
STATS 300A: Theory of Statistics Fall 2015

Lecture 5 — October 6

Lecturer: Lester Mackey Scribe: Ahmed Bou-Rabee, Claire Donnat

� Warning: These notes may contain factual and/or typographic errors.

5.1 Optimal Unbiased Estimation

In the last lecture, we introduced three techniques for finding optimal unbiased estimators
when the loss function is convex:

A. Conditioning/Rao-Blackwellization.

B. Solving directly for the unique δ satisfying E[δ(T (X))] = g(θ).

C. Stumbling upon an unbiased function of our complete sufficient statistic.

We will go through some examples of these strategies, starting with one of Strategy C.

Example 1 (Strategy C: Stumble). Let X1, . . . , Xn
iid∼ N (µ, σ2). First, note that if σ2 is

known, X̄ is a complete sufficient statistic for µ and hence also the UMVUE. Consider the
case when θ = (µ, σ2) is unknown.

(a) The UMVUE for µ is X̄.

(b) The UMVUE for σ2 is
∑n

i=1
(Xi−X̄)2

n−1
.

(c) What is the UMVUE for σ? First, note that Xi − X̄ ∼ N (0, n−1
n
σ2), and hence

E[|Xi − X̄|] = σ
√

2
π

√
n−1
n

. This implies

√
πn√

2(n− 1)
|Xi − X̄|

is unbiased for σ. At this point we could Rao-Blackwellize, but the math is messy.
Instead, we will try to stumble upon the solution. Let

S2 =
n∑
i=1

(Xi − X̄)2.

We know that
S2 ∼ σ2χ2

n−1.

Thus,
E(S) = σE(χn−1).
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Which in turn implies that
E(S)

E(χn−1)
= σ,

meaning S
E(χn−1)

is unbiased for σ and hence UMVU.

(d) What is the UMVUE for µ2? Taking the expectation of the UMVUE for µ and squaring
it yields

E(X̄2) = µ2 + σ2/n.

So,

δn(X) = X̄2 − S2

n(n− 1)

is the UMVUE. Note that δn(X) may be negative even though it estimates a non-
negative quantity. Indeed, δn is inadmissible and dominated by the biased estimator
max(0, δn(X)).

Example 2 (Strategy B: Solve). Let X ∼ Poi(θ). Since this is a one-dimensional full-
rank exponential family, X is a complete sufficient statistic. X is furthermore unbiased and
therefore UMVU for θ. Suppose that our goal, however, is to estimate g(θ) = e−aθ for a ∈ R
known.

To employ Strategy B we must find an estimator δ such that E[δ(X)] = g(θ) for all θ.
Under our model, we may reexpress this system of equations as

∞∑
x=0

δ(x)
e−θθx

x!
= e−aθ for all θ (5.1)

=⇒
∞∑
x=0

δ(x)θx

x!
= e(1−a)θ =

∞∑
x=0

(1− a)xθx

x!
(5.2)

=⇒ δ(X) = (1− a)X is the UMVUE of g(θ). (5.3)

However, this estimator is somewhat unsatisfying: if a = 2, for instance, it will change
its sign according to X, even though our estimand e−aθ is nonnegative. The estimator is in
fact inadmissible when a > 1 and dominated by max(δ(X), 0).

So we have seen that although we may be able to compute an UMVUE, this may not
be a desirable decision rule. The two examples above shows that, even in simple cases, the
UMVUE may be inadmissible. The problems do not end here however; in some cases, an
UMVUE may not even exist.

Definition 1 (U-estimable). We say g(θ) is U-estimable if an unbiased estimate for g(θ)
exists.

Example 3 (Unbiased estimators of binomial distribution). For X ∼ Bin(n, θ) the only
U-estimable functions of θ are polynomials of degree ≤ n.

It is not uncommon for an UMVUE to be inadmissible, and it is often easy to construct
a dominating (biased) estimator. Due to these and other limitations, the constraint of
unbiasedness can be difficult to justify.
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Example 4 (UMVUE for normal population variance). We revisit the first example. Let

X1..Xn
iid∼ N (µ, σ2), where both µ, σ2 are unknown. Let

S2 =
n∑
1

(Xi −X)2.

In this setting, S2

n−1
is the UMVUE for σ2. However, the biased Maximum Likelihood Esti-

mator (MLE) S2

n
has lower mean squared error. Furthermore, the shrunk estimator S2

n+1
has

lower mean squared error still. In this case, both the UMVUE and MLE are inadmissible!

We now present an explicit example of an UMVUE not existing.

Example 5 (Semiparametric unbiased estimators). For n > 2, let X1, . . . , Xn
iid∼ F , where

F is some unknown distribution on R. Suppose that F is symmetric about some unknown
point θ ∈ R. That is, suppose for all X ∼ F , we have

X =d 2θ −X.

Consider the model

F = {all distributions on R with finite variance symmetric about θ ∈ R}1.

