smaller than
their lower bound. In this sense, our lower-bound error analysis provides a necessary con-
dition for accuracy.

In the rest of the section, we formally introduce a framework for constructing lower
bounds on approximation errors; we illustrate this framework in the two-dimensional
case; and we discuss a relation between the lower and upper error bounds.

2.1. A Framework for Constructing a Lower Error Bound

We consider a system of n (possibly, nonlinear) equations with n unknowns:

Gi(x1� � � � � xn)= 0� i= 1� � � � � n� (1)

or in vector notations, we have G(x) = 0, where G : Rn → R
n, n ≥ 1. (This system rep-

resents a collection of the model’s equations and may include a Bellman equation, Euler
equations, market clearing conditions, budget constraints, and laws of motion for exoge-
nous and endogenous shocks.) Here, we assume that there is a unique solution to (1), and
in Section 2.3, we discuss some possible generalizations.

Let x∗ ∈ R
n and x̂ ∈ R

n be exact and approximate solutions to system (1), respectively
(we assume that x̂ �= 0). We define an approximation error as a compensation δ∗ ∈ R

n that
is needed to make an approximate solution x̂ to satisfy the model’s equations exactly,

G
(
x̂
(
1 + δ∗)) = 0� (2)
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where 1 ∈ R
n is a vector of ones. Systems of equations studied in economics are often

complex and finding an exact value of δ∗ satisfying (2) is infeasible. (In fact, if we were
able to find such a value, we would also be able to find an exact solution x∗ using x∗ =
x̂(1 + δ∗).)

In the paper, we propose a technique for constructing a lower bound on δ∗ for those
complex cases. As a first step, let us remove n − m equations from system (1), where
1 ≤m< n. As a result, we obtain a reduced system of m equations g≡ [g1� � � � � gm]:

gi(x1� � � � � xn)= 0� i= 1� � � � �m� (3)

where g is a strict subset of equations from G. Consider now the problem of finding an
approximation error δ that satisfies the reduced system of equations

g
(
x̂(1 + δ)) = 0� (4)

By construction, the reduced system (3) is underdetermined (rank-deficient): it contains
n equations and m unknowns, m < n, and thus, it has multiple solutions (effectively a
solution δ to (3) is a manifold). Consequently, there are multiple compensations δ that
make an approximation x̂ to satisfy (3) exactly.

Let us denote by Ωg a set of all possible compensations satisfying (3) for a given ap-
proximate solution x̂, that is,

Ωg ≡ {
δ ∈ R

n : g(x̂(1 + δ)) = 0
}
� (5)

where superscript g refers to a specific set of equations g ⊂G used to form the reduced
system (3). (For the original system G, the set ΩG = δ∗ is a singleton.)

Our next step is to choose the smallest possible compensation δ̂g ∈Ωg with respect to a
given norm ‖ · ‖ that satisfies the reduced system of equations g, that is,

min
δ∈Ωg

‖δ‖ s.t. g
(
x̂(1 + δ)) = 0� (6)

We next establish the following useful relation between δ̂g and δ∗.

PROPOSITION 1: For a given x̂ and a given norm ‖ · ‖, we have ‖δ̂g‖ ≤ ‖δ∗‖, where δ∗ and
δ̂g are defined by (2) and (6), respectively.

PROOF: First, we have ΩG ⊆ Ωg by (5), that is, any compensation δ∗ satisfying (2) in
the unrestricted system G must be also a possible compensation for the restricted system
g, and hence, we have δ∗ ∈ Ωg. Second, by definition (6), we have δ̂g = arg minδ∈Ωg‖δ‖.
These two results together imply the statement of the proposition. Q.E.D.

Proposition 1 shows that the smallest possible compensation δ̂g in the reduced system
can never be larger than the compensation δ∗ ∈Ω in the original system. That is, δ̂g is a
lower bound of δ∗.

The lower error bound provides a simple way to discard numerical approximations that
are insufficiently accurate. Namely, if a lower bound on approximation errors happens to
be unacceptably large, the numerical approximation is clearly inaccurate since the actual
approximation error δ∗ can never be smaller than its lower bound δ̂g. If, on the other hand,
they are low, we cannot say anything—this is why the lower error bound is a necessary but
not sufficient condition for accuracy.
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The constructed lower error bound δ̂g depends on a specific subset of equations g⊂G
used for forming the reduced system (3): each different subset g ⊂G leads to a differ-
ent lower error bound. Hence, it is important to make the procedure of the equations
selection systematic and to give some theoretical foundations to the detailed choice of
unknowns versus equations.

To have the best chance for detecting and discarding inaccurate approximations, we
must select a reduced system g that leads to the largest possible lower error bound δ̂, that
is,

max
g⊆G

{
min
δ∈Ωg

‖δ‖ s.t. g
(
x̂(1 + δ)) = 0

}
� (7)

where G is a collection of all possible subsets of the original systemG. Clearly, the largest
possible lower error bound satisfying (7) is δ̂G = δ∗, and it is obtained when we focus on
the original system g=G without removing any equation.

However, by assumption, it is computationally infeasible to solve G with a sufficiently
high degree of accuracy, so the corresponding lower error bound δ̂ = δ∗ cannot be re-
liably constructed. We must restrict attention to those subsets g ⊂G that can be solved
either analytically or with negligible approximation errors (otherwise, non-negligible ap-
proximation errors may distort the lower error bound and may invalidate our inferences
about accuracy).

The trade-off is the following: From one side, we want to remove as few equations
as possible (since removing equations potentially increases the fit and reduces the lower
error bound and hence, it reduces our chance to discard an inaccurate numerical approx-
imation); and from the other side, we must remove all equations that cannot be solved
either exactly or with negligible approximation errors (again, non-negligible approxima-
tion errors may distort the lower error bound and may invalidate our inferences about
accuracy).

Potentially, many subsets of G can be solved accurately, but the following result allows
us to reduce the number of subsets that must be considered.

PROPOSITION 2: Let g′ and g′′ be two subsets of G such that g′ ⊂ g′′. Then, for a given x̂
and a given norm ‖ · ‖, we have ‖δ̂g′ ‖ ≤ ‖δ̂g′′ ‖, where δ̂g′ and δ̂g′′ are defined by (6).

PROOF: First, we have Ωg′′ ⊆ Ωg′ by assumption g′ ⊂ g′′, that is, any compensation δ
satisfying (6) under g′′ must also satisfy it under a strict subset g′, and hence, we have
δ̂g

′ ∈ Ωg′′ . Second, by definition (6), we have δ̂g′′ = arg minδ∈Ωg′′ ‖δ‖. These two results
together imply the statement of the proposition. Q.E.D.

The result of the proposition means that we do not need to consider all computationally
feasible subsets ofG but only those with the largest cardinality. That is, whenever we have
two computationally feasible nested subsets g′ ⊂ g′′, only a subset with the larger number
of equations g′′ needs to be analyzed. In Section 3, we show a systematic procedure for
constructing reduced systems of equations and the corresponding lower error bounds in
dynamic economic models.

A convenient choice for the problem of constructing lower error bound (6) is an L2

norm since it allows us to use first-order conditions (FOC), namely, we find the smallest
compensation δ̂ by solving the following least-squares problem:

min
δ∈Rn

δδ s.t. g
(
x̂(1 + δ)) = 0� (8)
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A necessary condition for the existence of a local minimum δ̂ in (8) follows by a version
of the well-known Theorem of Lagrange: (i) g(x̂(1 + δ̂)) must be full ranked in a neigh-
borhood of x̂(1 + δ̂); and (ii) x̂(1 + δ̂) must be a critical point of the Lagrange function,
δδ+ λg(x̂(1 + δ)), where λ ∈R

m is a vector of Lagrange multipliers, that is,

2δ̂+ λ∇g(x̂(1 + δ̂))x̂= 0� (9)

where ∇g denotes a gradient of g. Furthermore, a sufficient condition for a local mini-
mum is that the Lagrangian function is convex on a subset of Rn defined by Z(δ̂)= {z ∈
R
n : ∇g(x̂(1 + δ̂))z = 0}; see, for example, Sundaram (1996, Theorems 5.1 and 5.4) for

proofs of these results.3

2.2. Two-Dimensional Example

We now illustrate the construction of a lower bound on approximation errors in a two-
dimensional case. Let (x∗

1�x
∗
2) and (x̂1� x̂2) denote, respectively, the exact and approxi-

mate solutions to a two-dimensional version of system (1), namely,Gi(x1�x2)= 0, i= 1�2
(again, we assume that (x̂1� x̂2) �= 0). Following (2), we define an approximation error
(δ∗

x1
� δ∗

x2
) by Gi(x̂1(1 + δ∗

x1
)� x̂2(1 + δ∗

x1
))= 0, i= 1�2.

To construct a lower bound on approximation errors, we remove equationG2(x1�x2)=
0, and we focus on the reduced system composed of just one equation g(x1�x2) ≡
G1(x1�x2) = 0. Following (5), we define a set of compensations Ω that are consistent
with a restriction g

Ω≡ {
(δx1� δx2) ∈ R

2 : g(x̂1(1 + δx1)︸ ︷︷ ︸
=x∗

1

� x̂2(1 + δx2)︸ ︷︷ ︸
=x∗

2

) = 0
}
� (10)

As we mentioned earlier, the reduced system of equations g is underdetermined and there
are multiple compensations δx1 and δx2 that are consistent with (10). As an illustration,
consider a special case when g is linear, that is,

g(x1�x2)= a1x1 + a2x2� (11)

where a1 and a2 are constant coefficients. To describe all compensations satisfying (10),
we can fix any δx1 , and we can find δx2 from (10) using (11) as follows:

δx2 = a1x̂1

a2x̂2
(1 + δx1)− 1� (12)

From all possible compensations satisfying (12), we select the smallest one with respect to
the least-squares norm by solving a two-dimensional version of the least-squares problem
(8)

min
δx1 �δx2

δ2
x1

+ δ2
x2

(13)

s.t. g
(
x̂1(1 + δx1)� x̂2(1 + δx2)

) = 0� (14)

3Instead of L2, we can use other norms for measuring compensations, for example, a least absolute devia-
tion L1 or a maximum error L∞. Furthermore, in some economic applications, we can possibly tolerate large
approximation errors in some variables but we need very accurate solutions in other variables. In this case,
approximation errors can be weighted by a measure of their economic significance in the objective function.
For example, the objective function in (8) can be modified to δW δ, where W is an n× n matrix of weights
(this case is similar to a weighted least-squares in econometrics).
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An interior solution of (13), (14) satisfies

δx1

δx2

= gx1

(
x̂1(1 + δx1)� x̂2(1 + δx2)

)
x̂1

gx2

(
x̂1(1 + δx1)� x̂2(1 + δx2)

)
x̂2
� (15)

where gx1(·) and gx2(·) denote first-order partial derivatives of g(·) with respect to the
first and second arguments, respectively. Hence, to construct the smallest possible ap-
proximation errors, we must solve a system of two equations (14), (15) with respect to
two unknowns δx1 and δx2 .

For the case of a linear equation (11), we can solve this system in a closed form,

δ̂xi = −aix̂i(a1x̂1 + a2x̂2)

(a1x̂1)
2 + (a2x̂2)

2 � i= 1�2� (16)

where to derive (16), we used the fact that gx1(·)= a1 and gx2(·)= a2.
However, for a general nonlinear restriction g(x1�x2) = 0, system (14), (15) does not

admit a closed-form representation. If approximation errors are small, a sufficiently ac-
curate solution to (14), (15) can be obtained by using a first-order Taylor expansion

g
(
x̂1(1 + δx1)� x̂2(1 + δx2)

) ≈ g(x̂1� x̂2)+ gx1(x̂1� x̂2)x̂1δx1 + gx2(x̂1� x̂2)x̂2δx2 � (17)

Combining (17) with FOC (15), evaluated in (x̂1� x̂2), yields

δ̂xi = − gxi(x̂1� x̂2)x̂ig(x̂1� x̂2)[
gx1(x̂1� x̂2)

]2
(x̂1)

2 + [
gx2(x̂1� x̂2)

]2
(x̂2)

2
� i= 1�2� (18)

If approximation (18) is not sufficiently accurate, we need either to construct a Taylor
expansion of a higher order or to find a nonlinear solution to (14), (15) using a numerical
solver such as a Newton method. In that case, linear approximation (18) can be used as
an initial guess for a numerical solver.

2.3. Discussion

The advantage of lower- and upper-bound error approaches is that they are direct ap-
proaches that assess the size of the approximation errors in the solution—our true object
of interest. The limitations of these two approaches are typical for necessary and suffi-
cient conditions, respectively. The lower-bound error analysis may be too optimistic and
may fail to reject solutions that are insufficiently accurate. In turn, the upper-bound er-
ror analysis may be too pessimistic and may reject solutions that are sufficiently accurate.
The lower and upper error bounds are complementary and both of them are useful. A
combination of both is even more useful than either one individually because it shows a
possible range for approximation errors.

There are approaches to accuracy evaluation in the literature that do not suffer from
these shortcomings but they are indirect: they provide some numbers related to accu-
racy but do not assess the size of approximation errors directly. We describe the relation
between direct and indirect approaches to accuracy evaluation in Section 4.

We must emphasize that our lower-bound error analysis does not provide a basis for
claiming that some approximate solution is accurate but only for detecting and discarding
inaccurate solutions. Indeed, even if the lower error bound δ̂ is small, it could be that
the actual approximation errors δ∗ are large, so that the numerical approximation is still
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inaccurate. Furthermore, the lower-bound error analysis does not allow us to discriminate
between competing algorithms. The fact that one algorithm has a smaller lower bound
than the other does not necessarily mean that the former algorithm is more accurate than
the latter one. The goal of the lower-bound error analysis is limited to tracing some of
those algorithms that do not guarantee a minimally acceptable quality of approximation
necessary for the questions studied.

Finally, let us mention some possible extension of our lower-bound error analysis. In
the benchmark case, we focus on the version of system (1) which is exactly identified, that
is, that the number of equations n is equal to the number of unknowns k, that is, n= k.
However, our construction is also applicable to the case of an underidentified system with
n < k, except that in this case, we will have not just one but multiple compensations δ∗

satisfying (2) and for each possible exact compensation, a separate lower error bound
needs to be constructed. Furthermore, our analysis can be extended to the cases when
system (1) is overidentified, that is, n > k, in particular, overidentified systems of equa-
tions are commonly used in econometrics, for example, generalized method of moments;
see Hansen (1982). In this case, there is no compensation δ∗ satisfying (2) exactly but
there is one that maximizes the fit according to a given norm, and we can still assess its
lower bound by removing different subsets of the model’s equations.

3. ASSESSING APPROXIMATION ERRORS IN THE OPTIMAL GROWTH MODEL

In Section 2, we developed the lower-error-bound framework for the usual (finite-
dimensional) system of equations in which the unknowns are variables. However, eco-
nomic models typically lead to systems of functional equations, in which the unknowns
are functions. Any numerical analysis of functional equations requires some kind of dis-
cretization (since it is impossible to evaluate numerically functions in every point of a
continuous domain). Once a system of functional equations is discretized, we can con-
struct the lower error bound as described in Section 2. In this section, we show how to
construct lower bounds on approximation errors for dynamic economic models charac-
terized by infinite-dimensional systems of equations. As a main example, we consider the
standard neoclassical stochastic growth model and we assess the error bounds for numer-
ical solutions produced by first- and second-order perturbation methods. We choose this
model because it is simple, well-known, and provides a convenient framework for explain-
ing, illustrating, and testing the methodology of lower-bound error analysis in the context
of functional equations. In Section 5, we consider our second more interesting and novel
application—a stylized new Keynesian model.

3.1. Discretizing a System of Functional Equations

We formulate the model, and we discretize its optimality conditions.

3.1.1. The Model

The representative agent solves

max
{kt+1�ct }t=0�����∞

E0

∞∑
t=0

βtu(ct) (19)

s.t. ct + kt+1 = (1 − d)kt + exp(θt)Af(kt)� (20)

θt+1 = ρθt + εt+1� εt+1 ∼N
(
0�σ2

)
� (21)
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where (k0� θ0) is given; Et is the conditional expectation operator; ct , kt , and θt are con-
sumption, capital, and productivity level, respectively; β ∈ (0�1), d ∈ (0�1], ρ ∈ (−1�1),
σ ≥ 0, A> 0 are the parameters; u and f are strictly increasing, continuously differen-
tiable, and concave; u′ and f ′ denote the first derivatives of u and f , respectively.

The Euler equation of (19)–(21) is

u′(ct)= βEt
{
u′(ct+1)

[
1 − d+ exp(θt+1)Af

′(kt+1)
]}
� (22)

A solution to the model is policy functions ct = C(kt� θt) and kt+1 =K(kt� θt) that satisfy
(20)–(22) for all (kt� θt) within the relevant domain.

3.1.2. State-Contingent Approximation Errors

Let us first define exact approximation errors in the sense (2). We consider an approxi-
mate numerical solution to (19)–(21) in the form of approximate consumption and capital
functions, Ĉ ≈ C and K̂ ≈K, respectively.

We define approximation errors δC and δK as state-contingent compensation functions
that make an approximate solution to satisfy the model’s equations (20) and (22) exactly:

Ĉ(k�θ)
(
1 + δC(k�θ)

) + K̂(k�θ)(1 + δK(k�θ)
)

= (1 − d)k+ exp(θ)Af(k)�
(23)

u′(Ĉ(k�θ)(1 + δC(k�θ)
))

= βEt
{
u′(Ĉ(

k′� θ′)(1 + δC
(
k′� θ′)))

× [
1 − d+ exp

(
θ′)Af ′(K̂(k�θ)(1 + δK(k�θ)

))]}
�

(24)

where (k�θ) ∈D⊆ R
2
+ and θ′ = ρθ+ ε′ with ε′ ∼N (0�σ2).

3.1.3. Discretizing the Optimality Conditions

We next discretize the system of functional equations (20) and (22) for a numerical
treatment. We discretize the system along two dimensions: First, we choose a finite set
of points that covers the continuous domain (k�θ) ∈ D ⊆ R

2
+ in which the accuracy is

evaluated. Second, we construct a finite set of integration nodes that represent the fu-
ture states (k′� θ′) ∈ D ⊆ R

2
+ in which integrals (expectation functions) in the right side

of Euler equation (22) are evaluated.4 The discretized budget constraint (20) and Euler
equation (22) are

ĉt(1 + δct )︸ ︷︷ ︸
=ct

+ k̂t+1(1 + δkt+1)︸ ︷︷ ︸
=kt+1

= exp(θt)Af(kt)+ (1 − d)kt� (25)

4Our analysis can also be applied directly to models with a finite number of shocks. In such models, fu-
ture exogenous states are known exactly and need not be approximated with quadrature or other numerical
integration methods.
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u′(̂ct(1 + δct )︸ ︷︷ ︸)
=ct

= β
J∑
j=1

{
u′(̂ct+1�j(1 + δct+1�j )︸ ︷︷ ︸

)
=ct+1�j

× [
1 − d+ exp(θt+1�j)Af

′(k̂t+1(1 + δkt+1)︸ ︷︷ ︸)
=kt+1

]}
�

(26)

where {εt+1�j}j=1�����J is a set of integration nodes that determines the future exogenous
states θt+1�j = ρθt + εt+1�j ; δct , δkt+1 , and δct+1�j are approximation errors that show how
much an approximate solution ĉt , k̂t+1, and ĉt+1�j must be modified to become an exact
solution ct , kt+1, and ct+1�j , respectively.

