
Vol.:(0123456789)

Computational Economics
https://doi.org/10.1007/s10614-020-09983-3

1 3

Matlab, Python, Julia: What to Choose in Economics?

Chase Coleman1 · Spencer Lyon1 · Lilia Maliar2 · Serguei Maliar3

Accepted: 8 April 2020 
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We perform a comparison of Matlab, Python and Julia as programming languages 
to be used for implementing global nonlinear solution techniques. We consider two 
popular applications: a neoclassical growth model and a new Keynesian model. The 
goal of our analysis is twofold: First, it is aimed at helping researchers in econom-
ics choose the programming language that is best suited to their applications and, 
if needed, help them transit from one programming language to another. Second, 
our collections of routines can be viewed as a toolbox with a special emphasis on 
techniques for dealing with high dimensional economic problems. We provide the 
routines in the three languages for constructing random and quasi-random grids, 
low-cost monomial integration, various global solution methods, routines for check-
ing the accuracy of the solutions as well as examples of parallelization. Our global 
solution methods are not only accurate but also fast. Solving a new Keynesian model 
with eight state variables only takes a few seconds, even in the presence of an active 
zero lower bound on nominal interest rates. This speed is important because it allows 
the model to be solved repeatedly as would be required for estimation.

Keywords Toolkit · Dynamic model · New Keynesian model · Global nonlinear · 
Low discrepancy · Quasi Monte Carlo

Electronic supplementary material The online version of this article (https ://doi.org/10.1007/s1061 
4-020-09983 -3) contains supplementary material, which is available to authorized users.

 * Chase Coleman 
 cc7768@gmail.com

 Spencer Lyon 
 spencerlyon2@gmail.com

 Lilia Maliar 
 maliarl@stanford.edu

 Serguei Maliar 
 smaliar@scu.edu

1 New York University, New York, USA
2 CUNY Graduate Center and CEPR, New York, USA
3 Santa Clara University, Santa Clara, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-020-09983-3&domain=pdf
https://doi.org/10.1007/s10614-020-09983-3
https://doi.org/10.1007/s10614-020-09983-3


 C. Coleman et al.

1 3

JEL Classification C6 · C61 · C63 · C68 · E31 · E52

1 Introduction

We perform a comparison of Matlab, Python and Julia as programming languages 
to be used for implementing global nonlinear solution techniques. We consider two 
popular applications: a neoclassical growth model and a new Keynesian model. 
Our overall experience with each language was comparable, though it is useful to 
recognize that each language has its specific strengths. Both Julia and Python are 
open-source which facilitates transparency and reproducibility. Julia outperforms 
both Matlab and Python in algorithms that require numerical solvers or optimiz-
ers. Python benefits from an active community and strong package ecosystem which 
makes finding the right tools easy. Finally, Matlab benefits from extensive documen-
tation, technical support, and various built in toolboxes. The running times were not 
significantly different across three languages considered. Ultimately, the best choice 
of programming language depends on various factors including: model size, solu-
tion complexity, ease of writing, and co-author preferences. Regardless of the pro-
gramming language chosen, our experience shows that transitioning between each 
of the three languages we consider should not require a substantial learning effort.

Our paper is motivated by the growing interest among economists in global non-
linear solution methods. Value function discretization is the most well-known exam-
ple of a global nonlinear solution method, but there are a variety of other iterative 
and Euler-equation based methods that differ in the way they approximate, inter-
polate, integrate and construct nonlinear solutions. These methods solve economic 
models on grids of points that cover a relevant area of the state space, and they 
generally produce more accurate solutions than perturbation methods which typi-
cally build approximations around a single point.1 Also, global methods are useful 
for solving some models in which perturbation methods are either not applicable 
or their applications are limited; see Taylor and Uhlig (1990) and Judd (1998) for 
reviews of the earlier methods; and see Maliar and Maliar (2014) and Fernández-
Villaverde et al. (2015) for the reviews of newer literature.2 Finally, the recent devel-
opments of numerical techniques for dealing with high-dimensional data has greatly 
extended the class of models that can be studied with global solution methods. In 
particular, it is now possible to construct global nonlinear solutions to economic 

1 The accuracy of local perturbation solutions can decrease rapidly away from steady state even in 
relatively smooth models; see Kollmann et  al. (2011). In models with stronger nonlinearities, such as 
new Keynesian models, approximation errors can reach hundreds of percent under empirically relevant 
parameterizations; see Judd et al. (2017). In models of labor search, a global solution is important for 
accurate capturing even first moments of equilibrium dynamics; see Petrosky-Nadeau and Zhang (2017) .
2 For example, perturbation methods are not well suitable for analyzing sovereign default problems 
(e.g., Arellano (2008) and portfolio choice problems (e.g., Hasanhodzic and Kotlikoff (2013)). There are 
perturbation-based methods that can deal with occasionally binding constraints but they are limited to 
the first-order approximation, for example, see Laseen and Svensson (2011) and Guerrieri and Iacoviello 
(2015).



1 3

Matlab, Python, Julia: What to Choose in Economics?  

models with hundreds and even thousands of state variables that are intractable with 
conventional global solution methods (such as value-function discretization) due to 
the curse of dimensionality.3

However, global nonlinear solution methods are more difficult to automate than 
perturbation methods, and their implementation requires more substantial program-
ming from researchers. In particular, there is still no consensus in the profession 
on what software to use for implementing global solution methods, unlike for per-
turbation methods where a common choice is the Dynare or IRIS platforms. One 
important aspect of the implementation of a global solution method is the choice of 
programming language to use. Traditionally, Matlab is used in economics, although 
some researchers have also used Fortan and C. Recently, Python and Julia have 
begun to see a more widespread use in the economics literature.

In this paper, we pursue two goals: First, we provide a comparison between global 
solution methods implemented in Matlab, Python and Julia in the context of two 
popular applications: a neoclassical growth model and a new Keynesian model. Our 
goal is to help economic researchers choose the programming language that is best 
suited to their own situation, and, if needed, help them transition from one program-
ming language to another. The readers can see and compare how the same algorithm 
is implemented in different languages and, as a result, will understand some of the 
unique aspects of each language and choose the one which fits their needs.4 The 
implementation, structure and number of lines of code are similar across all three 
languages.

Second, we provide a carefully documented collection of routines for Matlab, 
Python and Julia that can be used for constructing global nonlinear solutions with 
a special emphasis on modern techniques for problems with high dimensionality. 
In particular, our code includes routines for constructing random and quasi-random 
grids, low-cost monomial integration methods, approximating functions using com-
plete polynomials, as well as routines for computing the numerical accuracy of 
solutions. Much of this code is generic in a way which allows it to be easily port-
able to other applications including problems with kinks and occasionally binding 
constraints. Our examples are solved using a variety of solution techniques includ-
ing: conventional policy function iteration, conventional value function iteration, an 
Euler equation method, the endogenous grid method of Carroll (2005), and several 
variants of the envelope condition method of Maliar and Maliar (2015). We also 
include examples of parallelization in the three languages considered.

Aruoba and Fernandez-Villaverde (2015) is closely related to our work. In their 
paper, the authors compare 18 different programming languages by implement-
ing the same algorithm—value-function discretization—to solve the stochastic 

3 For example, Maliar et al. (2019) use deep learning and Google Tensorflow platform to solve a ver-
sion of Krusell and Smith’s (1998) model by approximating decision functions with 2000 state varia-
bles; Lepetuyk et al. (2019) use a combination of unsupervised and supervised (deep) learning to solve a 
large-scale projection model of the Bank of Canada, etc.
4 Additionally, we provide a github repository with the code and notebooks with a description of our 
code and algorithms on the QuantEcon Notebook site. The code is licensed under the BSD-3 license and 
the Jupyter notebooks are released under the CC BY-ND 4.0 International license.



