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15.1 Beyond UMP Testing

We began our study of hypothesis testing and strategies for how to find a uniformly most
powerful (UMP) test in the following cases:

• simple null versus simple alternative using the NP lemma

• one-sided tests using monotone likelihood ratios

• a general strategy, where possible, in situations featuring composite nulls and composite
alternatives.

We have seen that UMP tests need not exist, such as when pθ ∼ N (θ, σ2) and we want to
test θ = θ0 against θ 6= θ0. When uniform optimality is not achievable, we have a variety of
alternative optimality strategies, involving the constraining or collapsing of the risk function,
at our disposal. These strategies parallel the approaches we took in the estimation setting.

15.1.1 Collapse the power function: Maximize the average power

One alternative to maximizing the power function uniformly is to maximize the average
power under some prior distribution.

Let X ∼ Pθ, H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1, and let Λ be a probability distribution over Ω1.
We can choose φ to maximize average power∫

Ω1

Eθφ(X)dΛ(θ) =

∫
Ω1

∫
X
φ(x)pθ(x)dµ(x)dΛ(θ) =

∫
X
φ(x)

∫
Ω1

pθ(x)dΛ(θ)dµ(x). (15.1)

If we define the marginal mixture distribution g(x) =
∫
pθ(x)dΛ(θ) then our problem has

been reduced to testing H0 versus g.

15.1.2 Constrain by enforcing unbiasedness

Definition 1 (Unbiasedness). Let α ∈ [0, 1]. A test φ is unbiased level-α if

∀θ1 ∈ Ω1 Eθ1φ(X) ≥ α and ∀θ0 ∈ Ω0 Eθ0φ(X) ≤ α.
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Unbiasedness enforces the appealing property that the probability of rejection is greater un-
der any alternative distribution than it is under any null distribution. A uniformly most
powerful test is always unbiased if it exists.

While this notion of unbiasedness differs from the definition we encountered when discussing
point estimation, we can check that this is actually a special case of risk unbiasedness when
the loss function L is such that L(θ0, reject) = 1− α and L(θ1, accept) = α.

15.1.3 Constrain by enforcing invariance

Let X1, . . . , Xn
iid∼ N (θ, σ2) for σ, θ both unknown, and test H0 : θ = 0 versus H1 : θ 6= 0.

For i ∈ {1, ..., n}, let X ′i = cXi with c > 0. Then E(Xi
′) = θ′ = cθ. Since testing θ = 0 is

equivalent to testing θ′ = 0, it is natural to impose the invariance constraint

∀c > 0 φ(X) = φ(cX). (15.2)

Such a test is unaffected by arbitrary rescaling of the data (which might occur when changing
units from centimeters to meters for example). There are cases when a UMP does not exist
but a UMP test among the invariant φ exists (a topic for next week).

15.1.4 Collapse the power function: Maximize worst case power

We could alternatively consider the problem of maximizing the worst case power of a test.
In this case, we will maximize the minimum power over θ1 ∈ Ω1 subject to the standard
constraint that our size is no larger then our level α. A test of this form is called maximin.

15.1.5 Constrain by enforcing monotonicity

Let X, Y be independent, X ∼ N (θX , 1) and Y ∼ N (θY , 1) for θX , θY unknown, and test
H0 : θX ≤ 0, θY ≤ 0.

A monotonicity restriction implies that if φ rejects upon observing (x, y), then it should
also reject for (x′, y′) where x′ > x and y′ > y.

15.2 Uniformly most powerful unbiased tests

Today, we will focus on finding uniformly most powerful unbiased (UMPU) tests in settings
in which UMP tests do not exist. These tests often exist for testing θ1 ≤ θ̃ vs θ1 > θ̃ in the
presence of nuisance parameters (θ2, ..., θk+1) and for testing θ = θ̃ vs θ 6= θ̃.

15.2.1 General Setting

Let us test H0: θ ∈ Ω0 vs H1: θ ∈ Ω1. Typically, we take Ω0, Ω1 to be subsets of a Euclidean
space, and we introduce ω the common boundary between Ω0 and Ω1:

ω = Ω̄0 ∩ Ω̄1.
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That is, ω is the intersection of the closures of Ω0 and Ω1 (closed under limits).

