
STATS 300A: Theory of Statistics Fall 2015

Lecture 1 — September 22

Lecturer: Lester Mackey Scribe: Amelia Lemionet, Ken Wang

� Warning: These notes may contain factual and/or typographic errors.

1.1 The Big Picture

Consider the following flowchart for statistics:

natural sciences (biology, physics, climate, etc)
social sciences (economics, politics, etc)
engineered systems (networks, images, etc)

 −→ data −→ statistics −→ inferences

That is, as statisticians, we are tasked with turning the large amount of data generated
by experiments and observations into inferences about the world. This simple directive gives
rise to a number of core statistical questions:

1. Modeling : How do we capture the uncertainty in our data and the world that produced
it?

2. Methodology : What are the right mathematical and computational tools that allow us
to draw these statistical inferences?

3. Analysis : How do we compare and evaluate the statistical inferences we make and the
procedures we use to make them? In particular, how do we do optimal inference?

Many of the classes in our department are focused on these questions but answer them
in slightly different ways:

• Our department’s introductory applied sequence, consisting of Stats 305, 306A, and
306B, explores many of the empirical and applied aspects of these questions, with a
particular focus on methodology and modeling.

• Stats 300A and B focus on developing rigorous mathematical answers to these questions
with a strong focus on notions of optimality of the statistical inference. In 300A we
will develop finite sample answers to the core questions while 300B delivers asymptotic
answers (letting the sample size n→∞).
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1.2 Decision Theory

1.2.1 Framework

We will address our core questions within a framework for statistical inference developed
by Abraham Wald in 1939 called decision theory. This decision theoretic framework will
give us a way to answer all of the core questions. Hereafter, we will view our data as the
realization of a random element X taking values in a sample space X . Often X will be a
subset of the Euclidean space, so X will be a vector (or matrix) (X1, . . . , Xn) with i.i.d.
(independent and identically distributed) entries (or columns).

Now, let us formalize the notion of inference as a decision problem consisting of three
key ingredients:

1. A statistical model is a family of distributions P , indexed by a parameter θ. We
write

P = {Pθ : θ ∈ Ω}.
Here θ is the parameter, Ω is the parameter space, and each Pθ is a distribution. Often
Ω ⊂ Rk.

P is the class of distributions to which we believe X belongs. In other words, we
assume that the data X come from some Pθ ∈ P but that the true θ is unknown. The
fact that we don’t know θ captures our uncertainty about the problem.

Example 1 (Weighted coin flips). Observe a sequence of coin flips X1, . . . , Xn ∈ {0, 1}
where 0 encodes tails and 1 encodes heads. It’s a weighted coin, so I don’t know how
often I expect heads to arrive. The goal is to estimate the probability of heads given
the observations. Then we model this process as independent draws from a Bernoulli
distribution: P = {Ber(θ) : θ ∈ [0, 1] = Ω}. In this case, Pθ(Xi = 1) = θ.

2. A decision procedure δ is a map from X (the sample space) to the decision space
D.1

Example 2 (Weighted coin flips). Taking P = {Ber(θ)} as before, we may be inter-
ested in estimating θ or testing hypotheses based on θ.

(a) Estimating θ: the decision space is D = [0, 1], and the decision procedure might
be δ(X) = 1

n

∑n
i=1 Xi. This procedure is an example of an estimator.

(b) Accepting or rejecting the hypothesis θ > 1/2: the decision space isD = {accept, reject},
and one possible decision procedure is δ(X) = “reject if 1

n

∑n
i=1Xi ≤ 1/2, accept otherwise”.

This procedure is an example of a hypothesis test.

3. A loss function is a mapping L : Ω × D → R+. L(θ, d) represents the penalty
for making the decision d when θ is in fact the true parameter for the distribution
generating the data. The goal is to assign high penalties for bad decisions.

Example 3 (Squared-error loss). For estimating a real-valued parameter θ with deci-
sion d ∈ R = D, a common loss function is the squared-error loss L(θ, d) = (θ − d)2.

1We will also have reason to consider randomized decision procedures, functions δ∗ which map the data
X and an independent random variable U ∼ Unif[0, 1] to a value δ∗(X,U) ∈ D.
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1.2.2 Analyzing Procedures

Decision theory is useful because it allows us to analyze statistical procedures. Indeed, the
three components of a decision problem together give rise to our primary basis for evaluation,
the risk function R(θ, δ) = Eθ(L(θ, δ(X))).2 The risk R(θ, δ) is the average loss incurred
when the decision procedure δ is used over many draws of the data from its generating
distribution Pθ.