 C. Coleman et al.

1 3

neoclassical growth model and by reporting the CPU time needed to solve the 
model. They find that the choice of a programming language plays an important role 
in computation time: the fastest language in their study (C++) solves the model over 
450 times faster than the slowest language (R).

The present work extends Aruoba and Fernandez-Villaverde (2015) in three 
important ways: First, our comparison is more representative of and relevant to the 
modern numerical analysis in economics. To be specific, their code for value func-
tion discretization consists of arithmetic operations and loops, while our value-iter-
ative and Euler equation methods involve also numerical integration, interpolation 
and regression routines, including sparse and quasi-Monte Carlo grids and deriva-
tive free solvers tractable in problems with high dimensionality. Second, our code 
is written in a way that exploits the strengths of each language considered, while 
Aruoba and Fernandez-Villaverde (2015) use the same implementation in all lan-
guages. In particular, we speed up the Matlab code by replacing some of the loops 
with vectorized computation, and we speed up Python by using the “just-in-time” 
compiler. As a result, we do not observe such huge differences across the three con-
sidered languages as those reported in their paper—the running times were roughly 
similar across the three languages considered.5 Finally, in addition to the speed com-
parisons, we also discuss some key features of each language that might be useful 
for economists.

Furthermore, for the new Keynesian model, we modify the method proposed in 
Maliar et al. (2015) to operate on random and quasi-random grids covering a fixed 
hypercube instead of operating on the high probability area of the state space. The 
Matlab code developed in the present paper achieves an almost a 60-time speed up 
over the original code, while still producing highly accurate solutions. Our code is 
sufficiently fast to be used for the estimation of a moderately-large new Keynesian 
model with 8 state variables. It takes us just a few seconds to construct the solution, 
including the model with active zero lower bound on the nominal interest rate in all 
three languages.

Finally, we should mention an additional important factor for the choice of the 
programming language, which is a specific collection of packages and libraries 
designed for solving economic models. In fact, for those researchers who are deeply 
interested in a specific model, the choice between the languages may amount to the 
choice between the packages that are most suitable for the problem that they are try-
ing to solve. Matlab users have access to the Dynare and IRIS perturbation software 
as well as a large collection of routines developed by macroeconomists over the last 
decades, for example, a value function iteration toolkit by Robert Kirby vfitoolkit.
com; the PHACT toolbox for solving heterogenous-agent models by SeHyoun Ahn, 
Greg Kaplan, Benjamin Moll, Thomas Winberry and Christian Wolf github.com/

5 In a 2018 update to the 2015 paper, Aruoba and Fernandez-Villaverde (2018) recomputed the previ-
ously reported running times and find great improvements in several languages, including Matlab, Julia, 
and Python—their running times are only slightly (less than two times) slower than the fastest C++ code 
under efficient implementation (MEX, just-in-time compilers). This finding indicates that the users of 
high-level languages such as Matlab, Julia, and Python do not sacrifice much of computational speed 
relative to the fastest low-level alternatives.



1 3

Matlab, Python, Julia: What to Choose in Economics?  

gregkaplan/phact; a collection of routines for solving large scale problems developed 
by Lilia Maliar and Serguei Maliar lmaliar.ws.gc.cuny.edu/codes; etc. Python users 
can benefit from the Heterogeneous Agents Resources and toolKit (HARK) devel-
oped by the team led by Christopher Carroll econ-ark.org. In turn, Julia users have 
access to the HetSol toolkit developed by Michael Reiter elaine.ihs.ac.at/~mreiter/
installhetsol.txt. Some developers provide both Python and Julia versions of their 
software, for example, the QuantEcon site administrated by Tom Sargent and John 
Stachurski and the Dolo platform for constructing global solutions developed by 
Pablo Winant github.com/EconForge/dolo. In turn, we provide identical routines for 
all three languages, so that our users do not face the choice between Matlab, Python 
and Julia but can use the language that is the most suitable for the given problem.

The rest of the paper is organized as follows. In Sect. 2, we describe the three lan-
guages, Matlab, Python and Julia. In Sect. 3, we outline seven algorithms we imple-
ment to solve a variant of the standard neoclassical stochastic growth model. In 
Sect. 4, we present an algorithm for solving a medium-scale new Keynesian model 
with a zero lower bound on nominal interest rates and describe the results of our 
analysis. Finally, in Sect. 5 we conclude.

2  Programming Languages in Economics

In this section, we provide a brief description of the three programming languages 
discussed in this paper, Matlab, Python and Julia. We provide step-by-step installa-
tion instructions for Julia and Python along with a description of the accompanying 
software in a sequence of Jupyter notebooks; see QuantEcon Notebook site.

2.1  Matlab

In our experience, Matlab is the programming language that most economists cur-
rently use. The most compelling reason for this is that it is a “batteries included” 
solution. What we mean by “batteries included” is that Matlab provides a code edit-
ing and execution environment, plotting capabilities, and a vast catalog of pre-writ-
ten numerical routines. For example, in this project, we were able to leverage built-
in routines to construct Sobol sequences (quasi-Monte Carlo grids) and for doing 
numerical optimization. Another benefit is that, because so many other economists 
already use Matlab, collaborating on research code with others is efficient. There are 
two key examples of this. The first is that Dynare, which is mostly Matlab based, has 
become widely used across academia and policy institutions which facilitates com-
munication and sharing of models. The second is that because many algorithms and 
routines have been previously written in Matlab, it should be easy for researchers to 
adapt these pieces of code to new projects.

Matlab, however, is not a perfect language for economists. Some of its downsides 
are:



 C. Coleman et al.

1 3

• Commercial As a commercial product, in order to use Matlab users must first 
obtain a non-free license. Such a license can be costly if an institution does not 
already have a license available for use. This cost could be prohibitive for outside 
parties interested in replicating research.

• Closed source Users cannot look at the Matlab source code to study (or change) 
the implementation of built-in routines.

• Restricted parallel programming possibilities (due to limited license availability) 
As computer hardware becomes more powerful and computer resources in the 
cloud become more accessible, economists are increasingly implementing paral-
lel versions of their algorithms. While basic parallelism is convenient in Matlab, 
running code at scale requires one license per process. This can increase the cost 
of large scale computations.6

• Limited notion of community packages Apart from the official Matlab toolboxes, 
Matlab does not have a well-developed system of add-on packages.7 Using exter-
nal libraries requires users to download and place the files in the same directory 
as the scripts they are running or to manage the path Matlab searches when call-
ing functions. Although not insurmountable, this friction discourages good soft-
ware development by making it difficult to build and reuse modular libraries.

• Mainly a numerical programming language Tasks outside of this purview can be 
more difficult than in a more general programming language.

2.2  Python

While Matlab has long been widely used in economics, Python has been steadily 
gaining users in economics during recent years. Some of Python’s most compelling 
selling points are as follows:

• General programming language Python was built as a general programming 
language which has resulted in it being capable at fulfilling a wide variety of 
tasks—one saying that is often used to describe Python is, “while it may not be 
the best for any one task, it is the second best at everything.”

• A mature and rich package ecosystem. At the time of writing, Python has 
112,232 registered packages that perform a variety of tasks and can be easily 
downloaded and installed.

