
STATS 300A: Theory of Statistics Fall 2015

Lecture 16 — November 17

Lecturer: Lester Mackey Scribe: Reginald Long, Colin Wei

� Warning: These notes may contain factual and/or typographic errors.

16.1 Recap

Last time we discussed UMP unbiased tests for the null hypothesis H0 : θ ∈ Ω0 versus the
alternative given by H1 : θ ∈ Ω1 and introduced the following key concepts:

Definition 1. φ is an unbiased test at level α if βφ(θ0) ≤ α ∀θ0 ∈ Ω0 and βφ(θ1) ≥ α ∀θ1 ∈
Ω1.

Definition 2. φ is α-similar if βφ(θ) = α ∀θ ∈ ω, where ω = Ω0 ∩ Ω1.

Lemma 1. (TSH 4.1.1) If βφ(θ) is continuous on Ω for all φ, and φ0 is UMP amongst all
α-similar level α tests, then φ0 is UMPU at level α.

Last time, we focused on two-sided UMPU tests for one parameter exponential families.
Today, we will develop UMPU tests for multiparameter exponential families with nuisance
parameters.

16.2 Application of MoUM to our 2-sided testing prob-

lem

We continue our discussion of MoUM from last lecture, where our goal is to find an UMPU
test. In this setting, H0 : θ = θ0. We will fix a simple alternative θ = θ′ 6= θ0 and hope that
our best test has no θ′ dependence. We would like to maximize power

∫
φ(x)pθ′(x)dµ(x)

subject to ∫
φ(x)pθ0(x)dµ(x) = α (16.1)∫

φ(x)
d

dθ
pθ0(x)dµ(x) = 0. (16.2)

For a 1-parameter exponential family, we have

pθ(x) = h(x)eθT (x)−A(θ) and (16.3)

d

dθ
pθ(x) = h(x)eθT (x)−A(θ) (T (x)− A′(θ)) = pθ(x) (T (x)− Eθ[T (X)]) . (16.4)
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By our discussion of MoUM from last lecture, we find that a most powerful test has
rejection region defined by

pθ′(x) > k1pθ0(x) + k2
d

dθ
pθ0(x)

for some values of k1 and k2, which is equivalent to

e(θ
′−θ0)T (x)

k′1 + k′2T (x)
> const

with some rearranging.
Now consider the set of values of T (x) satisfying this constraint. Because the constraint

is that an exponential function exceeds a linear function, the set of values of T (x) satisfying
this constraint is either a one-sided interval

or all points outside a closed interval

.

The first possibility will not give rise to an unbiased test, because the result would be a
one-sided test with monotone power functions. Therefore any optimal φ is of the form

φ(x) =


1 if T (x) > C1 or T (x) < C2

γi if T (x) = Ci

0 otherwise

.

A simplification is possible if T (x) is symmetrically distributed under θ0. Then the optimal
test rejects whenever |T (x)− µ| > const. Such tests are called equitailed tests.
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Example 1. Suppose X1, ..., Xn
iid∼ N(0, σ2) with H0 : σ = σ0 and H1 : σ 6= σ0.

The optimal test has an acceptance region of the form

C1 ≤
∑

iX
2
i

σ2
0

≤ C2

The middle expression is a sufficient statistic that is χ2
n distributed under H0. How do we

choose C1 and C2? Let fn be density χ2
n. The level constraint is:

P (C1 ≤ T (X) ≤ C2) =

∫ C2

C1

fn(y)dy = 1− α,

and the derivative constraint (16.2) with substitution (16.4) gives

Eθ0 [T (X)φ(X)] = Eθ0 [T (x)]Eθ0 [φ(X)].

On the left side φ(x) = 1 on the complement of (C1, C2), and on the right, the mean of a χ2
n

is n, and the level is α. Thus, ∫
(C1,C2)c

yfn(y) = nα.

For χ2
n distributions, yfn(y) = nfn+1(y), and the derivative constraint ultimately becomes∫ C2

C1

fn+2(y) = 1− α.

We have two integral equations, and we can solve them for the unknown boundaries C1, C2.