Furthermore, since the exact approximation errors are state contingent, it must be the
case that δct and δct+1�j are generated by the same function of the state variables, that is,

δct = δC(kt� θt) and δct+1�j = δC(kt+1� θt+1�j) for all t� j� (27)

With an additional restriction (27), equations (25), (26) are a discretized version of the
state-contingent representation of approximation errors (23) and (24).

Let us assume that it is infeasible to construct state-contingent error functions (27) with
a high degree of accuracy. Again, if we could construct δC and δK accurately, we would
also be able to infer an accurate solution C = Ĉ(1+δC) andK = K̂(1+δK). In turn, if δC
and δK are constructed with errors themselves, we would not be able to tell whether such
functions measure the errors in Ĉ and K̂ or they measure the errors in their own compu-
tation δ̂C and δ̂K . That is, having non-negligible approximation errors in approximation
errors would contaminate the analysis of approximation errors and invalidate the accu-
racy inferences. Given that a construction of state-contingent error functions that satisfy
(25), (26), and (27) is infeasible, we focus on constructing their lower bounds.

3.2. A Lower Bound on Approximation Errors

We define lower error bounds, and we discuss the implementation details.

3.2.1. Defining a Lower Error Bound

Our benchmark implementation of the lower-bound error analysis for a system of func-
tional equations is as follows: We drop the equations that require approximation errors to
be state-contingent functions (27), and we construct approximation errors δct , δkt+1 , and
δct+1�j , j = 1� � � � J satisfying (25), (26) only. Since we ignore (27), we can construct a solu-
tion to (25), (26) in the point-by-point manner. Such a construction involves no function
approximation but only a numerical resolution of the usual system of nonlinear equations
and can be performed very accurately using a numerical solver.

After removing (27), system (25), (26) is underdetermined and does not identify δct ,
δkt+1 , and δct+1�j , j = 1� � � � � J, uniquely (we have two equations with 2 + J unknowns, i.e.,
the solution to (25), (26) is a manifold). To construct a lower error bound, we solve a
least-squares problem of type (8):

min
δct �δkt+1

�δct+1�1 �����δct+1�J

δ2
ct

+ δ2
kt+1

+ δ2
ct+1�1

+ · · · + δ2
ct+1�J

s.t. (25), (26).
(28)
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Problem (28) produces {δct � δkt+1� δct+1�1� � � � � δct+1�J }Tt=1 that solve (28) in each point t ∈
1� � � � � T . By construction, the resulting approximation errors are smaller than the exact
state-contingent approximation errors also satisfying (27) in each point t ∈ 1� � � � � T . That
is, the solution to (28) is a lower bound on the exact state-contingent approximation errors
satisfying (25), (26), and (27).

3.2.2. Implementation Details of the Lower-Bound Error Analysis

A numerical construction of the lower error bound requires us to make several choices
including those of a domain in which the accuracy is evaluated, a specific discretization
of that domain, a specific numerical method for approximating integrals, and a specific
norm for measuring the size of approximation errors. Below, we discuss these choices.

Domain for Evaluating the Accuracy of Solutions. While the solution to the model
(19)–(21) is defined on a very large domain (k�θ)⊆ R

2
+, a vast majority of states in that

domain has practically zero probability of occurrence. The related literature requires a
numerical approximation to be accurate only in a relatively small fraction of this domain
where the probability of visiting the states is bounded away from zero. We consider two
alternative schemes for distinguishing and discretizing the relevant domain for accuracy
evaluation: one is a set of simulated points, and the other is a set of uniformly spaced
points in a rectangle around the steady state. Both schemes have their advantages and
shortcomings: The simulated points represent a high probability area of the state space in
which the solution “lives” but there is a chance that a relatively bad approximation takes
us to the region where the required compensation may not be very informative (one way
or another). In turn, a rectangular domain may include a large fraction of low-probability
states in which high accuracy is not essential.5 In low-dimensional problems, we can cover
the rectangle with a tensor-product grid, while in problems with high dimensionality, we
can populate a hyper-rectangular domain with a set of uniformly-spaced low discrepancy
points.6

To determine the range of state variables for constructing a rectangular domain, we
use the results from simulation, namely, we choose the rectangular domain to exactly
enclose a given set of simulated points. Under this construction, approximation errors
on a stochastic simulation provide a lower bound on approximation errors on a larger
rectangular domain in the following sense: if an approximate solution is inaccurate on a
given set of simulated points, it cannot be accurate on a larger domain that encloses this
set of simulated points. To produce a set of simulated points for accuracy evaluation, we
use first-order perturbation solutions, which are numerically stable in simulation.

Numerical Integration. To approximate the expectation function, we need sufficiently
accurate numerical integration methods that do not distort our accuracy analysis. In eco-
nomic models with smooth decision functions, like our optimal growth model, determin-
istic integration methods such as Gauss Hermite quadrature and monomial rules deliver
very accurate approximation to the expectation functions. For example, in the studied
model, even the simplest Gauss Hermite rule with just two quadrature nodes delivers six

5For example, the high-probability set has a shape of ellipse for this and other similar models with normally
distributed shocks; see Judd, Maliar, and Maliar (2011a, 2011b) for a discussion and graphical illustration.

6This technique was introduced to economics by Rust (1997); see Niederreiter (1992) for a survey of low
discrepancy sequences. Also, see Maliar and Maliar (2014, 2015) for further examples of applications of low
discrepancy sequences in the context of economic problems.
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digits of precision in the numerical solutions; see Judd, Maliar, and Maliar (2011a). In
our present analysis, we use even more accurate Gauss Hermite rule with 10 quadrature
nodes.

Norm for Measuring Approximation Errors. Problem (28) produces a set function of
minimal approximation errors {δct � δkt+1� δct+1�1� � � � � δct+1�J }Tt=1 on a given discretized do-
main. To aggregate the resulting errors over the domain into a unique lower error bound,
we can use any standard norms. In the paper, we report L1 and L∞ norms, which are the
average and maximum absolute approximation errors across all variables and all points
in the domain. Our preferred choice is an L∞ norm which insures that an approximate
solution is accurate everywhere in both present and future states, that is, uniformly ac-
curate. Also, an L∞ norm provides the lower error bound with respect to the “fineness”
of the domain discretization. Namely, if we were able to construct approximation errors
in all points of the continuous domain (or use a very fine discretization), this would only
increase the lower error bound under an L1 norm, relatively to the bound obtained under
a more coarse discretization.

3.3. Numerical Experiments

We describe the calibration and solution procedures and construct the lower error
bound numerically.

3.3.1. Calibration and Solution Procedure

We use Dynare to compute the first- and second-order perturbation solutions, referred
to as PER1 and PER2, respectively; for a description of this software, see Adjemian, Bas-
tani, Juillard, Mihoubi, Perendia, Ratto, and Villemot (2011). We parameterize the model

(19)–(21) by assuming u(ct)= c
1−γ
t −1
1−γ with γ ∈ { 1

10 �1�10} and f (kt)= kαt with α= 0�33. We
set β = 0�99, d = 0�025, ρ = 0�95, and σ = 0�01, and we normalize the steady state of
capital to 1 by assuming A= 1/β−(1−d)

α
. We simulate the model for T = 10,200 periods (we

disregard the first 200 observations to eliminate the effect of initial conditions.)
We solve minimization problem (28) numerically for each given state (kt� θt). To com-

pute expectation in (26), we use a 10-point Gauss Hermite quadrature integration rule.
To find initial guesses for δct , δkt+1 , δct+1�j , j = 1� � � � � J, we compute first-order Taylor ex-
pansions of (25), (26), and we solve the resulting linear-quadratic programming; see Ap-
pendix A.1 of the Supplemental Material (Judd, Maliar, and Maliar (2017)) for details.
We then employ a quasi-Newton solver to compute a highly accurate nonlinear solution to
(28) using the first-order approximation as an initial guess; see Appendix A.2 of the Sup-
plemental Material for details. Our hardware is Intel® Core™ i7-2600 CPU @ 3.400 GHz
with RAM 12.0 GB. Our software is written in MATLAB 2012a.

3.3.2. Numerical Results on the Lower Error Bound

The results for an accuracy test on a stochastic simulation are provided in the up-
per panel of Table I. To save on space, we report only the smallest and largest approx-
imation errors for the future state, that is, δmin

ct+1
≡ minj∈J{δct+1�1� � � � � δct+1�J } and δmax

ct+1
≡

maxj∈J{δct+1�1� � � � � δct+1�J }, respectively.
Across all the cases, highest maximum approximation errors are 10−2�62 ≈ 0�25% and

10−3�65 ≈ 0�025% for PER1 and PER2, respectively, which corresponds to the case of the
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TABLE I

APPROXIMATION ERRORS IN THE CURRENT AND FUTURE VARIABLES IN THE NEOCLASSICAL STOCHASTIC
GROWTH MODELa

γ = 1
10 γ = 1 γ = 10

Method Norm δct δkt+1
δmin
ct+1

δmax
ct+1

δct δkt+1
δmin
ct+1

δmax
ct+1

δct δkt+1
δmin
ct+1

δmax
ct+1

Stochastic simulation of 10,000 points
PER1 L1 −3�76 −4�05 −9�07 −3�86 −4�54 −4�11 −8�77 −4�63 −4�18 −3�75 −8�72 −4�32

L∞ −3�00 −2�99 −6�56 −2�80 −3�71 −3�03 −7�43 −3�75 −3�53 −2�62 −7�08 −3�65

PER2 L1 −5�43 −5�72 −10�86 −5�55 −6�10 −5�68 −10�72 −6�27 −5�41 −4�75 −9�56 −5�53
L∞ −4�33 −4�38 −9�02 −4�44 −4�89 −4�43 −8�84 −4�85 −4�18 −3�65 −6�82 −3�76

Tensor product grid of 10,000 points
PER1 L1 −2�38 −3�64 −7�88 −2�99 −2�48 −5�49 −8�22 −4�01 −2�25 −5�71 −8�20 −4�19

L∞ −1�48 −2�72 −6�11 −2�12 −1�82 −4�50 −6�89 −3�37 −1�68 −4�10 −6�65 −3�40

PER2 L1 −3�96 −5�05 −9�68 −4�41 −3�76 −6�12 −9�63 −5�29 −3�16 −5�78 −9�14 −4�86
L∞ −3�17 −4�10 −8�40 −3�53 −3�05 −4�67 −8�36 −4�52 −2�33 −3�73 −7�21 −3�91

Low discrepancy sequence of 10,000 points
PER1 L1 −2�39 −3�65 −7�88 −3�00 −2�49 −5�50 −8�23 −4�02 −2�26 −5�71 −8�21 −4�20

L∞ −1�49 2�73 −5�97 −2�12 −1�82 −4�51 −6�98 −3�38 −1�68 −3�70 −6�74 −3�22

PER2 L1 −3�98 −5�06 −9�69 −4�43 −3�77 −6�12 −9�58 −5�30 −3�17 −5�78 −9�14 −4�88
L∞ −3�18 −4�12 −8�23 −3�54 −3�07 −4�67 −8�36 −4�54 −2�34 −3�75 −7�53 −3�87

aNotes: PER1 and PER2 denote the first- and second-order perturbation solutions; δct and δkt+1
are t-period absolute values of

approximation errors in consumption and capital; and δmin
ct+1

and δmax
ct+1

are the largest and smallest absolute value of approximation
errors in future consumption across J = 10 integration nodes; L1 and L∞ are, respectively, the average and maximum of absolute
values of the corresponding approximation errors across test points (in log10 units); and γ is the coefficient of risk aversion.

largest risk aversion coefficient considered, γ = 10. These numbers are sufficiently small,
meaning that under an optimistic view, the approximation errors are acceptable in size.
Again, our test is a necessary condition for accuracy and does not allow us to conclude
that perturbation solutions are accurate. We can only say that our numerical experiments
do not provide a basis for claiming that perturbation methods are insufficiently reliable in
the context of the standard optimal growth model.

We also evaluate the accuracy on a rectangular domain. We fix the range of values for
state variables (k�θ) using the simulation results from the previous experiment. In our
first experiment, we covered the resulting rectangular domain by a tensor-product grid
with 100 by 100 points, which is 10,000 points in total. In our second experiment, we
populated this domain with 10,000 low discrepancy, Sobol points. These experiments are
reported in the two lower panels of Table I, respectively. As expected, the constructed
lower error bounds are somewhat larger on a rectangular domain than on the bench-
mark simulation-based domain (essentially because the accuracy is evaluated on a larger
domain) but our qualitative conclusions stay the same.7

7There are other possible implementations of the lower-bound error analysis. In Appendix A.3, we discuss
one such implementation that solves for just one approximation error δEt in the expectation function (1 +
δEt )Êt =Et [·], instead of solving for state-contingent approximation errors in consumption δct+1�1 � � � � � δct+1�J in
J integration nodes. This alternative method is easier to implement but the accuracy results are more difficult
to interpret.
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4. RELATION OF LOWER-BOUND ERROR ANALYSIS TO OTHER ACCURACY MEASURES IN
THE LITERATURE

There are three main approaches to accuracy evaluation in the economic literature:
forward error analysis, backward error analysis, and analysis of residuals. The forward
error analysis assesses an approximation error in the solution of a given model. (Hence,
our lower-bound error analysis is a variant of forward error analysis.) Backward error
analysis proceeds in a reverse manner: it takes an approximate solution as given and asks
how much the model itself must be modified to make an approximate solution to satisfy all
the model’s equations. Finally, analysis of residuals consists in evaluating residuals in the
model’s equations for a given approximate solution. Below, we discuss a relation of these
three approaches to our lower-bound error analysis and we illustrate these alternative
accuracy measures in the context of the studied model.

4.1. Conventional Forward Error Analysis for the Growth Model

Conventional forward error analysis for the standard growth model was carefully im-
plemented in Santos (2000). His construction relies on the fact that the standard growth
model (19)–(21) can be reformulated as a dynamic programming problem. The contrac-
tion mapping property of the Bellman operator makes it possible to derive an upper
bound on approximation errors analytically. The analysis of Santos (2000) shows that a
worst-case scenario can often be too pessimistic and may lead to a rejection of numerical
solutions that are sufficiently accurate. For example, under the standard calibration of a
similar optimal growth model, Santos (2000, Table I) obtained an upper error bound on
policy functions of order 103. Consequently, he also showed that this error bound can be
reduced by about three orders of magnitude by using some additional information from
a specific numerical solution, so that the upper bound is of order 100 or 10−1.

In turn, our optimistic lower bound on approximation error is much smaller in size,
namely, 10−2 or 10−3; see Table I. However, our lower-bound error analysis can understate
the size of the approximation errors and thus, may fail to reject inaccurate solutions. But
the two bounds together show us the relevant range for the size of approximation errors.
This is why the upper and lower error bounds are complementary and they are both even
more useful than each of them individually.

An important limitation of conventional upper-bound error analysis is that it is re-
stricted to dynamic programming problems. It is generally not possible to conduct a sys-
tematic upper-bound error analysis in many economic models that are used in practice.
In particular, this kind of error analysis is not directly applicable to non-optimal equilib-
rium problems such as a new Keynesian model studied in the previous section. In turn,
our methodology of constructing lower error bounds is quite general: it is independent of
a specific solution method and applicable to both dynamic programming and equilibrium
problems.

4.2. Backward and Mixed Forward-Backward Error Analysis

A backward error analysis was introduced in Wilkinson (1963) who posed the following
question: “How much must the parameters of a model be modified in order to make an
approximate solution to satisfy the model’s equation exactly?” Higham (1996) introduced
a mixed forward-backward analysis which is an extension of backward analysis that al-
lows for changes in both equilibrium quantities and the model’s parameters. Sims (1990)
proposed an accuracy test which is similar in spirit to the backward error analysis: he
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measured accuracy by how far the true distribution of stochastic shocks is situated from
the distribution of stochastic shocks implied by the approximate solution. Kubler and
Schmedders (2005) showed how a backward and a mixed backward-forward analysis can
be used to evaluate the accuracy of numerical solutions in a life-cycle model with incom-
plete markets and heterogeneous agents. Finally, Kogan and Mitra (2013) proposed to
measure the quality of approximation in terms of a welfare loss that results from inaccu-
racy of an approximate solution. They constructed a supplementary model with perfect
foresight and assessed the difference in welfare between that supplementary model and
the true stochastic model with an approximate solution; this provides an upper bound on
the welfare loss.

There are many possible ways to implement a backward error analysis for the optimal
growth model (19)–(21). We choose one such way by measuring the accuracy in the Euler
equation (22) and budget constraint (20) by the implied values of the parameters β and
d, denoted by β(kt� θt) and d(kt� θt), respectively,

β(kt� θt)=Et
{
u′(̂ct+1)

u′(̂ct)

[
1 − d+ exp(ρθt + εt+1)Af

′(k̂t+1)
]}−1

� (29)

d(kt� θt)≡
{

1 − ĉt + k̂t+1 − exp(θt)Af(kt)
kt

}
� (30)

We compute β(kt� θt) and d(kt� θt) on the same set of simulated points as was used for
computing all our previous statistics; see Section 3.3. The results are provided in Table II.
The accuracy implications here are similar to those in Tables I and III. The least accurate
solution is obtained under γ = 10, in particular, PER1 implies that β(kt� θt) and d(kt� θt)
range within [0�9870�0�9894] and [0�0225�0�0261], respectively, which correspond to up
to 0�3% and 10% deviations from their exact values β= 0�99 and d = 0�025, respectively.
PER2 is more accurate than PER1, in particular, under γ ∈ { 1

10 �1}, the parameters values
implied by PER2 coincide with their exact values at least up to four digits.