• Advanced data manipulation and numerics libraries For example, pandas is a 
very powerful library containing data structures and algorithms for doing data 
analysis. numpy and scipy are the base of array-based numerical computing in 

6 As an example, if one wanted to run a Matlab program on 16 optimized processors on the Amazon 
Compute Cloud, then in addition to paying $0.68/h for the processor time, it would cost an additional 
$0.06/h per processor to license each processor bringing the total cost from $0.68 to $1.64/h. For details 
see Matlab’s pricing site and Amazon’s pricing site.
7 An exception is Matlab Central which is an open exchange for the Matlab users with 365,000 current 
contributors.



1 3

Matlab, Python, Julia: What to Choose in Economics?  

Python and provide linear algebra, optimization, and other foundational numeri-
cal algorithms. matplotlib is the main plotting library.

• Many users and ample learning resources Python is one of the top five most 
widely used programming languages in the world. This large user base is ben-
eficial to economists because of the libraries mentioned above and the sheer vol-
ume of learning materials and resources available online for learning Python. 
As one point of data, at the time of writing there are 1,205,629 questions tagged 
with Python on http://stack overfl ow.com8, while there are only 84,329 for Matlab 
and 5551 for Julia.

• Wide adoption in the private sector This is beneficial because industry resources 
are being applied to enhance the language and create powerful tools economists 
can leverage in their computational code.

• Open source This means that the source code is publicly available on the internet 
and it is 100 percent free to view, install, distribute and use.

Python is not perfect, however. Some of its shortcomings are:

• External libraries External libraries are needed for efficient numerical computa-
tion. This means that users need to identify which libraries to use, know how to 
install them properly, and load them into their codes. Fortunately this is not as 
difficult as it sounds thanks to scientific Python distributions like Anaconda that 
come with Python and all the most common scientific packages installed and 
pre-configured.

• Slower than other languages for certain types of algorithms. This can often 
be circumvented by vectorizing operations (as in Matlab) or by leveraging 
tools such as numba or Cython to compile Python code into a fast and efficient 
machine code. In many cases this is a suitable approach, but it does require extra 
effort on behalf of the programmer. In other cases, it is difficult or impossible to 
express only the slower parts of an algorithm using these tools.

• The Global interpreter lock (GIL) The GIL prevents multiple threads from 
accessing Python objects at the same time which makes shared parallelism 
more difficult in Python than in the other two languages. Some packages such as 
numpy, numba, and cython have developed easy-to-use ways around this, but 
these solutions are aimed at certain types of operations.9

2.3  Julia

The most recently released language of the three is Julia. Julia released a stable 1.0 
version of their language in August 2018. Despite it’s youth, many enthusiastic 
economists are starting to pick it up because of the benefits that it offers. The list of 
Julia’s strengths includes the following:

8 This is a popular question-and-answer website for programming.
9 The solutions mostly involve allowing for shared memory parallel for-loops, numerical operations, and 
linear algebra.

http://stackoverflow.com


 C. Coleman et al.

1 3

• All of Julia is based around just-in-time (JIT) compilation .10 Since all Julia code 
is compiled before it is executed, Julia has the potential to run at the same speed 
as languages like C or Fortran.11,12

• Most of Julia is written in Julia This offers at least two main benefits: (1) core 
language features and constructs are written and defined using the same tools 
available to user code; (2) users can look to the implementation of Julia itself 
to see best practices and tips to make their own code better. One consequence 
of this that is often surprising to Matlab or Python users is that a Julia user can 
write a routine in Julia that performs as well, or often better, than implementa-
tions in common libraries.

• Flexibility Of the three languages that we analyze, Julia is the most expressive 
and flexible. It features advanced computer science concepts such as meta-pro-
gramming (see below) and multiple dispatch (a choice of which method to exe-
cute when a function is applied; such a choice is made using all of a function’s 
arguments, not just the first one).

• Similarity to Matlab. Julia’s syntax is intentionally similar to that of Matlab. In 
fact, in many instances, copying and pasting Matlab code produces the same 
result in Julia as in Matlab. This was an intentional decision intended to allow 
Matlab users to transition seamlessly from Matlab to Julia.

• Built in parallel and multi-threaded programming constructs Having support at 
the language level for both distributed and shared memory parallel processing 
means running code in serial or in parallel is often a one word change to the 
user’s code. Also, because Julia is open source like Python, its programs can 
scale up to run on arbitrarily many processes without incurring the additional 
costs from licensing.

• Meta-programming One relatively advanced and compelling feature that is 
unique to Julia (amongst the languages considered here) is meta-programming. A 
language that allows meta-programming treats the code that is executed as data 
that can be manipulated by the program itself. This means users can write code 
that writes the code that will be run. The most complete example of how we lev-
eraged this feature for this project was in implementing routines to compute basis 
functions for complete polynomial. In Python and Matlab, our implementation 
was quite naive. We allow for a complete polynomial of degree between two and 
five and write out one for loop for each degree. The structure of each loop is 
identical. In contrast, the Julia version of this routine allows an arbitrary degree 
complete polynomial. To achieve this, we leverage Julia’s meta-programming 
capabilities, receive the desired degree of complete polynomial from the user and 
then instruct Julia to emit code that contains that many for loops—each having 
the same structure as the hand-written loops in our Python and Matlab versions. 

10 Just-in-time compilation means that a function is compiled the first time it is called and all subsequent 
calls to that function are faster.
11 ,See https ://julia lang.org/bench marks / for some example benchmarks.
12 There has been work to add just-in-time compilation to both Matlab and Python, but, because it isn’t 
native to either language, it does not work as generically as it does in Julia.

https://julialang.org/benchmarks/


1 3

Matlab, Python, Julia: What to Choose in Economics?  

This results in the complete polynomial Julia routines having less code written 
by us and being more flexible and generic.

Despite many promising features, there are still some shortcomings to Julia. These 
include:

• Slow compile times Because the JIT compiler aggressively optimizes the 
machine code for each function that is executed, it can feel sluggish when doing 
rapid iterative development (make a change, run code, make a change, run code, 
etc...) because you pay the fixed compile cost after each edit.

• Requires type inference Julia must be able to infer a type for each variable in a 
function in order to emit fast code. This is not usually a problem, but sometimes 
if you are careless then the code will run slower than it should—though, even in 
the worst case, it is still often as fast as Matlab or Python.

• Emerging package system Many of the packages throughout the Julia community 
are surprisingly advanced given the youth of Julia, but they are usually not as 
polished as what you would find in the Matlab sponsored toolboxes or the best 
Python packages. We believe this is changing quickly and found suitable pack-
ages for many of the tools that we needed for this project.13

• Lack of tooling Unlike the more mature languages Matlab and Python, Julia cur-
rently lacks polished developer tools like an integrated development environ-
ment (IDE) or debugger. These are actively being worked on and will hopefully 
emerge in the near future.

2.4  Syntax Comparison

Julia and Matlab have many syntax elements in common. For example, if one wants 
to perform matrix multiplication of two matrices A and B then one can simply write 
A*B, but if one wants to perform element wise multiplication then one writes A.*B. 
Additionally, blocks are started with the same words (for, if, while) and termi-
nated with the word end. These similarities make it very easy to translate code from 
Matlab to Julia and vice-versa. The one major difference between Julia and Matlab 
is that Julia uses square brackets to index into arrays (A[i, j]) while Matlab uses 
parenthesis (A(i, j)).