Example 1. If we are testing H0: θ = θ̃, H1: θ 6= θ̃, then ω = Ω0 = {θ̃}.

Example 2. If we are testing H0: θ1 ≤ θ̃ vs H1: θ1 > θ̃ in the presence of nuisance
parameters (θ2, ..., θk+1), then ω = {θ = (θ1, ..., θk+1) ∈ Rk+1 : θ1 = θ̃}.

Generally, if the power function θ 7→ βφ(θ) is continuous in θ (as is the case for any canonical
form exponential family on the natural parameter space), then φ unbiased and of level α
implies that βφ(θ) = α for all θ ∈ ω. We have a name for tests that match the level on the
boundary.

Definition 2 (α-similarity). A test φ satisfying Eθφ(X) = α for all θ ∈ ω is called α-similar
on ω.

The following lemma tells us we can find a UMPU test by looking only at α-similar tests.

Lemma 1 (TSH 4.1.1). If θ 7→ βφ(θ) is continuous (in θ) on Ω for all φ, and φ0 is a UMP
test amongst α-similar level-α tests, then φ0 is UMPU at level α.

Proof. Firstly, because φ0 is UMP α-similar tests, it is at least as powerful as φα(X) ≡ α,
and the power of φ0 on Ω1 is therefore ≥ α. Hence, φ0 is unbiased.

Secondly, an unbiased level-α test must, by definition, have expectation value ≤ α for θ ∈ Ω0

and ≥ α for θ ∈ Ω1. By continuity such a test must have expectation α on the common
boundary. Therefore, the set of unbiased level-α tests is a subset of α-similar level-α tests,
amongst which φ0 is most powerful. Hence, φ0 is also as powerful as any unbiased level-α
test. φ0 is UMPU.

15.2.2 Two-sided Testing without Nuisance Parameters

Let us test H0: θ = θ0 vs. H1 : θ 6= θ0, when X is distributed according some member of the
one-dimensional exponential family

pθ(x) = h(x) exp (θT (x)− A(θ))

We have seen that no UMP test exists in the normal case. Our goal here is to find a UMPU
test.

Since we are working with an exponential family, the power function is continuous, and,
by Lemma 1, it suffices to find a UMP level α test amongst α-similar tests. Since ω = Ω0,
any UMP α-similar test φ has

βφ(θ0) = Eθ0φ(X) = α, (15.3)

and
βφ(θ0) ≤ βφ(θ) for all θ ∈ R (15.4)
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since φα(x) ≡ α is also α-similar.

Since θ0 minimizes βφ, and βφ is differentiable with derivative β′φ(θ) =
∫
φ(x) d

dθ
pθ(x)dµ(x),1

we have the constraint

0 = β′φ(θ0) =

∫
φ(x)

d

dθ
pθ0(x)dµ(x) (15.5)

for any UMP α-similar test. Hence, it suffices to find a UMP test satisfying (15.3) and
(15.5). We have learned to find UMP tests under a single level constraint, but how do we
find a UMP test under multiple constraints? We develop the tools in the next section.

15.3 Method of Undetermined Multipliers (MoUM)

To maximize power subject to multiple constraints, we generalize the Neyman-Pearson
lemma.

Lemma 2 (TSH Lemma 3.6.1). Suppose F1, ..., Fm+1 are real-valued functions defined on a
common domain U . We will maximize Fm+1(u) subject to constraints of the form

Fi(u) = ci for i = 1, · · · ,m

where c1, ..., cm are known constants. To do this, it suffices to find u0 that satisfies the
constraints and maximizes

Fm+1(u)−
m∑
i=1

kiFi(u) (15.6)

for any choice of the undetermined multipliers k1, ..., km.

In practice, we maximize Fm+1 −
∑m

i=1 kiFi for arbitrary ki’s, and then choose any solution
that satisfies the constraints.

Proof. If u satisfies constraints and u0 optimizes Fm+1 −
∑m

i=1 kiFi, then

Fm+1(u)−
m∑
i=1

kiFi(u) ≤ Fm+1(u0)−
m∑
i=1

kiFi(u0).

