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13.1 Neyman-Pearson Lemma

Recall that a hypothesis testing problem consists of the data X ∼ Pθ ∈ P , a null hypoth-
esis H0 : θ ∈ Ω0, an alternative hypothesis H1 : θ ∈ Ω1, and the set of candidate test
functions φ(x) representing the probability of rejecting the null hypothesis given the data
x.

Given a significance level α, our optimality goal is to maximize the power Eθ1φ(x), for
every θ1 ∈ Ω1, subject to the size constraint, (i.e. size ≤ level),

Eθ0φ(x) ≤ α for every θ0 ∈ Ω0.

In many hypothesis testing problems, the goal of simultaneously maximizing the power
under every alternative is unachievable. However, we saw last time that the goal can be
achieved when both the null and alternative hypotheses are simple, via the Neyman-
Pearson Lemma.

Theorem 1 (Neyman-Pearson Lemma (TSH 3.2.1)).

(i) Existence. For testing simple H0 : p0 against simple H1 : p1, there exist a test function
φ and a constant k such that

(a) Ep0φ(X) = α, and

(b) φ has the form

φ(x) =

1 if p1(x)
p0(x)

> k

0 if p1(x)
p0(x)

< k.

(ii) Sufficiency. If φ satisfies (a) and (b) for some constant k, then φ is most powerful at
level α.

(iii) Necessity. If a test φ∗ is most powerful at level α, then it satisfies (b) for some k, and
it also satisfies (a) unless there exists a test of size strictly less than α with power 1.

Note that part (a) of (i) states that the size of φ is exactly equal to the significance level,
and part (b) states that φ takes the form of a likelihood ratio test.

Proof. Let r(x) =
p1(x)

p0(x)
be the likelihood ratio and denote the cumulative distribution

function of r(X) under H0 by F0.
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(i) Existence. Let α(c) = P0(r(X) > c) = 1 − F0(c). Then α(c) is a non-increasing,
right-continuous (i.e., α(c) = limε↘0 α(c+ ε)) function of c. Note that α(c) is not
necessarily left-continuous at every value of c, but the left-hand limits exist; denote
them by α(c−) = limε↘0 α(c− ε).
The above properties of α imply that there exists a value c0 such that α(c0) ≤ α ≤
α(c−0 ) (Figure 13.1). Note that F0(c0) ≥ 1−α ≥ F0(c

−
0 ), i.e., c0 is the (1−α) quantile

of r(X).

Figure 13.1. The existence of c0 satisfying α(c0) ≤ α ≤ α(c−0 )

We define our test function to be

φ(x) =


1 if r(x) > c0,

γ if r(x) = c0,

0 if r(x) < c0.

for some constant γ. We note here that φ only depends on x through r(x). φ always
rejects if the likelihood ratio strictly exceeds the threshold c0, never rejects if the
likelihood ratio falls strictly below c0, and rejects with some probability γ whenever
the likelihood ratio equals c0. By construction, if we take k = c0, then φ satisfies
condition (b) of part (i). We now choose γ so that φ also satisfies part (a).

The size of φ is given by

E0φ(X) = P0(r(X) > c0) + γP0(r(X) = c0)

= α(c0) + γ[α(c−0 )− α(c0)].
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If α(c−0 ) = α(c0), then α(c0) = α and we automatically have E0φ(X) = α for any
choice of γ. Otherwise, set

γ =
α− α(c0)

α(c−0 )− α(c0)
,

which gives E0φ(X) = α.

(ii) Sufficiency. Let φ satisfy (a) and (b) of part (i), and let φ′ be any other level α test,
so that

E0[φ
′(X)] =

∫
φ′(x)p0(x)dµ(x) ≤ α.

In order to show φ is most powerful, we bound the power difference E1φ(X)−E1φ
′(X)

from below by the size difference E0φ(X)−E0φ
′(X) up to a constant multiple, whence

the result follows since E0φ(X) = α. To do this, we claim that the following inequality
holds: ∫

(φ(x)− φ′(x))(p1(x)− kp0(x))dµ(x) ≥ 0.

To see this, we consider three cases:

(a) If p1(x) > kp0(x), then φ(x) = 1 (by construction). Since φ′(x) ≤ 1, the integrand
is nonnegative.

