STATS 300A: Theory of Statistics Fall 2015

Lecture 17 — November 19
Lecturer: Lester Mackey Scribe: Guanyang Wang, Luke Lefebure

@ Warning: These notes may contain factual and/or typographic errors.

17.1 Recap

In the last lecture, we saw how to use the strategy of conditioning on a sufficient statistic to
find a UMPU test. We begin by extending an example seen in the last lecture.

Example 1. X, ..., X,, "5 N(u,0?), where both p and 0% are unknown. The joint density

of Xq,..., X, is
1
f(xh"'axn) X exp <_@;m12+ %;lﬁ)

Testing the mean In the last lecture, we considered testing Hy : 0 > 0g vs. Hy : 0 < 0y.
Next, let’s consider testing Hy : pp < 0. Since p < 0 < 25 <0, let

n 1
0=—= \=——

o2’ 207
U=XT=) X}

i=1

An UMPU test has the form ¢(X) = I(X > Co(X1, X7)), set according to P,—o(X >

Co(O0r  XH|Y0 X)) = a. In order to simplify the selection of C, (> 7 X?) and the

form of this test, let us try to generalize the argument employed for variance testing.
Consider a general multiparameter exponential family of the form

k
Pya(x) = exp <0U(x) + Z AT (x) — A6, A)) h(z).

Suppose there exists V' = h(U,T) which is independent of 7" when 6 = 6, and increasing
w.r.t U given fixed T. Then we can find an UMPU test of the form

1 ifV>C,
p=<~ iftV=0C,
0 ifV<dC,
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for a single constant C,,. To see this, consider

a =Py [U>Cu(T)|T]
= Py, [A(U, T) > h(Co(T), T)|T] = Py, [V > CL(T)|T]
(V' is increasing w.r.t U for fixed T')
=Py, [V > C4]
(V,T are independent = can choose C!, (T) constant w.r.t T').

To apply this observation in our setting, we notice that

U X
R Y = VR SN o7

is increasing in U for each T and independent of T" (since it is ancillary for A\ = —#, and

T is complete sufficient when 6 fixed). Hence, we can find an UMPU test that rejects iff
h(U,T) > C,. Equivalently, this test rejects iff

VnX
t=+/n(n—DhU,T) = ——ee
nln = DAT) > (X —X)2

n—1

is large. The statistic ¢ has a Student’s ¢,,_; distribution when p = 0, so we can set the
critical value for ¢ to be a (1 — a) quantile of the Student’s ¢,,_; distribution.

17.2 UMP Invariant Tests

When a testing problem is unchanged by certain transformations of the input data, it is often
desirable to employ a testing procedure that is similarly invariant to these transformations.
Applying such invariance constraints often greatly reduces the class of valid tests and allows
for the construction of a UMP invariant test even when no unconstrained UMP test exists.
Let’s begin with the example introduced in the previous lecture.

Example 2. Suppose that we observe X = (Xj,...,Xy), with independent coordinates
X; ~ N(0;,1) and that we are interested in the hypothesis testing problem

H0:91:...:9d:0 VS. H1326{17,d}923£0

If we transform our data so that X’ = OX for O € O(d), the set of d x d orthogonal matrices,

i.e., the set of square matrices such that OTO = OO" = I, then we have X/ i N (6, 1) for
0’ = 00, and our hypothesis testing problem can be seen to be equivalent to testing

Hy:0,=...=0,=0 vs. Hy:Fie{l,...,d}:0.#0.

