STATS 300A: Theory of Statistics Fall 2015

Lecture 16 — November 17
Lecturer: Lester Mackey Scribe: Reginald Long, Colin Wei

@ Warning: These notes may contain factual and/or typographic errors.

16.1 Recap

Last time we discussed UMP unbiased tests for the null hypothesis Hy : 6 € )y versus the
alternative given by H; : 0 € 2; and introduced the following key concepts:

Definition 1. ¢ is an unbiased test at level a if 5,(6p) < a VO € Q and 5,(61) > o Vb, €
Q.

Definition 2. ¢ is a-similar if 34(0) = @ V0 € w, where w = Qy N Q.

Lemma 1. (TSH 4.1.1) If B4(0) is continuous on  for all ¢, and ¢y is UMP amongst all
a-similar level « tests, then ¢y is UMPU at level a.

Last time, we focused on two-sided UMPU tests for one parameter exponential families.
Today, we will develop UMPU tests for multiparameter exponential families with nuisance
parameters.

16.2 Application of MoUM to our 2-sided testing prob-
lem

We continue our discussion of MoUM from last lecture, where our goal is to find an UMPU
test. In this setting, Hy : # = 0y. We will fix a simple alternative § = 6’ # 0, and hope that
our best test has no 6" dependence. We would like to maximize power [ ¢(z)py (x)dp(z)
subject to

/ o(2)pan (2)dp(z) = o (16.1)

[ ot@) ggpm(a)dutz) = o (16.2)

For a 1-parameter exponential family, we have
po(z) = h(x)efT@=AO  and (16.3)
“pal) = ()T (T(r) — A(0)) = pola) (T(x) - BT(X)) . (164
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By our discussion of MoUM from last lecture, we find that a most powerful test has
rejection region defined by

d
por(x) > kupoy (2) + ka—5pa, ()

for some values of k; and ko, which is equivalent to
o0 —00)T ()

_ > t
W+ kT (z) ~ O

with some rearranging.

Now consider the set of values of T'(x) satisfying this constraint. Because the constraint
is that an exponential function exceeds a linear function, the set of values of T'(z) satisfying
this constraint is either a one-sided interval

Y

Reject

Tix
or all points outside a closed interval
e .
Reject HO Reject HO

The first possibility will not give rise to an unbiased test, because the result would be a
one-sided test with monotone power functions. Therefore any optimal ¢ is of the form

1 ifT(x) > Cyor T(x) < Cy
dlx) =49y if T(x)=C;

0 otherwise

A simplification is possible if T'(z) is symmetrically distributed under ;. Then the optimal
test rejects whenever |T'(x) — p| > const. Such tests are called equitailed tests.
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Example 1. Suppose X1, ..., X, S N(0,0%) with Hy : 0 = 0y and H; : 0 # 0.
The optimal test has an acceptance region of the form
X2
) < ZZ—QZ < Cy

)

The middle expression is a sufficient statistic that is x2 distributed under Hy. How do we
choose C; and Cy? Let f, be density x2. The level constraint is:
Co
PO ST(X)<C)= | fulpdy=1-a,
C

and the derivative constraint (16.2) with substitution (16.4) gives
By [T(X)P(X)] = Eo, [T () Eoy [¢(X)].

On the left side ¢(z) = 1 on the complement of (C},Cs), and on the right, the mean of a y2

is n, and the level is a. Thus,
/ yfnly) = na.
(C1,C2)°

For 2 distributions, yf.(y) = nfu;1(y), and the derivative constraint ultimately becomes
fn+2(y) =1l-a
C

We have two integral equations, and we can solve them for the unknown boundaries C', Cs.

16.3 Optimal Unbiased Testing in Multiparameter Ex-
ponential Families

Let the density of an exponential family with the natural parameters (6, A, - -+, \z) € RFF!
be

Pp(x) = exp <9U(:c) + Z NTi(x) — A(0, A)) h(z). (16.5)

We want to frame a test for the null hypothesis given by Hy : 6 < 0y against the alternative
given by H; : 6 > 6y in the presence of nuisance parameters A\. On the boundary w =
{(0,\) : 0 =06y}, 0 is known which would imply 7' = (71, T3, - - - , T},) is sufficient for A\. Hence
the conditional distribution of X and subsequently that of U(X)|7'(X) has no A dependence
on w. This point is worth repeating: conditioning can eliminate the influence of
nuisance parameters! What is more, for each t, U(X)|T(X) = t forms a one parameter
exponential family. Here is a proof of this in the discrete case.
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Proof.

exp (9% + Zf:l )\'Lt2> Zm:T(m):t,U(w):u h(l‘)

S ey 5P (Bulz) + S0, i) (@)
= (0) exp (0u) g(t, u)

These facts suggest the following strategy:
1. Condition on T'(X) =¢.

2. For each value of ¢, construct a “best conditional test” ¢(u,t) which maximizes condi-
tional power Eg[¢(u,t)|T = t] VO > 0y at conditional level «, i.e., E[p(u,t)|T = t] <
a VO < 0.