(b) If p1(x) < kp0(x), then φ(x) = 0 (by construction). Since φ′(x) ≥ 0, the integrand
is nonnegative.

(c) If p1(x) = kp0(x), then the integrand is zero.

By exhaustion, the inequality holds. Rearranging terms, we have∫
(φ(x)− φ′(x))p1(x)dµ(x) ≥ k

∫
(φ(x)− φ′(x))p0(x)dµ(x)

= k[E0φ(X)︸ ︷︷ ︸
α

−E0φ
′(X)︸ ︷︷ ︸
≤α

] ≥ 0.

We conclude that E1φ(X) ≥ E1φ
′(X); i.e., φ is most powerful at level α.

(iii) Necessity. Suppose φ∗ is most powerful at level α, and let φ be a likelihood ratio test
satisfying (a) and (b) of part (i). We must show that φ∗(x) = φ(x) except possibly
where p1(x)/p0(x) = k, for µ-a.e. x. Define the sets

S+ = {x : φ(x) > φ∗(x)},
S− = {x : φ(x) < φ∗(x)},
S0 = {x : φ(x) = φ∗(x)},

and
S = (S+ ∪ S−) ∩ {x : p1(x) 6= kp0(x)}.
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We must show that µ(S) = 0. Suppose not, so that µ(S) > 0. As in part (ii), we have
(φ− φ∗)(p1 − kp0) > 0 on S. Therefore,∫
X

(φ−φ∗)(p1−kp0)dµ(x) =

∫
S+∪S−

(φ−φ∗)(p1−kp0)dµ(x) =

∫
S

(φ−φ∗)(p1−kp0)dµ(x) > 0,

where the two equalities above hold because the integrand on their difference sets is
equal to 0. By hypothesis, E0φ(X) = α and E0φ

∗(X) ≤ α, so the previous inequality
implies

E1φ(X)− E1φ
∗(X) > k[E0φ(X)− E0φ

∗(X)] ≥ 0.

That is, E1φ(X) > E1φ
∗(X), which contradicts the assumption that φ∗ is most power-

ful. Hence µ(S) = 0.

It remains to show that the size of φ∗ is α unless there exists a test of size strictly less
than α and power 1. For this, note that if size < α and power < 1, we can add points
to rejection region until either the size is α or the power is 1.

Definition 1. For simple H0 : P0 vs H1 : P1, we call βφ(P1) = EP1 [φ(x)] the power of φ, i.e.
the probability of rejection under the alternative hypothesis.

Corollary 1 (TSH 3.2.1). Suppose β is the power of a most powerful level α test of H0 : P0

vs H1 : P1 with α ∈ (0, 1). Then α < β (unless P0 = P1).

The takeaway is that a MP test rejects more often under the alternative hypothesis than
under the null hypothesis, which is an appealing property for a test to have.

Proof. Consider the test φ0(x) ≡ α, which always rejects with probability α. Since φ0 is
level α, and β is the max power, we have

β ≥ EP1φ0(X) = α.

Suppose β = α. Then φ0(x) = α is a most powerful level α test. As a result,

φ0(x) =

{
1 if p1(x)/p0(x) > k,

0 if p1(x)/p0(x) < k,
a.s. by N-P (iii), for some k.

Since φ0(x) never equals 0 or 1, it must be the case that p1(X) = k · p0(X) with probability
1. Note that ∫

p1(X)dµ(x) = k

∫
p0(X)dµ(x) = 1.

This implies that k = 1 and hence P0 = P1.

13.2 Exponential Families and UMP One-sided Tests

In certain cases, we can boost MP tests for a simple alternative up to UMP tests for a
composite alternative. We gave an example for the normal distribution last time; here we
provide a more general example.
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Example 1 (One parameter exponential family). Consider the case where X1, . . . , Xn
i.i.d.∼

pθ(x) ∝ h(x) exp (θT (x)), and we are interested in testing

H0 : θ = θ0 vs. H1 : θ = θ1.

We want an MP test at level α. The likelihood ratio is∏
i pθ1(xi)∏
i pθ0(xi)

∝ exp

(
(θ1 − θ0)

∑
i

T (xi)

)
.

