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8.1 Bayes Estimators and Average Risk Optimality

8.1.1 Setting

We discuss the average risk optimality of estimators within the framework of Bayesian de-
cision problems. As with the general decision problem setting the Bayesian setup considers
a model P = {Pθ : θ ∈ Ω}, for our data X, a loss function L(θ, d), and risk R(θ, δ). In the
frequentist approach, the parameter θ was considered to be an unknown deterministic quan-
tity. In the Bayesian paradigm, we consider a measure Λ over the parameter space which
we call a prior. Assuming this measure defines a probability distribution, we interpret the
parameter θ as an outcome of the random variable Θ ∼ Λ. So, in this setup both X and θ
are random. Conditioning on Θ = θ, we assume the data is generated by the distribution Pθ.
Now, the optimality goal for our decision problem of estimating g(θ) is the minimization
of the average risk

r(Λ, δ) = E[L(Θ, δ(X))] = E[E[L(Θ, δ(X)) | X]].

An estimator δ which minimizes this average risk is a Bayes estimator and is sometimes
referred to as being Bayes.

Note that the average risk is an expectation over both the random variables Θ and X.
Then by using the tower property, we showed last time that it suffices to find an estimator δ
which minimizes the posterior risk E[L(Θ, δ(X))|X = x] for almost every x. This estimator
will generally depend on the choice of loss function, as we shall now see.

8.1.2 Examples of Bayes estimators

Example 1. Suppose the loss function is the absolute error loss. Our task is to find a δ
that minimizes the posterior risk which in this case is given by

E[|g(Θ)− δ(X)|
∣∣X].

Thus, the minimizer δΛ(X), or the Bayes estimator, is any median of g(Θ) under the posterior
distribution Θ|X. This is given by a quantity c such that the following two properties hold:

P(g(Θ) ≥ c|X) ≥ 1/2

P(g(Θ) ≤ c|X) ≥ 1/2
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We have seen that for the squared error loss function the Bayes estimator is given by the
mean of the posterior distribution. In the next example we consider a generalization of the
squared error loss.

Example 2. Suppose the loss function is of the form L(θ, d) = w(θ)(d − g(θ))2, where
w(θ) ≥ 0. Here the function w(θ) can be thought of as a weight function. Then the Bayes
estimator minimizes the posterior risk

E[w(Θ)(g(Θ)− d)2
∣∣X = x]

with respect to d, where we are able to take d out of the conditional expectation because
our estimator is a function only of X and so d is a constant for fixed X = x. Rewriting, we
have

d2E[w(Θ)|X = x]− 2dE[w(Θ)g(Θ)|X = x] + E[w(Θ)g2(Θ)|X = x]

Now, this is nothing but a convex quadratic function in d. Taking derivatives w.r.t. d, we
see that this function takes on its minimum when

2dE[w(Θ)|X = x]− 2E[w(Θ)g(Θ)|X = x] = 0.

Hence, the Bayes estimator is given by

δΛ(X) =
E[w(Θ)g(Θ)|X = x]

E[w(Θ)|X = x]
.

Note that this is the ratio of the posterior mean of w(Θ)g(Θ) and that of w(Θ). In particular,
if w ≡ 1, our loss function is the usual squared error loss function and the above expression
yields the Bayes estimator in this case to be the posterior mean of g(Θ) as we had seen
before.

Example 3 (Binary Classification). Our next example is inspired by a quintessential binary
classification task, email spam filtering. Our goal is, given an incoming e-mail, to classify that
email as either spam or non-spam (we will call this higher-quality email “ham” in the latter
case). To model this, the parameter space is taken to be Ω = {0, 1}, where 0 corresponds to a
“ham” and a 1 represents “spam”, and we suppose that the email X is drawn from either the
ham distribution f0 or the spam distribution f1. Naturally, the decision space is D = {0, 1}
as well: we predict either “ham” or “spam” for the incoming email. A natural loss function
to consider in a such a binary classification problem set up is the 0-1 loss function1:

L(θ, d) =

{
0 d = θ

1 d 6= θ
.

