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� Warning: These notes may contain factual and/or typographic errors.

10.1 Minimaxity and least favorable prior sequences

In this lecture, we will extend our tools for deriving minimax estimators. Last time, we
discovered that minimax estimators can arise from Bayes estimators under least favorable
priors. However, it turns out that minimax estimators may not be Bayes estimators. Con-
sider the following example, where our old approach fails.

Example 1 (Minimax for i.i.d. Normal random variables with unknown mean θ). Let

X1, . . . , Xn
iid∼ N (θ, σ2), with σ2 known. Our goal is to estimate θ under squared-error loss.

For our first guess, pick the natural estimator X. Note that it has constant risk σ2

n
, which

suggests minimaxity because we know that Bayes estimators with constant risk are also
minimax estimators. However, X is not Bayes for any prior, because under squared-error
loss unbiased estimators are Bayes estimators only in the degenerate situations of zero risk
(TPE Theorem 4.2.3), and X is unbiased. Thus, we cannot conclude by our previous results
(e.g., TPE Corollary 5.1.5) that X is minimax.

We might try to consider the wider class of estimators δa,µ0 (X) = aX + (1− a)µ0 for
a ∈ (0, 1) and µ0 ∈ R, because many of the Bayes estimators we’ve encountered are convex
combinations of a prior and a data mean. Note however that the worst case risk for these
estimators is infinite:

sup
θ

Eθ [θ − δ (X)]2 = sup
θ
{a2Varθ

(
X
)

+ (1− a)2 (θ − µ0)2}

=
a2σ2

n
+ (1− a)2 sup

θ
(θ − µ0)2

= +∞.

Since these estimators have poorer worst case risk than X, they certainly cannot be minimax.
We could keep trying to find Bayes estimators with better worst-case performance than X,
but we would fail: it turns out that X is in fact minimax. To establish this, we will extend
our minimax results to the limits of Bayes estimators, rather than restricting attention to
Bayes estimators only.

Definition 1 (Least Favorable Sequence of Priors). Let {Λm} be a sequence of priors with
minimal average risk rΛm = infδ

∫
R (θ, δ) dΛm (θ). Then, {Λm} is a least favorable sequence

of priors if there is a real number r such that rΛm → r <∞ and r ≥ rΛ′ for any prior Λ′.
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The reason for studying the limit of priors is that it may help us establish minimaxity.
Since there need not exist a prior Λ such that the associated Bayes estimator has average
risk r, this definition is less restrictive than that of a least-favorable prior. We can prove an
analogue of TPE Theorem 5.1.4 in this new setting.

Theorem 1 (TPE 5.1.12). Suppose there is real number r such that {Λm} is a sequence of
priors with rΛm → r <∞. Let δ be any estimator such that supθ R (θ, δ) = r. Then,

1. δ is minimax,

2. {Λm} is least-favorable.

Proof. 1. Let δ′ be any other estimator. Then, for any m,

sup
θ
R (θ, δ′) ≥

∫
R (θ, δ′) dΛm(θ) ≥ rΛm ,

so that sending m→∞ yields

sup
θ
R (θ, δ′) ≥ r = sup

θ
R (θ, δ) ,

which means that δ is minimax.

2. Let Λ′ be any prior, then

rΛ′ =

∫
R (θ, δΛ′) dΛ′ (θ) ≤

∫
R (θ, δ) dΛ′ (θ) ≤ sup

θ
R (θ, δ) = r,

which means that {Λm} is least favorable.

Unlike Theorem 5.1.4, this result does not guarantee uniqueness, even if the Bayes es-
timators δΛm are unique. This is because the limiting step in the proof of (1) changes any
strict inequality to nonstrict inequality. However, this result allows to check much wider
class of estimators, since to check that the estimator is indeed a minimax estimator we need
to find only the sequence of Bayes risks convergent to maximum risk of our candidate.

Example 2 (Minimax for i.i.d. Normal random variables, continued). We now have the
tools to confirm our suspicion that X is minimax. By Theorem 1 above, it suffices to find a
sequence {Λm} such that rΛm → σ2

n
=: r. Using the conjugate prior is a good starting point,

so we let {Λm} be the conjugate priors {N (0,m2)} with variance tending to ∞, so that Λm

tends to the (improper with π(θ) = 1, ∀θ ∈ R) uniform prior on R. By TPE Example 4.2.2,
the posterior for θ associated with each Λm is

θ | X1, . . . , Xn ∼ N

(
nX
σ2

n
σ2 + 1

m2

,
1

n
σ2 + 1

m2

)
.

