
STATS 300A: Theory of Statistics Fall 2015

Lecture 3 — September 29

Lecturer: Lester Mackey Scribe: Konstantin Lopyrev, Karthik Rajkumar

� Warning: These notes may contain factual and/or typographic errors.

3.1 Recap

Before discussing today’s topic matter, let’s take a step back and situate ourselves with
respect to the big picture. As mentioned in Lecture 1, a primary focus of this course is
optimal inference. As a first step toward reasoning about optimality, we began to examine
which statistics of the data that we observe are actually relevant in a given inferential task.
We learned about lossless data reduction and about the concept of sufficiency. We understood
through our notions of statistical risk that lossless data reduction does just as well as the
original model and that extraneous data can only hurt the model.
We then examined a broad class of distributions, viz. the exponential families, and saw how
they were intimately related to our notions of sufficiency. Using the concept of minimal
sufficiency, we initiated a discussion of how data could be maximally compressed without
losing information relevant to the inference task.

Our present roadmap leads us to examine first how the exponential families and other
distribution can be optimally reduced (this lecture), before proceeding to see how optimal
data compression relates to optimal inference (next time).

3.2 Minimal Sufficiency

Recall that we defined a notion of maximum achievable lossless data reduction in the last
lecture.

Definition 1 (Minimal Sufficiency). A sufficient statistic T is minimal if for every sufficient
statistic T ′ and for every x, y ∈ X , T (x) = T (y) whenever T ′(x) = T ′(y). In other words, T
is a function of T ′ (there exists f such that T (x) = f(T ′(x)) for any x ∈ X ).
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The following theorem provides a means for checking minimal sufficiency when our model
distributions admit densities.

Theorem 1. Let {p(x; θ), θ ∈ Ω} be a family of densities with respect to some measure µ.1

Suppose that there exists a statistic T such that for every x, y ∈ X :

p(x; θ) = Cx,yp(y; θ) ⇐⇒ T (x) = T (y)

for every θ and some Cx,y ∈ R. Then T is a minimal sufficient statistic.

To prove this result, we first show that T is sufficient and then that it is minimal.

Proof. T is sufficient: Start with T (X ) = {t : t = T (x) for some x ∈ X} = range of T .
For each t ∈ T (X ), consider the preimage At = {x : T (x) = t} and select an arbitrary
representative xt from each At. Then, for any y ∈ X we have y ∈ AT (y) and xT (y) ∈ AT (y).
By the definition of At this implies that T (y) = T (xT (y)). From the assumption of the
theorem,

p(y; θ) = Cy,xT (y)
p(xT (y); θ)

= h(y)gθ(T (y))

which yields sufficiency of T by the NFFC.

T is minimal: Consider another sufficient statistic T ′. By the NFFC

p(x; θ) = g̃θ(T
′(x))h̃(x).

Take any x, y such that T ′(x) = T ′(y). Then

p(x; θ) = g̃θ(T
′(x))h̃(x)

= g̃θ(T
′(y))h̃(y)

h̃(x)

h̃(y)

= p(y; θ)Cx,y

Hence, T (x) = T (y) by the assumption of the theorem. So, T ′(x) = T ′(y) implies T (x) =
T (y) for any sufficient statistic T ′ and any x, y. As a result, T is a minimal sufficient
statistic.

Interestingly, minimal sufficient statistics are quite easy to find when working with min-
imal exponential families.

Remark 1. For any minimal s-dimensional exponential family the statistic
(
∑

i T1(Xi), . . . ,
∑

i Ts(Xi)) is a minimal sufficient statistic. (See Keener Ex. 3.12)

1Note that in this class, µ will typically be Lebesgue measure for continuous distributions or counting
measure for discrete distributions.
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Example 1 (Curved Exponential Family). Let X1, . . . , Xn
iid∼ N (σ, σ2), θ = σ > 0. Then

p(x; θ)

p(y; θ)
=

exp

(
− 1

2σ2

∑
i
x2i +

σ

σ2

∑
i
xi −

nσ2

2σ2

)
exp

(
− 1

2σ2

∑
i
y2i +

σ

σ2

∑
i
yi −

nσ2

2σ2

)
= exp

(
− 1

2σ2

(∑
i
x2i −

∑
i
y2i

)
+

1

σ

(∑
i
xi −

∑
i
yi

))
.