The backward and mixed forward-backward accuracy measures are also indirect mea-
sures of accuracy and are generally subject to the same critique as the analysis of residuals.
Namely, they do not show the distance between the exact and approximate solutions but

TABLE II

THE DISTRIBUTION OF THE PARAMETERS VALUES IN THE NEOCLASSICAL STOCHASTIC GROWTH MODELa

γ = 1
10 γ = 1 γ = 10

Parameters β(kt �θt ) d(kt � θt ) β(kt �θt ) d(kt � θt ) β(kt �θt ) d(kt � θt )

PER1
mean 0.9900 0.0251 0.9900 0.0251 0.9892 0.0249
min 0.9897 0.0249 0.9857 0.0248 0.9870 0.0225
max 0.9901 0.0259 0.9900 0.0259 0.9894 0.0261

PER2
mean 0.9900 0.0250 0.9900 0.0250 0.9900 0.0250
min 0.9900 0.0250 0.9900 0.0250 0.9892 0.0248
max 0.9900 0.0250 0.9900 0.0250 0.9909 0.0251

aNotes: PER1 and PER2 denote the first- and second-order perturbation solutions; “mean,” “min,” and “max” are, respectively,
the average, minimum, and maximum of the values of the corresponding model’s parameter on a stochastic simulation of 10,000
observations; γ is the coefficient of risk aversion.
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the distance between the parameters or some mixture of the parameters and approximate
solutions. It is not always clear how to relate the implied deviations in the parameters to
the accuracy of the solutions. For example, we know that the equilibrium quantities are
typically very sensitive to β and that they are less sensitive to d, so it could be that 0�3%
deviation in β implies a larger accuracy decline than a 10% deviation in d. Hence, we
must have some knowledge of how sensitive the model’s variables are to the parameters.
The results of backward error analysis would be even more difficult to interpret for a new
Keynesian economy. Furthermore, it is not clear whether or not, for any given model and
for any approximate solution, one can find a supplementary model (a parameters vector)
that leads to zero approximation errors.

4.3. Analysis of Residuals in the Model’s Equations

A commonly used accuracy measure in the literature is the size of residuals in the
model’s equations (such as a Bellman equation, Euler equations, market clearing condi-
tions, budget constraints, and laws of motion for exogenous and endogenous shocks); see,
for example, Judd (1992), Jin and Judd (2002), Aruoba, Fernández-Villaverde, and Rubio-
Ramírez (2006), Juillard and Villemot (2011), Judd, Maliar, and Maliar (2011a); also, see
a statistical test of residuals of Den Haan and Marcet (1994). Furthermore, Kubler and
Schmedders (2003) proposed a notion of epsilon equilibrium and introduced an accuracy
measure that requires that the residuals in all model’s equations are smaller than a given
target level; an epsilon equilibrium may exist even if the true equilibrium does not.

4.3.1. Analysis of Residuals in the Neoclassical Growth Model

Let us analyze the residuals in the studied growth model. We define unit-free residuals
in a point (kt� θt) by rewriting (22) and (20) as follows:

R1(kt� θt)= u′−1
[
βEt

{
u′(̂ct+1)

[
1 − d+ exp(ρθt + εt+1)Af

′(k̂t+1)
]}]

ĉt
− 1� (31)

R2(kt� θt)= exp(θt)Af(kt)+ (1 − d)kt − ĉt
k̂t+1

− 1� (32)

where ĉt+1 = Ĉ(kt+1� θt+1)= Ĉ(K̂(kt� θt)�ρθt +εt+1), ĉt = Ĉ(kt� θt), and k̂t+1 = K̂(kt� θt).
Here, we express R1 and R2 in terms of consumption and capital units, respectively, which
is parallel to the definitions of approximation errors δct and δkt+1 in our lower-bound error
analysis. Namely, R1(kt� θt) is the same as δct if we assume that ct+1 and kt+1 are computed
without errors (i.e., we set δkt+1 = δct+1�j = 0, j = 1� � � � � J) and R2(kt� θt) is the same as
δkt+1 if we assume that ct is computed without errors (i.e., we set δct = 0).

We compute R1(kt� θt) and R2(kt� θt) on a set of simulated points (for the details of
the simulation procedure, see Section 3.3). The results are provided in Table III. As we
can see, the maximum residuals across the two equilibrium conditions are below 10−2�56 ≈
0�28% for PER1 and about 10−3�65 ≈ 0�025% for PER2.

4.3.2. Advantages and Shortcomings of the Analysis of Residuals

The advantage of this accuracy measure is that the residuals are very easy to compute:
we just need to plug an approximate solution into the model’s equations and to see how
far the residuals are from zero. However, this measure has also important limitations.
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TABLE III

RESIDUALS OF THE MODEL’S EQUATIONS IN THE NEOCLASSICAL STOCHASTIC GROWTH MODELa

γ = 1
10 γ = 1 γ = 10

Residuals R1 R2 R1 R2 R1 R2

PER1
L1 −3�61 −4�12 −4�40 −4�12 −4�09 −3�74
L∞ −2�56 −3�02 −3�55 −3�04 −3�52 −2�61

PER2
L1 −5�29 −5�80 −5�96 −5�69 −5�30 −4�75
L∞ −4�20 −4�41 −4�74 −4�44 −4�05 −3�65

aNotes: PER1 and PER2 denote the first- and second-order perturbation solutions; L1 and L∞ are, respectively, the average and
maximum of absolute values of residuals in the model’s equations across optimality condition and test points (in log10 units) on a
stochastic simulation of 10,000 observations; and γ is the coefficient of risk aversion.

First, it is an indirect accuracy measure: the residuals provide some statistics related
to accuracy but they do not directly show the size of approximation errors in the model’s
variables. The relation between the residuals and approximation errors is established in
the literature only for a special case of strongly concave, infinite-horizon optimization
problems by Santos (2000). He showed that approximation errors in policy functions are
of the same order of magnitude as the size of the Euler equation residuals. In general,
such relations are not known.

Second, small residuals in a model’s equation do not necessarily imply small approx-
imation errors in the model’s variables that enter this equation. To see the point, let us
consider the following illustrative example. Consider a numerical approximation to cap-
ital k̃t+1 in the neoclassical growth model (19)–(21) and assume that c̃t is computed to
satisfy the budget constraint (20) exactly as is done by global solution methods, that is,
c̃t = exp(θt)Af(kt) + (1 − d)kt − k̃t+1. By construction, the residual in this equation is
zero, that is,

R̃2(kt� θt)= exp(θt)Af(kt)+ (1 − d)kt − c̃t
k̃t+1

− 1 = 0�

This does not mean that the approximation errors in k̃t+1 and c̃t are zeros but that the two
errors simply offset one another to make the residual equal to zero, k̃t+1δkt+1 + c̃tδct =
0, where, as before, we assume that the exact and approximate solutions are related by
kt+1 = k̃t+1(1 + δkt+1) and ct = c̃t(1 + δct ). In this example, arbitrary large approximation
errors in the model’s two variables are consistent with a zero residual in this model’s
equation.

Third, the size of residuals in the model’s equations is affected by a specific way in
which the residuals are constructed. For example, instead of R2(kt� θt), given by (32), we
can construct the following unit-free residual R2

(kt� θt):

R2
(kt� θt)≡ exp(θt)Af(kt)+ (1 − d)kt

k̂t+1 + ĉt
− 1�

To make appropriate accuracy inferences, we must take into account the value of the
variable with respect to which the residual is constructed, namely, R2(kt� θt) shows the
residuals relative to k̂t+1, while R2

(kt� θt) shows the residuals relative to k̂t+1 + ĉt . In
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the optimal growth model, a specific way of constructing residuals does not affect the
qualitative implications about the accuracy but it might be important for more nonlinear
models; for example, it is important for the new Keynesian model, studied in the next
section.

5. A NEW KEYNESIAN MODEL

We now assess approximation errors in a stylized new Keynesian model with Calvo-
type price frictions and a Taylor (1993) rule. The conventional upper-bound error anal-
ysis builds on dynamic programming approaches and thus, is not directly applicable to
non-optimal equilibrium problems like the studied new Keynesian model. However, our
lower-bound error analysis can be applied to equilibrium problems in exactly the same
way as to the optimal growth model of Section 3. To save on space, in the main text, we
limit ourselves to summarizing the key findings, and we describe the implementation de-
tails of the lower-bound error analysis for new Keynesian models in Appendix B of the
Supplemental Material.

The previous literature on new Keynesian models shows that perturbation methods
produce large residuals in the presence of zero lower bound (ZLB) on the nominal in-
terest rate; see, for example, Aruoba, Cuba-Borda, and Schorfheide (2013), Fernández-
Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramírez (2012), Maliar and Maliar
(2015). However, the model we consider here does not have an active ZLB. Thus, our
analysis shows that approximation errors can be very large for perturbation solutions even
in the absence of an active ZLB.

We consider a variant of Christiano, Eichenbaum, and Evans (2005), and Smets and
Wouters (2007). The model features physical capital, adjustment costs to investment,
variable utilization of capital, habit formation in consumption, as well as sticky wages
and prices. There are four types of stochastic shocks, namely, to monetary policy, neutral
productivity, investment-specific productivity, and government spending. The economy is
populated by labor packers, households, final-good firms, intermediate-good firms, mon-
etary authority, and government; see Appendix B.1 for the model’s description.

We consider three alternative parameterizations: a benchmark parameterization, which
is in line with the estimates of Sims (2014), and two sensitivity experiments in which we
increase the (net) inflation target from 0 to 2 percent, and we decrease the elasticities
of substitution in the production functions of final-good producers and labor packers
from 10 to 5; see Appendix B.6.1. Under the benchmark parameterization, a lower er-
ror bound reaches almost 130 percent, which corresponds to (net) price inflation. Under
the second parameterization, approximation errors are of the same order; however, the
largest errors are in (net) price inflation of reoptimizing firms. Finally, under the last pa-
rameterization, the lower error bound is of order 40 percent, which corresponds to labor
input; see Appendix B.6.2. Thus, we can observe large approximation errors in different
variables depending on specific parameterization. The fact that errors are so huge even
under the most optimistic scenario makes these numerical solutions unacceptable for any
application!

The lower-bound error analysis provides us with an insight into which variables are
approximated insufficiently accurately and are likely to be a bottleneck for the overall
accuracy (although these results are only suggestive because the lower error bound may
not be interpreted as actual approximation errors). For the studied model, these are in-
flation variables, investment variables (gross investment, nominal interest rate, capital
utilization), as well as price dispersion and labor; see Table SIII in Appendix B.6.2.
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There are techniques in the literature that can selectively increase the accuracy of ap-
proximation of some variables under perturbation methods. One is a change of variables
of Judd (2003): it constructs many locally equivalent Taylor expansions and chooses the
one that is most accurate globally; see also Fernández-Villaverde and Rubio-Ramírez
(2006) for extensions of this method. The other is a hybrid of local and global solutions of
Maliar, Maliar, and Villemot (2013) that combines local solutions produced by a pertur-
bation method with global solutions constructed to satisfy the model’s equations exactly.
These techniques can possibly increase the accuracy of plain perturbation methods.

We next assess the residuals in the model’s equations. We find that in most equations,
the residuals are small; however, there are equations in which residuals are as large as
50 percent, for example, Taylor rule, the law of motion for price dispersion, and the price
index; see Table SIV in Appendix B.6.3. Given that some residuals are so large, we can see
why the perturbation method does so poorly in terms of lower bounds on approximation
errors: Even if we distribute approximation errors among variables in the way that is
most favorable for the overall accuracy (best-case scenario for accuracy), some of the
approximation errors will necessarily be large to accord with large residuals.

Finally, we also demonstrate that the way in which we construct the residuals might be
important for the results. For example, in Appendix B.6.3, we show two different unit-free
representations of the residuals in one of the model’s equations that produce the mean
residuals of about 30 percent and 1400 percent (and the maximum residual is even larger)!
In these two cases, the residuals are small (large) because they are evaluated relative to
a variable whose value is large (small). Hence, to make meaningful qualitative inferences
about accuracy from the analysis of residuals, it is important to take into account the size
of variables with respect to which residuals are evaluated. In turn, our lower error bounds
are not subject to this shortcoming: they are independent of the way in which the model’s
equations are written.

Our results are economically significant. Perturbation methods are commonly used in
the literature on new Keynesian models, and they are generally viewed as acceptable
methods. Moreover, linear perturbation methods are currently used by all central banks
for solving their large-scale new Keynesian macroeconomic models for forming monetary
policy and projections, for example, the International Monetary Fund’s Global Economy
Model, GEM (Bayoumi, Laxton, and Pesenti (2001)), the U.S. Federal Reserve Board’s
SIGMA model (Erceg, Guerrieri, and Gust (2006)), the Bank of Canada Terms of Trade
Economic Model, ToTEM (Dorich, Johnston, Mendes, Murchison, and Zhang (2013)),
the European Central Bank’s New Area-Wide Model, NAWM (Coenen, McAdam, and
Straub (2008)), the Bank of England COMPASS model (Burgess, Fernandez-Corugedo,
Groth, Harrison, Monti, Theodoridis, and Waldron (2013)), and the Swedish Riksbank’s
Ramses II model (Adolfson, Laséen, Christiano, Trabandt, and Walentin (2013)). The
accuracy of perturbation solutions is not assessed in these applications. Our analysis sug-
gests that accuracy evaluations are important, and that alternative solution methods are
needed that can deliver more accurate solutions to this important class of economic mod-
els.

6. CONCLUSION

Conventional upper-bound error analysis focuses on worst-case scenarios and provides
sufficient conditions for accuracy of numerical solutions. In this paper, we introduce a
complementary lower-bound error analysis that focuses on certain best-case scenarios
and provides a necessary condition for accuracy of numerical solutions. We specifically
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construct the smallest possible (optimistic) approximation errors that are consistent with
a strict subset of the model’s equations. If even these optimistic errors are too large, we
conclude that a numerical solution is inaccurate. Although the two applications studied
in the paper come from macroeconomics, dynamic models are currently used in virtually
all fields in economics, so that the proposed lower-bound error analysis has a broad range
of potential applications.

A potential shortcoming of our accuracy test is that it may fail to reject inaccurate
solutions because some inaccurate solutions may appear to be sufficiently accurate un-
der best-case scenarios. But one of the two studied models—a stylized new Keynesian
model—failed to pass even this relatively undemanding test under some empirically rel-
evant parameterizations. Upper error bounds are unknown for new Keynesian models
but they are also unnecessary in those cases when an approximate solution fails to sat-
isfy even necessary conditions for accuracy. Thus, our simple accuracy test is powerful
enough to detect and to discard inaccurate solutions in practically relevant applications.
We hope that the lower-bound error analysis proposed in the paper can be automated
and integrated in software for solving dynamic economic models such as Dynare.
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SUPPLEMENT TO “LOWER BOUNDS ON APPROXIMATION ERRORS TO
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BY KENNETH L. JUDD, LILIA MALIAR, AND SERGUEI MALIAR

IN APPENDICES A AND B, we describe additional details of the lower-bound error analysis
in the neoclassical stochastic growth model and in the new Keynesian model studied in
the main text.

APPENDIX A: NEOCLASSICAL STOCHASTIC GROWTH MODEL

In this section, we focus on the neoclassical stochastic growth model. In Appendix A.1,
we derive a lower error bound by using linearized model’s equations; in Appendix A.2,
we construct a more accurate lower error bound by using nonlinear model’s equations;
and in Appendix A.3, we discuss alternative implementations of the lower-bound error
analysis.

A.1. Constructing Lower Error Bound by Using Linearized Model’s Equations

Euler Equation

We first linearize the Euler equation. Let us assume a CRRA utility function u(c) =
c1−γ−1

1−γ . For this utility function, Euler equation (26), expressed in terms of approximation
errors, is

ĉ−γ
t (1 + δct )−γ −βEt

{̂
c−γ
t+1(1 + δct+1)

−γ

· [1 − d+ αexp(θt+1)Ak̂
α−1
t+1 (1 + δkt+1)

α−1
]} = 0�

(A.1)

One can view (A.1) as a function of δ’s, that is, f (δct � δct+1� δkt+1) = 0. Finding a first-
order Taylor expansion of f around δct → 0, δct+1 → 0, δkt+1 → 0 (in particular, using
(1 + x)α � 1 + αx) and omitting a second-order term δct+1δkt+1 ≈ 0, we have

ĉ−γ
t − γδct ĉ−γ

t −βEt
{̂
c−γ
t+1

(
1 − d+ αexp(θt+1)Ak̂

α−1
t+1

)}
+βEt

{̂
c−γ
t+1γδct+1

(
1 − d+ αexp(θt+1)Ak̂

α−1
t+1

)}
−βEt

{̂
c−γ
t+1

(
αexp(θt+1)Ak̂

α−1
t+1 (α− 1)δkt+1

)} = 0�

By discretizing the future exogenous states into J integration nodes, we replace the state-
contingent functions ĉt+1 and δct+1 by ĉ−γ

t+1�j and δct+1�j , j = 1� � � � � J, respectively, which
yields

1 − γδct − h1 + γ
J∑
j=1

mjδct+1�j − (α− 1)δkt+1h2 = 0�

© 2017 The Econometric Society DOI: 10.3982/ECTA12791
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where

h1 ≡ β
J∑
j=1

{
ĉ−γ
t+1�j

ĉ−γ
t

(
1 − d+ αexp(θt+1�j)Ak̂

α−1
t+1

)}
�

h2 ≡ β
J∑
j=1

{
ĉ−γ
t+1�j

ĉ−γ
t

(
αexp(θt+1�j)Ak̂

α−1
t+1

)}
�

mj ≡ βωj

ĉ−γ
t+1�j

ĉ−γ
t

(
1 − d+ αexp(θt+1�j)Ak̂

α−1
t+1

)
�

with θt+1�j = ρθt + εj , and εj , ωj denoting a jth integration node and weight. Combining
the terms yields a linear equation in δ’s,

a1�1δct + a1�2δkt+1 +
J∑
j=1

a1�3
j δct+1�j = b1� (A.2)

where

a1�1 ≡ −γ� a1�2 ≡ −(α− 1)h2� a1�3
j ≡ γmj� b1 ≡ h1 − 1�

Budget Constraint

We next linearize the budget constraint. We rewrite the budget constraint (25) as

ĉt + δct ĉt + k̂t+1 + δkt+1 k̂t+1 − (1 − d)kt − exp(θt)Akαt = 0� (A.3)

Thus, we get

a2�1δct + a2�2δkt+1 = b2� (A.4)

where

a2�1 ≡ ĉt� a2�2 ≡ k̂t+1� b2�1 ≡ (1 − d)kt + exp(θt)Akαt − ĉt − k̂t+1�

Minimization Problem

The minimization problem (28) in a point (period) t is given by

min
δct �δkt+1

�{δct+1�j }i=1�����J
δ2
ct

+ δ2
kt+1

+
J∑
j=1

δ2
ct+1�j

s.t. (A.2), (A.4). (A.5)

To solve (A.5) numerically, we use quadratic programming software (we use a “quadprog”
routine in MATLAB).