In particular, the posterior variance does not depend on X1, . . . , Xn, so Lemma 1 below
automatically yields the Bayes risk

rΛm =
1

n
σ2 + 1

m2

m→∞−−−→ σ2

n
= sup

θ
R
(
θ,X

)
.

It follows from Theorem 1 that X is minimax and {Λm} is least favorable.
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Lemma 1 (TPE 5.1.13). If the posterior variance VarΘ|X (g (Θ) | X = x) is constant in x,
then under squared error loss, rΛ = VarΘ|X (g (Θ) | X = x).

We know that the posterior mean minimizes Bayes risk, so this result can be obtained
by plugging in the posterior mean of g(θ) into the average risk.

10.2 Minimaxity via submodel restriction

The following example illustrates the technique of deriving a minimax estimator for a general
family of models by restricting attention to a subset of that family. The idea comes from
simple observation that if the estimator is minimax in submodel and its risk doesn’t change
when we go to a larger model then estimator is minimax in this larger class.

Example 3 (Minimax for i.i.d. Normal random variables, unknown mean and variance).

Reconsider Example 1 in the case that the variance is unknown. That is, let X1, . . . , Xn
iid∼

N (θ, σ2), with both θ and σ2 unknown. Note that

sup
θ,σ2

R
(
(θ, σ2), X

)
= sup

σ2

σ2

n
=∞,

and in fact, the maximum risk of any estimator in this setting is infinite, so the question
of minimaxity is uninteresting. Therefore, we restrict attention to the family parameterized
by Ω = {(θ, σ2) : θ ∈ R, σ2 ≤ B}, where B is a known constant. Assume δ is any other
estimator. Calculating the risk of X within this family, we find

sup
θ∈R,σ2≤B

R
(
(θ, σ2), X

)
=
B

n

= sup
θ∈R,σ2=B

R
(
(θ, σ2), X

)
≤ sup

θ∈R,σ2=B

R
(
(θ, σ2), δ

)
[submodel minimax]

≤ sup
θ∈R,σ2≤B

R
(
(θ, σ2), δ

)
,

where the first inequality follows from the fact that X is minimax for i.i.d. normals with
known σ2, and the second inequality follows from the fact that we are taking the supremum
over a larger set. Hence, we are able to show that X is minimax over Ω by focusing on the
case where σ2 is known. Notice further that the form of the estimator does not depend on
the upper bound B, though the bound is necessary for minimaxity to be worth investigating.

10.3 Dependence on the Loss Function

In general, minimax estimators can vary depending on the loss being considered. Below, we
provide an example of minimax estimation under weighted squared error loss.

10-3



STATS 300A Lecture 10 — October 22 Fall 2015

Example 4 (Minimax for binomial random variables, weighted squared error loss). Let

X ∼ Bin (n, θ) with the loss function L (θ, d) = (d−θ)2

θ(1−θ) . This is a simple weighted squared-

error loss with the weights w(θ) = 1
θ(1−θ) but it is arguably more realistic than the usual

squared error in this situation because it penalizes errors near 0 and 1 more strongly than
errors near 1

2
.

Note that for any θ, R
(
θ, X

n

)
= 1

n
; that is, the risk is constant in θ, suggesting X

n
is

minimax. We will show that this is indeed the case. We should be careful since TPE
Theorem 4.2.3 is only valid under the squared-error loss. Since our loss function is different,
an unbiased estimator can be Bayes. In this example, this is indeed the case.

Recall from TPE Corollary 4.1.2 that the Bayes estimator associated with the loss

L (d, θ) = w (θ) (d− θ)2 is given by
EΘ|X [Θw(Θ)|X]

EΘ|X [w(Θ)|X]
. Invoking this result, we find that the

Bayes estimator has the form

δΛ (X) =
EΘ|X

[
1

1−Θ
| X
]

EΘ|X

[
1

Θ(1−Θ)
| X
] . (10.1)

This is true for arbitrary priors Λ, but to calculate a closed form Bayes estimator, we
use a prior conjugate to the binomial likelihood: Θ ∼ Λa,b = Beta (a, b), for some a, b > 0.
Suppose we observe X = x. If a + x > 1 and b + n + x > 1, then substituting the result of
Remark 1 below into equation 10.1 proves that the estimator

δa,b (x) =
a+ x− 1

a+ b+ n− 2
,

minimizes the posterior risk.
In particular, the estimator δ1,1 (x) = x

n
minimizes the posterior risk with respect to the

uniform prior after observing 0 < x < n. If we can verify that this form remains unchanged
when x ∈ {0, n}, then the estimator δ1,1 (X) = X

n
is Bayes with constant risk, and hence

minimax.
To see that this is the case, note that the posterior risk under the prior Λ1,1 after observing

X = x and deciding δ (x) = d is∫ 1

0

(d− θ)2

θ (1− θ)
· Γ (x+ 1 + n− x+ 1)

Γ (x+ 1) Γ (n− x+ 1)
· θx (1− θ)n−x dθ,

which, in the case X = 0, simplifies to∫ 1

0

(d− θ)2

θ
(1− θ)n−1 dθ.