16.3 Optimal Unbiased Testing in Multiparameter Ex-

ponential Families

Let the density of an exponential family with the natural parameters (θ, λ1, · · · , λk) ∈ Rk+1

be

Pθ,λ(x) = exp

(
θU(x) +

k∑
i=1

λiTi(x)− A(θ, λ)

)
h(x). (16.5)

We want to frame a test for the null hypothesis given by H0 : θ ≤ θ0 against the alternative
given by H1 : θ > θ0 in the presence of nuisance parameters λ. On the boundary ω =
{(θ, λ) : θ = θ0}, θ is known which would imply T = (T1, T2, · · · , Tk) is sufficient for λ. Hence
the conditional distribution of X and subsequently that of U(X)|T (X) has no λ dependence
on ω. This point is worth repeating: conditioning can eliminate the influence of
nuisance parameters! What is more, for each t, U(X)|T (X) = t forms a one parameter
exponential family. Here is a proof of this in the discrete case.
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Proof.

Pθ,λ(U(X) = u|T (X) = t) =
exp

(
θu+

∑k
i=1 λiti

)∑
x:T (x)=t,U(x)=u h(x)∑

x:T (x)=t exp
(
θu(x) +

∑k
i=1 λiti

)
h(x)

= ct(θ) exp (θu) g(t, u)

These facts suggest the following strategy:

1. Condition on T (X) = t.

2. For each value of t, construct a “best conditional test” φ(u, t) which maximizes condi-
tional power Eθ[φ(u, t)|T = t] ∀θ > θ0 at conditional level α, i.e., E[φ(u, t)|T = t] ≤
α ∀θ ≤ θ0.

3. Check whether this test is UMPU at level α.

Since, for each t, the one-parameter exponential family distribution of U(X)|T (X) = t has
MLR in U(X), our “best test” for a fixed t will be a one-sided test of the form

φ(u, t) =


1 if u > c(t)

γ(t) if u = c(t)

0 if u < c(t)

.

By the proof of the MLR theorem (TSH Thm 3.4.1), if c(t) and γ(t) are chosen to satisfy
the conditional similarity constraint

Eθ0(φ(U, T )|T = t) = α (16.6)

then it will also satisfy the conditional level constraint

Eθ(φ(U, T )|T = t) ≤ α ∀θ ≤ θ0 (16.7)

and the maximum conditional power property, that

Eθ(φ(U, T )|T = t) is maximized ∀ θ > θ0, (16.8)

among all tests that satisfy (16.6). Since (16.7) and (16.8) hold for every t, we may take
expectations and deduce that φ(U, T ) is level α and UMP amongst level α tests satisfying
(16.6). However, (16.6) is a more stringent requirement than α-similarity, so it remains to
show that φ(U, T ) is also UMP amongst level α, α-similar tests. This would imply that φ is
UMPU unbiased at level α.
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16.4 Characterization of Similar Tests

We will achieve our goal by developing a new characterization of similar tests based on
conditioning on a complete sufficient statistic. We begin by assigning a name to property
(16.6).

Definition 3. A test φ has α-Neyman structure if T is sufficient for {Pγ, γ ∈ ω} and φ
satisfies E(φ(X)|T (X)) = α a.s. Pγ for all γ ∈ ω, ω = Ω̄0 ∩ Ω̄1.

Notice that if φ has α-Neyman structure, then φ is also α-similar, since Eγφ(X) =
Eγ(E(φ(X)|T (X))) = α for all γ ∈ ω. Moreover, if T is complete and sufficient for
{Pγ : γ ∈ ω}, then every α-similar test has α-Neyman structure with respect to T .

Proof. Suppose φ is α-similar, and let Ψ(T ) = E(φ(X)− α|T ), which has no γ dependence
as T is sufficient. Then Eγ(Ψ(T )) = Eγ(φ(X)− α) = 0, ∀γ ∈ ω, which in turn implies that
Ψ(T ) = 0 a.s. by completeness.