3. Check whether this test is UMPU at level a.

Since, for each t, the one-parameter exponential family distribution of U(X)|T'(X) = ¢ has
MLR in U(X), our “best test” for a fixed ¢ will be a one-sided test of the form

1 if u > c(t)
d(u, t) =< y(t) ifu=c(t).
0 if u < c(t)

By the proof of the MLR theorem (TSH Thm 3.4.1), if ¢(¢) and ~(¢) are chosen to satisfy
the conditional similarity constraint

Eo, (o(U, T =t) =« (16.6)
then it will also satisfy the conditional level constraint
Eo(p(U,T)|T =1t) < a V0 < 6 (16.7)
and the maximum conditional power property, that
Eo(¢(U,T)|T =t) is maximized V6 > 6, (16.8)

among all tests that satisfy (16.6). Since (16.7) and (16.8) hold for every ¢, we may take
expectations and deduce that ¢(U,T) is level « and UMP amongst level « tests satisfying
(16.6). However, (16.6) is a more stringent requirement than a-similarity, so it remains to
show that ¢(U,T) is also UMP amongst level a, a-similar tests. This would imply that ¢ is
UMPU unbiased at level a.
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16.4 Characterization of Similar Tests

We will achieve our goal by developing a new characterization of similar tests based on
conditioning on a complete sufficient statistic. We begin by assigning a name to property
(16.6).

Definition 3. A test ¢ has a-Neyman structure if 7' is sufficient for {P,,v7 € w} and ¢
satisfies E(¢(X)|T(X)) = a as. P, for all v € w, w = QN Q.

Notice that if ¢ has a-Neyman structure, then ¢ is also a-similar, since E,¢(X) =
E,(E(¢(X)|T(X))) = a for all v € w. Moreover, if T is complete and sufficient for
{P, : v € w}, then every a-similar test has a-Neyman structure with respect to 7.

Proof. Suppose ¢ is a-similar, and let ¥(7T") = E(¢(X) — «|T"), which has no - dependence
as T is sufficient. Then E,(V(T)) = E,(¢(X) —a) =0, Vv € w, which in turn implies that
U(T) =0 a.s. by completeness. O

Therefore, Neyman structure and similarity are equivalent whenever a complete suf-
ficient statistic T exists. We now focus on exponential families, as they typically yield
complete sufficient statistics on the boundary. For exponential family with density f(x) o
exp (0U(x) + >, N Ti(x)) h(zx). If T is complete on w, then there exists an UMPU test for
0 <0y vs. 0 > 0y with form

1 if U > ¢(T)
o(U,T) = ~(T) it U = ¢(T) (16.9)
0 if U < ¢(T)

with ¢(T) and v(T") chosen such that Ey,[¢(U,T)|T] = «.

Why is this true? By the previous section, ¢ is UMP amongst level « tests satisfying
(16.2), but (16.2) is equivalent to a-Neyman structure for this testing scenario. This implies
that ¢ is UMP amongst tests with a-Neyman structure. T is complete and sufficient for Py,
so every a-similar test has a-Neyman structure w.r.t T. Hence, ¢ is UMP amongst a-similar
tests. Finally, since an exponential family has continuous power functions, ¢ is UMPU at
level a.

Example 2. Suppose that X ~ Poi(r) and Y ~ Poi(u) for X and Y independent. You
might view X and Y as the number of successful recoveries from a disease under two different
treatments. Our goal is to test the null hypothesis Hy : © < v against the alternative
Hy : > v. Equivalently, we test Hy : log(p/v) < 0 against Hy : log(u/v) > 0. This
rewriting emphasizes our singular interest in the ratio p/v. Any additional information in
(u,v) can be regarded as nuisance.

The joint density of (X,Y) is given by exp (—v — u) exp (zlogv + ylog u) /z!y! which is
proportional to: .
11 P Wlog(p/v) + (@ +y) log v)
The above is a 2-dimensional exponential family with sufficient statistics U =Y and T =
X + Y. The natural parameters are § = log(u/v) and A = log(r) where \ acts as the
nuisance parameter.
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On the boundary, w = {(6,A) : 0 =0}, (U, T) is a one-dimensional full-rank exponential
family with density o< h(u,t)exp (t\). This implies that T is complete sufficient on w.

The conditional distribution of U|T on w is Bin(p = Vf:,u” =T), so T determines the
number of coin flips, and the probability of each coin coming up “heads” is determined
by p and v. The critical value ¢(T') is going to be determined at the boundary point,
Bin(p=1,n=T) (since § = log(¥) = 0).

Example 3. X;,..., X, S N(u,0?), where both p and 0% are unknown. The joint density

of Xi,..., X, is
1 2 , M
x exp (—ﬁ Zx + 5 Zm) (16.10)

Testing the variance We will consider testing Hy : ¢ > o0¢ vs. Hy : 0 < 0p, which is
equivalent to testing 8 > 6y vs. 6 < 6y, under the choices § = —#, A=L5 U=3%", 22,
and T' =), ;.

The UMPU test rejects for small U, ie., ¢(X) = I1(37, X? < Co(X)). To determine

the critical value C,(X), we notice that

a=P, | Y X7 < ca(X)|X] =P, [Z X2 —nX? < Ou(X) — nX2|X]
Li=1

i=1

B, | - X < c;<f<>|f<]

n

=Py, | Y _(Xi = X)*<Cl

i=1
(Basu’s theorem = Z(XZ — X)?LX = we can choose C’(X) constant w.r.t X

=1

Z?:1(Xi — X)2 < O_g

=73
) g

= ]P)UO

implying that C! = ogzn,}a where z,_ 1, is the a quantile of x2_,. Therefore the UMPU
test rejects if Y 1" [(X; — X)? < 03zy-1.0-
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