This integral converges for d = 0 and diverges otherwise, so the posterior risk is minimized
by choosing δ (0) = 0. Similarly, in the case X = n, the posterior risk is minimized by
choosing δ (n) = 1 = n

n
. This confirms that δ1,1 (X) = X

n
minimizes the posterior risk for any

outcome X, and is indeed Bayes. Since as we mentioned before this estimator has constant
risk we can conclude that X

n
is minimax.

Notice that the form of the minimax estimator here depends on the type of loss being
used: X

n
has constant risk for the type of weighted squared error loss considered here.
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Remark 1. Recall that the Beta function can be evaluated as∫ 1

0

xk1−1 (1− x)k2−1 dx =
Γ (k1) Γ (k2)

Γ (k1 + k2)
, (10.2)

whenever k1, k2 > 0.
Therefore, if Y ∼ Beta (a, b), where a, b > 0, we can explicitly evaluate the expectation

E
[

1

1− Y

]
=

∫ 1

0

1

1− y

[
Γ (a+ b)

Γ (a) Γ (b)
ya−1 (1− y)b−1

]
dy

=
Γ (a+ b)

Γ (a) Γ (b)

∫ 1

0

[
ya−1 (1− y)b−2

]
dy

=
Γ (a+ b)

Γ (a) Γ (b)
· Γ (a) Γ (b− 1)

Γ (a+ b− 1)

=
Γ(a+ b)

Γ(a+ b− 1)
· Γ(b− 1)

Γ(b)
· Γ(a)

Γ(a)

=
a+ b− 1

b− 1
,

where in the second step we require b > 1 in order to apply the relation 10.2. A similar
argument yields

E
[

1

Y (1− Y )

]
=

(a+ b− 2) (a+ b− 1)

(a− 1) (b− 1)
,

whenever a > 1. Combining these identities, we have that, whenever a, b > 1,

E
[

1
1−Y

]
E
[

1
Y (1−Y )

] =
a− 1

a+ b− 2
.

10.4 Randomized Minimax Estimators

So far, we have had little occasion to consider randomized estimators, that is, functions
δ (X,U) of both the data and an independent source of randomness U ∼ Unif (0, 1). Ran-
domized estimators played little role in our exploration of average risk optimality, since
non-randomized estimators of equal or better average risk are always available. However,
they turn out to play a role when we consider the minimax criterion.

Notice that when working with convex losses, we can dispense with randomized estima-
tors, because we can find a deterministic estimator with the same or better performance.
Indeed, the data X is always sufficient, so by the Rao-Blackwell theorem, the non-random
estimator δ̃ (X) = E [δ (X,U) | X] is no worse than δ (X,U).

However, there are non-convex losses for which no deterministic minimax estimator exists,
as the following example demonstrates.
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0 θ0 δ (i1) δ (i2) δ (in) 1

length > α

Figure 10.1. By choosing α small enough, we can ensure that any choice of n+1 values for the non-random
estimator δ will leave some θ0 a distance at least α away from any of the δs.

Example 5 (Randomized minimax estimator). Let X ∼ Bin (n, θ), where θ ∈ [0, 1], and
consider estimation of θ under the 0-1 loss,

L (θ, d) =

{
0 if |d− θ| < α

1 otherwise
.

First consider an arbitrary non-random estimator δ. Since X can take on only the n+ 1
values {0, 1, . . . , n}, the estimator δ (X) can take on only n+1 values, {δ (0) , δ (1) , . . . , δ (n)}.
If α < 1

2(n+1)
, then we can always find θ0 such that |δ (x)− θ0| ≥ α for every x ∈ {0, . . . , n};

see Figure 10.1. Hence, R (θ0, δ (X)) = 1 is the maximum risk of any non-random δ.
Consider instead the estimator δ′ (X,U) = U , which is completely random and indepen-

dent of the data X. Then, for any θ ∈ [0, 1],

R (θ, δ′) = E [L (θ, δ′ (X,U))]

= P (|U − θ| ≥ α)

= 1− P (θ − α < U < α + θ)

≤ 1− α< 1,

and since α > 0, the maximum risk of δ′ is smaller than the maximum risk of any non-random
δ. Hence, in this setting, there can be no deterministic minimax estimator.
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