Hence, when searching for a test, the principle of invariance would suggest constraining
d(X) = ¢(0OX) YO € O(d). In this case, it can be checked that ¢ is invariant in this way
iff it is a function of the magnitude of the vector of samples, i.e. of T'= Y, X?. This tells
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us that if we only care about invariant tests, our optimality goal is to search for UMP tests
among functions of T

In this example, T" is non-central chi-squared distributed with d degrees of freedom, i.e.,
T ~ x3(¥?) with a non-centrality parameter ¢? = >°% 62 Thus, we can simplify the null
and alternative hypotheses of our testing problem to

Hy:¢=0 vs. Hy:¢Y>0. (one-sided test)

Note that we have reduced both the relevant data and the relevant parameter space for our
testing problem; these are common advantages of imposing invariance constraints. To derive
our UMP invariant test, we will check that the x%(¢)?) has monotone likelihood ratios in 7'
Note that the density of non-central chi-squared distribution has the form:

The likelihood ratio can therefore be computed as

t t; : 2\

py2(t) {(ﬂﬂ) :e_%zck LAy

pormolt) e S
Q%F(g)

where ¢, are non-negative constants. We can see that each term in the sum above increases in
t, and thus the ratio as a whole is increasing in t. (We only need to compare each parameter
value with 0, because our null hypothesis is simple.) Thus this family has MLR, and the
UMPI test rejects when 7' is large.

17.3 A General Framework for Invariant Tests

Let us now consider the general case of X € X, P = {F,0 € Q}, and hypotheses
Hy:0€Q,, H;:0€Q.

Our general notion of invariance will be with respect to a group of transformations:

Definition 1. A group G is a set equipped with an operation (composition) satisfying
certain axioms:

e Closure: g1g € G for all g1,92 € G
e Associativity: (g192)gs = g1(g293) for all g1, 92,93 € G
e Identity: de € G:egy = g1 = gre for all g; € G

e Inverses: for any g € G, g~ satisfying gg~! = g7 1g = e.
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We restrict our focus to groups G in which each g € G is a bijection from X — X, and if
X ~ Py, then X' = gX ~ Py for some . Let g be the mapping on 2 induced by ¢, so that
0 =g(0) when X ~ Py and X' = gX ~ Py.

We will say that a testing problem is invariant under the group of transformations if G
preserves the structure of the testing problem. More precisely,

Definition 2. A testing problem remains invariant under G if g}y = Qy and g€} =
Ql \V/g €q.

Hence, G must map null hypotheses to null hypotheses and alternative hypotheses to alter-
native hypotheses. We’ve seen this behavior in the orthogonal matrix example. Similarly,
we introduce a notion of invariance for a test.

Definition 3. A test ¢ is invariant under G if ¢(gz) = ¢(z) Ve € X, g € G.

Example 3. Suppose X1, ... X, ~iid. on (0,1). Taking f to be a known density supported
on (0, 1), we desire to test:

Hy: X; ~iid. U(0,1), Hy:X;~iid. gi(x) = f(z) or go(z) = f(1 — 2)

Using the transformation X! = 1 — X, results in invariance for the problem. This is
because under Hy we have that 1 — X; ~ ii.d. U(0,1), and the alternative is invariant by
construction. What does it mean for ¢ to be invariant here?

¢ invariant < ¢(Xq,..., X,) =01 = X4,...,1 - X))

For any invariant test ¢, Eg, [¢p(X)] = Ey, [¢(1 — X)] = E,,[¢(X)], where the first equality
follows by invariance of ¢ and the second equality follows by definition of g;. Hence, we have

Eg, [0(X)] = Eg, [6(X)]

1 1
= §Egl [o(X)] + §E92 [#(X)] (from the above fact that both quantities are equal)

=Ey[p(X)] (%)

where (%) comes because in this case, taking the average power is equivalent to taking the
power of the average test. Here E,[-] is an expectation with respect to the measure with the
following invariant density p(z1,...,2,):

I o) + TT go(s)  TTy f(xa) + TLisy f(1 — 2)
p(xy,...,x,) = 5 — >

As a result, ¢ is UMP invariant iff it is MP invariant against H{ = p. For the simple testing
problem of Hy versus Hi, Neyman-Pearson implies that the most powerful ¢’ rejects for large
p(r1,...,2,). Since ¢ is invariant (because p(+) is invariant), it is UMPI.
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17.4 Characterizing Invariant Tests

Now that we’ve defined invariant tests, we will develop a characterization that will ease our
derivation of invariant tests for new testing problems. We begin by exploring the relationship
between invariance and the orbits of a group.