On the other hand, Python differs slightly in its conventions. In Python A*B rep-
resents element-wise multiplication between matrices while A@B represents matrix 
multiplications.14 Additionally, rather than depend on end to denote the end of 
blocks, Python forces each new block to be indented four spaces from the previous 

13 The main exception to this was interpolation with complete polynomials but this was also missing in 
both Python and Matlab.
14 The use of @ for matrix multiplication was added in Python version 3.5. Readers who have seen 
or written Python code written for Python versions earlier than version 3.5 might have come across 
A.dot(B) or np.dot(A, B) instead.



 C. Coleman et al.

1 3

one. Despite these differences, we found that syntax differences did not present a 
large obstacle for writing code in all three languages.

2.5  Parallelization Features

We briefly discuss the parallelization features contained in each language. There 
are two main paradigms for parallel programming: distributed memory and shared 
memory.

• In a distributed memory framework, the relevant variables are messaged to each 
individual processor and are then private to the individual processor. The proces-
sors then execute the sequence of commands using their private variables, com-
pute the result, and then send it back to the original processor.

• In a shared memory framework, all processors share a set of memory. They exe-
cute the sequence of commands and typically store the result somewhere in the 
shared memory

Distributed memory benefits from being quite scalable (it doesn’t require the pro-
cessors to even be on the same chip), but the downside is that it requires some mes-
sage passing which can take some time. Shared memory benefits from the fact that 
it does not require message passing, but it is less scalable because all processors 
must have access to the same RAM. Additionally, shared memory programming can 
sometimes be dangerous if one doesn’t ensure that each process write the output to 
its own location in memory.

Julia supports many different types of parallelism, you can read more about it in 
the Julia documentation. We have found that for many problems, the simplest and 
most effective way to perform parallelization is to add Threads.@threads in 
front of a for-loop. This will use the shared memory paradigm and will parallelize 
over each of the iterable items in the for-loop.

In Matlab, parallelization can only be done through distributed memory paral-
lelization. To do an operation in parallel, you can replace the keyword for with 
parfor. You can read more about this on the Matlab website.

Python supports both distributed and shared memory computing, but we have 
found that the easiest way to implement parallelism is to use numba’s prange 
function—You can read more about this in the numba documentation. Similar to 
Julia’s Threads.@threads, this will use a shared memory approach and auto-
matically distribute the work in the for-loop across multiple threads.

3  Comparison Using a Neoclassical Growth Model

The neoclassical growth model is often used as a benchmark to measure the effec-
tiveness of a solution method. We keep with this tradition and analyze the stochastic 
neoclassical growth model with seven alternative solution methods, which are out-
lined in Arellano et al. (2016). Each method is implemented in Julia, Matlab, and 



1 3

Matlab, Python, Julia: What to Choose in Economics?  

Python which allows us to see how the performance of different solution methods 
may vary by programming language.

3.1  The Model

We consider a dynamic programming problem of finding the value function, V, that 
solves the Bellman equation,

where k, c and z are capital, consumption and productivity level, respectively; 
� ∈ (0, 1) ; � ∈ (0, 1] ; � ∈ (−1, 1) ; � ≥ 0 ; the utility and production functions, u 
and f, respectively, are strictly increasing, continuously differentiable and strictly 
concave. The primes on variables denote next-period values, and E

[
V
(
k′, z′

)]
 is an 

expectation conditional on state (k, z).
Optimality conditions The first order condition (FOC) and envelope condition 

(EC) of the problem (1)–(3), respectively, are

By combining (4) and (5), we obtain the Euler equation

Parameterization and implementation details We parameterize the model 
(1)–(3) by using a Constant Relative Risk Aversion (CRRA) utility function, 
u(c) =

c1−�−1

1−�
 , and a Cobb–Douglas production function, f (k) = Ak� . We choose 

parameters to be set at A =
1∕�−(1−�)

�
 , � = 1∕3 , � = 0.99 , � = 0.025 , � = 0.95 and 

� = 0.01 . As a solution domain, we use a rectangular, uniformly spaced grid of 
10 × 10 points for capital and productivity between 0.9 and 1.1 for both variables.

We integrate by using a 10-node Gauss-Hermite quadrature rule and approximate 
the policy and value functions by using complete ordinary polynomials up to degree 
5. As an initial guess, we use a linear approximation to the capital policy function. 
To solve for polynomial coefficients, we use fixed-point iteration.

All computations are performed using Julia v1.1.0, Matlab version 9.4.0 
(R2018a), and Python 3.6.8 on a MacBook Pro with a 2.7 GHz Intel Core i7 

(1)V(k, z) = max
c,k�

u(c) + �E
[
V(k�, z�)

]

(2)s.t. k� = (1 − �)k + zf (k) − c

(3)ln z� = � ln z + ��, �� ∼ N(0, �2),

(4)u�(c) = �E
[
V1

(
k�, z�

)]
,

(5)V1(k, z) = u�(c)
[
1 − � + zf �(k)

]
,

(6)u�(c) = �E
{
u�
(
c�
)[
1 − � + z�f �

(
k�
)]}

.



 C. Coleman et al.

1 3

processor and 16 GB of RAM. For Julia and Python, the particular package versions 
can be found in the corresponding notebooks submitted on QuantEcon’s Notebook 
site.15

3.2  Value Iterative Methods

We analyze three value iterative algorithms for solving the model: (1) conventional 
value function iteration method analyzed in e.g., Fernández-Villaverde et al. (2015; 
2) a variant of envelope condition method (ECM) of Maliar and Maliar (2013) that 
finds a solution to Bellman equation by iterating on value function; and (3) endog-
enous grid method (EGM) of Carroll (2005). We present a brief description of each 
algorithm below. A detailed description of each algorithm is included in Online 
Appendix A.

3.2.1  Conventional Value Function Iteration

Conventional VFI constructs the policy rule for consumption by combining FOC (4) 
and budget constraint (2): 

3.2.2  Envelope Condition Method

ECM, proposed in Maliar and Maliar (2013), finds consumption from envelope con-
dition (5) and budget constraint (2). In this specific model, the consumption function 
can be constructed analytically: 

15 The Matlab notebook, Python notebook, Julia notebook.



1 3

Matlab, Python, Julia: What to Choose in Economics?  

3.2.3  Endogenous Grid Method

Finally, EGM of Carroll (2005) constructs a grid on 
(
k′, z

)
 by fixing the future 

endogenous state variable k′ and by treating the current endogenous state variable 
k as unknown; see also Barillas and Fernandez-Villaverde (2007)for a discussion of 
the EGM method. Since k′ is fixed, EGM computes E

[
V1

(
k′, z′

)]
 up-front and thus 

can avoid costly interpolation and approximation of expectation in a root finding 
procedure. 

 In Step (ii) of EGM, we still need to find k numerically. However, for the studied 
model, Carroll (2005) shows that a change of variables makes it possible to avoid 
finding k numerically on each iteration (except of the very last iteration). In order to 
streamline our code, we do not use this change of variables so the running time of 
our version of the EGM method will be larger than for the version of the method in 
Carroll (2005). This decision has an impact on the relative performance of the three 
languages since Julia performs best when a numerical solver is involved, however, 

Table 1  Accuracy and speed of value iterative methods

a L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality conditions 
and test points (in log 10) units on a stochastic simulation of 10,000 observations. CPU is the time neces-
sary for computing a solution (in s)

Degree L1 L∞ Julia CPU (s) Matlab CPU (s) Python CPU (s)

Conventional VFI (VFI)
 2nd − 3.83 − 2.76 1.05 30.94 10.97
 3rd − 4.97 − 3.32 0.92 20.85 6.67
 4th − 6.06 − 4.03 1.13 18.02 5.80
 5th − 7.00 − 4.70 1.00 13.80 4.51

Envelope condition method (ECM)
 2nd − 3.83 − 2.76 0.29 0.32 0.37
 3rd − 4.97 − 3.32 0.21 0.21 0.24
 4th − 6.06 − 4.03 0.27 0.22 0.27
 5th − 7.00 − 4.70 0.14 0.10 0.15

Endogenous grid method (EGM)
 2nd − 3.81 − 2.76 0.35 27.19 5.05
 3rd − 4.95 − 3.34 0.25 18.51 3.43
 4th − 6.06 − 4.05 0.29 13.95 3.19
 5th − 7.04 − 4.73 0.19 10.43 2.28



 C. Coleman et al.

1 3

we are ok with this difference since in slightly more complicated settings the change 
of variables will not always apply. We view this as a more general comparison than 
if we had applied the change of variables.

