
STATS 300A: Theory of Statistics Fall 2015

Lecture 4 — October 1

Lecturer: Lester Mackey Scribe: Rina Friedberg ; Weizhuang Zhou

� Warning: These notes may contain factual and/or typographic errors.

4.1 Completeness and Ancillarity

Last time we defined our ideal notion of optimal data reduction:

Definition 1. A statistic T is complete if no non-constant function of T is first order
ancillary.

Example 1. If X ∼ p(x; θ) ∝ h(x)eθx, then the statistic T (X) = X is complete.

Proof. Outline of steps:

(1) Suppose
∫
f(x)h(x)eθxdx = 0 for all θ.

(2) Then we can decompose f as f(x) = f+(x)− f−(x), with f+ ≥ 0, f− ≥ 0

(3) f+ and f− can be viewed as unnormalized densities p+(x), p−(x)

(4) (1) implies that the moment generating functions of p+(x) and p−(x) are equal:
∫
p+(x)eθxdx =∫

p−(x)eθxdx,∀θ. Hence p+(x) and p−(x) represent the same distribution, so p+(x) =
p−(x), f+ = f−, and f ≡ 0.

This ideal reduction is realized, for example, by the sufficient statistics of any full-rank
exponential family.

Theorem 1 (TSH 4.3.1). (T1, ..., Ts) is complete for any s-dimensional full rank exponential
family.

In addition, a complete sufficient statistic is guaranteed to be independent of any ancillary
statistic.

Theorem 2 (Basu’s Theorem). If T is complete and sufficient for P = {Pθ : θ ∈ Ω}, and A
is ancillary then T (X) ⊥⊥ A(X).

Let’s look at an application of Basu’s Theorem regarding the independence of sample
mean and sample variance for normal model.

Example 2. X1, ..., Xn
i.i.d∼ N (µ, σ2) (µ, σ2 both unknown),

Claim: X̄ ⊥⊥ 1
n

∑n
i=1(Xi − X̄)2.

Proof. Fix any σ > 0, and consider the submodel Pσ = {N (µ, σ2) : µ ∈ R}. In each
submodel, X̄ is complete and sufficient, and 1

n

∑n
i=1(Xi − X̄)2 is ancillary. By Basu’s

Theorem, X̄ ⊥⊥
∑n

i=1(Xi − X̄)2 under N (µ, σ2) for any µ. Since σ is arbitrary, we have
X̄ ⊥⊥ 1

n

∑n
i=1(Xi − X̄)2 for the full model.
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Figure 4.1. Strictly Convex
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Figure 4.2. Convex but Not Strictly Convex

4.2 From Data Reduction to Risk Reduction

How does all of our work on optimal data compression translate into better decision pro-
cedures? When the loss function is convex (see Definition 2), we can develop methods to
reduce risk using sufficient statistics. We focus on point estimators g(θ) for known g.

Definition 2. A function f : C → R with C convex is a convex function if x 6= y ∈ C
and γ ∈ (0, 1),

f(γx+ (1− γ)y) ≤ γf(x) + (1− γ)f(y).

f is said to be strictly convex if inequality above holds strictly.

Example 3. For any θ, the function f(d) = (d − θ)2 is strictly convex on R. Figure 4.1
shows the function when θ = 5. A sign of strict convexity is that the line segment joining
any two points on the curve lies strictly above the curve (at all points save the end points).

Example 4. For any θ ∈ Ω, f(d) = |d − θ| is convex but not strictly convex. Figure 4.2
shows the function when θ = 5. The line segment connecting any two points on the curve
still lies on or above the curve (a sign of convexity) but not necessarily strictly above.

The following property of convex functions will have important implications for reducing
risks of decision procedures.

Theorem 3 (Jensen’s Inequality, K 3.25). If f : C → R is convex on an open set C,
P(X ∈ C) = 1, and E(X) exists, then f(E(X)) ≤ E(f(X)). If f is strictly convex, the
inequality holds strictly unless X = E(X), w.p. 1.

We will now apply this result in our decision theoretic setting. Recall that a loss function
L(θ, d) is the penalty incurred by estimating d when θ is the true parameter. When L(θ, ·)
is convex (as a function of d ∈ D), we have the following result relating risk and sufficiency
as a direct consequence of Jensen’s inequality.