Since the exponential is just a monotone transformation, an MP test will reject for large
(θ1− θ0)

∑
i T (xi). Assuming θ1 > θ0, we will reject for large

∑
i T (xi). That is, an MP test

has the form

φ(x) =


1 if

∑
i T (xi) > k

γ if
∑

i T (xi) = k

0 if
∑

i T (xi) < k,

where k, γ are chosen to satisfy the size constraint

α = Eθ0φ(X) = Pθ0

[∑
i

T (Xi) > k

]
+ γPθ0

[∑
i

T (Xi) = k

]
.

Note that
∑

i T (xi) has no explicit θ dependence and that k, γ do not depend on θ1 (assuming
θ1 > θ0). This means φ is in fact UMP for testing

H0 : θ = θ0 vs. H1 : θ > θ0.

Here, H1 is an example of a one-sided alternative, which arises when the parameter values
of interest lie on only one side of the real-valued parameter θ0.

13.3 Monotone Likelihood Ratios and UMP One-sided

Tests

In the above example, we were able to extend our MP test for a simple hypothesis to a UMP
test for a one-sided hypothesis. This phenomenon is not unique to exponential families. We
can get the same behavior whenever the models have a so-called monotone likelihood ratio.

Definition 2 (Families with monotone likelihood ratio (MLR)). We say that the family of
densities {pθ : θ ∈ R} has monotone likelihood ratio in T (x) if

(i) θ 6= θ′ implies pθ 6= pθ′ (identifiability),

(ii) θ < θ′ implies pθ′(x)/pθ(x) is a nondecreasing function of T (x) (monotonicity).

The one-parameter exponential family of Example 1 has MLR in the sufficient statistic
T (x) =

∑
i T (xi). Here is another example.
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Example 2 (Double exponential). Let X ∼ DoubleExponential(θ), with density pθ(x) =
1
2

exp (−|x− θ|). It is easy to see that the model is identifiable, so we need only check the
second condition. Fix any θ′ > θ and consider the likelihood ratio

pθ′(x)

pθ(x)
= exp (|x− θ| − |x− θ′|) .

Note that

|x− θ| − |x− θ′| =


θ − θ′ if x < θ

2x− θ − θ′ if θ ≤ x ≤ θ′

θ′ − θ if x > θ′,

which is non-decreasing in x. Therefore, the family has MLR in T (x) = x.

Finally, we give an example of a model that does not exhibit MLR in T (x) = x.

Example 3 (Cauchy location model). Let X have density pθ(x) =
1

π
· 1

1 + (x− θ)2
. We

find two points for which the MLR condition fails. For any fixed θ > 0,

pθ(x)

p0(x)
=

1 + x2

1 + (x− θ)2
→ 1 as x→∞ or x→ −∞,

but pθ(0)/p0(0) = 1/(1 + θ2), which is strictly less than 1. Thus the ratio must increase at
some values of x and decrease at others. In particular, it is not monotone in x. Here we
have shown that the likelihood ratio in T (x) = x is not MLR.

When we have a MLR, we can boost our simple MP tests to UMP tests for certain
composite hypotheses.

Theorem 2 (TSH 3.4.1). Suppose X ∼ pθ(x) has MLR in T (x) and we test H0 : θ ≤ θ0 vs.
H1 : θ > θ0. Then

(i) There exists a UMP test at level α of the form

φ(x) =


1 if T (x) > k

γ if T (x) = k

0 if T (x) < k,

where k, γ are determined by the condition Eθ0φ(X) = α.

(ii) The power function β(θ) = Eθφ(X) is strictly increasing when 0 < β(θ) < 1.

Note: The proof of the theorem relies on Corollary 1 to the NP lemma. We have seen (in
Example 1) why φ is UMP at level α for H ′0 : θ = θ0 vs. H ′1 : θ > θ0. To show that φ is UMP
at level α for testing H0 : θ ≤ θ0 vs. H1 : θ > θ0, we have to show that the size constraint is
satisfied for θ < θ0. Part (ii) implies the power function is strictly increasing, so if φ achieves
level α at θ0, it rejects less when θ < θ0. Thus, φ is also level α for H0 : θ ≤ θ0.
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