Definition 4. Let G be a group of transformations X — X. Then x and y € X are in the
same orbit of GG if and only if there is some transformation g € G such that y = gx.

X

Figure 17.1. Orbit of transformations: x, x’, and 2’ are in the same orbit, since we can move between any
of them with transformation g € G. y is not in the same orbit, since there is no transformation in G such
that y = gz.

In fact, invariant functions are constant on orbits. Indeed, this is what it means to be
invariant. Let T" be an invariant function, and consider x € X’; we can reach any y that is
in the same orbit as x by applying one of the transformations ¢ € GG. By the definition of
invariance, T'(z) = T'(gx) = T'(y).

Some invariant functions achieve greater compression of the data X than others. As an
extreme example, T'(x) = 0 is invariant and achieves maximal compression. However, we are
interested in the least compressed invariant functions. These maximal invariant functions
maintain the most information about the original variable X, and we will see that any other
invariant function is a function of these maximal invariants.

Definition 5. A function 7'(x) is maximal invariant if
(a) T'(x) is invariant, i.e., T'(x) = T'(gz) for all x € X and g € G, and
(b) T'(x) takes on distinct values on distinct orbits.

So in summary, 7'(z) is maximal invariant if T'(z) = T(y) <= 3¢ € G such that y = gx.
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Example 4. Let x = (21,29, ...,1,), and let G = {g|g(x) = (z1 +a,x2+a,...,z,+a),a €
R} (shift every coordinate by a common constant). Then T'(x) = (1 —2p, Ta—Tpn, .. ., Tp_1—
x,) is maximal invariant.

To see this, let T'(x) = T'(y). Then it must be that y1—y, = T1—Zp, ..., Yn-1—Yn = Tn_1—Tn,
SOYL = X1—Tn+Yns -+ Yn1 = Tp_1—Tp+Y,. Let a = y,—x,. Then there is a transformation
g€ G such that g(X) = <x1+(yn_$n)7 s 7$n—1+(yn_xn)a xn+(yn_xn>) = (yh <oy Yn—1, yn)
So T'(x) = T(y) implies that = and y are in the same orbit of G.

Now suppose y = g(x). Then there is some a € R such that y; = x1 +a,...,y, = T, + a.
So T'(y) = (41 = ¥ns-- - ¥n1 —¥n) = (1 +a— (2o Fa),... .21 +a— (2, +0a) =
(1 — Tpy oo oy Tp1 — Xy). S0y = g(x) implies T'(x) = T(y).

Now we can precisely characterize an invariant test.

Theorem 1. A test ¢ is invariant if and only if it is a function of a maximal invariant
function T'.

Proof. Let ¢(x) = f o T(x). By the definition of invariance, ¢(x) = f o T'(gx) = ¢(gx). So
if ¢ is a function of a maximal invariant 7', then ¢ is invariant.

Now suppose ¢ is invariant, and let T'(z1) = T(x2) for a maximal invariant function 7.
Then we know that xs = gz; for some g € G, and so ¢(x2) = ¢(gr1) = ¢(x1) by the
invariance of ¢. So for an invariant ¢ and a maximal invariant 7', T'(z,) = T'(z3) implies
(1) = ¢(x9), and therefore ¢ is a function of T'. O

Example 5. Let X = (X1, ..., X,,), and consider the group of transformations X;" = aX;,
Vi and a # 0. If X is the set of points in R™ for which none of the coordinates is zero, then

. X . . .
the ratios (%, ..., %) form a maximal invariant.
n n

Example 6. Let X = (X,..., X,,), and for any permutation 7, consider X; = Xr(i), Vi

Then the set of order statistics (X (1), ..., X(n)) is maximal invariant.