Theorem 4 (Rao-Blackwell Theorem, K 3.28). Suppose that T is sufficient for P = {Pθ, θ ∈
Ω}, that δ(X) is an estimator for g(θ) for which E(δ(X)) exists, and thatR(θ, δ) = EθL(θ, δ(X)) <
∞. If L(θ, ·) is convex (as a function of d ∈ D), then

R(θ, η) ≤ R(θ, δ) for η(T (X)) = E(δ(X)|T (X)).
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If L(θ, ·) is strictly convex, then R(θ, η) < R(θ, δ) for any θ unless η(T ′(x)) = δ w.p. 1.

The Rao-Blackwell Theorem is stronger than Theorem 1 of Lecture 1 because it states
that when loss function is convex, we can find a deterministic estimator that is no worse
than the original estimator using only a compression of the data, T (X).

Example 5. Let X1, ..., Xn
i.i.d∼ Ber(θ) for θ ∈ (0, 1), and consider the loss function L(θ, d) =

(θ− d)2. Suppose that we begin with the somewhat unreasonable estimator δ(X) = X1 that
only makes use of the first data point. We know that T (X) = X̄ is sufficient, so we will use
the Rao-Blackwell theorem to improve our estimator δ:

η(T (X)) = E(δ(X)|T (X))

=
1

n

n∑
i=1

E(X1|X̄)

=
1

n

n∑
i=1

E(Xi|X̄)

= E[X̄|X̄] = X̄

The second and third equality is based on the fact that our variables are identically
distributed. Now we saw in the first lecture that R(θ, η) = θ(1−θ)

n
< θ(1 − θ) = R(θ, δ),

indicating a strict improvement as suggested by the Rao-Blackwell Theorem.

It it important to note that while Rao-Blackwell allows us to improve upon a given
estimator, it need not lead to a uniformly optimal estimator. For example, if we begin with
the estimator δgoofy(X) = 1

2
, then η(T (X)) = E(δgoofy|X̄) = 1

2
as well. Since R(θ, η) =

(1
2
− θ)2, neither Rao-Blackwellized outcome (of 1/2 and X̄) is uniformly better across all

parameter values θ. In fact, we have shown in Lecture 1 that a uniformly best estimator
does not exist.

So in order to obtain a meaningful notion of optimality, we need to either constrain the
class of possible estimators or collapse the risk function into a scalar. We will begin by
imposing a classical statistical constraint, that of unbiasedness.

4.3 Unbiased Estimation

Recall that an estimator is unbiased if Eθ [δ(X)] = g(θ). Although uniformly best estimator
does not exist, quite often, we can find a unbiased estimator with uniformly minimum risk,
that is, an unbiased δ satisfying R(θ, δ) ≤ R(θ, δ′), for ∀θ and any other unbiased estima-
tors δ′. Such an estimator is called a uniformly minimum risk unbiased estimator
(UMRUE).

When L(θ, d) = (θ−d)2, an UMRUE becomes a uniformly minimum variance unbi-
ased estimator (UMVUE). The name follows from the fact that the mean squared error
decomposes into two terms, a variance term and a squared bias term:

Eθ
[
(θ − δ(X))2

]
=
(
Eθ [δ(X)]− θ

)2
+ Eθ

{(
δ(X)− Eθ [δ(X)]

)2}
= Bias2 + Variance.

(4.1)
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When the bias is constrained to be zero, minimizing risk is equivalent to minimizing variance.
The following theorem demonstrates an important and fruitful connection between UMRUEs
and complete sufficient statistics, when the loss is convex.

Theorem 5 (Lehmann-Scheffe Theorem). If T is a complete and sufficient statistic, and
Eθ [h(T (X))] = g(θ)(i.e., h(T (x)) is unbiased for g(θ)), then h(T (X)) is

(1) the only function of T (X) that is unbiased for g(θ)

(2) an UMRUE under any convex loss function,

(3) the unique UMRUE (up to a P − null set) under any strictly convex loss function,

(4) the unique UMVUE (up to a P − null set).