A.2. Constructing Lower Error Bound by Using Nonlinear Model’s Equations

We now construct the lower error bound using the original nonlinear equations. Budget
constraint (A.3) yields

δkt+1 = (1 − d)kt + exp(θt)Akαt − ĉt(1 + δct )
k̂t+1

− 1� (A.6)
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From budget constraint (A.3), we also get

[
k̂t+1(1 + δkt+1)

]α−1 = [
(1 − d)kt + exp(θt)Akαt − ĉt(1 + δct )

]α−1
�

Substituting the latter equation into Euler equation (A.1), we have

(1 + δct )−γ −βEt
[
ĉ−γ
t+1

ĉ−γ
t

(1 + δct+1)
−γ(1 − d)

]

−
[
(1 − d)kt + exp(θt)Akαt − ĉt(1 + δct )

k̂t+1

]α−1

×βEt
[
ĉ−γ
t+1

ĉ−γ
t

(1 + δct+1)
−γαexp(θt+1)Ak̂

α−1
t+1

]
= 0�

By discretizing the future exogenous states into J integration nodes, we replace the state-
contingent functions ĉt+1 and δct+1 by ĉ−γ

t+1�j and δct+1�j , j = 1� � � � � J, respectively, which
yields

δct =
{
β

J∑
j=1

ωj

[
ĉ−γ
t+1

ĉ−γ
t

(1 + δct+1�j)
−γ(1 − d)

]

+
[
(1 − d)kt + exp(θt)Akαt − ĉt(1 + δct )

k̂t+1

]α−1

×β
J∑
j=1

ωj

[
ĉ−γ
t+1

ĉ−γ
t

(1 + δct+1�j)
−γαexp(θt+1�j)Ak̂

α−1
t+1

]}−1/γ

− 1

= 0�

(A.7)

Therefore, the least-squares problem (28) becomes

min
δct �δkt+1

�{δct+1�j }i=1�����J
δ2
ct

+ δ2
kt+1

+
J∑
j=1

δ2
ct+1�j

s.t. (A.7), (A.6). (A.8)

The resulting minimization problem contains just J + 1 unknowns, given by δct and
{δct+1�j}j=1�����J that are constructed using a numerical solver. Note that δct appears both
in the left and right side of (A.7) and we need to compute it numerically. To solve prob-
lem (A.8), we use MATLAB’s nonlinear optimization routine “fminsearch.”

A.3. Alternative Implementations of Lower-Bound Error Analysis

There are many possible ways of defining approximation errors. First, we could con-
sider approximation errors in in model’s different variables, for example, the errors in the
investment or output functions instead of those in capital or consumption functions. This
will affect the size of the resulting error bounds. Second, there are different ways of mod-
eling approximation errors in conditional expectations; in particular, we can represent
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TABLE SI

APPROXIMATION ERRORS IN THE CURRENT VARIABLES AND THE EXPECTATION FUNCTIONS IN THE
NEOCLASSICAL STOCHASTIC GROWTH MODELa

γ = 1
10 γ = 1 γ = 10

Norm δct δkt+1
δEt δct δkt+1

δEt δct δkt+1
δEt

PER1
L1 −5�41 −4�12 −4�60 −4�77 −4�12 −4�65 −4�10 −3�75 −5�14
L∞ −4�26 −3�03 −3�55 −3�96 −3�04 −3�75 −3�52 −2�62 −4�00

PER2
L1 −6�61 −5�80 −6�28 −6�35 −5�69 −6�18 −5�31 −4�75 −6�18
L∞ −5�44 −4�42 −5�19 −5�11 −4�43 −4�97 −4�06 −3�65 −4�21

aNotes: PER1 and PER2 denote the first- and second-order perturbation solutions; δct , δkt+1
, and δEt are t-period absolute value

of approximation errors in consumption, capital, and conditional expectation function, respectively; L1 and L∞ are, respectively, the
average and maximum of absolute values of the corresponding approximation errors across optimality condition and test points (in
log10 units) on a stochastic simulation of 10,000 observations; and γ is the coefficient of risk aversion.

errors in Euler equation (22) as

u′(̂ct(1 + δct )
) = β(1 + δEt )Êt︸ ︷︷ ︸�

=Et [u′(ct+1)(1−d+exp(ρθt+εt+1)Af
′(kt+1))]

(A.9)

where δEt is an approximation error in conditional expectation function Et[·]. We can use
a new condition (A.9) as a restriction in the least-squares problem (28), instead of (26),
by changing the objective function to δ2

ct
+ δ2

kt+1
+ δ2

Et
.

In Table SI, we show the error bounds obtained from the conditions (25), (A.9) on a
stochastic simulation following the same methodology as described in Section 3.3.

The advantage of this representation is that it does not require to approximate future
values of the variables and hence, it does not involve additional errors from numerical
integration in the construction of lower error bound. A potential shortcoming of this al-
ternative representation is that the error in Et[·] depends on the marginal utility function,
so that δ2

ct
, δ2

kt+1
, δ2

Et
are not expressed in comparable units, and introducing a trade-off

between the model’s variables and marginal utility in the objective function may lead to
accuracy results that are more difficult to interpret. In contrast, our baseline representa-
tion (28) contains only approximation errors in the model’s variables and is not subject
to this shortcoming. To deal with this issue, Kubler and Schmedders (2005) measured the
error in the conditional expectation function δEt by the average adjustment of the future
consumption δct+1 to satisfy the Euler equation exactly; this approach can be used in our
case as well.

APPENDIX B: NEW KEYNESIAN MODEL

In this section, we implement our error bound analysis for the new Keynesian model.
In Appendix B.1, we present the new Keynesian model considered; in Appendix B.2, we
derive the first-order conditions (FOCs) of the studied model; in Appendix B.3, we define
a lower error bound; in Appendix B.4, we derive a lower error bound by using linearized
model’s equations; in Appendix B.5, we define residuals in the model’s equations; finally,
in Appendix B.6, we describe the details of our numerical analysis and report the con-
structed lower error bounds.
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B.1. The Model

The economy is populated by labor packers, households, final-good firms, intermediate-
good firms, monetary authority, and government; see Galí (2008, Chapter 6) for a detailed
description of a new Keynesian model with sticky wages and prices.

Labor Packers

Labor inputs of heterogeneous households are packed by labor packers to be sold to
firms. A labor packer buys Nt(l) units of labor of a household l ∈ [0�1] at price Wt(l)
and sells Nt(l) units of labor at price Wt in a perfectly competitive market. The profit-
maximization problem is

max
Nt(l)

WtNt −
∫ 1

0
Wt(l)Nt(l)dl (B.1)

s.t. Nt =
(∫ 1

0
Nt(l)

εw−1
εw di

) εw
εw−1

� (B.2)

where (B.2) is a Dixit–Stiglitz aggregator function with εw ≥ 1. Problem (B.1), (B.2) im-
plies the demand for labor of type l:

Nt(l)=Nt

(
Wt(l)

Wt

)−εw
� (B.3)

Households

There is a continuum of monopolistically competitive households who supply differen-
tiated labor input to a labor packer and are indexed by l ∈ [0�1]. Markets are complete:
the households can trade state-contingent claims to insure themselves against aggregate
uncertainty. As a result, in equilibrium, the households will be identical in all their choices,
except of wages and hours worked (the household’s index l will be suppressed elsewhere
except of nominal wage Wt(l) and labor Nt(l)).

The household of type l maximizes expected discounted lifetime-time utility subject to
the capital accumulation equation, (B.5), and the period budget constraint, (B.6),

max
{Ct �Bt+1�Kt+1�ut �Qt+1}t=0�����∞

E0

∞∑
t=0

βt
[

ln(Ct − bCt−1)−ψNt(l)
1+η − 1

1 +η
]

(B.4)

s.t. Kt+1 =Zt
(

1 − τ

2

(
It

It−1
− 1

)2)
It + (1 − d)Kt� (B.5)

Ct + It + Bt+1

Pt
+ Tt + qt+1�tQt+1 +

(
χ1(ut − 1)+ χ2

2
(ut − 1)2

)
Kt

Zt

= Wt(l)

Pt
Nt(l)+RtutKt + (1 + it−1)

Bt

Pt
+Qt + Dt

Pt
�

(B.6)

lnZt = ρz lnZt−1 + εz�t� εz�t ∼N
(
0�σ2

z

)
� (B.7)

where Et is the expectation conditional on the information of period t, and (B.7) is a
process for investment shock Zt to the efficiency of transforming investment into capital.



6 K. L. JUDD, L. MALIAR, AND S. MALIAR

Here, Ct , Nt(l), It , Kt+1, Bt+1, and Qt+1 are consumption, labor, investment, capital
holdings, nominal-bond holdings, and a vector of state-contingent claims, respectively; Pt ,
Wt(l), Rt , it−1, and qt+1�t are, respectively, the commodity price, nominal wage, real return
on capital, (net) nominal interest rate, and a price vector of state-contingent claims (each
of its elements is a price of a claim that pays one unit of good in a particular aggregate
state of nature, xt , in the subsequent period t + 1); Tt is lump-sum taxes; Dt is the profit
(dividends) of intermediate-good firms; β ∈ (0�1) is the discount factor; ψ > 0 is the
utility-function parameter; χ1 ≥ 0 and χ2 ≥ 0 are the parameters in the cost-of-utilization
function which is quadratic in utilization relative to its normalized steady-state value, that
is equal to 1; τ ≥ 0 is the parameter that governs the size of the adjustment cost of capital;
ρz and σz are the autocorrelation coefficient and the standard deviation of disturbances,
respectively.

Wages are subject to Calvo’s (1983) pricing frictions. Each period, a fraction 1 −φw of
the households sets wages optimally,Wt(l) for l ∈ [0�1], and the fractionφw is not allowed
to change the price. When the household cannot reoptimize its posted nominal wage, it
will index to lagged inflation at ζw ∈ (0�1). LetΠt�t+s−1 ≡ Pt+s−1

Pt
be a cumulative gross price

inflation rate between periods t − 1 and t + s − 1. A non-reoptimizing household sets a
t + s-period nominal wage rate at

Wt+s(l)=Πζw
t�t+s−1Wt(l)�

and hence, real wage at

wt+s(l)=wt(l)Π−1
t�t+sΠ

ζw
t−1�t+s−1� (B.8)

where wt+s(l) is real wage of the household of type l in period t + s. Note that (B.3) and
(B.8) imply

Nt+s(l)=Nt+s

(
wt(l)Π

−1
t�t+sΠ

ζw
t−1�t+s−1

wt+s

)−εw
� (B.9)

where wt+s is real wage of packed labor. A reoptimizing household l ∈ [0�1] maximizes
the current discounted lifetime utility over the time period when wt(l) remains effective,
subject to the demand for labor (B.9) and budget constraint (B.6),

max
{wt(l)}t=0�����∞

Et

∞∑
s=0

βsφsw

[
· · · −ψNt+s(l)1+η − 1

1 +η
]

s.t. (B.6), (B.9)�

Final-Good Firms

Perfectly competitive final-good firms produce final goods using intermediate goods.
A final-good firm buys Yt(i) of an intermediate good i ∈ [0�1] at price Pt(i) and sells Yt
of the final good at price Pt in a perfectly competitive market. The profit-maximization
problem is

max
Yt(i)

PtYt −
∫ 1

0
Pt(i)Yt(i)di (B.10)

s.t. Yt =
(∫ 1

0
Yt(i)

εp−1
εp di

) εp
εp−1

� (B.11)



NUMERICAL SOLUTIONS OF DYNAMIC ECONOMIC MODELS 7

where (B.11) is a Dixit–Stiglitz aggregator function with εp ≥ 1. The problem (B.10),
(B.11) implies the demand for an intermediate good of type i:

Yt(i)=
(
Pt(i)

Pt

)−εp
Yt� (B.12)

Intermediate-Good Firms

Monopolistic intermediate-good firms produce intermediate goods using capital and
labor and are subject to sticky prices. A firm i produces the intermediate good i. To choose
capital and labor in each period t, the firm i minimizes the nominal total cost, TC, subject
to the constraint that its output is sufficient to meet demand:

min
Nt(i)�K

#
t (i)

TC
(
Yt(i)

) =WtNt(i)+Rnt K#
t (i) (B.13)

s.t. AtK
#
t (i)

αNt(i)
1−α ≥ Yt

(
Pt(i)

Pt

)−εp
� (B.14)

lnAt = ρa lnAt−1 + εa�t� εa�t+1 ∼N
(
0�σ2

a

)
� (B.15)

where (B.15) is a process for the productivity level, At ; Nt(i) is the labor input; K#
t (i)≡

utKt is capital; At is the productivity level; Rnt is the nominal rental rate; ρa is the auto-
correlation coefficient; and σa is the standard deviation of the disturbance.

The firm discounts profits s periods into the future by M̃t+sφsp, where M̃t+s = βs λt+sλt is a
stochastic discount factor with λt being the marginal value of an extra unit of income (it is
equal to the Lagrange multiplier on the household’s budget constraint (B.6)). The firms
are subject to Calvo-type price setting, namely, a fraction 1 −φp of the firms sets prices
optimally, Pt(i) for i ∈ [0�1], and the fractionφp is not allowed to change the price. A non-
reoptimizing firm indexes its price to lagged inflation at ζp ∈ [0�1]. The price charged in
period t + s if it is still not revised since period t is

Pt+s(i)=Πζp
t−1�t+s−1Pt(i)� (B.16)

A reoptimizing firm i ∈ [0�1] maximizes the current expected value of profit over the
time period when Pt(i) remains effective,

max
Pt (i)

∞∑
s=0

βsφspEt

{
λt+s
λt

[
Π
ζp
t−1�t+s−1Pt(i)

Pt+s
Yt+s(i)− mct+sYt+s(i)

]}
(B.17)

s.t. Yt+s(i)=
(
Π
ζp
t−1�t+s−1Pt(i)

Pt+s

)−εp
Yt+s� (B.18)

where (B.18) follows from (B.12) and (B.16); Pt+s is the price of the final good; mct+s is
the real marginal cost of output at time t + s (which is identical across the firms), that is,
mct+sPt+s ≡ MCt+s.
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Government

Government finances a stochastic stream of public consumption by levying lump-sum
taxes and by issuing nominal debt. The government budget constraint is

Tt + Bt+1

Pt
=ωg

t Yt + (1 + it−1)
Bt

Pt
� (B.19)

where ωg
t Yt =Gt is government spending, and ωg

t is a government-spending shock,

ω
g
t = (1 − ρg)ωg + ρgωg

t−1 + εg�t� εg�t ∼N
(
0�σ2

g

)
� (B.20)

where ρg is the autocorrelation coefficient, and σg is the standard deviation of distur-
bance.

Monetary Authority

The monetary authority follows a Taylor rule:

it = (1 − ρi)i+ ρiit−1 + (1 − ρi)
[
φπ

(
πt −π∗) +φy(lnYt − lnYt−1)

] + εi�t� (B.21)

where i= 1/β− 1 is the steady-state interest rate; φπ ≥ 0 and φy ≥ 0 are the parameters;
πt ≡ Pt

Pt−1
− 1 is net inflation; εi�t is a monetary shock, εi�t ∼N (0�σ2

i ).

B.2. Deriving FOCs

We derive the FOCs of the studied new Keynesian model below.

Labor Packers

The FOC of the labor packer’s problem (B.1), (B.2) with respect to Nt(l) yields the
demand for the lth type of labor, given by (B.3),

Nt(l)=Nt

(
Wt(l)

Wt

)−εw
� (B.22)

A zero-profit condition of a labor packer implies WtNt = ∫ 1
0 Wt(l)Nt(l)dl. Substituting

(B.22) into the latter equation gives

Wt =
(∫ 1

0
Wt(l)

1−εw di
) 1

1−εw
� (B.23)

Households

The FOCs of the household’s problem (B.4)–(B.7) with respect to Ct , Bt+1, Kt+1, It , ut ,
Qt+1, respectively, are

λt = 1
Ct − bCt−1

−βbEt
[

1
Ct+1 − bCt

]
� (B.24)

λt = βEt

[
λt+1(1 + it) Pt

Pt+1

]
� (B.25)
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μt = βEt

[
λt+1

(
Rt+1ut+1 − 1

Zt+1

(
χ1(ut+1 − 1)+ χ2

2
(ut+1 − 1)2

))
(B.26)

+μt+1(1 − d)
]
�

λt = μtZt

[
1 − τ

2

(
It

It−1
− 1

)2

− τ
(
It

It−1
− 1

)
It

It−1

]
(B.27)

+βEtμt+1Zt+1τ

(
It+1

It
− 1

)(
It+1

It

)2

�

Rt = 1
Zt

[
χ1 +χ2(ut − 1)

]
� (B.28)

λtqt+1�t(x)= βλt+1 Pr
{
xt+1 = x|xt = x′}� (B.29)

where λt and μt are the Lagrange multipliers associated with (B.6) and (B.5); xt =
{Zt�At�ω

g
t � εi�t} is the economy’s aggregate state; qt+1�t(x) is the price of a state-

contingent claim, bought in period t, that pays one unit of consumption in case aggregate
state x in period t + 1.