3.2.4  Comparison Results of Matlab, Python and Julia for Value Iterative Methods

The results from our comparison of the three iterative methods are in Table 1.
Conventional VFI is the most time consuming in all three languages because it 

requires us to find the root of (4) for each (k,  z). Given (k,  z), each evaluation of 
equation (4) requires the computer to compute conditional expectation by interpolat-
ing over the t + 1 values. Numerical root finders must do this repeatedly. The reason 
EGM performs better than VFI is that it is easier to solve equation (4) with respect 
to c given 

(
k′, z

)
 than to solve it with respect to c given (k, z) because we only need to 

evaluate conditional expectation once if we know k′ . The ECM method requires no 
numerical solver which is why it is so efficient relative to the other two methods.16

Julia produces solutions between 5 and 50 times faster than Matlab and Python 
for VFI and EGM. The reasons Julia performs so much better on these two algo-
rithms is because the entire language is built on JIT compilation. This means that 
during the root solving step the repeated calls to the Julia objective function are 
cheap (relative to an interpreted language like Matlab or Python) because these sub-
sequent function calls execute already compiled machine code.

Our results for the ECM show similar performance for all three languages. The 
main reason for this is that the method does not require a non-linear solver to com-
pute the policy for consumption and thus the computations can be vectorized. The 
vectorization puts the languages on more similar footing because they all end up 
calling out to the same high preference BLAS routines implemented in C or Fortran.

3.3  Policy Iterating Methods

We analyze four algorithms that construct policy functions for the standard neoclas-
sical stochastic growth model: Algorithm 4 is a conventional policy iteration (PI) 
method, e.g., Santos and Rust (2008); Algorithm 5 is a variant of ECM that imple-
ments policy iteration; Algorithm 6 is a version of ECM that solve for derivative 
of value function instead of value function itself; Algorithm  7 an Euler equation 
algorithm. Again we give a brief description of each algorithm but a more detailed 
description of these algorithms is provided in Online Appendix A.

3.3.1  Conventional Policy Iteration

Conventional policy iteration constructs a solution to the Bellman equation by iterat-
ing on the consumption function using FOC (4). 

16 A version of the envelope condition argument is used in Achdou et al. (2017) to construct a new class 
of fast and efficient numerical methods for solving dynamic economic models in continuous time.



1 3

Matlab, Python, Julia: What to Choose in Economics?  

3.3.2  ECM Policy Iteration

ECM-PI the variant of ECM that performs PI instead of VFI. It constructs a solution 
to the Bellman equation by iterating on the consumption function using EC (5). 

3.3.3  Derivative Policy Iteration

The ECM analysis also suggests a useful recursion for the derivative of value 
function. We first construct consumption function C(k, z) satisfying FOC (4) 
under the current value function

and we then use (5) to obtain the derivative of value function for next iteration. This 
leads to a solution method that we call ECM-DVF.

The main difference between ECM-DVF from the previously studied ECM-
VF consists in that we iterate on V1 without computing V on each iteration. We 
only compute V at the very end, when both V1 and the optimal policy functions 
are constructed. Again, neither numerical maximization nor a numerical solver is 
necessary under ECM-DVF but only direct calculations. Similarly to PI methods, 
Euler equation methods do not solve for value function but only for decision (pol-
icy) functions. One possible decision function is a derivative of value function. 
Thus, the ECM-DVF recursion can be also viewed as an Euler equation written in 
terms of the derivative of value function. 

�E
[
V1

(
k�, z�

)]
= u�(C(k, z)),



 C. Coleman et al.

1 3

3.3.4  Euler Equation Methods

Policy iteration has similarity to Euler equation methods; see Judd (1998), Santos 
(1999) for a general discussion of such methods. Euler equation methods approxi-
mate policy functions for consumption c = C(k, z) , capital k� = K(k, z) (or other policy 
functions) to satisfy (2), (3) and (6). Below, we provide an example of Euler equation 
method (many other recursions for such methods are possible). 

3.3.5  Comparison Results of Matlab, Python and Julia for Policy Iterative Methods

The results from our comparison of the policy iterative methods are in Table 2.
We see that conventional PI performs the worst for each language due to its reli-

ance on a numerical solver, but, as with the value iterative methods, this reliance is less 
problematic for Julia than for Matlab or Python.

Overall, we found that the speed of most algorithms was comparable across all three 
languages. Again, the main exception to this was that Julia performed significantly bet-
ter than the other programs when there was any numerical optimization or root-finding 
involved. However, these speedups came at the cost of spending a (relatively small) 
amount of extra time being careful about how the code was written to ensure that the 
Julia compiler is able to infer the type of each variable in the most time-intensive parts 
of the program.



1 3

Matlab, Python, Julia: What to Choose in Economics?  

3.4  Parallel Computing

We explore the parallelization features of each language by solving the growth 
model in serial and in parallel. We then compare the time taken to compute the solu-
tion using a various numbers of processors. Rather than solve the original continu-
ous-state and choice model (1)–(3), we discretize the state and choice variables. The 
resulting problem is described by the following Bellman equation

where the states are discretized according to � = {k1, k2,… , kNk
} , 

zj ∈ ℤ = {z1,… , zNz
} , and Π denotes the transition matrix for z with Πjk denot-

ing the probability of transition from state j to state k. We determine ℤ and Π from 
the Rouwenhorst method for approximating AR(1)s and � is chosen to be equally 
spaced points between 0.75 and 1.25. We choose to use 201 points on the grid for k 
and 25 points on the grid for z. All other parameters are the same as before.

We solve the model using conventional VFI. In particular, we choose an initial guess 
at V to be a matrix of zeros. We then iterate over each possible combination of ki and zj 

V(ki, zj) = max
k∗∈�

u((1 − �)ki + Ak�
i
− k∗) + �

∑
k

ΠjkV(k
∗, zk),

Table 2  Accuracy and speed of policy iterative methods

a L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality conditions 
and test points (in log 10) units on a stochastic simulation of 10,000 observations. CPU is the time neces-
sary for computing a solution (in seconds)

Degree L1 L∞ Julia CPU (s) Matlab CPU (s) Python CPU (s)

Conventional PI
 2nd − 3.81 − 2.76 0.29 20.32 5.51
 3rd − 4.95 − 3.34 0.78 16.49 5.27
 4th − 6.06 − 4.05 1.14 17.73 5.37
 5th − 7.04 − 4.73 1.04 13.46 4.36

Envelope condition method iterrating on policy functions (ECM-PI)
 2nd − 3.81 − 2.76 0.27 0.30 0.48
 3rd − 4.95 − 3.34 0.22 0.17 0.32
 4th − 6.06 − 4.05 0.28 0.22 0.40
 5th − 7.04 − 4.73 0.16 0.11 0.26

Envelope condition method iterating on derivative of value function (ECM-DVF)
 2nd − 3.81 − 2.76 0.57 0.57 0.62
 3rd − 4.95 − 3.34 0.67 0.70 0.68
 4th − 6.06 − 4.05 0.75 0.69 0.72
 5th − 7.04 − 4.73 0.87 0.74 0.80

Euler equation method
 2nd − 3.81 − 2.76 0.35 0.38 0.38
 3rd − 4.95 − 3.34 0.26 0.29 0.25
 4th − 6.06 − 4.05 0.32 0.25 0.24
 5th − 7.04 − 4.73 0.28 0.11 0.12



 C. Coleman et al.

1 3

and determine the optimal response, k∗ , at each state. In each iteration s,  we update the 
value function according to

We include a timing comparisons with different numbers of threads for each of these 
examples in Table  3.

