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� Warning: These notes may contain factual and/or typographic errors.

6.1 Optimal Equivariant Estimation

In this lecture, we will continue our discussion of optimal equivariant estimation under
location models (the associated reading can be found in Keener 10.1-10.2). Recall from our
last lecture that the goal in equivariant estimation is to enforce symmetries in our estimator,
in accordance with symmetries that exist in the model and loss function. In the location
family setting, we made this idea precise last lecture with the following definitions:

Definition 1 (Location-invariant decision problem). A decision problem is called location-
invariant if the family of densities P = {fθ : θ ∈ Ω} is location-invariant, i.e.,

fθ+c(x+ c) = fθ(x),

and the loss function is location-invariant, i.e.,

L(θ, d) = L(θ + c, d+ c) = ρ(d− θ).

Definition 2 (Location equivariant estimator). An estimator is called location equivariant
if

δ(X1 + c, . . . , Xn + c) = δ(X1, . . . , Xn) + c.

Examples of such δ include Xn, the median of X1, . . . , Xn, and X1.

We also discovered a useful strategy for deriving minimum risk equivariant (MRE) esti-
mators.

Theorem 1. If the decision problem is location invariant, δ0 is location equivariant with
finite risk, and if v∗(y) minimizes E0 [ρ(δ0 − v(y))|Y = y] for each y, then an MRE estimator
is δ0(X)− v∗(Y ), where Y , (X1 −Xn, . . . , Xn−1 −Xn).

Proof. By Theorem 1.8 of TPE, in order to find an MRE, we must choose a function v∗ to
minimize

Eθ=0[ρ(δ0(X)− v(Y ))] =

∫
Eθ=0

[
ρ(δ0(X)− v(Y ))|Y = y

]
dP0(y) (6.1)

over v. In order to minimize the RHS, it is sufficient to minimize the integrand for all y.

A corollary to this theorem, found in the supplemental text Theory of Point Estimation,
is given below:
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Theorem 2. If ρ, the loss function, is convex and not monotone, then an MREE exists. If
ρ is also strictly convex, then the MREE is unique.

We will now consider a number of examples.

Example 1. Suppose X1, . . . , Xn
iid∼ Exp (θ, b) with an unknown location parameter θ and

a known scale parameter b > 0. The density of each of the Xi has the form

p(xi; θ) =
1

b
exp

(
−(xi − θ)

b

)
I [xi > θ] .

We begin by noting that min(X1, . . . , Xn) is a complete sufficient statistic for this model (see
TPE Example 6.24, page 43). We need to choose a “base estimator” to start our procedure
for finding an MREE. We see that δ0(X) = min(X1, . . . , Xn) is location equivariant as

δ0(X + c) = min(X1 + c, . . . , Xn + c) = δ0(X) + c.

so we choose δ0(X) as our base estimator. Since Y = (X1−Xn, . . . , Xn−1−Xn) is ancillary
(as it has no θ dependence), δ0(X) ⊥⊥ Y (by Basu’s theorem), and hence

v?(y) = argmin
v

E0 [ρ(δ0(X)− v)|Y = y] = argmin
v

E0 [ρ(δ0(X)− v)] = v?

for all y.

The goal of the rest of this example is to find the constant v? in the above expression, which
will in turn lead to an MRE estimator by Theorem 1. We consider two specific forms of the
loss function.

• Case 1: With squared error loss, i.e., ρ(t) = t2, we have that:

argmin
v

E0 [ρ(δ0(X)− v)] = argmin
v

E0

[
(δ0(X)− v)2

]
Taking the derivative of this quantity, we find that v∗ = E0δ0(X). To evaluate this
quantity, note that when θ = 0,

P (δ0(X) > t) = P (Xi > t,∀i) =
n∏
i=1

P (Xi > t) =

{
exp

(
−nt

b

)
t > 0

1 t < 0
,

which implies that δ0(X) ∼ Exp (0, b/n) with mean b/n. Thus an MRE estimator in
this case is min(X1, . . . , Xn)− (b/n).

• Case 2: With absolute error loss, i.e., ρ(t) = |t|, it can be checked that v∗ is the
median of δ0(X) with Xi distributed as Exp (0, b). That is, v∗ satisfies the equation

P0(δ0(X) 6 v∗) = 1/2 = P0(δ0(X) > v∗),

which is equivalent to

1/2 = P0(δ0(X) > v∗) = exp (−nv∗/b) .

Solving the equation yields v∗ = (b/n) ln 2 and hence an MRE estimator min(X1, . . . , Xn)−
(b/n) ln 2.
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6.2 The Pitman Estimator of Location

Under squared error loss ρ(t) = t2, we can derive an explicit form for the (unique) MRE
estimator. First, we note that for any location equivariant δ0 with finite risk, v∗(Y ) =
argminv E0[(δ0(X)− v)2|Y ] = E0[δ0(X)|Y ], so an MRE estimator is

δ∗(X) = δ0(X)− E0[δ0(X)|Y ].

We will show that in fact δ∗ takes the more explicit form

δ∗(X1, ..., Xn) =

∫∞
−∞ u f(X1 − u, ..., Xn − u)du∫∞
−∞ f(X1 − u, ..., Xn − u)du

.

In this form, δ∗ is known as the Pitman estimator of location.