As for wage setting, the FOC with respect to real wage, chosen by a reoptimizing house-
hold, is

εwwt(l)
−εw(1+η)−1Et

∞∑
s=0

βsφswψΠ
εw(1+η)
t�t+s Πζwεw(1+η)

t−1�t+s−1 w
εw(1+η)
t+s N1+η

t+s

+ (1 − εw)wt(l)−εw
∞∑
s=0

βsφswλt+sΠ
εw−1
t�t+s Π

ζw(1−εw)
t−1�t+s−1w

εw
t+sNt+s = 0�

Note that the household-specific index l enters just wt(l), so that all reoptimizers choose
the same wage, that is, wt(l)≡w#

t , given by

(
w#
t

)1+εwη = εw

1 − εw

Et

∞∑
s=0

βsφswψΠ
εw(1+η)
t�t+s Πζwεw(1+η)

t−1�t+s−1 w
εw(1+η)
t+s N1+η

t+s

∞∑
s=0

βsφswλt+sΠ
εw−1
t�t+s Π

ζw(1−εw)
t−1�t+s−1w

εw
t+sNt+s

�

We can rewrite it recursively as

(
w#
t

)1+εwη = εw

1 − εw
F1�t

F2�t
� (B.30)

where

F1�t = ψwεw(1+η)
t N1+η

t +φw(1 +πt)−ζwεw(1+η)βEt
[
(1 +πt+1)

εw(1+η)F1�t+1

]
� (B.31)

F2�t = λtw
εw
t Nt +φw(1 +πt)ζw(1−εw)βEt

[
(1 +πt+1)

εw−1F2�t+1

]
� (B.32)

where 1 +πt ≡Πt−1�t .
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A power 1 + εwη in equation (B.30) could take very large values for empirically plau-
sible parameterizations of the model (e.g., we calibrate η = 1 and εw = 10), which may
lead to numerical problems. To deal with this issue, first, we divide both sides of (B.30) by
(w#

t )
εw(1+η),

(
w#
t

)1−εw = εw

1 − εw
f1�t

F2�t
� (B.33)

where f1�t ≡ F1�t

(w#
t )
εw(1+η) . Then, equation (B.31) becomes

f1�t =ψ
(
wt

w#
t

)εw(1+η)
N1+η
t +φw(1 +πt)−ζwεw(1+η)

×βEt
[
(1 +πt+1)

εw(1+η)f1�t+1

(
w#
t+1

wt

)εw(1+η)]
�

(B.34)

Second, we multiply both sides of (B.33) by (w#
t )

εw ,

w#
t = εw

1 − εw
f1�t

f2�t
� (B.35)

where f2�t ≡ F2�t

(w#
t )
εw

. Then, equation (B.32) becomes

f2�t = λt
(
wt

w#
t

)εw

Nt +φw(1 +πt)ζw(1−εw)

×βEt
[
(1 +πt+1)

εw−1f2�t+1

(
w#
t+1

w#
t

)εw]
�

(B.36)

Final-Good Producers

The FOC of the final-good producer’s problem (B.10), (B.11) with respect to Yt(i)
yields the demand for the ith intermediate good

Yt(i)= Yt
(
Pt(i)

Pt

)−εp
� (B.37)

A zero-profit condition of a final-good producer implies PtYt = ∫ 1
0 Pt(i)Yt(i)di. Substi-

tuting (B.22) into the latter equation yields

Pt =
(∫ 1

0
Pt(i)

1−εp di
) 1

1−εp
� (B.38)

Intermediate-Good Producers

The FOCs of the cost-minimization problem (B.13)–(B.15) with respect to Nt(i) and
K#
t (i) are

Rnt =Θt(i)αAtK
#
t (i)

α−1Nt(i)
1−α� (B.39)

Wt =Θt(i)(1 − α)AtK
#
t (i)

αNt(i)
−α� (B.40)
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where Θt(i) is the Lagrange multiplier associated with (B.14). Combining (B.39) and
(B.40) yields

Wt

Rnt
= 1 − α

α

K#
t (i)

Nt(i)
�

This condition implies that all the firms will rent capital and hire labor in the same pro-
portion. In real terms, the latter condition becomes

wt

Rt
= 1 − α

α

(
K#
t

Nt

)
�

where Rt ≡ Rnt
Pt

. The derivative of the total cost in (B.13) is the nominal marginal cost,
MCt(i),

MCt(i)≡ dTC
(
Yt(i)

)
dYt(i)

=Θt(i)� (B.41)

The real marginal cost is the same for all firms,

mct(i)= Θt(i)

Pt
= mct � (B.42)

This is because all the firms face the same factor prices, and they rent capital and hire
labor in the same proportion. Conditions (B.39) and (B.40), together with (B.42), can be
rewritten, respectively, as

Rt = mctαAt

(
K#
t

Nt

)α−1

� (B.43)

wt = mct(1 − α)At

(
K#
t

Nt

)α

� (B.44)

The period-t real-flow profit of the ith firm is

Dt(i)

Pt
= Pt(i)

Pt
Yt(i)− mct(1 − α)AtK

#
t (i)

αNt(i)
1−α − mctαAtK

#
t (i)

αNt(i)
1−α

= Pt(i)

Pt
Yt(i)− mctYt(i)�

This result was used to derive (B.17). Substituting constraint (B.18) into the objective
function yields

max
Pt (i)

∞∑
s=0

βsφspEt

{
λt+s
λt

(
Π
ζp
t−1�t+s−1Pt(i)

Pt+s

)−εp
Yt+s

[
Π
ζp
t−1�t+s−1Pt(i)

Pt+s
− mct+s

]}
�

This problem can be rewritten as

max
Pt (i)

∞∑
s=0

βsφspEt
λt+s
λt

{
Π
ζp(1−εp)
t−1�t+s−1Pt(i)

1−εpP
εp−1
t+s Yt+s −Π−ζpεp

t−1�t+s−1Pt(i)
−εpmct+sP

εp
t+sYt+s

}
�
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The FOC of the reoptimizing intermediate-good firm with respect to Pt(i) is

(1 − εp)Pt(i)−εpEt
∞∑
s=0

βsφspλt+sΠ
ζp(1−εp)
t−1�t+s−1P

εp−1
t+s Yt+s

+ εpPt(i)−εp−1Et

∞∑
s=0

βsφspλt+sΠ
−ζpεp
t−1�t+s−1mct+sP

εp
t+sYt+s = 0�

(B.45)

Expressing Pt(i), we get

Pt(i)= εp

1 − εp

Et

∞∑
s=0

βsφspλt+sΠ
−ζpεp
t−1�t+s−1mct+sP

εp
t+sYt+s

Et

∞∑
s=0

βsφspλt+sΠ
ζp(1−εp)
t−1�t+s−1P

εp−1
t+s Yt+s

� (B.46)

Since nothing on the right side depends on the firm-specific index i, we have that all
reoptimizing firms set the same price at t, that is, Pt(i)= P#

t ,

P#
t = εp

1 − εp
X1t

X2t
� (B.47)

where

X1t ≡ Et

∞∑
s=0

βsφspλt+sΠ
−ζpεp
t−1�t+s−1mct+sP

εp
t+sYt+s� (B.48)

X2t ≡ Et

∞∑
s=0

βsφspλt+sΠ
ζp(1−εp)
t−1�t+s−1P

εp−1
t+s Yt+s� (B.49)

For X1t , a recursive formula is

X1t = λtmct+sP
εp
t Yt +βφp(1 +πt)−ζpεpEtX1t+1� (B.50)

while for X2t , the corresponding recursive formula is

X2t = λtPεp−1
t Yt +βφp(1 +πt)ζp(1−εp)EtX2t+1� (B.51)

Let us divide (B.50) and (B.51) by Pεpt and Pεp−1
t , respectively, so that they become

x1t = λtmct+sYt +βφp(1 +πt)−ζpεpEt
[
(1 +πt+1)

εpx1t+1

]
� (B.52)

x2t = λtYt +βφp(1 +πt)ζp(1−εp)Et
[
(1 +πt+1)

εp−1x2t+1

]
� (B.53)

where x1t ≡ X1t

P
εp
t

and x2t ≡ X2t

P
εp−1
t

. In terms of the new variables x1t and x2t , condition (B.47)

becomes

1 +π#
t = εp

1 − εp (1 +πt)x1t

x2t
� (B.54)

with π#
t ≡ P#

t /Pt−1 − 1.
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Aggregate Price Relationship

The condition (B.31) can be rewritten as

Pt =
(∫ 1

0
Pt(i)

1−εp di
) 1

1−εp

=
[∫

reopt.
Pt(i)

1−εp di+
∫

non-reopt.
Pt(i)

1−εp di
] 1

1−εp
�

(B.55)

where “reopt.” and “non-reopt.” denote, respectively, the firms that reoptimize and do
not reoptimize their prices at t.

Note that
∫

non-reopt. Pt(i)
1−εp di= ∫ 1

0 (1 +πt−1)
ζp(1−εp)P(j)1−εpωt−1�t(j)dj, where ωt−1�t(j)

is the measure of non-reoptimizers at t that had the price P(j) at t − 1. Furthermore,
ωt−1�t(j)=φpωt−1(j), where ωt−1(j) is the measure of firms with the price P(j) in t − 1,
which implies

∫
non-reopt.

Pt(i)
1−εp di=

∫ 1

0
φp(1 +πt−1)

ζp(1−εp)P(j)1−εpωt−1(j)dj

=φp(1 +πt−1)
ζp(1−εp)P

1−εp
t−1 �

(B.56)

Substituting (B.56) into (B.55) and using the fact that all reoptimizers set P#
t , we get

P
1−εp
t = (1 −φp)

(
P#
t

)1−εp +φp(1 +πt−1)
ζp(1−εp)P

1−εp
t−1 � (B.57)

We divide both sides of (B.57) by P1−εp
t−1 ,

(1 +πt)1−εp = (1 −φp)
(
1 +π#

t

)1−εp +φp(1 +πt−1)
ζp(1−εp)� (B.58)

Aggregate Wage Relationship

Similarly to equation (B.57), aggregate wage index can be written as

W 1−εw
t = (1 −φw)

(
W #
t

)1−εw +φw(1 +πt−1)
ζw(1−εw)W 1−εw

t−1 �

where the second term on the right side corresponds to aggregate wage, set by non-
reoptimizing households. Dividing both sides by P1−εw

t , we get

w1−εw
t = (1 −φw)

(
w#
t

)1−εw +φw(1 +πt−1)
ζw(1−εw)(1 +πt)εw−1w1−εw

t−1 � (B.59)

Aggregate Output

Since all the firms rent capital and hire labor in the same proportion, we get

Yt(i)=AtK
#
t (i)

αNt(i)
1−α =At

(
K#
t

Nt

)α

Nt(i)�
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Let us define aggregate output

Y t ≡
∫ 1

0
Yt(i)di=

∫ 1

0
AtK

#
t (i)

αNt(i)
1−α di

=At

(
K#
t

Nt

)α ∫ 1

0
Nt(i)di=AtK

#
t N

1−α
t �

(B.60)

We substitute demand for Yt(i) from (B.12) into (B.60) to get

Y t =
∫ 1

0
Yt

(
Pt(i)

Pt

)−εp
di= YtPεpt

∫ 1

0
Pt(i)

−εp di� (B.61)

Let us introduce a new variable Pt ,

(Pt)
−εp ≡

∫ 1

0
Pt(i)

−εp di� (B.62)

Substituting (B.60) and (B.62) into (B.61) gives us

Yt ≡ Y t

(
Pt

Pt

)εp

= At

(
K#
t

)α
N1−α
t

Δ
p
t

� (B.63)

where Δpt is a measure of price dispersion across firms, defined by

Δ
p
t ≡

(
Pt

Pt

)−εp
� (B.64)

Note that if Pt(i) = Pt(i
′) for all i and i′ ∈ [0�1], then Δpt = 1, that is, there is no price

dispersion across firms.

Law of Motion for Price Dispersion Δpt

By analogy with (B.57), the variable Pt , defined in (B.62), satisfies

P
−εp
t = (1 −φp)

(
P#
t

)−εp +φp(1 +πt−1)
−ζpεpP

−εp
t−1 � (B.65)

By using (B.65) in (B.64), we get

Δ
p
t = (1 −φp)

(
P#
t

Pt

)−εp
+φp(1 +πt−1)

−ζpεp
(
Pt−1

Pt

)−εp
�

This implies

Δ
p
t = (1 −φp)

(
P#
t

Pt

)−εp(Pt−1

Pt−1

)−εp
+φp(1 +πt−1)

−ζpεp
(
Pt−1

Pt

)−εp(Pt−1

Pt−1

)−εp
�

Simplifying the latter expression, we obtain the law of motion for Δpt ,

Δ
p
t = (1 +πt)εp ·

[
(1 −φp)

(
1 +π#

t

)−εp +φp(1 +πt−1)
−ζpεp

(
Pt

Pt

)−εp
Δ
p
t−1

]
� (B.66)
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Aggregate Resource Constraint

Summing up the household’s budget constraint (B.6) across all agents eliminates the
state-contingent claims as they are in a zero net supply. Combining the resulting house-
hold’s budget constraint (B.6) with the government budget constraint (B.19), we have the
aggregate resource constraint

Ct + It +ωg
t Yt = WtNt

Pt
+RtutKt −

(
χ1(ut − 1)+ χ2

2
(ut − 1)2

)
Kt

Zt
+ Dt

Pt
� (B.67)

where WtNt = ∫ 1
0 Wt(l)Nt(l)dl. Note that the ith intermediate-good firm’s profit at t is

Dt(i)≡ Pt(i)Yt(i)−WtNt(i)−Rnt K#
t . Consequently,

Dt =
∫ 1

0
Dt(i)di=

∫ 1

0
Pt(i)Yt(i)di−Wt

∫ 1

0
Nt(i)di+Rnt

∫ 1

0
K#
t (i) di

= PtYt −WtNt −Rnt K#
t �

where PtYt = ∫ 1
0 Pt(i)Yt(i)di follows by a zero-profit condition of the final-good firms.

Hence, (B.67) can be rewritten as

Ct + It +Gt +
(
χ1(ut − 1)+ χ2

2
(ut − 1)2

)
Kt

Zt
= Yt� (B.68)

Full Set of Optimality Conditions

Below, we summarize the full set of the equilibrium conditions in the studied new Key-
nesian model (B.1)–(B.21):

λt = 1
Ct − bCt−1

−βbEt 1
Ct+1 − bCt � (B.69)

Rt = 1
Zt

[
χ1 +χ2(ut − 1)

]
� (B.70)

λt = βEtλt+1(1 + it)(1 +πt+1)
−1� (B.71)

λt = μtZt

[
1 − τ

2

(
It

It−1
− 1

)2

− τ
(
It

It−1
− 1

)
It

It−1

]
(B.72)

+βEtμt+1Zt+1τ

(
It+1

It
− 1

)(
It+1

It

)2

�

μt = βEt

[
λt+1

(
Rt+1ut+1 − 1

Zt+1

[
χ1(ut+1 − 1)+ χ2

2
(ut+1 − 1)2

])
(B.73)

+μt+1(1 − d)
]
�

w#
t = εw

εw − 1
f̂1�t

f̂2�t

� (B.74)
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f̂1�t = ψ

(
wt

w#
t

)εw(1+η)
N1+η
t

(B.75)

+φwβ(1 +πt)−ζwεw(1+η)Et

[
(1 +πt+1)

εw(1+η)
(
w#
t+1

w#
t

)εw(1+η)
f̂1�t+1

]
�

f̂2�t = λt

(
wt

w#
t

)εw

Nt

(B.76)

+φwβ(1 +πt)ζw(1−εw)Et

[
(1 +πt+1)

εw−1

(
w#
t+1

w#
t

)εw

f̂2�t+1

]
�

w1−εw
t = (1 −φw)

(
w#
t

)1−εw + (1 +πt−1)
ζw(1−εw)(1 +πt)εw−1φww

1−εw
t−1 � (B.77)

Yt = At

(
K#
t

)α
N1−α
t

Δ
p
t

� (B.78)

Δ
p
t = (1 +πt)εp

[
(1 −φw)

(
1 +π#

t

)−εp + (1 +πt−1)
−ζpεpφpΔ

p
t−1

]
� (B.79)

(1 +πt)1−εp = (1 −φp)
(
1 +π#

t

)1−εp +φp(1 +πt−1)
ζp(1−εp)� (B.80)

1 +π#
t = εp

εp − 1
(1 +πt)x1�t

x2�t
� (B.81)

x1�t = λtmctYt +φpβ(1 +πt)−ζpεpEt
[
(1 +πt+1)

εpx1�t+1

]
� (B.82)

x2�t = λtYt +φpβ(1 +πt)ζp(1−εp)Et
[
(1 +πt+1)

εp−1x2�t+1

]
� (B.83)

wt

Rt
= 1 − α

α
· K

#
t

Nt

� (B.84)

wt = mct(1 − α)At

(
K#
t

Nt

)α

� (B.85)

it = (1 − ρi)i+ ρiit−1
(B.86)

+ (1 − ρi)
[
φπ

(
πt −π∗) +φy(lnYt − lnYt−1)

] + εi�t�

Yt = Ct + It +Gt +
(
χ1(ut − 1)+χ2(ut − 1)2

)Kt

Zt
� (B.87)

Kt+1 = Zt

[
1 − τ

2

(
It

It−1
− 1

)2]
It + (1 − d)Kt� (B.88)

where K#
t = utKt , Gt =ωg

t Yt , and exogenous shocks At , Zt , and ωg
t follow (B.15), (B.7),

(B.20), respectively; and f1�t , f2�t and x1�t , x2�tare supplementary variables introduced for
writing the problem in a recursive form; and Δpt is a measure of price dispersion across
firms. In total, there are 25 equations in 25 variables:

{
λt�Ct�Rt�Zt�ut� it�πt� It�μt�w

#
t � f̂1�t� f̂2�t�wt�Yt�

At�Nt�Δ
p
t �π

#
t � x1�t � x2�t �mct �Kt�K

#
t �Gt�ω

g
t

}
�
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B.3. Defining a Lower Error Bound

Defining Approximation Errors in Variables

The approximation errors in the model’s variables are defined by the following twenty
equations that correspond to the optimality conditions (B.69)–(B.88), respectively:

λ̂t(1 + δλt )= 1
Ĉt(1 + δCt )− bCt−1

(B.89)

−Et
[

βb

Ĉt+1(1 + δCt+1)− bĈt(1 + δCt )
]
�

R̂t(1 + δRt )= 1
Zt

[
χ1 +χ2

(
ût(1 + δut )− 1

)]
� (B.90)

λ̂t(1 + δλt )= βEt

[
λ̂t+1(1 + δλt+1)

(
1 + ît(1 + δit )

)
1 + π̂t+1(1 + δπt+1)

]
� (B.91)

λ̂t(1 + δλt )= μ̂t(1 + δμt )

×Zt
[

1 − τ

2

(
Ît(1 + δIt )
It−1

− 1
)2

− τ
(
Ît(1 + δIt )
It−1

− 1
)
Ît(1 + δIt )
It−1

]
(B.92)

+βEt
[
μ̂t+1(1 + δμt+1)Zt+1τ

(
Ît+1(1 + δIt+1)

It(1 + δIt )
− 1

)

×
(
Ît+1(1 + δIt+1)

It(1 + δIt )
)2]

�

μ̂t(1 + δμt )= βEt

[̂
λt+1(1 + δλt+1)×

{
R̂t+1(1 + δRt+1) · ût+1(1 + δut+1)

− 1
Zt+1

[
χ1

(
ût+1(1 + δut+1)− 1

)
(B.93)

+ χ2

2
(
ût+1(1 + δut+1)− 1

)2
]}

+ μ̂t+1(1 + δμt+1)(1 − d)
]
�

ŵ#
t (1 + δw#

t
)= εw

εw − 1
f̂1�t(1 + δf1t )

f̂2�t(1 + δf2t )
� (B.94)

f̂1�t(1 + δf1t )= ψ

(
ŵt(1 + δwt )
ŵ#
t (1 + δw#

t
)

)εw(1+η)[
N̂t(1 + δNt )

]1+η

+φwβ
(
1 + π̂t(1 + δπt )

)−ζwεw(1+η)
(B.95)
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×Et
[[

1 + π̂t+1(1 + δπt+1)
]εw(1+η)

×
( ŵ#

t+1(1 + δw#
t+1
)

ŵ#
t (1 + δw#

t
)

)εw(1+η)
f̂1�t+1(1 + δf1t+1)

]
�

f̂2�t(1 + δf2t )= λ̂t

(
ŵt(1 + δwt )
ŵ#
t (1 + δw#

t
)

)εw

N̂t(1 + δNt )

+φwβ
(
1 + π̂t(1 + δπt )

)ζw(1−εw)

(B.96)

×Et
[(

1 + π̂t+1(1 + δπt+1)
)εw−1

×
(
ŵt+1(1 + δwt+1)