Again, we see that all three languages generate comparable running time. The code 
for this exercise can be found in the github repository with the rest of this paper’s code. 
We should point out that the best way to parallelize computation may differ by lan-
guages. For example, in Matlab matrices are stored by column and so parfor across 
columns is much faster than parfor across rows. For more extensive discussion of paral-
lelization, we recommend to read Fernández-Villaverde and Zarruk Valencia (2018).

4  Comparison Using a New Keynesian Model

In this section, we solve a stylized medium-scale Keynesian model using equivalent 
codes implemented in Julia, Matlab, and Python. The model was previously analyzed 
in Maliar and Maliar (2015). It features Calvo-type price frictions and a Taylor rule 
with a zero lower bound on the nominal interest rate.

4.1  The Model

To save on space, we present the fully-specified model in Online Appendix B.

First-order Conditions Here, we summarize the model by showing the set of opti-
mality conditions used to construct the numerical solutions:

Vs+1
i,j

= u((1 − �)ki + Ak�
i
− k∗

i,j
) + �

∑
k

Πj,kV
s
k∗
i,j
,k
.

(7)St =
exp

(
�u,t + �L,t

)

exp
(
�a,t

) L�
t
Yt + ��Et

{
��
t+1

St+1
}
,

Table 3  Paralelization results 
for discretized value iterative 
problem

a Speed at which a particular problem is solved. The columns are 
each a different programming language and the rows denote the 
number of threads we use to do the computation

Number of pro-
cessors

Julia (s) Matlab (s) Python (s)

1 36.91 67.3 21.30
4 12.58 24.1 7.61
16 4.21 8.03 4.33
64 2.84 4.56 3.01



1 3

Matlab, Python, Julia: What to Choose in Economics?  

where St and Ft are supplementary variables reflecting profit maximizing conditions 
of firms; Δt is a measure of price dispersion across firms; Ct , Yt , Lt are consumption, 
output and labor, respectively; �t and Rt are inflation and interest rate, respectively; 
�∗ and R∗ =

�∗

�
 are the inflation target and the steady state interest rate, respectively; 

YN,t =

[
exp (�a,t)

1+�

[exp (�G,t)]
−�

exp (�L,t)

] 1

�+�

 is the natural level of output. The parameters are � 

(discount factor), � (fraction of non-reoptimizing firms), � (inverse of the elasticity 
of substitution in the final-good production), � and � (utility-function parameters), G 
(steady-state government spending), and �,�y and �� (Taylor-rule parameters). Each 
exogenous variable �z,t ∈

{
�u,t, L,t, �a,t, �u,t, �B,t, �G,t

}
 follows an AR(1) process 

�z,t+1 = �z�z,t + �z,t+1 with �z,t+1 ∼ N
(
0, �2

z

)
 , 𝜎z > 0 and �z ∈ (−1, 1).

4.2  Parameterization and Implementation Details

We parameterize the model by � = 0.99 , � = 1 , � = 2.09 , � = 4.45 , � = 0.83 and 
G = 0.23 . The autocorrelation coefficients in six exogenous variables are �a = 0.95 
, �B = 0.22 , �R = 0.15 , �u = 0.92 , �G = 0.95 , �L = 0.25 , and the corresponding 

(8)Ft = exp
(
�u,t

)
C
−�
t Yt + ��Et

{
��−1
t+1

Ft+1

}
,

(9)St

Ft

=

[
1 − ���−1

t

1 − �

] 1

1−�

,

(10)Δt; =

⎡⎢⎢⎣
(1 − �)

�
1 − ���−1

t

1 − �

� �

�−1

+ �
��
t

Δt−1

⎤⎥⎥⎦

−1

,

(11)C
−�
t = �

exp
(
�B,t

)

exp
(
�u,t

)RtEt

[
C
−�

t+1
exp

(
�u,t+1

)
�t+1

]
,

(12)Yt = exp
(
�a,t

)
LtΔt

(13)Ct =

(
1 −

Ḡ

exp
(
𝜂G,t

)
)
Yt

(14)Rt = max

⎧⎪⎨⎪⎩
1,R∗

�
Rt−1

R∗

��
��

�t

�∗

���
�

Yt

YN,t

��y

�1−�

exp
�
�R,t

�⎫⎪⎬⎪⎭
,



 C. Coleman et al.

1 3

standard deviations are �u = 0.54% , �G = 0.38% , �L = 18.21% , �a = 0.45% , 
�B = 0.23% and �R = 0.28% . The parameters in the Taylor rule are �y = 0.07 , 
�� = 2.21 , and � = 0.82 . These values are used in Maliar and Maliar (2015) and are 
in line with the estimates in del Negro et al. (2007) and Smets and Wouters (2007).

As a solution domain, we use random and quasi-random grids constructed inside 
an 8-dimensional hypercube; we describe the grid construction in Sect.  4.4. To 
approximate the equilibrium policy rules, we use a family of ordinary polynomials 
up to degree 5. To compute conditional expectations in Euler equations (7), (8) and 
(11), we use a monomial integration rule (either a formula with 2N nodes or the one 
with 2N2 + 1 nodes); see Judd et al. (2011) for a detailed description of the mono-
mial integration formulas. To solve for the polynomial coefficients, we use fixed 
point iteration. Again, Julia, Matlab, and Python software can be found in the cor-
responding notebooks submitted on QuantEcon.17

4.3  Computational Method

We now outline the Euler equation algorithm used to solve the neoclassical model. 
An extended description of this algorithm is provided in Online Appendix B. 

4.4  Grid Techniques for High Dimensional Applications

Tensor product grids can be successfully used for analyzing small-scale applica-
tions but their cost increases exponentially with the number of the state variables 
(curse of dimensionality). In particular, tensor product grid are expensive even for 

17 Matlab notebook, Python notebook, Julia notebook.



1 3

Matlab, Python, Julia: What to Choose in Economics?  

moderately-large models like our model with 8 state variables. There is a number 
of alternative grid techniques that do not rely on tensor products and that ameliorate 
the curse of dimensionality.

To solve the model (7)–(14), Maliar et al. (2015)construct the grid on the high-
probability area of the state space which is approximated by stochastic simulation. 
However, crude simulated points are not uniformly spaced, in particular, many sim-
ulated points are situated close to one another and are redundant for the purpose of 
the grid construction. They introduce two techniques for selecting a roughly uni-
formly-spaced subset of simulated points. One technique is clustering analysis: the 
simulated points are grouped into clusters and the centers of the clusters are used 
as a grid. Another technique is an �-distinguishable set (EDS) method that selects a 
subset of points situated at the distance of at least � from one another. As an exam-
ple, in Fig. 1 we show a stochastic-simulation grid and epsilon-distinguishable set 
grid.