Therefore, Neyman structure and similarity are equivalent whenever a complete suf-
ficient statistic T exists. We now focus on exponential families, as they typically yield
complete sufficient statistics on the boundary. For exponential family with density f(x) ∝
exp (θU(x) +

∑
i λiTi(x))h(x). If T is complete on ω, then there exists an UMPU test for

θ ≤ θ0 vs. θ > θ0 with form

φ(U, T ) =


1 if U > c(T )

γ(T ) if U = c(T )

0 if U < c(T )

(16.9)

with c(T ) and γ(T ) chosen such that Eθ0 [φ(U, T )|T ] = α.
Why is this true? By the previous section, φ is UMP amongst level α tests satisfying

(16.2), but (16.2) is equivalent to α-Neyman structure for this testing scenario. This implies
that φ is UMP amongst tests with α-Neyman structure. T is complete and sufficient for Pθ0 ,
so every α-similar test has α-Neyman structure w.r.t T. Hence, φ is UMP amongst α-similar
tests. Finally, since an exponential family has continuous power functions, φ is UMPU at
level α.

Example 2. Suppose that X ∼ Poi(ν) and Y ∼ Poi(µ) for X and Y independent. You
might view X and Y as the number of successful recoveries from a disease under two different
treatments. Our goal is to test the null hypothesis H0 : µ ≤ ν against the alternative
H1 : µ > ν. Equivalently, we test H0 : log(µ/ν) ≤ 0 against H1 : log(µ/ν) > 0. This
rewriting emphasizes our singular interest in the ratio µ/ν. Any additional information in
(µ, ν) can be regarded as nuisance.

The joint density of (X, Y ) is given by exp (−ν − µ) exp (x log ν + y log µ) /x!y! which is
proportional to:

1

x!y!
exp (y log(µ/ν) + (x+ y) log ν)

The above is a 2-dimensional exponential family with sufficient statistics U = Y and T =
X + Y . The natural parameters are θ = log(µ/ν) and λ = log(ν) where λ acts as the
nuisance parameter.
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On the boundary, ω = {(θ, λ) : θ = 0}, (U, T ) is a one-dimensional full-rank exponential
family with density ∝ h(u, t) exp (tλ). This implies that T is complete sufficient on ω.

The conditional distribution of U |T on ω is Bin(p = µ
ν+µ

, n = T ), so T determines the
number of coin flips, and the probability of each coin coming up “heads” is determined
by µ and ν. The critical value c(T ) is going to be determined at the boundary point,
Bin(p = 1

2
, n = T ) (since θ = log(µ

ν
) = 0).

Example 3. X1, ..., Xn
iid∼ N(µ, σ2), where both µ and σ2 are unknown. The joint density

of X1, ..., Xn is

∝ exp

(
− 1

2σ2

∑
i

x2i +
µ

σ2

∑
i

xi

)
(16.10)

Testing the variance We will consider testing H0 : σ ≥ σ0 vs. H1 : σ < σ0, which is
equivalent to testing θ ≥ θ0 vs. θ < θ0, under the choices θ = − 1

2σ2 , λ = µ
σ2 , U =

∑
i xi

2,
and T =

∑
i xi.

The UMPU test rejects for small U , i.e., φ(X) = I
(∑n

i=1X
2
i ≤ Cα(X̄)

)
. To determine

the critical value Cα(X̄), we notice that

α = Pσ0

[
n∑
i=1

X2
i ≤ Cα(X̄)|X̄

]
= Pσ0

[
n∑
i=1

X2
i − nX̄2 ≤ Cα(X̄)− nX̄2|X̄

]

= Pσ0

[
n∑
i=1

(Xi − X̄)2 ≤ C ′α(X̄)|X̄

]

= Pσ0

[
n∑
i=1

(Xi − X̄)2 ≤ C ′′α

]
(

Basu’s theorem⇒
n∑
i=1

(Xi − X̄)2⊥X̄ ⇒ we can choose C ′α(X̄) constant w.r.t X̄

)

= Pσ0


∑n

i=1(Xi − X̄)2

σ2
0︸ ︷︷ ︸

χ2
n−1

≤ C ′′α
σ2
0


implying that C ′′α = σ2

0zn−1,α where zn−1,α is the α quantile of χ2
n−1. Therefore the UMPU

test rejects if
∑n

i=1(Xi − X̄)2 ≤ σ2
0zn−1,α.
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