ŵ#
t+1(1 + δw#

t+1
)

)εw

f̂2�t+1(1 + δf2t+1)

]
�

ŵ1−εw
t (1 + δwt )1−εw = (1 −φw)

(
ŵ#
t

)1−εw
(1 + δw#

t
)1−εw

(B.97)
+ (1 +πt−1)

ζw(1−εw)(1 + π̂t(1 + δπt )
)εw−1

φww
1−εw
t−1 �

Ŷt(1 + δYt )=At

(
K̂#
t

)α
(1 + δK#

t
)αN̂1−α

t (1 + δNt )1−α[Δ̂pt ]−1
(1 + δΔpt )−1� (B.98)

Δ̂
p
t (1 + δΔpt )= (

1 + π̂t(1 + δπt )
)εp

× [
(1 −φw)

(
1 + π̂#

t (1 + δπ#
t
)
)−εp (B.99)

+ (1 +πt−1)
−ζpεpφpΔ

p
t−1

]
�(

1 + π̂t(1 + δπt )
)1−εp = (1 −φp)

(
1 + π̂#

t (1 + δπ#
t
)
)1−εp +φp(1 +πt−1)

ζp(1−εp)� (B.100)

1 + π̂#
t (1 + δπ#

t
)= εp

εp − 1
(
1 + π̂t(1 + δπt )

) x̂1�t

x̂2�t
(1 + δx1t )(1 + δx2t )

−1� (B.101)

x̂1�t(1 + δx1t )= λ̂t(1 + δλt )m̂ct(1 + δmct )Ŷt(1 + δYt )
+φpβ

(
1 + π̂t(1 + δπt )

)−ζpεp (B.102)

×Et
[(

1 + π̂t+1(1 + δπt+1)
)εp
x̂1�t+1(1 + δx1t+1)

]
�

x̂2�t(1 + δx2t )= λ̂t(1 + δλt )Ŷt +φpβ
(
1 + π̂t(1 + δπt )

)ζp(1−εp)

×Et
[(

1 + π̂t+1(1 + δπt+1)
)εp−1

x̂2�t+1(1 + δx2t+1)
]
� (B.103)

ŵt(1 + δwt )
R̂t(1 + δRt )

= 1 − α
α

· K̂#
t (1 + δK#

t
)N̂−1

t (1 + δNt )−1� (B.104)

ŵt(1 + δwt )= m̂ct(1 + δmct )(1 − α)At

(
K̂#
t

)α
(1 + δK#

t
)αN−α

t (1 + δNt )−α� (B.105)

ît(1 + δit )= (1 − ρi)i+ ρiit−1

+ (1 − ρi)
[
φπ

(
π̂t(1 + δπt )−π∗) (B.106)
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+φy
(
ln Ŷt + ln(1 + δYt )− lnYt−1

)] + εi�t�
Ŷt(1 + δYt )= Ĉt(1 + δCt )+ Ît(1 + δIt )

+ Ĝt(1 + δGt )+ (
χ1

(
ût(1 + δut )− 1

)
(B.107)

+χ2

(
ût(1 + δut )− 1

)2)Kt

Zt
�

Kt+1(1 + δKt+1)= Zt

[
1 − τ

2

(
Ît(1 + δIt )
It−1

− 1
)2]

Ît(1 + δIt )+ (1 − d)Kt� (B.108)

where hats on the variables denote their approximated values; f1�t , f2�t and x1�t , x2�t are
supplementary variables; Δpt is a measure of price dispersion across firms.

Setting up a Minimization Problem

To construct the lower bound on approximation errors, we minimize the least-squares
criterion for each t:

min
xt
δ2
λt

+ δ2
Ct

+ δ2
μt

+ δ2
Rt

+ δ2
ut

+ δ2
πt

+ δ2
It

+ δ2
it

+ δ2
f1t

+ δ2
f2t

+ δ2
wt

+ δ2
w#
t

+ δ2
Nt

+ δ2
Yt

+ δ2
K#
t

+ δ2
Δ
p
t
+ δ2

π#
t

+ δ2
x1t

+ δ2
x2t

+ δ2
mct + δ2

Kt+1
+ δ2

Gt

+
J∑
j=1

[
δ2
λt+1�j

+ δ2
Ct+1�j

+ δ2
μt+1�j

+ δ2
πt+1�j

+ δ2
It+1�j

+ δ2
Rt+1�j

+ δ2
f1t+1�j

+ δ2
f2t+1�j

+ δ2
w#
t+1�j

+ δ2
x1t+1�j

+ δ2
x2t+1�j

+ δ2
ut+1

]
s.t. (B.89)–(B.108),

(B.109)

where xt ≡ {δλt � δλt+1�j� � � �} is a list of all approximation errors to the corresponding
model’s variables {λt�λt+1�j� � � �} that appear in the objective function (B.109). Similarly
to the optimal growth model, approximation errors in the current period variables are
defined in a given point of the state space, while approximation errors in future variables
are defined in J integration nodes. Restrictions (B.89)–(B.108) are the optimality condi-
tions (B.69)–(B.88) written in terms of an approximation solution and the corresponding
approximation errors; they are provided in Appendix B.2. Again, using linearized opti-
mality conditions in place of nonlinear optimality conditions leads to a linear-quadratic
programming problem that is more simple to solve numerically and that produces a good
initial guess for the problem with the nonlinear restrictions. A linearization of the opti-
mality conditions (B.69)–(B.88) is shown in Appendix B.4.

B.4. Constructing Approximation Errors Using Linearized Model’s Equations

We construct approximation errors satisfying linearized model’s equations (B.89)–
(B.108).
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Condition (B.89)

Finding a first-order Taylor expansion of equation (B.89) and omitting second-order
terms, we have

0 = −δλt · λ̂t − δCt ·
{
(Ĉt − bĈt−1)

−2Ĉt + bĈt ·βbEt(Ĉt+1 − bĈt)−2
}

+βb
J∑
j=1

ωj

[
(Ĉt+1�j − bĈt)−2Ĉt+1�jδCt+1�j

] + λtR1
t �

For convenience, we introduce the following compact notation:

h1 ≡ βbEt(Ĉt+1 − bĈt)−2�

Introducing compact notation, we get

a1�1 · δλt + a1�3 · δCt +
J∑
j=1

ωja
1�4
j · δCt+1�j + b1 = 0�

where

a1�1 ≡ −λ̂t�
a1�3 ≡ −(Ĉt − bĈt−1)

−2Ĉt − bĈt · h1�

a1�4
j ≡ βb(Ĉt+1�j − bĈt)−2Ĉt+1�j�

b1 ≡ λ̂tR1
t �

with R1
t being the residual of this FOC, given by (B.110).

Condition (B.90)

By finding a first-order Taylor expansion in errors of condition (B.90), we obtain

−δRt +R39
t + 1

R̂tZt
χ2ûtδut = 0�

Introducing compact notation, we get

a2�7 · δRt + a2�8 · δut + b2 = 0�

where

a2�7 ≡ −1� a2�8 = 1
R̂tZt

χ2ût� b2 =R2
t �

where R2
t is the residual in equation (B.111).

Condition (B.91)

A first-order Taylor expansion of (B.91) yields

δλt = ln
(
1 +R3

t

) +Etδλt+1 + ît

1 + ît
δit −Et

π̂t+1

1 + π̂t+1
δπt+1 �



NUMERICAL SOLUTIONS OF DYNAMIC ECONOMIC MODELS 21

The latter condition can be rewritten as

a3�1 · δλt + a3�2 ·
J∑
j=1

ωjδλt+1�j +
J∑
j=1

ωja
3�11
j · δπt+1�j + a3�15 · δit + b3 = 0�

where

a3�1 ≡ −1� a3�2 ≡ 1� a3�15 ≡ ît

1 + ît
�

a3�11
j ≡ −

J∑
j=1

ωj

π̂t+1�j

1 + π̂t+1�j
� b3 ≡ ln

(
1 +R3

t

)
�

with R3
t being a residual, defined in (B.112).

Condition (B.92)

A first-order Taylor expansion of (B.92) yields

0 = −λ̂t + μ̂tZt + −3
2
μ̂tZtτ

(
Ît

It−1

)2

+ 2μ̂tZtτ
Ît

It−1
+ 1

2
μ̂tZtτ+ h4

1t − h4
2t

− λ̂tδλt

+ μ̂tZt
[

2τ
Ît

It−1
− 3

2
τ

(
Ît

It−1

)2

+ 1
2
τ+ 1

]
δμt

+βEt
[(
μ̂t+1Zt+1τ

(
Ît+1

It

)3

− δμt+1μ̂t+1Zt+1τ

(
Ît+1

It

)2)
· δμt+1

]

+ μ̂tZt
[

2τ
Ît

It−1
− 3τ

(
Ît

It−1

)2

+ 2h4
1t − 3h4

2t

]
δIt

+βEt
[

3μ̂t+1Zt+1τ

(
Ît+1

It

)3

− 2μ̂t+1Zt+1τ

(
Ît+1

It

)2

δIt+1

]
�

where the following compact notation is used:

h4
1 ≡ βμ̂t+1Zt+1τ

(
Ît+1

It

)3

�

h4
2 ≡ βμ̂t+1Zt+1τ

(
Ît+1

It

)2

�

Introducing compact notation, we have

a4�1 · δλt + a4�5 · δμt +
J∑
j=1

ωja
4�6
j · δμt+1�j + a4�12 · δIt +

J∑
j=1

ωja
4�13
j · δIt+1�j + b4 = 0�

where

a4�1 ≡ −λ̂t�
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a4�5 ≡ μ̂tZt

[
2τ

Ît

It−1
− 3

2
τ

(
Ît

It−1

)2

+ 1
2
τ+ 1

]
�

a4�6
j ≡m4

1�j −m4
2�j�

a4�12 ≡ μ̂tZt

[
2τ

Ît

It−1
− 3τ

(
Ît

It−1

)2]
− 3h4

1 + 2h4
2�

a4�13
j ≡ 3m4

1�j − 2m4
2�j�

b4 ≡ −λ̂t + μ̂tZt + −3
2
μ̂tZtτ

(
Ît

It−1

)2

+ 2μ̂tZtτ
Ît

It−1
+ 1

2
μ̂tZtτ+ h4

1 − h4
2�

with m4
1�j ≡ βμ̂t+1�jZt+1�jτ(

Ît+1�j
It
)3 and m4

2�j ≡ βμ̂t+1�jZt+1�jτ(
Ît+1�j
It
)2.

Condition (B.93)

A first-order Taylor expansion of (B.93) implies

0 = R5
t

−
J∑
j=1

ωjm
5
1�jλ̂t+1�j

[(
− 1
Zt+1�j

)
χ2(ût+1�j − 1)− R̂t+1�jût+1�j

]
· δλt+1�j

− δμt

+
J∑
j=1

ωj

[
μ̂t+1(1 − d) · δμt+1

]

+
J∑
j=1

ωjm
5
1�jλ̂t+1�jR̂t+1�jût+1�j · δRt+1�j

−
J∑
j=1

ωjm
5
1�jλ̂t+1�j

((
− 1
Zt+1�j

)[
χ1(2ût+1 − 1)+χ2ût+1�j(ût+1�j − 1)

]

− R̂t+1�jût+1�j

)
· δut+1�j�

where R5
t is a residual defined in (B.114), and

m5
1�j ≡

[̂
λt+1�j

(
R̂t+1�jût+1�j − 1

Zt+1� j

[
χ1(ût+1�j − 1)+ χ2

2
(ût+1�j − 1)2

])
+ μ̂t+1�j(1 − d)

]−1

�

Introducing further more compact notation, we have

J∑
j=1

a5�2
j · δλt+1�j + a5�5 · δμt +

J∑
j=1

a5�6
j · δμt+1�j +

J∑
j=1

a5�14
j · δRt+1�j +

J∑
j=1

a5�33
j · δut+1�j + b5 = 0�
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where

a5�2
j ≡ −ωjm

5
1�jλ̂t+1�j

[(
− 1
Zt+1�j

)
χ2(ût+1�j − 1)− R̂t+1�jût+1�j

]
�

a5�5 ≡ −1�

a5�6
j ≡ωjμ̂t+1�j(1 − d)�

a5�14
j ≡m5

1�jλ̂t+1�jR̂t+1�jût+1�j�

a5�33
j ≡ −ωjm

5
1�jλ̂t+1�j

((
− 1
Zt+1�j

)[
χ1(2ût+1 − 1)+χ2ût+1�j(ût+1�j − 1)

] − R̂t+1�jût+1�j

)
�

b5 ≡ R5
t �

Condition (B.94)

A first-order Taylor expansion of (B.94) leads us to

δw#
t

=R6
t + δf1t − δf2t �

Introducing compact notation, we get

a6�16 · δf1t + a6�18 · δf2t + a6�21 · δw#
t

+ b6 = 0�

where

a6�16 ≡ 1� a6�18 ≡ −1� a6�21 ≡ −1� b6
t ≡R6

t �

Condition (B.95)

A first-order Taylor expansion of (B.95) implies

0 = f̂1�tR7
t

+ h7
1tδπt

+φwβ(1 + π̂t)−ζwεw(1+η) · εw(1 +η)

·Et
[
[1 + π̂t+1]εw(1+η)−1

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1 · π̂t+1 · δπt+1

]

− f̂1�tδf1t

+φwβ(1 + π̂t)−ζwεw(1+η)Et

[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1 · δf1t+1

]

+ψ
[
ŵεw
t

ŵ#εw
t

N̂t

](1+η)
(1 +η)εwδwt

−
[
ψ

(
ŵεw
t

ŵ#εw
t

N̂t

)(1+η)
(1 +η)εw + h7

2t

]
δw#

t

+ εw(1 +η)φwβ(1 + π̂t)−ζwεw(1+η)
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×Et
[[1 + π̂t+1]εw(1+η)(ŵ#

t+1

)εw(1+η)(
ŵ#
t

)−εw(1+η)
f̂1�t+1 · δw#

t+1

]
+ψ

[
ŵεw
t

ŵ#εw
t

N̂t

](1+η)
(1 +η)δNt �

where R7
t denotes a residual (B.116) , and where

h7
1t ≡ −ζwεw(1 +η)π̂t ·φwβ(1 + π̂t)−ζwεw(1+η)−1 ·Et

[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1

]
�

h7
2t ≡ −εw(1 +η)φwβ(1 + π̂t)−ζwεw(1+η)Et

[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1

]
�

Using compact notation, we get

a7�10 · δπt +
J∑
j=1

a7�11
j · δπt+1�j + a7�16 · δf1t +

J∑
j=1

a7�17
j · δf1t+1 + a7�20 · δwt

+ a7�21 · δw#
t

+
J∑
j=1

a7�22
j · δw#

t+1�j
+ a7�23 · δNt + b7 = 0�

where

a7�10 ≡ −ζwεw(1 +η)π̂t ·φw(1 + π̂t)−ζwεw(1+η)−1

·βEt
[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1

]
�

a7�11
j ≡φwβ(1 + π̂t)−ζwεw(1+η) · εw(1 +η)

·ωj

[
[1 + π̂t+1�j]εw(1+η)−1

(
ŵ#
t+1�j

ŵ#
t

)εw(1+η)
f̂1�t+1�j · π̂t+1�j

]
�

a7�16 ≡ −f̂1�t �

m7
1�j ≡ωjφw(1 + π̂t)−ζwεw(1+η)β

[
[1 + π̂t+1�j]εw(1+η)

(
ŵ#
t+1�j

ŵ#
t

)εw(1+η)
f̂1�t+1�j

]
�

a7�17
j ≡m7

1�j� h7
1 ≡ψ

[
ŵεw
t

ŵ#εw
t

N̂t

](1+η)
(1 +η)� a7�20 ≡ h7

1 · εw�

h7
2 ≡φw(1 + π̂t)−ζwεw(1+η)βEt

[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1

]
�

a7�21 ≡ −h7
1 · εw − h7

2 · εw(1 +η)� a7�22
j ≡ωjm

7
1�j · εw(1 +η)�

a7�23 ≡ h7
1� b7 ≡ f̂1�tR65

t �
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Condition (B.96)

A first-order Taylor expansion of (B.96) is

0 = f̂2�tR8
t

+ λ̂t ŵ
εw
t

ŵ#εw
t

N̂t · δλt

+ ζw(1 − εw)π̂t ·φwβ(1 + π̂t)ζw(1−εw)−1 ·Et
[
[1 + π̂t+1]εw−1

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1

]
· δπt

+φwβ(1 + π̂t)ζw(1−εw) · (εw − 1) ·Et
[
[1 + π̂t+1]εw−2

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1 · π̂t+1 · δπt+1

]

− f̂2�tδf2t

+φwβ(1 + π̂t)ζw(1−εw)Et

[
[1 + π̂t+1]εw−1

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1 · δf2t+1

]

+ λ̂t ŵ
εw
t

ŵ#εw
t

N̂tεw · δwt

−
[
εwλ̂t

ŵεw
t

ŵ#εw
t

N̂t + εwφwβ(1 + π̂t)ζw(1−εw)Et

(
[1 + π̂t+1]εw−1

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1

)]
· δw#

t

+ εwφwβ(1 + π̂t)ζw(1−εw)Et
[[1 + π̂t+1]εw−1

(
ŵ#
t+1

)εw(
ŵ#
t

)−εw
f̂2�t+1 · δw#

t+1

]
+ λ̂t ŵ

εw
t

ŵ#εw
t

N̂t · δNt �

where R8
t denotes a residual (B.117). Introducing new notation, we can rewrite the last

equations as

a8�1 · δλt + a8�10 · δπt +
J∑
j=1

a8�11
j · δπt+1�j + a8�18 · δf2t +

J∑
j=1

a8�19
j · δf2t+1�j + a8�20 · δwt

+ a8�21 · δw#
t

+
J∑
j=1

a8�22
j · δw#

t+1�j
+ a8�23 · δNt + b8 = 0�

where

h8
1 ≡ λ̂t

ŵεw
t

ŵ#εw
t

N̂t� a8�1 = h8
1� a8�18 = −f̂2�t � a8�20 = h8

1 · εw�

a8�10 ≡ ζw(1 − εw)π̂t ·φw(1 + π̂t)ζw(1−εw)−1 ·βEt
[
[1 + π̂t+1]εw−1

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1

]
�

a8�11
j ≡ωjφw(1 + π̂t)ζw(1−εw) · (εw − 1) ·βEt

[
[1 + π̂t+1�j]εw−2

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1�j · π̂t+1�j

]
�
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m8
j ≡ωjφw(1 + π̂t)ζw(1−εw)β