The EDS or cluster grids are constructed iteratively using the following steps: (i) 
guess policy functions and use them to simulate the time series solution; (ii) build 
an EDS or cluster grid; (iii) solve the model on this grid; (iv) then use the new solu-
tion to form a new grid. This procedure is repeated until the solution and grid both 
remain constant on successive iterations. The advantage of this approach is that 
it focuses on the right area of the state space—a high probability set. However, it 
requires to have initial guess for the solution (the paper uses linearization solution 
from Dynare) and it reconstructs the EDS or cluster grid iteratively, which leads to 
larger running times. Finally, the code is more complicated.

In the present paper, we modify the grid construction relative to the method in 
Maliar and Maliar (2015). We specifically replace the EDS and cluster grids with 
random and quasi-random grids covering a fixed multi-dimensional hypercube. 

-5

-4

-3

-2

-1

0

1

2

3

4

5

 (a) Stochastic simulation of the model

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

 (b) Epsilon-distinguishable set

Fig. 1  Stochastic-simulation grid and epsilon-distinguishable set grid



 C. Coleman et al.

1 3

To construct the hypercube, we choose the interval 

�
−

2�z√
1−�2

z

,
2�z√
1−�2

z

�
 for each of 

six exogenous variable �z ∈
{
�u, �L, �a, �u, �B, �G

}
 , where �z and �z are standard 

deviation and auto-correlation coefficient. For endogenous state variables R and 
Δ , we chose intervals that cover the high probability set, Δ ∈ [0.95, 1] and 
R ∈ [1, 1.05].

We consider two alternative grid techniques in the constructed fixed hyper-
cube. One is a random grid obtained by drawing an 8-dimensional set of random 
uncorrelated uniformly distributed points. The other is quasi-random grids (also 
known as quasi-Monte Carlo  sequence or low discrepancy sequence). Uniformly 
distributed random draws converge to an evenly spaced grid as a number of draws 
increases but the convergence rate is low; in turn, low disrepancy sequences are 
constructed to be evenly spaced and their convergence rate is much faster. We use 
Sobol low discrepancy sequence for constructing the grid but there is a variety of 
other low discrepancy sequences that can be used for this purpose; see Niederre-
iter (1992). The random and quasi-random grids are shown in Fig. 2.

Using random grids has its advantages and disadvantages. Unlike the EDS and 
cluster grids used in Maliar and Maliar (2015), the random and quasi-random 
grids operate on a fixed hypercube and do not benefit from the domain reduction. 
However, the random and quasi-random grids are much faster and easier to con-
struct than the EDS and cluster grids. By constructing grids on predefined inter-
vals, we did not have to write our own rough solution routine or rely on exter-
nal software like Dynare to construct a preliminary solution to the model as we 
would with cluster grid or EDS techniques and we do not need to re-construct the 
grids iteratively. The Matlab code accompanying the present paper achieves an 

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) Uniform random draws

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

(b) Sobol sequence

Fig. 2  Uniformly-spaced random grid and quasi-Monte Carlo grid



1 3

Matlab, Python, Julia: What to Choose in Economics?  

almost a 60-time speed up over the original code in Maliar et  al. (2015), while 
still producing highly accurate solutions.

4.4.1  Numerical Results

We have provided an implementation of this algorithm in the Matlab, Python, and 
Julia programming languages. In this section we discuss our experience with the 
three languages.

We report the solution for two parameterizations that are previously analyzed 
in Maliar and Maliar (2015). To save on space, we report the solution only for the 
quasi-random (Sobol) grid. The solution for the random grid is similar (although 
slightly less accurate). Our two parameterizations differ in the value of the inflation 
target �∗ . In our first experiment, we use �∗ = 1.0598 , which corresponds to long 
term average as estimated in del Negro et  al. (2007), while in the second experi-
ment, we use �∗ = 1. For the second experiment, we report results when we solve 
the model both when the ZLB is and is not imposed (in the first experiment, ZLB is 
never active) (Table 4).

The computational cost increases rapidly with a polynomial degree. The num-
ber of points in the grid must be at least as large as the number of the polynomial 
coefficients to identify such coefficients. In particular, for the polynomial degrees 1, 

Table 4  Accuracy and speed of a projection method for solving new Keynesian model

a L1 and L∞ are, respectively, the average and maximum of absolute residuals across optimality conditions 
and test points (in log 10) units on a stochastic simulation of 10,000 observations. CPU is the time neces-
sary for computing a solution (in seconds)

Degree L1 L∞ Julia CPU (s) Matlab CPU (s) Python CPU (s)

Inflation target �∗ = 1.0598

 1st − 3.41 − 1.94 0.45 0.73 1.04
 2nd − 4.71 − 3.13 1.35 1.64 2.17
 3rd − 6.07 − 4.25 7.96 7.39 6.99
 4th − 6.73 − 4.65 52.79 52.60 58.07
 5th − 7.00 − 5.47 756.03 877.40 1496.60

Inflation target �∗ = 1

 1st − 3.12 − 1.73 0.22 0.40 0.52
 2nd − 4.40 − 2.77 0.52 0.71 0.93
 3rd − 5.71 − 3.54 3.05 3.11 2.94
 4th − 6.82 − 4.89 22.35 22.51 23.67
 5th − 7.01 − 5.12 318.44 389.47 675.92

Inflation target �∗ = 1 with ZLB
 1st − 3.12 − 1.73 0.22 0.41 0.54
 2nd − 4.40 − 2.16 0.49 0.71 0.95
 3rd − 5.60 − 2.15 3.48 2.82 2.97
 4th − 6.17 − 2.15 22.09 22.44 24.69
 5th − 6.20 − 2.15 313.24 389.03 635.58



 C. Coleman et al.

1 3

2, 3, 4 and 5, we construct 20,100, 300, 1000 and 2000 grid points respectively to 
identify 9, 45, 165, 495 and 1287 coefficients (we use about 50% more of grid points 
than the polynomial coefficients to enhance the numerical stability of the algorithm). 
The cost of second-order polynomial approximations is about 1–3 s depending on 
specific parameterization used. It is fast enough to repeatedly solve the model inside 
an estimation procedure.

Concerning the accuracy, in our first experiment, the inflation target is relatively 
high and the probability of reaching a zero lower bound (ZLB) on nominal interest 
rates is so low that it is never observed in finite simulation (unless we use the initial 
condition that leads to ZLB). In the absence of binding ZLB, the accuracy of our 
numerical solutions increases considerably with the degree of polynomial, in par-
ticular, the maximum residuals across the model’s equations decrease from −1.94 to 
−5.47 when the polynomial order increases from 1 to 5 respectively. The accuracy 
of the solutions is surprisingly high given that we assume very large volatility of 
labor shock of 18%. If we reduce the size of the labor shock to 5%, the residuals in 
the table decrease by nearly 2 orders of magnitude and the accuracy levels will be 
comparable to those we obtained for the neoclassical growth model.

In our second experiment, the inflation target is low and the probability of reach-
ing the ZLB increases to about 2%. When we do not impose the ZLB, the accu-
racy of the solution looks very similar to our first parameter set. However, with the 
ZLB imposed, the results are different. Relatively small average residuals indicate 
that the solution is sufficiently accurate in most of the domain and large maximum 
residuals show that the accuracy declines sharply in the ZLB area. As this exam-
ple shows, even the global solution methods might still be insufficiently accurate in 
the presence of active ZLB because smooth polynomials functions are not well suit-
able for approximating the ZLB kink. Aruoba et al. (2017) and Maliar and Maliar 
(2015) show that the accuracy can be slightly increased by using piecewise linear 
and locally adaptive approximations, respectively, but these extensions lie beyond 
the scope of our analysis.