Because u and u0 satisfy constraints:

m∑
i=1

kiFi(u) =
m∑
i=1

kici =
m∑
i=1

kiFi(u0).

This implies that Fm+1(u) ≤ Fm+1(u0), so u0 is maximal.

1Here, d
dθpθ(x) is the derivative of (x, θ) 7→ pθ(x) with respect to the second variable and taken at the

point (x, θ). Reference: TSH Thm 2.7.1
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15.3.1 MoUM for Test Functions

Now, we will apply MoUM to the case where U is space of test functions φ:

Fi(φ) =

∫
φ(x)fi(x)dµ(x).

Our goal is to maximize
∫
φ(x)fm+1(x)dµ(x) subject to

∫
φ(x)fi(x)dµ(x) = ci.

First, maximize

Fm+1(φ)−
∑
i

kiFi(φ) =

∫
φ(x)

(
fm+1(x)−

m∑
i=1

kifi(x)

)
dµ(x).

Any solution has the form

φ(x) =

{
1 if fm+1(x) >

∑
i kifi(x)

0 if fm+1(x) <
∑

i kifi(x)
.

Eventually, we will choose ki’s to ensure that all constraints are satisfied.

15.3.2 Application of MoUM to our 2-sided testing problem

In this setting, H0 : θ = θ0. We will fix a simple alternative θ = θ′ 6= θ0 and hope that our
best test has no θ′ dependence. We would like to maximize power

∫
φ(x)pθ′(x)dµ(x) subject

to ∫
φ(x)pθ0(x)dµ(x) = α (15.7)∫

φ(x)
d

dθ
pθ0(x)dµ(x) = 0. (15.8)

For a 1-parameter exponential family, we have

pθ(x) = h(x)eθT (x)−A(θ) and (15.9)

d

dθ
pθ(x) = h(x)eθT (x)−A(θ) (T (x)− A′(θ)) = pθ(x) (T (x)− Eθ[T (X)]) . (15.10)

Applying the reasoning from the previous section, we find that a most powerful test has
rejection region defined by

pθ′(x) > k1pθ0(x) + k2
d

dθ
pθ0(x)

for some values of k1 and k2, which is equivalent to

e(θ′−θ0)T (x)

k′1 + k′2T (x)
> const

with some rearranging.

Now consider the set of values of T (x) satisfying this constraint. Because the constraint is
that an exponential function exceeds a linear function, the set of values of T (x) satisfying
this constraint is either a one-sided interval
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or all points outside a closed interval.

.

The first possibility will not give rise to an unbiased test, because the result would be a
one-sided test with monotone power functions. Therefore any optimal φ is of the form

φ(x) =


1 if T (x) > C1 or T (x) < C2

γi if T (x) = Ci

0 otherwise

.

A simplification is possible if T (x) is symmetrically distributed under θ0. Then the optimal
test rejects whenever |T (x)| > const. Such tests are called equitailed tests.

Example 3. Suppose X1, ..., Xn
iid∼ N(0, σ2) with H0 : σ = σ0 and H1 : σ 6= σ0.

The optimal test has an acceptance region of the form

C1 ≤
∑

iX
2
i

σ2
0

≤ C2

The middle expression is a sufficient statistic that is χ2
n distributed under H0. How do we

choose C1 and C2? Let fn be density χ2
n. The level constraint is:

P (C1 ≤ T (X) ≤ C2) =

∫ C2

C1

fn(y)dy = 1− α,
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and the derivative constraint (15.8) with substitution (15.10) gives

Eθ0 [T (X)φ(X)] = Eθ0 [T (x)]Eθ0 [φ(X)].

On the left side φ(x) = 1 on the complement of (C1, C2), and on the right, the mean of a χ2
n

is n, and the level is α. Thus, ∫
(C1,C2)c

yfn(y) = nα.

For χ2
n distributions, yfn(y) = nfn+1(y), and the derivative constraint ultimately becomes∫ C2

C1

fn+2(y) = 1− α.

We have two integral equations, and we can solve them for the unknown boundaries C1, C2.
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