[
[1 + π̂t+1�j]εw−1

(
ŵ#
t+1�j

ŵ#
t

)εw

f̂2�t+1�j

]
�

a8�21 ≡ −h8
1t · εw − h8

2 · εw�

h8
2 ≡ φw(1 + π̂t)ζw(1−εw) ·βEt

(
[1 + π̂t+1]εw−1

(
ŵ#
t+1

ŵ#
t

)εw

f̂2�t+1

)
�

a8�22
j ≡ωjm

8
j · εw� a8�23 = h8

1� b8 = f̂2�tR8
t �

Condition (B.97)

A first-order Taylor expansion of (B.97) leads to

ŵ1−εw
t R9

t + (1 − εw)ŵ1−εw
t · δwt = (1 −φw)(1 − εw)

(
ŵ#
t

)1−εw
δw#

t

+ (1 +πt−1)
ζw(1−εw)φww

1−εw
t−1 (εw − 1)π̂t(1 + π̂t)εw−2 · δπt �

where R9
t is a residual of this equation, defined in (B.118). After introducing more com-

pact notation, we obtain

a9�10 · δπt + a9�20 · δwt + a9�21 · δw#
t

+ b9 = 0�

where

a9�20 ≡ −(1 − εw)ŵ1−εw
t �

a9�20 ≡ −(1 − εw)ŵ1−εw
t �

a9�21 ≡ (1 −φw)(1 − εw)
(
ŵ#
t

)1−εw
�

a9�10 ≡ (1 +πt−1)
ζw(1−εw)φww

1−εw
t−1 (εw − 1)π̂t(1 + π̂t)εw−2�

b9 ≡ ŵ1−εw
t R9

t �

Condition (B.98)

A first-order Taylor expansion of (B.98) is

(1 − α)δNt − δYt + αδK#
t

− δΔpt +R10
t = 0�

where the residual of this equation, R10
t , is defined in (B.119). We rewrite it as

a10�23 · δNt + a10�24 · δYt + a10�25 · δK#
t

+ a10�26 · δΔpt + b10 = 0�

where

a10�24 ≡ −1� a10�25 ≡ α� a10�23 ≡ 1 − α� a10�26 ≡ −1� b10 ≡ ln
(
1 +R10

t

)
�

Condition (B.99)

A Taylor expansion of equation (B.99) is

εp
1

1 + π̂t π̂t · δπt − δΔ
p
t
− [
(1 −φw)

(
1 + π̂#

t

)−εp + (1 +πt−1)
−ζpεpφpΔ

p
t−1

]−1

× εp(1 −φw)
(
1 + π̂#

t

)−εp−1
π̂#
t · δπ#

t
+R11

t = 0�
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where R11
t is the residual (B.120) of this equation. In terms of new notation, this becomes

a11�10 · δπt + a11�26 · δΔpt + a11�27 · δπ#
t

+ b11 = 0�

where

a11�10 ≡ εp
1

1 + π̂t π̂t� a11�26 = −1�

a11�27 ≡ −[
(1 −φw)

(
1 + π̂#

t

)−εp + (1 +πt−1)
−ζpεpφpΔ

p
t−1

]−1
εp(1 −φw)

(
1 + π̂#

t

)−εp−1
π̂#
t �

b11 ≡ R11
t �

Condition (B.100)

An expansion of (B.100) is

−(1 −εp)(1 + π̂t)−εpπ̂t ·δπt + (1 + π̂t)1−εpR12
t + (1 −φp)(1 −εp)

(
1 + π̂#

t

)−εp
π̂#
t ·δπ#

t
= 0�

with R12
t being a residual (B.121). We rewrite this equation as follows:

a12�10 · δπt + a12�27 · δπ#
t

+ b12 = 0�

where

a12�10 ≡ −(1 − εp)(1 + π̂t)−εpπ̂t�
a12�27 ≡ (1 −φp)(1 − εp)

(
1 + π̂#

t

)−εp
π̂#
t �

b12 ≡ (1 + π̂t)1−εpR12
t �

Condition (B.101)

A first-order Taylor expansion of (B.101) implies

π̂t

1 + π̂t δπt −
π̂#
t

1 + π̂#
t

δπ#
t

+ δx1t − δx2t +R13
t = 0�

with R13
t being this equation’s residual that is defined in (B.122); this yields

a13�10 · δπt + a13�27 · δπ#
t

+ a13�28 · δx1t + a13�29 · δx2t + b13 = 0�

where

a13�10 ≡ π̂t

1 + π̂t � a13�27 ≡ − π̂#
t

1 + π̂#
t

� a13�28 ≡ 1�

a13�29 ≡ −1� b13 ≡ ln
(
1 +R13

t

)
�

Condition (B.102)

A Taylor expansion of (B.102) is

x̂1�tδx1t = R51
t x̂1�t + λ̂tm̂ct Ŷt[δλt + δmct + δYt ]
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− ζpεpφpβ(1 + π̂t)−ζpεp−1π̂tEt
[
(1 + π̂t+1)

εpx̂1�t+1

] · δπt
+φpβ(1 + π̂t)−ζpεpεpEt

[
(1 + π̂t+1)

εp−1π̂t+1x̂1�t+1 · δπt+1

]
+φpβ(1 + π̂t)−ζpεpEt

[
(1 + π̂t+1)

εpx̂1�t+1 · δx1t+1

]
�

with R14
t being a residual (B.123). In compact notation, it becomes

a14�1 · δλt + a14�10 · δπt +
J∑
j=1

a14�11
j · δπt+1�j + a14�24 · δYt + a14�28 · δx1t

+
J∑
j=1

a14�30
j · δx1t+1�j + a14�34 · δmct + b14 = 0�

where

h14 ≡ λ̂tm̂ct Ŷt� a14�1 ≡ h14�

a14�10 ≡ −ζpεpφp(1 + π̂t)−ζpεp−1π̂tβEt
[
(1 + π̂t+1)

εpx̂1�t+1

]
�

a14�11
j ≡ωjφp(1 + π̂t)−ζpεpεpβ

[
(1 + π̂t+1�j)

εp−1π̂t+1�jx̂1�t+1�j

]
�

a14�24 ≡ h14� a14�34 = h14� a14�28 = −x̂1�t �

a14�30 ≡ωjφp(1 + π̂t)−ζpεpβ
[
(1 + π̂t+1�j)

εp x̂1�t+1�j

]
�

b14 ≡ R14
t x̂1�t �

Condition (B.103)

A first-order Taylor expansion of (B.103) implies

x̂2�tδx2t = R15
t x̂2�t + λ̂tŶtδλt + λ̂tŶtδYt

+ ζp(1 − εp)φpβ(1 + π̂t)ζp(1−εp)−1π̂tEt
[
(1 + π̂t+1)

εp−1x̂2�t+1

] · δπt
+φpβ(1 + π̂t)ζp(1−εp)(εp − 1)Et

[
(1 + π̂t+1)

εp−2π̂t+1x̂2�t+1 · δπt+1

]
+φpβ(1 + π̂t)ζp(1−εp)Et

[
(1 + π̂t+1)

εp−1x̂2�t+1 · δx2t+1

]
�

where R15
t is the residual introduced in (B.124). Rearranging the terms and using new

notation, we have

a15�1 · δλt + a15�10 · δπt +
J∑
j=1

a15�11
j · δπt+1�j + a15�29 · δx2t +

J∑
j=1

a15�31
j · δx2t+1�j + b15 = 0�

where

a15�1 ≡ λ̂tŶt�

a15�10 ≡ ζp(1 − εp)φp(1 + π̂t)ζp(1−εp)−1π̂tβEt
[
(1 + π̂t+1)

εp−1x̂2�t+1

]
�

a15�11
j ≡ωjφp(1 + π̂t)ζp(1−εp)(εp − 1)β

[
(1 + π̂t+1�j)

εp−2π̂t+1�jx̂2�t+1�j

]
�
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a15�24 ≡ λ̂tŶt� a15�29 = −x̂2�t �

a15�31
j ≡ωjφp(1 + π̂t)ζp(1−εp)β

[
(1 + π̂t+1�j)

εp−1x̂2�t+1�j

]
�

b15 ≡ R15
t x̂2�t �

Condition (B.104)

A first-order Taylor expansion of (B.104) leads to

δRt − δwt − δNt + δK#
t

+R16
t = 0�

where R16
t is the residual of the equation; see (B.125). In terms of coefficients, we get

a16�7 · δRt + a16�20 · δwt + a16�23 · δNt + a16�25 · δK#
t

+ b16 = 0�

where

a16�7 = 1� a16�20 = −1� a16�23 = −1� a16�25 = 1� b16 =R16
t �

Condition (B.105)

A first-order Taylor expansion of (B.105) is

a17�20 · δwt + a17�23δN̂t + a17�25 · δK#
t

+ a17�34 · δmct + b17 = 0�

where R17
t is the residual in (B.126), and

a17�20 = −1� a17�23 = −α� a17�25 = α� a17�34 = 1� b17 = ln
(
1 +R17

t

)
�

Condition (B.106)

A Taylor expansion of (B.106) is

îtδit = (1 − ρi)φππ̂t · δπt + (1 − ρi)φy · δYt +R18
t ît �

where R18
t is the residual in (B.127). In compact notation, we get

a18�10 · δπt + a18�15 · δit + a18�24 · δYt + b18 = 0�

where

a18�10 ≡ (1 − ρi)φππ̂t�
a18�15 ≡ −̂it�
a18�24 ≡ (1 − ρi)φy�
b18 ≡ R18

t ît �
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Condition (B.107)

A first-order Taylor expansion of (B.107) leads to

ŶtδYt =R56
t Ŷt + ĈtδCt + ÎtδIt + ĜtδGt +χ1ûtδut

Kt

Zt
+ 2χ2(ût − 1)

Kt

Zt
ût · δut �

Introducing compact notation, we get

a19�3 · δCt + a19�8 · δut + a19�12 · δIt + a19�24 · δYt + a19�36δGt + b19 = 0�

where

a19�3 = Ĉt�

a19�8 = χ1ût
Kt

Zt
+ 2χ2(ût − 1)

Kt

Zt
ût�

a19�12 = Ît � a19�24 = −Ŷt� a19�36 = Ĝt� b19 =R19
t Ŷt�

with R19
t being the residual defined in (B.128).

Condition (B.108)

An expansion of (B.108) is

δKt+1K̂t+1 = R20
t K̂t+1

+Zt
{[

−τ
(
Ît

It−1
− 1

)
Ît

It−1

]
Ît +

[
1 − τ

2

(
Ît

It−1
− 1

)2]
Ît

}
· δIt �

where R20
t is the residual (B.129); introducing compact notation, we get

a20�12 · δIt + a20�35 · δKt+1 + b20 = 0�

where

a20�12 = Zt

{[
−τ

(
Ît

It−1
− 1

)
Ît

It−1

]
Ît +

[
1 − τ

2

(
Ît

It−1
− 1

)2]
Ît

}
�

a20�35 ≡ −K̂t+1� b20 ≡R20
t K̂t+1�

B.5. Defining Residuals in Equations

The unit-free residuals are defined by the following twenty equations that correspond
to the optimality conditions (B.69)–(B.88), respectively:

R1
t = 1

λ̂t

[
1

Ĉt − bĈt−1

−βbEt
(

1
Ĉt+1 − bĈt

)]
− 1� (B.110)

R2
t = 1

R̂tZt

[
χ1 +χ2(ût − 1)− 1

] − 1� (B.111)

R3
t = 1

λ̂t
βEt

[̂
λt+1 · (1 + ît) · (1 + π̂t+1)

−1
] − 1� (B.112)
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R4
t = 1

λ̂t

{
μ̂tZt

[
1 − τ

2

(
Ît

Ît−1

− 1
)2

− τ
(
Ît

Ît−1

− 1
)
Ît

Ît−1

]
(B.113)

+βEt
[
μ̂t+1Zt+1τ

(
Ît+1

Ît
− 1

)(
Ît+1

Ît

)2]}
− 1�

R5
t = 1

μ̂t
βEt

[̂
λt+1

(
R̂t+1ût+1 − 1

Zt+1

[
χ1(ût+1 − 1)+ χ2

2
(ût+1 − 1)2

])
(B.114)

+ μ̂t+1(1 − d)
]

− 1�

R6
t = 1

ŵ#
t

εw

εw − 1
f̂1�t

f̂2�t

− 1� (B.115)

R7
t = 1

f̂1�t

{
ψ

(
ŵt

ŵ#
t

)εw(1+η)
N̂1+η
t

(B.116)

+φwβ(1 + π̂t)−ζwεw(1+η)Et

[
[1 + π̂t+1]εw(1+η)

(
ŵ#
t+1

ŵ#
t

)εw(1+η)
f̂1�t+1

]}
− 1�

R8
t = 1

f̂2�t

{̂
λt

(
ŵt

ŵ#
t

)εw

N̂t

(B.117)

+φwβ(1 + π̂t)ζw(1−εw)Et

[
(1 + π̂t+1)

εw−1

(
ŵt+1

ŵ#
t+1

)εw

f̂2�t+1

]}
− 1�

R9
t = 1

ŵ1−εw
t

{
(1 −φw)

(
ŵ#
t

)1−εw

(B.118)
+ (1 +πt−1)

ζw(1−εw)(1 + π̂t)εw−1φww
1−εw
t−1

} − 1�

R10
t = 1

Ŷt
At

(
K̂#
t

)α
N̂1−α
t

[
Δ̂
p
t

]−1 − 1� (B.119)

R11
t = 1

Δ̂
p
t

(1 + π̂t)εp
[
(1 −φw)

(
1 + π̂#

t

)−εp + (1 +πt−1)
−ζpεpφpΔ

p
t−1

] − 1� (B.120)

R12
t = 1

(1 + π̂t)1−εp
[
(1 −φp)

(
1 + π̂#

t

)1−εp +φp(1 +πt−1)
ζp(1−εp)] − 1� (B.121)

R13
t = 1

1 + π̂#
t

εp

εp − 1
(1 + π̂t) x̂1�t

x̂2�t
− 1� (B.122)

R14
t = 1

x̂1�t

{̂
λtm̂ct Ŷt +φpβ(1 + π̂t)−ζpεpEt

[
(1 + π̂t+1)

εpx̂1�t+1

]} − 1� (B.123)

R15
t = 1

x̂2�t

{̂
λtŶt +φpβ(1 + π̂t)ζp(1−εp)Et

[
(1 + π̂t+1)

εp−1x̂2�t+1

]} − 1� (B.124)

R16
t = R̂t

ŵt

1 − α
α

· K̂#
t N̂

−1
t − 1� (B.125)
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R17
t = 1

ŵt
m̂ct(1 − α)At

(
K̂#
t

)α
N−α
t − 1� (B.126)

R18
t = 1

ît

{
(1 − ρi)i+ ρiit−1

(B.127)
+ (1 − ρi)

[
φπ

(
π̂t −π∗) +φy(ln Ŷt − lnYt−1)

] + εi�t
} − 1�

R19
t = 1

Ŷt

[
Ĉt + Ît + Ĝt +

(
χ1(ût − 1)+χ2(ût − 1)2

)Kt

Zt

]
− 1� (B.128)

R20
t = 1

K̂t+1

{
Zt

[
1 − τ

2

(
Ît

It−1
− 1

)2]
Ît + (1 − d)Kt

}
− 1� (B.129)

B.6. Details of Numerical Analysis

We describe the calibration and solution procedures, and we outline the numerical re-
sults.

B.6.1. Calibration and Solution Procedures

We split the parameters of the model into two sets: we calibrate the parameters{
εw�εp�ω

g�π∗�α�χ2�ψ�β�d
}

to the standard values in the literature, and we fix the remaining parameters

{ρi�ρa�ρz�ρg�σεa�σεi �σεz �σεg� b�φw�φp�ζw� ζp�η�τ�φπ�φy}
in line with the estimates obtained in Sims (2014) for the U.S. economy. Finally, param-
eter χ1 is calculated as 1/β− (1 − δ) (which is obtained under a normalization of ut to
unity in the steady state). Table SII summarizes our benchmark parameter choice.

TABLE SII

BENCHMARK PARAMETERIZATION OF THE NEW KEYNESIAN MODEL

Parameters in the Processes for Shocks Estimated From the U.S. Economy Data

ρa ρi ρz ρg σa σi σz σg ωg

Values 0.99 0.79 0.90 0.96 0.0074 0.0013 0.0091 0.0038 0.2

Other Parameters Estimated From the U.S. Economy Data

φπ φy φw φp ζw ζp η b τ

Values 1.35 0.32 0.43 0.71 0.38 0.03 1.23 0.72 1.87

Parameters Calibrated to the U.S. Economy Data

εw εp π∗ α χ1 χ2 ψ β d

Values 10 10 0 1/3 0.0351 0.01 2 0.99 0.025
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We evaluate the accuracy of perturbation solutions on a stochastic simulation of 10,200
observations (the first 200 observations were discarded to eliminate the effect of the ini-
tial conditions). The Dynare’s representation of the state space includes the current en-
dogenous state variables {πt−1�wt−1�Ct−1� It−1�Nt−1�Yt−1�Δ

p
t−1� it−1�Kt}, the past exoge-

nous state variables {At−1�Zt−1�ω
g
t−1}, and the current disturbances {εa�t� εi�t� εz�t� εg�t}.

We use a Dynare’s option of pruning for simulating a second-order perturbation solution.
To compute conditional expectations, we use a monomial integration rule with J = 2N
nodes, where N = 4 is the number of exogenous shocks. This rule delivers very accurate
approximation to expectation functions (up to six accuracy digits) in the context of real
business-cycle models (see Judd, Maliar, and Maliar (2011), for a detailed description of
this rule).

B.6.2. Numerical Results on the Lower Error Bound

We report the size of approximation errors in Table SIII. For a future variable xt+1�j ∈
{δλt+1�j� δCt+1�j � � � �}, statistics reported in columns L1 and L∞ are the mean and maximum
of t-period absolute values of approximation errors in that variable across J = 8 integra-
tion nodes, that is, 1

J

∑J

j=1 δxt+1�j and maxj∈J δxt+1�j , respectively. We consider three alterna-
tive parameterizations. The first parameterization corresponds to the benchmark values
of the parameters in Table SII. The second parameterization considers the benchmark
values for all the parameters, except of π∗, which is set to 0�02. In the final parameteri-
zation, we decrease the values of εw and εp relative to the benchmark parameterization;
namely, εw and εp are set to 5.

Under Parameterization 1, we got a lower bound on approximation errors of order
100�11 ≈ 129%, which corresponds to an approximation error in πt . Parameterization 2
produces a similar size of approximation errors (but the biggest approximation error is
obtained in variable π#

t ). Under Parameterization 3, the lower error bound for PER2
reaches 10−0�43 ≈ 37%, which corresponds to an approximation error in Nt . Overall, as it
follows from Table SII, for the studied new Keynesian model, such variables are inflation
variables πt and π#

t , investment variables It , it , and ut , as well as price dispersion Δpt and
labor variable Nt .