5  Conclusion

We have described and implemented seven algorithms to solve the stochastic neo-
classical growth model, and we have described and analyzed a modification of an 
algorithm that has been previously used to globally solve new Keynesian models. 
The implementation has provided us a “laboratory” to explore some of the strengths 
and weaknesses of the three languages we consider. One insight we gained was that 
for some algorithms, the choice of programming language has little effect on perfor-
mance, but for others, there are important speedups that can be obtained. In particu-
lar, if an algorithm depends heavily on numerical optimization or root-finding then it 
is likely that Julia will provide significant speedups, but these gains may come at the 
cost of ensuring that your code provides enough information to the compiler.

We hope we have brought some clarity in the trade-off between these three pro-
gramming languages which will first, provide information to economists who are 
thinking about which language is the best fit for them; and second, provide a clear 



1 3

Matlab, Python, Julia: What to Choose in Economics?  

description, examples, and tools which can facilitate other researchers implement 
similar algorithms for their own models.

Funding Lilia Maliar and Serguei Maliar acknowledge the support from NSF grants SES-1949413 and 
SES-1949430, respectively.

References

Achdou, Y., Han, J., Lasry, J.-M., Lions, P.-L., & Moll, B. (2017). Income and wealth distribution in 
macroeconomics: A continuous-time approach. NBER Working Paper No. w23732.

Arellano, C. (2008). Default risk and income fluctuations in emerging economies. American Economic 
Review, 98(3), 690–712.

Arellano, C., Maliar, L., Maliar, S., & Tsyrennikov, V. (2016). Envelope condition method with an appli-
cation to default risk models. Journal of Economic Dynamics and Control, 69, 436–459.

Aruoba, S., & Fernandez-Villaverde, J. (2015). A comparison of programming languages in economics. 
Journal of Economic Dynamics and Control, 58, 265–273.

Aruoba, S., & Fernandez-Villaverde, J. (2018). A comparison of programming languages in economics: 
An update.

Barillas, F., & Fernandez-Villaverde, J. (2007). A generalization of the endogenous grid method. Journal 
of Economic Dynamics and Control, 31, 2698–2712.

Carroll, K. (2005). The method of endogenous grid points for solving dynamic stochastic optimal prob-
lems. Economic Letters, 91, 312–320.

Fernández-Villaverde, J., Rubio-Ramírez, J., & Schorfheide, F. (2015). Solution and estimation methods 
for DSGE models. Handbook of Macroeconomics, 2, 527–724.

Fernández-Villaverde, J., & Zarruk Valencia, D. (2018). A practical guide to parallelization in economics.
Guerrieri, L., & Iacoviello, M. (2015). OccBin: A toolkit for solving dynamic models with occasionally 

binding constraints easily. Journal of Monetary Economics, 70, 22–38.
Hasanhodzic, J., & Kotlikoff, L. (2013). Generational risk—Is it a big deal? Simulating an 80-period 

OLG model with aggregate shocks. NBER Working Paper 19179.
Judd, K. (1998). Numerical methods in economics. Cambridge, MA: MIT Press.
Judd, K., Maliar, L., & Maliar, S. (2011). Numerically stable and accurate stochastic simulation 

approaches for solving dynamic models. Quantitative Economics, 2, 173–210.
Judd, K., Maliar, L., & Maliar, S. (2016). Lower bounds on approximation errors to numerical solutions 

of dynamic economic models. Econometrica, 85(3), 991–1012.
Kollmann, R., Kim, S., & Kim, J. (2011). Solving the multi-country real business cycle model using a 

perturbation method. Journal of Economic Dynamics and Control, 35, 203–206.
Krusell, P., & Smith, A. A, Jr. (1998). Income and wealth heterogeneity in the macroeconomy. Journal of 

Political Economy, 106(5), 867–896.
Laseen, S., & Svensson, L. (2011). Anticipated alternative policy rate paths inpolicy simulations. UCB 

International Journal of International Banking, 7(3), 1–36.
Lepetuyk, V., Maliar, L., & Maliar, S. (2019). When the U.S. Catches a Cold, Canada Sneezes: A Lower-

Bound Tale Told by Deep Learning. CEPR working paper DP 14025.
Maliar, L., & Maliar, S. (2013). Envelope condition method versus endogenous grid method for solving 

dynamic programming problems. Economic Letters, 120, 262–266.
Maliar, L., & Maliar, S. (2014). Numerical methods for large scale dynamic economic models. In K. 

Schmedders & K. Judd (Eds.), Handbook of computational economics (Vol. 3). Amsterdam: Else-
vier Science.

Maliar, L., & Maliar, S. (2015). Merging simulation and projection approaches to solve high-dimensional 
problems with an application to a new Keynesian Model. Quantitative Economics, 6, 1–47.

Maliar, L., Maliar, S., Taylor, J.B., & Tsener, I. (2015). A tractable framework for analyzing a class of 
nonstationary markov models. NBER working paper 21155.

Maliar, L., Maliar, S., & Winant, P. (2019). Will Artificial Intelligence Replace Computational Econo-
mists Any Time Soon?. CEPR working paper DP 14024.



 C. Coleman et al.

1 3

Negro, M. D., et al. (2007). On the fit of new Keynesian models. Journal of Business & Economic Statis-
tics, 25(2), 123–143.

Petrosky-Nadeau, N., & Zhang, L. (2017). Solving the Diamond–Mortensen-pissarides model accurately. 
Quantitative Economics, 8(2), 611–650.

Santos, M. (1999). Numerical solution of dynamic economic models. In J. Taylor & M. Woodford (Eds.), 
Handbook of macroeconomics (pp. 312–382). Amsterdam: Elsevier Science.

Santos, M., & Rust, J. (2008). Convergence properties of policy iteration. SIAM Journal on Control and 
Optimization, 42(6), 2094–2115.

Smets, F., & Wouters, R. (2007). Shocks and frictions in US business cycles: A Bayesian DSGE 
approach. American Economic Review, 97(3), 586–606.

Taylor, J., & Uhlig, H. (1990). Solving nonlinear stochastic growth models: A comparison of alternative 
solution methods. Journal of Business and Economic Statistics, 8, 1–17.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Matlab, Python, Julia: What to Choose in Economics?
	Abstract
	1 Introduction
	2 Programming Languages in Economics
	2.1 Matlab
	2.2 Python
	2.3 Julia
	2.4 Syntax Comparison
	2.5 Parallelization Features

	3 Comparison Using a Neoclassical Growth Model
	3.1 The Model
	3.2 Value Iterative Methods
	3.2.1 Conventional Value Function Iteration
	3.2.2 Envelope Condition Method
	3.2.3 Endogenous Grid Method
	3.2.4 Comparison Results of Matlab, Python and Julia for Value Iterative Methods

	3.3 Policy Iterating Methods
	3.3.1 Conventional Policy Iteration
	3.3.2 ECM Policy Iteration
	3.3.3 Derivative Policy Iteration
	3.3.4 Euler Equation Methods
	3.3.5 Comparison Results of Matlab, Python and Julia for Policy Iterative Methods

	3.4 Parallel Computing

	4 Comparison Using a New Keynesian Model
	4.1 The Model
	4.2 Parameterization and Implementation Details
	4.3 Computational Method
	4.4 Grid Techniques for High Dimensional Applications
	4.4.1 Numerical Results


	5 Conclusion
	References