Proof. (Theorem 3.1.20 of TPE) Consider the simple location equivariant estimator δ0(X) =

Xn. Our goal is to compute E0[Xn|Y = y]. To this end, define Z
∆
= (Y1, ..., Yn−1, Xn) with

joint density pz,0 under location parameter 0 and note that

E0[Xn|Y ] =

∫∞
−∞ t pz,0(Y1, ..., Yn−1, t)dt∫∞
−∞ pz,0(Y1, ..., Yn−1, t)dt

.

To determine the form of pz,0 we will perform a change of variables. Notice that

Zi = Yi = Xi −Xn,∀i ≤ n− 1, and Zn = Xn.

Furthermore,

pz,0(z1, ..., zn) = px,0(x1, ..., xn)

∣∣∣∣∂x∂z
∣∣∣∣ = f(x1, ..., xn)

∣∣∣∣∂x∂z
∣∣∣∣

where the Jacobian matrix ∂x
∂z

of partial derivatives has the form

∂x

∂z
=


∂x1
∂z1

. . . ∂x1
∂zn

...
. . .

...
∂xn
∂z1

. . . ∂xn
∂zn

 =


1 0 . . . 1
0 1 . . . 1

0 0
. . . 1

0 0 . . . 1

 .

Hence |∂x
∂z
| = 1, and

px,0(x1, ..., xn) = f(x1, ..., xn) = f(y1 + xn, ..., yn−1 + xn, xn).

Thus, we may write

E0[Xn|Y ] =

∫∞
−∞ t f(Y1 + t, ..., Yn−1 + t, t)dt∫∞
−∞ f(Y1 + t, ..., Yn−1 + t, t)dt

.
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Changing variables once more to replace t with Xn − u, we obtain

E0[Xn|Y ] =

∫∞
−∞(Xn − u) f(Y1 +Xn − u, ..., Yn−1 +Xn − u,Xn − u)du∫∞

−∞ f(Y1 +Xn − u, ..., Yn−1 +Xn − u,Xn − u)du
,

that is,

E0[Xn|Y ] = Xn −
∫∞
−∞ u f(X1 − u, ..., Xn − u)du∫∞
−∞ f(X1 − u, ..., Xn − u)du

.

Therefore, δ∗(X) = Xn − E0[Xn|Y ], and equals the Pitman estimator as desired.

Let’s compute the Pitman estimator of location in a specific example.

Example 2. Suppose Xi
iid∼ U(θ − b

2
, θ + b

2
) for b known. Then,

f(x1 − θ, ..., xn − θ) =
1

bn
I
(
θ − b

2
≤ x(1) ≤ x(n) ≤ θ +

b

2

)
.

The squared error MRE estimator is therefore

δ∗(X) =

∫
u 1
bn
I[X(n) − b

2
≤ u ≤ X(1) + b

2
]du∫

1
bn
I[X(n) − b

2
≤ u ≤ X(1) + b

2
]du

=
1
2
((X(1) + b

2
)2 − (X(n) − b

2
)2)

X(1) + b
2
− (X(n) − b

2
)

=
X(1) +X(n)

2
.

Note that the MRE estimator in the previous example was also unbiased. This is not a
coincidence. Indeed, the following lemma shows us that, under squared error loss, the unique
MRE estimator is always unbiased.

Lemma 1. (TPE 3.1.23) Under squared error loss:

• If δ(X) is location equivariant with constant bias b, then δ(X) − b is unbiased and
location equivariant with smaller risk than δ(X).

• The unique MRE estimator is unbiased.

• If UMVUE exists and is location equivariant, then it is also MRE.

Let us take a moment to compare several characteristic properties of MRE and UMRU
estimators.

1(a) When an UMVUE exists, it is UMRU for any convex loss

1(b) No UMRUE exists for most bounded losses

1(c) UMVUEs are often inadmissible

2(a) An MREE exists for most losses, but the MRE estimator itself is often loss-dependent

2(b) The Pitman estimator is typically admissible

Moreover, while squared error MRE estimators are unbiased, MRE estimators under
other losses satisfy a more general risk unbiasedness property.
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6.3 Risk Unbiasedness

Definition 3. An estimator δ of g(θ) is called risk unbiased for a loss function L(θ, d) if

Eθ[L(θ, δ(X))] ≤ Eθ[L(θ′, δ(X))], ∀θ′, θ.

In other words, on average, the true parameter penalizes the estimator δ no more than any
false parameter.

Example 3. (Mean unbiasedness) If L(θ, d) = (d−θ)2 (squared error loss), and for estimator
δ we have Eθ[δ(X)2] <∞, then for any θ′

Eθ[L(θ′, δ(X))] = Eθ[δ(X)− g(θ′)]2 = Varθ(δ(X)) + (Eθ[δ(X)]− g(θ′))2.

If Eθ[δ(X)] is always in range(g) , g(Ω) , {g(θ) : θ ∈ Ω}, then δ is mean unbiased if
and only if Eθ[δ(X)] = g(θ). Thus, risk unbiasedness under the squared error loss or mean
unbiasedness is just our normal notion of unbiasedness.

Example 4. (Median unbiasedness) If L(θ, d) = |d − θ| (absolute error loss), and for esti-
mator δ we have Eθ[|δ(X)|] <∞, then risk unbiasedness is equivalent to

Eθ[|δ(X)− g(θ′)|] ≥ Eθ[|δ(X)− g(θ)|], ∀ θ′, θ.

In this case, if the medianθ(δ(X)) ∈ range(g), then δ is median unbiased if and only if
medianθ(δ(X)) = g(θ).
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