B.6.3. Analysis of Residuals in the New Keynesian Model

In Appendix B.3, we listed twenty equations (B.110)–(B.129) that define unit-free resid-
uals R1

t � � � � �R20
t corresponding to the twenty FOCs (B.69)–(B.88) of the new Keynesian

model. We evaluate the accuracy of perturbation solutions on the same set of simulated
points as the one used for constructing the approximation errors.

We report the residuals in Table SIV. If we exclude from consideration residuals R11
t ,

R12
t , R13

t , and R18
t in equations (B.79)–(B.81) and (B.86), the remaining residuals are

quite low; for example, under Parameterization 1, the maximum residuals would be
10−4�55 ≈ 0�0028% for a PER2 solution. However, the residuals are enormous if we take
into account these four residuals R11

t , R12
t , R13

t , and R18
t , namely, the maximum residual

is 10−0�27 ≈ 54%.
The analysis of residuals also provides us with some insight into which variables are

approximated inaccurately. For example, equation (B.80) contains only current and past
inflation measures and definition (B.120) of residual R12

t indicates that the inflation vari-
ables π̂t and π̂#

t are approximated poorly (either one or the other or both):

R12
t = 1

(1 + π̂t)1−εp
[
(1 −φp)

(
1 + π̂#

t

)1−εp +φp(1 +πt−1)
ζp(1−εp)] − 1� (B.130)
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TABLE SIII

APPROXIMATION ERRORS IN THE CURRENT AND FUTURE VARIABLES IN THE NEW KEYNESIAN MODELa

Parameterization 1 Parameterization 2 Parameterization 3

PER1 PER2 PER1 PER2 PER1 PER2

L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

δλt −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00 −3�00
δλt+1�j −3�15 −2�79 −3�19 −2�81 −2�31 −2�09 −2�31 −2�09 −3�21 −2�79 −3�25 −2�81
δCt −2�25 −1�99 −2�25 −1�98 −3�32 −2�63 −3�25 −2�58 −2�13 −1�84 −2�13 −1�83
δCt+1�j −1�85 −1�56 −1�84 −1�56 −2�95 −2�24 −2�89 −2�20 −1�78 −1�47 1�78 −1�47
δμt −1�47 −1�41 −1�47 −1�41 −1�50 −1�47 −1�49 −1�46 −1�38 −1�31 −1�37 −1�31
δμt+1�j −1�38 −1�32 −1�38 −1�32 −1�44 −1�41 −1�44 −1�40 −1�35 −1�28 −1�35 −1�28
δRt −1�33 −1�09 −1�33 −1�09 −2�16 −1�69 −2�12 −1�67 −1�40 −1�13 −1�40 −1�13
δut −0�79 −0�55 −0�78 −0�54 −1�62 −1�14 −1�57 −1�12 −0�85 −0�59 −0�85 −0�58
δπt 0�07 0�30 −0�05 0�11 −1�87 −1�87 −1�86 −1�86 −0�04 −0�03 −0�04 −0�04
δπt+1�j −5�07 −4�04 −5�12 −4�04 −3�33 −3�05 −3�40 −3�10 −5�41 −4�37 −5�40 −4�38
δIt −0�34 −0�33 −0�34 −0�33 −0�33 −0�33 −0�33 −0�33 −0�34 −0�34 −0�34 −0�34
δIt+1�j −1�45 −1�35 −1�45 −1�35 −1�54 −1�47 −1�54 −1�47 −1�47 −1�36 −1�47 −1�36
δRt+1�j −3�66 −3�59 −3�66 −3�59 −3�75 −3�71 −3�76 −3�72 −3�69 −3�62 −3�69 −3�62
δit −0�78 −0�59 −0�78 −0�59 −0�70 −0�51 −0�69 −0�50 −0�80 −0�59 −0�80 −0�59
δf1t −1�58 −1�50 −1�58 −1�49 −1�36 −1�31 −1�36 −1�32 −1�32 −1�23 −1�32 −1�23
δf1t+1�j −2�91 −2�78 −2�91 −2�78 −2�44 −2�32 −2�45 −2�32 −2�77 −2�65 −2�77 −2�65
δf2t −2�04 −1�95 −2�03 −1�94 −1�51 −1�47 −1�53 −1�48 −1�75 −1�65 −1�75 −1�65
δf2t+1�j −2�51 −2�40 −2�51 −2�40 −2�13 −2�05 −2�14 −2�05 −2�28 −2�18 −2�28 −2�18
δwt −2�97 −2�88 −2�96 −2�87 −3�05 −3�01 −3�04 −3�00 −2�37 −2�28 −2�36 −2�28
δw#

t
−1�77 −1�69 −1�77 −1�69 −1�88 −1�83 −1�87 −1�82 −1�52 −1�43 −1�52 −1�43

δw#
t+1�j

−2�42 −2�20 −2�42 −2�20 −2�17 −1�77 −2�17 −1�75 −2�15 −2�03 −2�15 −2�03
δNt −0�48 −0�40 −0�48 −0�40 −0�59 −0�54 −0�59 −0�54 −0�52 −0�43 −0�52 −0�43
δYt −1�59 −1�05 −1�59 −1�05 −1�04 −0�93 −1�04 −0�93 −1�61 −1�06 −1�61 −1�06
δK#

t
−0�54 −0�49 −0�54 −0�49 −0�60 −0�57 −0�60 −0�57 −0�57 −0�52 −0�57 −0�52

δΔpt −0�47 −0�47 −0�47 −0�47 −0�46 −0�46 −0�46 −0�46 −0�50 −0�50 −0�50 −0�50
δπ#

t
−0�66 −0�21 −0�31 −0�14 0�10 0�10 0�10 0�10 −0�33 −0�32 −0�32 −0�31

δx1t −2�29 −1�60 −2�33 −1�61 −1�82 −1�72 −1�91 −1�78 −2�33 −1�62 −2�34 −1�62
δx2t −3�02 −3�01 −3�57 −3�55 −2�73 −2�72 −3�84 −3�79 −3�38 −3�37 −3�63 −3�61
δx1t+1�j −3�34 −2�63 −3�38 −2�65 −2�88 −2�73 −2�96 −2�79 −3�39 −2�66 −3�40 −2�67
δx2t+1�j −4�12 −4�09 −4�67 −4�63 −3�80 −3�76 −4�91 −4�82 −4�53 −4�51 −4�78 −4�75
δut+1�j −5�64 −5�27 −5�63 −5�17 −5�62 −5�36 −5�50 −5�13 −5�69 −5�32 −5�68 −5�23
δmct −1�79 −1�56 −1�79 −1�55 −2�54 −2�12 −2�50 −2�11 −1�79 −1�55 −1�79 −1�55
δKt+1 −1�94 −1�93 −1�94 −1�93 −1�94 −1�93 −1�94 −1�93 −1�95 −1�94 −1�95 −1�94
δGt −0�99 −0�72 −0�98 −0�71 −2�12 −1�43 −2�07 −1�39 −1�00 −0�70 −1�00 −0�70

aNotes: Parameterization 1 corresponds to our benchmark parameter choice summarized in Table SII. Parameterization 2 changes
the inflation target parameter π∗ to 0.02. Parameterization 3 assumes that εw , εp are equal to 5. PER1 and PER2 denote the first- and
second-order perturbation solutions. L1 and L∞ are, respectively, the average and maximum of absolute values of the corresponding
approximation errors across test points (in log10 units) on a stochastic simulation of 10,000 observations. For a future variable xt+1�j ,
statistics reported in columns L1 and L∞ are the mean and maximum of t-period absolute values of approximation errors in that
variable across J = 8 integration nodes, that is, 1

J

∑J
j=1 δxt+1�j and maxj∈J δxt+1�j , respectively.

However, in general, the model’s equations are complex and it is difficult to see which
variables are approximated poorly by looking at the size of residuals. In this respect, our
lower-bound error analysis has more sharp implications.

Finally, our analysis of residuals shows that for more nonlinear models, like our new
Keynesian model, a specific way of constructing the residuals might be critical for the
results. For example, consider the residual R12

t given in (B.130); the mean of R12
t for
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TABLE SIV

RESIDUALS IN THE EQUILIBRIUM CONDITIONS OF THE NEW KEYNESIAN MODELa

Parameterization 1 Parameterization 2 Parameterization 3

PER1 PER2 PER1 PER2 PER1 PER2

L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞ L1 L∞

R1 −3�86 −3�86 −5�58 −5�43 −3�88 −3�88 −4�49 −4�45 −3�88 −3�88 −5�75 −5�58
R2 −7�53 −6�37 −6�11 −5�96 −7�61 −6�41 −5�10 −5�05 −7�56 −6�44 −6�20 −6�06
R3 −4�53 −4�53 −7�12 −6�87 −4�54 −4�54 −5�30 −5�26 −4�54 −4�54 −7�34 −7�07
R4 −3�29 −3�29 −6�26 −5�59 −3�49 −3�49 −5�16 −5�01 −3�35 −3�35 −6�43 −5�76
R5 −4�60 −4�60 −6�67 −6�58 −4�64 −4�64 −5�02 −4�97 −4�59 −4�59 −6�77 −6�65
R6 −16�04 −15�35 −15�98 −15�35 −15�97 −15�35 −15�90 −15�18 −15�88 −15�35 −15�90 −15�18
R7 −2�90 −2�90 −4�67 −4�55 −2�33 −2�33 −4�03 −3�98 −3�18 −3�18 −5�37 −5�18
R8 −3�65 −3�65 −5�36 −5�28 −3�17 −3�17 −4�27 −4�23 −3�94 −3�94 −6�03 −5�81
R9 −7�57 −6�37 −6�37 −5�76 −7�36 −6�12 −4�68 −4�50 −8�24 −7�03 −6�27 −5�96
R10 −15�76 −15�05 −15�78 −15�05 −15�54 −15�05 −15�70 −15�05 −15�86 −15�18 −15�79 −15�05
R11 −0�54 −0�54 −0�54 −0�54 −0�53 −0�53 −0�53 −0�53 −0�55 −0�55 −0�55 −0�55
R12 −0�54 −0�54 −0�54 −0�54 −0�81 −0�81 −0�80 −0�80 −0�66 −0�66 −0�66 −0�66
R13 −0�30 −0�30 −0�30 −0�30 −0�32 −0�32 −0�32 −0�32 −0�32 −0�32 −0�32 −0�32
R14 −3�01 −3�01 −5�63 −5�20 −2�59 −2�59 −5�11 −4�65 −3�38 −3�38 −5�86 −5�55
R15 −3�13 −3�13 −5�78 −5�34 −2�74 −2�73 −5�60 −4�95 −3�60 −3�60 −5�98 −5�70
R16 −15�61 −14�95 −15�41 −14�78 −15�64 −15�00 −15�42 −14�75 −15�59 −14�91 −15�46 −14�81
R17 −15�86 −15�18 −15�80 −15�05 −15�67 −15�05 −15�78 −15�05 −15�85 −15�18 −15�05 −15�05
R18 −1�00 −0�28 −0�99 −0�27 −1�48 −0�75 −1�47 −0�75 −1�48 −0�75 −0�75 −0�75
R19 −6�83 −6�12 −6�30 −5�96 −7�34 −6�45 −5�75 −5�50 −5�66 −5�56 −5�51 −5�51
R20 −8�04 −6�88 −8�18 −7�51 −8�31 −7�12 −8�62 −7�92 −8�06 −6�91 −7�38 −7�38

aNotes: Parameterization 1 corresponds to our benchmark parameter choice summarized in Table SII. Parameterization 2 changes
the inflation target parameter π∗ to 0.02. Parameterization 3 assumes that εw , εp are equal to 5. PER1 and PER2 denote the first-
and second-order perturbation solutions; L1 and L∞ are, respectively, the average and maximum of absolute values of residuals in
the model’s equations across optimality condition and test points (in log10 units) on a stochastic simulation of 10,000 observations.

the PER1 method is equal to −0�5385; see Table SIV. Consider another expression for a
unit-free residual in the same equation (B.80):

R12

t =
[
(1 −φp)

(
1 + π̂#

t

)1−εp +φp(1 +πt−1)
ζp(1−εp)]1/(1−εp) − 1

π̂t
− 1� (B.131)

The mean residual R12

t of PER1 is now equal to 4�145, which is huge (and the maximum
residual is even larger)! It is easy to see why our benchmark representation R12

t leads to
much smaller residuals than the alternative representation R12

t : in the former case, the
residual is evaluated relative to the denominator (1 + π̂t)1−εp ≈ 1, while in the latter case,
it is evaluated relative to π̂t ≈ 0. We find that the residuals R11

t and R13
t in equations

(B.79) and (B.81), respectively, also significantly depend on a specific way in which they
are represented. Hence, to make meaningful qualitative inferences about accuracy from
the analysis of residuals, it is important to take into account the size of variables with
respect to which residuals are evaluated. In turn, our lower error bounds are not subject
to this shortcoming: they are independent of the way in which the model’s equations are
written.



36 K. L. JUDD, L. MALIAR, AND S. MALIAR

REFERENCES

CALVO, G. (1983): “Staggered Prices in a Utility-Maximization Framework,” Journal of Monetary Economics,
12, 383–398. [6]

GALÍ, J. (2008): Monetary Policy, Inflation and the Business Cycles: An Introduction to the New Keynesian Frame-
work. Princeton, NJ: Princeton University Press. [5]

JUDD, K., L. MALIAR, AND S. MALIAR (2011): “Numerically Stable and Accurate Stochastic Simulation Ap-
proaches for Solving Dynamic Models,” Quantitative Economics, 2, 173–210. [33]

KUBLER, F., AND K. SCHMEDDERS (2005): “Approximate versus Exact Equilibria in Dynamic Economies,”
Econometrica, 73, 1205–1235. [4]

SIMS, E. (2014): “Graduate Macro Theory II: A Medium Scale DSGE Model,” Manuscript, University of
Notre Dame. [32]

Hoover Institution, Stanford University, Office 344, Stanford, CA 94305-6072, U.S.A. and
NBER; kenneth.judd@gmail.com,

Dept. of Economics, Stanford University, Office 142, Stanford, CA 94305-6072, U.S.A. and
Dept. of Economics, University of Alicante, second floor, Office 7, Campus of San Vicente,
03690, Alicante, Spain; maliarl@stanford.edu,

and
Dept. of Economics, Lucas Hall, Leavey School of Business, Santa Clara University, Office

316J, 500 El Camino Real, Santa Clara, CA 95053, U.S.A.; smaliar@scu.edu.

Co-editor Elie Tamer handled this manuscript.

Manuscript received 21 August, 2014; final version accepted 26 September, 2016; available online 2 March, 2017.

http://www.e-publications.org/srv/ecta/linkserver/setprefs?rfe_id=urn:sici%2F0012-9682%28201705%2985%3A3%2B%3C1%3ASTLBOA%3E2.0.CO%3B2-3
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/1&rfe_id=urn:sici%2F0012-9682%28201705%2985%3A3%2B%3C1%3ASTLBOA%3E2.0.CO%3B2-3
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/7&rfe_id=urn:sici%2F0012-9682%28201705%2985%3A3%2B%3C1%3ASTLBOA%3E2.0.CO%3B2-3
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/8&rfe_id=urn:sici%2F0012-9682%28201705%2985%3A3%2B%3C1%3ASTLBOA%3E2.0.CO%3B2-3
mailto:kenneth.judd@gmail.com
mailto:maliarl@stanford.edu
mailto:smaliar@scu.edu
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:1/1&rfe_id=urn:sici%2F0012-9682%28201705%2985%3A3%2B%3C1%3ASTLBOA%3E2.0.CO%3B2-3
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:3/7&rfe_id=urn:sici%2F0012-9682%28201705%2985%3A3%2B%3C1%3ASTLBOA%3E2.0.CO%3B2-3
http://www.e-publications.org/srv/ecta/linkserver/openurl?rft_dat=bib:4/8&rfe_id=urn:sici%2F0012-9682%28201705%2985%3A3%2B%3C1%3ASTLBOA%3E2.0.CO%3B2-3

	ECMA2017
	Introduction
	A Lower Bound on Approximation Errors
	A Framework for Constructing a Lower Error Bound
	Two-Dimensional Example
	Discussion

	Assessing Approximation Errors in the Optimal Growth Model
	Discretizing a System of Functional Equations
	The Model
	State-Contingent Approximation Errors
	Discretizing the Optimality Conditions

	A Lower Bound on Approximation Errors
	Deﬁning a Lower Error Bound
	Implementation Details of the Lower-Bound Error Analysis
	Domain for Evaluating the Accuracy of Solutions
	Numerical Integration
	Norm for Measuring Approximation Errors


	Numerical Experiments
	Calibration and Solution Procedure
	Numerical Results on the Lower Error Bound


	Relation of Lower-Bound Error Analysis to Other Accuracy Measures in the Literature
	Conventional Forward Error Analysis for the Growth Model
	Backward and Mixed Forward-Backward Error Analysis
	Analysis of Residuals in the Model's Equations
	Analysis of Residuals in the Neoclassical Growth Model
	Advantages and Shortcomings of the Analysis of Residuals


	A New Keynesian Model
	Conclusion
	References
	Author's Addresses

	ecta1690-sup-0001-supplement
	Appendix A: Neoclassical Stochastic Growth Model
	Constructing Lower Error Bound by Using Linearized Model's Equations
	Euler Equation
	Budget Constraint
	Minimization Problem

	Constructing Lower Error Bound by Using Nonlinear Model's Equations
	Alternative Implementations of Lower-Bound Error Analysis

	Appendix B: New Keynesian Model
	The Model
	Labor Packers
	Households
	Final-Good Firms
	Intermediate-Good Firms
	Government
	Monetary Authority

	Deriving FOCs
	Labor Packers
	Households
	Final-Good Producers
	Intermediate-Good Producers
	Aggregate Price Relationship
	Aggregate Wage Relationship
	Aggregate Output
	Law of Motion for Price Dispersion Deltatp
	Aggregate Resource Constraint
	Full Set of Optimality Conditions

	Deﬁning a Lower Error Bound
	Deﬁning Approximation Errors in Variables
	Setting up a Minimization Problem

	Constructing Approximation Errors Using Linearized Model's Equations
	Condition (B.89)
	Condition (B.90)
	Condition (B.91)
	Condition (B.92)
	Condition (B.93)
	Condition (B.94)
	Condition (B.95)
	Condition (B.96)
	Condition (B.97)
	Condition (B.98)
	Condition (B.99)
	Condition (B.100)
	Condition (B.101)
	Condition (B.102)
	Condition (B.103)
	Condition (B.104)
	Condition (B.105)
	Condition (B.106)
	Condition (B.107)
	Condition (B.108)

	Deﬁning Residuals in Equations
	Details of Numerical Analysis
	Calibration and Solution Procedures
	Numerical Results on the Lower Error Bound
	Analysis of Residuals in the New Keynesian Model


	References
	Author's Addresses