We tackle this problem in Bayesian fashion by defining a prior distribution with π(1) = p
and π(0) = 1− p for some fixed p ∈ [0, 1]. The hyperparameter p is the probability assigned
to an e-mail being spam before observing any data point. One way to select p based on prior

1This is not the only reasonable choice of loss. We may for instance want to impose different penalties
for misclassifying true spam emails and misclassifying true ham emails.
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knowledge is to set p equal to the proportion of previously received emails which were spam.
Given this decision problem, the Bayes estimator minimizes the average risk

r(π, δ) = E[L(Θ, δ(X))] = P(δ(X) 6= Θ) = 1− P(δ(X) = Θ).

We see that minimizing the average risk is equivalent to maximize the probability of correct
classification P(δ(X) = Θ).

As a thought experiment, consider attempting to predict the label of an incoming email
before it has been viewed. Since we have no data to condition on, our only (non-randomized)
options are the constant estimators δ1 ≡ 1 and δ0 ≡ 0. The average risks for these are

r(π, δ1) = π(1)R(1, δ1) + π(0)R(0, δ1) = 1− p

and
r(π, δ0) = π(1)R(1, δ0) + π(0)R(0, δ0) = p.

So δ1 has smaller average risk when p > 1/2, and δ0 has smaller average risk when p < 1/2.
After observing the data X = x, we make the estimation θ = 1 if it has higher posterior

probability P(Θ = δ(X)|X = x), which is proportional to the product of the likelihood times
the prior. This gives the following two relations:

P(Θ = 1|X = x) ∝ f1(x) · π(1) =f1(x)p

P(Θ = 0|X = x) ∝ f0(x) · π(0) =f0(x)(1− p).

Note that both of these posterior probabilities have the common normalizing constant
1/[f1(x)p + f0(x)(1 − p)] so it is enough to consider just the numerators. So the Bayes
estimator predicts 1 iff

f1(x)p

f0(x)(1− p)
> 1,

i.e., iff
f1(x)

f0(x)
>

1− p
p

.

The left-hand side of the above inequality is known as a likelihood ratio as it is the ratio of
the likelihoods of X under the two values of θ in the parameter space. The right-hand side
is known as the prior odds.

Example 4. Consider the binary classification setting again with likelihood fj = Exp(λj),
for j ∈ {0, 1}, where λj are known rate parameters. We assume w.l.o.g. λ0 > λ1. Consider
that data X1, . . . , Xn (a batch of n emails) are drawn i.i.d. from fθ. From the calculations
above it follows that we estimate 1 iff

λn1 exp (−λ1

∑n
i=1 xi)

λn0 exp (−λ0

∑n
i=1 xi)

>
1− p
p

.

This condition is equivalent to

−(λ1 − λ0)
n∑
i=1

xi > log(1− p)− log(p) + n log(λ0/λ1).

The above means we estimate 1 iff
∑n

i=1 xi > h, where h depends on λ1, λ0, p, and n.
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Note that in the example above, the Bayes estimator depends on the data only through
the sufficient statistic

∑
iXi. This is not surprising and is in general true for Bayes esti-

mators. To see this, suppose a sufficient statistic T (X) exists. Then the posterior density,
which is proportional to the product of the likelihood and the prior can be written as

posterior π(θ|x) ∝ f(x|θ)π(θ)

∝ h(x)gθ(T (x))π(θ) (by NFFC)

∝ gθ(T (x))π(θ).

Note that h(x) does not involve θ, so it cancels out with the same term in the normalizing
constant. Since the posterior depends on the data only through the sufficient statistic T ,
the same will be the case for the estimator minimizing the posterior risk. Keeping this fact
in mind, we consider another Bayesian example.

Example 5 (Normal mean estimation). Let X1, . . . , Xn
i.i.d.∼ N (Θ, σ2), with σ2 known.

Further, let Θ ∼ N (µ, b2), where µ, and b are fixed prior hyper-parameters. Thus, we have
that, the posterior π(θ|x) is

π(θ|x) ∝
n∏
i=1

1√
2πσ

exp

(
− 1

2σ2
(xi − θ)2

)
1√
2πb

exp

(
− 1

2b2
(θ − µ)2

)

∝ exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2 − 1

2b2
(θ − µ)2

)

∝ exp

(
1

σ2

n∑
i=1

xiθ −
nθ2

2σ2
− 1

2b2
θ2 +

µ

b2
θ

)

∝ exp

(
−1

2

(
n

σ2
+

1

b2

)
θ2 +

(nx̄
σ2

+
µ

b2

)
θ

)
.