Is T (X) = (T1(X), T2(X)) = (
∑

iX
2
i ,
∑

iXi) minimal sufficient?

First, if T (x) = T (y) for some x, y ∈ X , then their ratio is equal to 1 and hence does not
depend on θ. This means T is sufficient.

Second, if for some x, y, the ratio is independent of θ, notice that the ratio→ 1 as σ →∞
(log of the ratio → 0). Therefore Cx,y = 1 and logCx,y = 0 = log

(
p(x;θ)
p(yθ)

)
. This implies

1

2σ2
(T1(y)− T1(x)) +

1

σ
(T2(x)− T2(y)) = 0 ∀σ

Multiplying 2σ2 through, we get

T1(y)− T1(x) = 2σ(T2(y)− T2(x) ∀σ

We see that the RHS → 0 as σ → 0. So

T1(y)− T1(x) = 0

=⇒ T2(y) = T2(x)

Consequently, T is a minimal sufficient statistic.

Remark 2. What if the support of X, i.e., the set {x ∈ X : p(x; θ) > 0}, depends on θ?
Then if p(x; θ) = Cx,yp(y; θ), x and y must be supported by (exactly) the same θ’s. Otherwise
there would be a θ dependence, which we assumed we did not have.

Example 2. Let X1, . . . , Xn
iid∼ U (0, θ) and T (X) = max{X1, . . . , Xn}. In that case for

x = (x1, ..., xn) such that xi > 0, i = 1, ..., n (in short, x > 0)

p(x; θ) =
n∏
i=1

1

θ
I (xi < θ) =

1

θn
I (T (x) < θ) .

If T (x) = T (y) then p(x; θ) = 1 × p(y; θ). That scale ratio between the distributions does
not depend on θ and so T is sufficient.

Conversely, if x, y > 0 are supported by the same θ’s, then {θ supporting x} = (T (x),∞) =
(T (y),∞) = {θ supporting y}. Therefore T (x) = T (y) and T is a minimal sufficient statistic.
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3.3 Ancillarity and Completeness

In each of the examples we encountered, we were able to achieve significant data compression
without losing any information on our statistical model. But is this always the case? Are
there ever instances where sufficient statistics, or even minimal sufficient statistics, don’t
reduce the data in any significant way?
The answer is a resounding yes.

Example 3. Consider X1, . . . , Xn
iid∼ CauchyLoc(θ), whose distribution is given by

p(x; θ) =
1

π

1

1 + (x− θ)2
= f(x− θ),

then (X(1), . . . , X(n)) is minimal sufficient. (See TPE 1.5.)

This is also true for the double exponential location model, p(x; θ) ∝ exp (|x− θ|).

So how can we explain this drastic difference in compressibility? It turns out that the
lossless compressibility of data drawn from a model is related to the amount of ancillary
information present in its minimal sufficient statistics.

Definition 2. A statistic A is ancillary for X ∼ Pθ ∈ P if the distribution of A(X) does
not depend on θ.

Example 4. Consider again X1, . . . , Xn
iid∼ CauchyLoc(θ). Then A(X) = X(n) − X(1) is

ancillary even though (X(1), . . . , X(n)) is minimal sufficient. To see this, note that Xi = Zi+θ

for Zi
iid∼ CauchyLoc(0), so X(i) = Z(i) + θ, and A(X) = A(Z). This last quantity does not

depend on θ.