Then there is no UMVUE for the point of symmetry θ.

Proof. Suppose for sake of contradiction that the UMVUE T (X) exists. Since X is unbiased
for the full model F , T (X) must have variance no larger than X. However, we know that
X is the unique UMVUE for the Gaussian submodel, {N (θ, 1) : θ ∈ R}, and so T (X)
must equal X a.s. in the Gaussian submodel. This implies that T (X) = X a.s. under any
continuous distribution on R. In particular, T (X) = X a.s. under the uniform submodel
{Unif(θ − 1, θ + 1) : θ ∈ R}. However, we learned in Homework 2, Problem 3 (b), that the
distinct estimator 1

2
(X(1)+X(n)) has strictly better variance than X in the uniform submodel.

Since 1
2
(X(1) + X(n)) is also unbiased for the full model F , T (X) cannot be the UMVUE

after all. We are forced to conclude that no UMVUE exists over the whole family.

Remark: In the previous proof, we argued that if the UMVUE existed, it must corre-
spond to X̄, which is the UMVUE of a Gaussian submodel. A question was raised in class
concerning the choice of that UMVUE and that sub-model: can we make the same argument
with any arbitrary submodel?

If we consider for instance the submodel with a single distribution P =
{
N(θ, 1)

}
with

θ = 2, η̃(X) = 2 is an unbiased estimator for P . However, this estimator does not put any
constraints on the UMVUE for our model F . Indeed, X̄ is unbiased for every model in F ,
while η̃(X) = 2 is only unbiased on a very specific submodel of F , but not on the entire
model F . This distinction is important as any putative UMVUE δ(x) for F is required to
have a variance at least as small as X̄ in every model of F, while δ(x) is not required to have
a variance at least as small as 2, as 2 is not unbiased for every model in F .

1Such a model is called semiparametric because there is a finite dimensional unknown of interest, θ (the
parametric part), as well as an infinite-dimensional unknown, F (the nonparametric part).
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5.1.1 Sums of UMVUEs

We will end our exploration of unbiased estimation with an alternative characterization
of UMVUEs inspired by the following question: Suppose we have δi UMVU for gi(θ) for
i ∈ {1, 2}. Is δ1 + δ2 then UMVU for g1(θ) + g2(θ)?

If our underlying family of distributions has a complete sufficient statistic, then Lehmann-
Scheffe tells us this is definitely the case. However, we would like to say something about
this even when no complete sufficient statistic exists, for which we will find the following
theorem useful:

Theorem 1 (Characterization of UMVUEs; TPE 2.1.7). Let ∆ = {δ : Eθ[δ2] < ∞}. Then
δ0 ∈ ∆ is UMVU for g(θ) = E[δ0] if and only if E[δ0(θ)U ] = 0 for every U ∈ U , where
U = {unbiased estimators of 0}.

Proof. If δ0 is UMVUE let us consider δλ = δ0 + λU for λ ∈ R, U ∈ U . Since δ0 has minimal
variance,

Var(δλ) = Var(δ0) + λ2Var(U) + 2λCov(δ0, U) ≥ Var(δ0). (5.4)

Now consider the quadratic form q(λ) = λ2Var(U) + 2λCov(δ0, U). The form q has the roots
0 and −2Cov(δ0, u)/Var(u). If the roots are distinct, then the form must be negative at some
point, which would violate the inequality (5.4). Hence, −2Cov(δ0, U)/Var(U) = 0, and thus
E[Uδ0] = Cov(δ0, U) = 0.

For the converse result, we assume E[δ0U ] = 0, ∀U ∈ U , and consider any δ unbiased for
g(θ). Then δ−δ0 ∈ U , so E[δ0(δ−δ0)] = 0. This implies that E[δ0δ] = E[δ2

0], and subtracting
E[δ0]E[δ] on both sides we get

Var(δ0) = Cov(δ0, δ) ≤
√

Var(δ0)Var(δ)

by Cauchy-Schwarz. Hence Var(δ0) ≤ Var(δ) for any arbitrary unbiased estimator δ, and δ0

is thus UMVU.

Note that Theorem 1 provides a way to check for the existence of an UMVUE and to
check whether a given estimator is UMVU, even when no complete sufficient statistic is
known.

Turning back to our original question, we find that δ1 + δ2 is UMVU for g1(θ) + g2(θ)
simply by noting that

∀U ∈ U , E[(δ1 + δ2)U ] = E[δ1U ] + E[δ2U ] = 0.

5.2 Optimal Equivariant Estimation

We now depart from the classical constraint of unbiasedness and turn our attention to the
sorts of symmetries that naturally arise in decision problems. We begin by studying location
families and their behavior under translation.