Example 7. Consider the group of transformations (Xi,...,X,) — (f(X1),..., f(Xy)).
Here, f is any strictly increasing and continuous function. If X’ contains the points in R with
distinct coordinates, then the ranks (rq,rs,...,7,) of (x1, 29, ..,2,) are maximal invariants.
Here the rank r; = 1 means X; is smallest, and r; = 7 means X; is the j-th smallest.

17.5 Finding UMPI Tests

Now that we have successfully found several maximal invariants in some examples, let us
move on and find the Uniformly Most Powerful Invariant (UMPI) test in some problems.

Example 8 (Find the UMPI). Let X, Xs, ..., X,, be i.i.d and distributed as f;(x — 0), i €
{0,1} with € unknown. For testing Hy: ¢ = 0 versus H;: i = 1, if we make the transform
that X;" = X; + a,(Va € R), then we leave the problem invariant. If Y; = X; — X,,, we know
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(Y1,Ys, ..., Y, 1) is its maximal invariant from the previous example. Moreover, the joint
density of Y is

/fi<yl b, Yot + ¢, 1)t

(we derived a similar expression in our discussion of Pitman estimators). Notice that ¥ has
no dependence on the nuisance parameter #. Indeed, by restricting our attention to Y, we
have transformed our composite vs. composite testing problem into a simple vs. simple
testing problem. Thus, to find a UMPI test we need only find a MP test based on Y via
Neyman-Pearson. Neyman-Pearson implies that a MP test rejects when

ffl(yl + t7 cey Yn—1 + t,t)dt

17.1
ffO(y1+t7"'7yn—1+t7t)dt ( )
is large. Since
17.1) J fil@wr —an + b, Ty — Ty + £, E)dE
) [ folzr — @ + b, oy Ty — 2 + £, )dE
letting u =t — z,,, we have
[ i@ +u, e, @, +w)du (17.2)

[ folz1 +u, ..., + w)du
Thus the UMPI test rejects when (17.2) is large.

In many cases, we can find a UMPI test by first compressing data into sufficient statistics
and then applying invariance considerations to our compressed data. This strategy succeeds
in the example below, but there are cases (that we will not discuss in this course) in which
the strategy fails. See TSH Thm. 6.5.3 for sufficient conditions for the strategy to succeed.

Example 9. Suppose Xj, ..., X,, are i.i.d distributed as N (i, c?), where y and o are both
unknown. Our goal is to find the UMPI test of Hy : 0 = oy versus H; : ¢ > 0. This problem
remains invariant under transformations of the form X;' = X; + a.

Before searching for maximal invariants, let us first reduce the data to the sufficient
statistics (X, Y (X; — X)?) = (S1,5,). The original transformations on X induce a group of

transformations (S;’, S2") = (S1 + a, S2) on the sufficient statistics. We will search for tests
that are functions of (57, 53) and invariant with respect to the induced group of transforma-
tions.

A maximal invariant with respect to the induced group in sufficient statistic space is
Sy. Therefore the UMPI test can only depend on S;. Note, that Sy has the distribution
of o?x2_; = Gamma(%5*,20?%), where 25% is the shape parameter and 202 is the scale
parameter. Since this one-parameter exponential family has monotone likelihood ratio, it
follows from Theorem 3.4.1 that the UMP test for this family rejects when f—(%) > Chp-11-a,
where C),_11_4 is the 1 — o quantile of x2_,. This test is UMPI for the induced group on
(S1,52), and it so happens that this test is also UMPI for the original transformation group
on X. This is typical for the examples that we will deal with in this class but not guaranteed.

Note that this UMPI test is the same as the UMPU test that we previously derived for

this example. This is not a coincidence. This happens whenever the UMPU is unique and
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a UMP almost invariant test exists. We will not discuss almost invariance in this class, but
you can learn more about it in TSH chapter 6.5.
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