Proof. (1) Suppose Eθ
[
h̃(T (X))

]
= g(θ). Then Eθ

[
h̃(T (X))− h(T (X))

]
= 0, ∀θ. Thus

h̃(T (X)) = h(T (X)) almost surely for each θ, by completeness.

(2) Consider any unbiased δ(X), and let h̃(T (X)) = Eθ [δ(X) | T (X)]. Then Eθ
[
h̃(T (X))

]
=

Eθ [δ(X)] = g(θ) by the tower property of conditional expectation. By (1), h̃(T (X)) =
h(T (X)), and by the Rao-Blackwell Theorem R(θ, h(T (·))) = R(θ, h̃(T (·))) ≤ R(θ, δ),
for all θ, if the loss function is convex. Therefore, h(T(X)) is an UMRUE under any
convex loss function.

(3) If the loss function is strictly convex, R(θ, h(T (·))) < R(θ, δ) unless δ(X) = h(T (X)).
Thus, h(T (X)) is the unique UMRUE.

(4) By (3), h(T (X)) is the unique UMVUE.

Indeed, the Lehmann-Scheffe theorem gives rise to several useful strategies for finding
UMRUEs under convex loss functions.

We now provide three different strategies for finding UMRUEs under convex loss.

(A) Rao-Blackwellize / Condition

(1) We first find a sufficient and complete statistic T (X).

(2) We then find any unbiased estimator δ0(X).

(3) We then compute E [δ0(X) | T (X)], which is an UMVUE by the Lehmann-Scheffe
Theorem.

(B) Solve for the (unique) δ satisfying Eθ [δ(T (X))] = g(θ), for all θ.

(C) Stumble upon some unbiased function of T (X).

We now show how to use the strategies above in the following examples.
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Example 6. Suppose X1, . . . , Xn
iid∼ Ber(θ).

We know that T (X) =
∑n

i=1Xi is a complete and sufficient statistic from previous

lectures, and furthermore the statistic T (X)
n

is an unbiased estimator for θ since

E
[
T (X)

n

]
= E

[
1

n

n∑
i=1

Xi

]
= θ.

Therefore, T (X)
n

is an UMRUE for θ under any convex loss function.

Suppose that we want to estimate θ2 instead. If we choose δ(X) = I (X1 = X2 = 1) =
X1 · X2, then Eθ [δ(X)] = θ2 is unbiased. We again apply Strategy A to find an UMRUE.
We do this by conditioning on T (X):

E [δ(X) | T (X) = t] = P (X1 = X2 = 1 | T (X) = t)

=
P (X1 = X2 = 1,

∑n
i=3Xi = t− 2)

P (T (X) = t)

=

θ2
(
n− 2

t− 2

)
θt−2(1− θ)n−tI(t ≥ 2)(
n

t

)
θt(1− θ)n−t

=
t(t− 1)I(t ≥ 2)

n(n− 1)

(4.2)

Notice that in this case, I (t ≥ 2) = 0 is an extraneous term, since for t = 0 or 1, the term
t(t− 1) = 0 already. Therefore

UMV UE =
T (X)(T (X)− 1)

n(n− 1)
I (T (X) ≥ 2) =

T (X)(T (X)− 1)

n(n− 1)
.

Example 7. Now suppose X1, . . . , Xn
iid∼Unif(0, θ). In this case, T (X) = X(n) is a complete

and sufficient statistic, and δ(X) = 2X1 is an unbiased estimator of θ. Given knowledge
of X(n), X1 is equal to X(n) with probability 1/n and distributed according to Unif(0, X(n))
with probability 1− (1/n), so

P(X1 = x1|T (X)) =
1

n
I (T (X) = x1) +

(1− 1
n
)I (0 < x1 < T (X))

T (X)

Hence, our UMVUE is,

E [δ(X) | T (X)] = 2E [X1 | T (X)]

= 2

(
1

n
T (X) + (1− 1

n
)

∫ T (x)

0

x1
T (X)

dx1

)

= 2(
T (X)

n
+ (1− 1

n
)
T (X)

2
)

=

(
n+ 1

n

)
T (X).

(4.3)
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