Ideally, the statistics that we make use of will include as little ancillary information as
possible. In fact, we will demand even more than this. To do this we introduce a slightly
weaker notion of ancillarity:

Definition 3. A statistic A is first-order ancillary for X ∼ Pθ ∈ P if Eθ[A(X)] does not
depend on θ.

From this we define the concept of complete statistics.

Definition 4. A statistic T is complete for X ∼ Pθ ∈ P if no non-constant function of T
is first-order ancillary. In other words, if Eθ[f(T (X))] = 0 for all θ, then f(T (X)) = 0 with
probability 1 for all θ.

Completeness formalizes our ideal notion of optimal data reduction, whereas minimal suf-
ficiency is our achievable notion of optimal data reduction. We now examine some properties
of complete statistics.

1. If T is complete sufficient, then T is minimal sufficient. This is known as Bahadur’s
theorem.
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2. Complete sufficient statistics yield optimal unbiased estimators. (This will be studied
in the next lecture.)

Example 5. Let X1, . . . , Xn
iid∼ Ber(θ), θ ∈ (0, 1). Then T (X) =

∑
iXi is sufficient. Suppose

Eθ[f(T (X))] = 0 for all θ ∈ (0, 1). This means

n∑
j=0

f(j)

(
n

j

)
θj(1− θ)n−j = 0, ∀θ ∈ (0, 1).

Dividing through by θn and using β = θ
1−θ , we get

n∑
j=1

f(j)

(
n

j

)
βj = 0, ∀β > 0.

If f are non-zero, then the quantity on the left is a polynomial of degree at most n. However,
an nth-degree polynomial can have at most n roots. Hence it impossible for the LHS to equal
0 for every β > 0 unless f = 0. Hence T is complete.

Example 6. Let X1, . . . , Xn
iid∼ N (θ, σ2) with unknown µ ∈ R and known σ2 > 0. Is

Xn = 1
n

∑
iXi complete for this model? (We already know that it is minimal sufficient.)

The answer is yes, but to keep the algebra simple we will show that it is complete in the
special case of n = 1 and σ = 1, so that T (X) = X ∼ N (θ, 1). Suppose

Eθ[f(X)] =
1√
2π

∫ ∞
−∞

f(x) exp

(
−(x− θ)2

2

)
dx = 0 ∀θ ∈ R

Multiplying through by
√

2πe
θ2

2 gives∫ ∞
−∞

f(x) exp

(
−x

2

2

)
exp (θx) dx = 0 ∀θ (3.1)

Now decompose f into its positive and negative part as f(x) = f+(x) − f−(x), where
f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0). Then f+(x) ≥ 0 and f−(x) ≥ 0 for all
x ∈ R, and f+(x) = f−(x) if and only if f+(x) = f−(x) = 0.

If f(x) ≥ 0 a.e. or f(x) ≤ 0 a.e., then (3.1) implies that f(x) = 0 a.e. because setting
θ = 0 gives us an integral of a nonnegative (or nonpositive) function being zero. This is
completeness.
In the other case, f+ and f− have non-zero components and we may write∫∞

−∞ f+(x)e
−x2
2 eθxdx∫∞

−∞ f+(x)e−
x2

2 dx
=

∫∞
−∞ f−(x)e

−x2
2 eθxdx∫∞

−∞ f−(x)e−
x2

2 dx
, (3.2)

where the equality of the numerators follows from (3.1), and the equality of the denominators
follows from setting θ = 0. The quantity

f+(x)e−
x2

2∫∞
−∞ f+(x)e−

x2

2 dx
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defines a probability density, and the left-hand-side of (3.2) is the moment generating func-
tion of this density. Similarly, the right-hand-side is the moment generating function of the
density

f−(x)e−
x2

2∫∞
−∞ f−(x)e−

x2

2 dx
.

The equality of the moment generating functions implies equality of the densities, which in
turn implies f+(x) = f−(x) a.e. Then f+(x) = f−(x) = 0 a.e. so f(x) = 0 a.e. Hence T is
complete.
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