Let us consider a location model in which X = (X1, . . . , Xn) follows a joint probability
density of the form fθ(X) ≡ f(x1 − θ, x2 − θ, . . . , xn − θ), where f is fixed and known, and
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θ ∈ R, the location parameter, is our unknown statistic. We denote this situation by
(X1, . . . , Xn) ∼ LocModel(θ). For example, this occurs when Xi = Ui + θ for (U1, . . . , Un) ∼
f0.

Note that if Xi’s are i.i.d., then the joint density factorizes as

fθ(X) ≡
n∏
i=1

gθ(xi) =
n∏
i=1

g(xi − θ).

Now, if (X1, . . . , Xn) ∼ LocModel(θ) then let X ′i = Xi + c for fixed c and all i, so that
(X ′1, . . . , X

′
n) ∼ LocModel(θ + c). Notice that this means that the shift in the data by a

constant results in a shift in the model by a constant. Let’s formalize these notions with
some definitions to be able to do optimal inference in this setting.

Definition 2. (Location invariant model). A family of densities P = {fθ|θ ∈ Ω} is location
invariant if fθ+c(x+ c) = fθ(x).

Definition 3. (Location invariant loss function). A loss function L is location invariant
if L(θ, d) = L(θ + c, d + c) ∀θ, d, c. This implies that the the loss function is of the form
L(θ, d) = ρ(θ − d), since L(θ, d) = L(θ − d, 0).

Definition 4. (Location invariant decision problem). A decision problem is location invari-
ant if the family of distribution P and the loss function L both are.

When our decision problem displays this sort of invariance to transformation, it is rea-
sonable to constrain our estimator to respect these symmetries as well. This gives rise to
the following definition of equivariance.

Definition 5. (Location equivariant estimator). An estimator δ is location equivariant if
δ(X1 + c, . . . , Xn + c) = δ(X1, . . . , Xn) + c.

Many simple estimators (e.g., the arithmetic mean, the median, and any weighted average
of order statistics) are location equivariant. And, indeed, it seems a reasonable constraint:
if you are measuring heights and arbitrarily add a constant to all of them, you would expect
that your estimator changes by that same constant.

Armed with these definitions we develop a general result, which will greatly simplify our
search for an optimal equivariant estimator.

Theorem 2. (TPE 3.1.4) If δ is a location equivariant estimator for a location invariant
decision problem (P , L) then the bias, risk and variance of δ have no θ dependence.

Proof. We only show the proof for the bias of the estimator. The calculations are analogous
for the risk and the variance. The bias of δ is

Eθ[δ(X)− θ] = Eθ[δ(X1 − θ, . . . , Xn − θ)] = (5.5)

= E0[δ(U1, . . . , Un)] where (U1, . . . , Un) ∼ f0. (5.6)

Thus the bias has no dependence on θ.
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The key idea here is that δ(X) − θ has no θ dependence. This same lack of dependence
occurs with risk and variance.

Our optimality goal in this constrained setting is to find a Minimum Risk Equivariant
(MRE) estimator. If we wish to find an MRE estimator, we may leverage the fact that the
risk is constant for all θ, which means that an MRE is necessarily the best estimator in its
class for all θ. We will see soon that such an MRE typically exists. First, we will develop a
characterization of all location equivariant estimators. For that, we need two lemmas (both
proved in TPE).

Lemma 1. (TPE 3.1.6) If δ0 is a location equivariant estimator then any other estimator δ
is location equivariant if and only if:

δ(X1, . . . , Xn) = δ0(X1, . . . , Xn)− U(X1, . . . , Xn) (5.7)

where the statistic U is location invariant, i.e. U(X1 + c, . . . , Xn,+c) = U(X1, . . . , Xn), c ∈
R.

Lemma 2. (TPE 3.1.7) A statistic U is location invariant if and only if U is a function
v(Y1, . . . , Yn) of the differences Yi = Xi −Xn, for i = 1, . . . , n− 1.

The difference above is taken between i and n simply for convenience. Employing these
two lemmas we now that every location equivariant estimator has the form

δ(X1, . . . , Xn) = δ0(X1, . . . , Xn)− v(Y1, . . . , Yn−1) (5.8)

where δ0 is a reference location equivariant estimator, v is an arbitrary function, and Yi =
Xi −Xn.

Example 6. In a sample of a single observation (n = 1) all location equivariant estimators
have the form δ(X1) = X1 + c for some c ∈ R, since v in this case is a function of no
arguments. Note that X1 is itself location equivariant, so δ0(X1) = X1. These estimators
are more interesting when n > 1.

The following theorem helps us find the best location equivariant estimator.

Theorem 3. (TPE 3.1.10) Given a location invariant decision problem, if δ0 is location
invariant (with finite risk) and for each Y , v∗(Y ) minimizes the expected conditional loss

Eθ=0[ρ(δ0(X)− v)|Y = y]

as a function of v, where Y = (X1−Xn, . . . , Xn−1−Xn), then an MRE estimator is δ0(X)−
v∗(Y ).

We will prove this and present applications of this theorem next time.
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