Thus the posterior density, π(θ|x) is that of an exponential family with sufficient statistics
θ and θ2, which implies that the posterior distribution is normal. Looking to the normal
density, we know that the coefficient of θ in the last line above will be(nx̄

σ2
+
µ

b2

)
=

mean

variance
,

and the coefficient of θ2 is

−1

2

(
n

σ2
+

1

b2

)
= − 1

2 · variance
.

So the posterior distribution is N (µ̃, σ̃2) with

µ̃ =
nx̄/σ2 + µ/b2

n/σ2 + 1/b2
, σ̃2 =

1

n/σ2 + 1/b2
.

Under squared error loss, the Bayes estimator is the posterior mean, which can be written
as

µ̃ =
n/σ2

n/σ2 + 1/b2
x̄+

1/b2

n/σ2 + 1/b2
µ.
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We note that, the posterior mean is just a convex combination of the sample mean and prior
mean. We further note that, for small values of n, the Bayes estimator gives significant
weight to the prior mean, but as n → ∞, we have |X̄ − µ̃| → 0 a.s. irrespective of the
hyper-parameters µ and b2, i.e. the data overwhelms the prior. However, for finite values of
n, we note that as the coefficient of X̄ is less than 1, and EX̄ = θ, we note that µ̃ is a biased
estimator unless µ = θ.

The fact that the unbiased estimator X̄ from the example was not the Bayes estimator
is a special case of a more general result:

Theorem 1 (TPE 4.2.3). If δ is unbiased for g(θ) with r(Λ, δ) <∞ and E[g(Θ)2] <∞ then
δ is not Bayes under squared error loss2 unless its average risk is zero i.e.,

E[(δ(X)− g(Θ))2] = 0,

where the expectation is taken over X and Θ.

Proof. Let δ be an unbiased Bayes estimator under squared error loss satisfying the as-
sumptions of the theorem. Then, we know that δ is the mean of the posterior distribution,
i.e.,

δ(X) = E[g(Θ)|X] a.s. (8.1)

Thus we have that,

E[δ(X)g(Θ)] = E[E[δ(X)g(Θ)|X]]=E[δ(X)E[g(Θ)|X]]
(a)
= E[δ2(X)], (8.2)

where (a) follows by substituting for E[g(Θ)|X]], using (8.1).
We also have that,

E[δ(X)g(Θ)] = E[E[δ(X)g(Θ)|Θ]] = E[g(Θ)E[δ(X)|Θ]]
(b)
= E[g2(Θ)], (8.3)

where (b) follows since E[δ(X)|Θ] = g(Θ) because δ is an unbiased estimator of g(θ).
We have that the average risk under squared error,

E[(δ(X)− g(Θ))2] = E[δ2(X)]− 2E[δ(X)g(Θ)] + E[g2(Θ)],

= E[δ2(X)]− E[δ(X)g(Θ)] + E[g2(Θ)]− E[δ(X)g(Θ)],
(c)
= E[δ2(X)]− E[δ2(X)] + E[g2(Θ)]− E[g2(Θ)],

= 0,

where (c) follows, by substituting for E[δ(X)g(Θ)] once from (8.2) and once from (8.3).
Thus, we have that E[(δ(X) − g(Θ))2] = 0, i.e., the average risk is zero, proving the

claim.

The take-away message from this theorem is that (finite risk) squared error Bayes esti-
mators are only unbiased in the degenerate case where perfect estimation is possible, that
is, when the Bayes risk is 0. In fact, we can use this to check if a given unbiased estimator
is a squared-error Bayes estimator.

2Note that this theorem only applies to Bayes estimators under the squared error loss. Bayes estimators
under other losses may be unbiased without achieving 0 average risk.
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Example 6. Let X1, ..., Xn ∼ N (θ, σ2), with σ2 > 0 known. Is X̄ Bayes under squared error
for some choice of prior distribution? We know that, E(X̄|θ) = θ, i.e., X̄ is an unbiased
estimator of θ. Further, we have that the average risk under squared error,

E[(X̄ −Θ)2] =
σ2

n
6= 0,

which means that X̄ is not the Bayes estimator under any prior distribution!
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