The risk function gives us a way to compare and rule out procedures. We say a procedure δ
is inadmissible if another procedure never has greater risk than δ but sometimes has strictly
lower risk. In other words, δ is inadmissible if there exists δ′ such that R(θ, δ′) ≤ R(θ, δ) for
all θ and R(θ′, δ′) < R(θ′, δ) for some θ′. So, δ′ is always as good as δ and sometimes better.
Decision theory rules out inadmissible procedures δ in favor of dominating procedures δ′.

This very bold statement should be taken with a grain of salt because there are cases
when you might want to use an inadmissible procedure. For example, an explicit dominating
procedure may be unknown or much more expensive to compute.

Example 4 (Weighted coin flips). For estimating the probability of heads θ, let δn(X) =
1
n

∑n
i=1 Xi be the sample mean of the first n data points. Under the loss function L(θ, d) =

(θ − d)2, the risk of δn is

R(θ, δn) = Eθ((θ − δn(X))2) =
θ(1− θ)

n
.

This is computed by realizing that the expectation is just expressing the variance of a
binomial distribution for the coin flips. Now, we can compare different decision procedures
by considering holding out the data from various coin flips. In particular, when we have two
flips, we can just use one of them: R(θ, δ1) = θ(1 − θ), which is always higher than using
both in our procedure R(θ, δ2) = θ(1− θ)/2, so δ1 is inadmissible.

Now consider the constant estimator δgoofy = 1
2
, which has risk R(θ, δgoofy) = (1

2
− θ)2.

Since δgoofy achieves a risk of 0 when θ = 1
2
, it will be admissible. Nonetheless, it is intuitively

unreasonable since it doesn’t use the data at all; it also has unacceptably high risk for values
of θ near 0 or 1.

The following figure plots the risk of the three estimators δ1, δ2, and δgoofy.

The lesson to take away from this is that there is typically no uniformly best procedure.
Nonetheless, we can develop our theory of optimality by changing the requirements of our
decision problem. Here are some common actions taken to induce an optimizable problem:

1. Constrain the set of decision procedures under consideration, by requiring our proce-
dures to satisfy criteria like unbiasedness or invariance.

(a) Unbiased estimators: we say that δ is unbiased for estimating g(θ) if Eθ(δ(X)) =
g(θ).

(b) Equivariance or invariance: enforce symmetries in the decision procedure. For
example, location invariance requires an estimator to satisfy δ(X+ c) = δ(X) + c.

2The expectation is taken over the data X with θ held fixed. In the case of randomized estimators
δ∗(X,U), the expectation is also taken over the auxiliary randomness in U .
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2. Collapse the risk function into a single numerical summary and minimize this overall
summary of risk instead of requiring uniformly lower risk.

(a) Bayes procedures minimize the average risk
∫
R(θ, δ)dΛ(θ) where Λ is a probabil-

ity distribution (the prior distribution) over Ω.

(b) Minimax procedures minimize the worst-case risk, supθ∈ΩR(θ, δ), and hence achieve
the best worst-case performance.

In this course we will explore each of these principles for optimal inference, first in the context
of point estimation and later in the context of hypothesis testing.

1.3 Data Reduction

Before constraining or collapsing, let’s attend to a more basic fact that will aid us in the
design of optimal procedures: Not all data is relevant to a particular decision problem.
We will see that discarding irrelevant data can never hurt performance and results in a
simpler inference procedure. To understand data reduction, let’s introduce the following two
definitions.

Definition 1 (Statistic). A statistic T : X → T is a function of the data.

Definition 2 (Sufficient Statistic). A statistic is sufficient for a model P = {Pθ : θ ∈ Ω} if
for all t, the conditional distribution X|T (x) = t does not depend on θ.

Let’s take a look at an example of a sufficient statistic.

Example 5 (Weighted coin flips). Let X1, X2, ..., Xn be i.i.d. according to Ber(θ), is the
number of heads, i.e.

∑n
i=1 Xi, sufficient? The answer is yes. To see that, let’s show the

conditional distribution does not depend on θ. First of all, we have

Pθ(X = (X1, X2, ..., Xn)) =
n∏
i=1

θXi(1− θ)1−Xi = θ
∑
iXi(1− θ)n−

∑
iXi
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So the conditional distribution is

Pθ(X = x|T (x) = t) =
Pθ(X = x, T (x) = t)

Pθ(T (x) = t)

=
1(t =

∑n
i=1 Xi)θ

t(1− θ)n−t(
n
t

)
θt(1− θ)n−t

=
1(t =

∑n
i=1 Xi)(

n
t

)
which does not depend on θ, so the sum of heads is a sufficient statistic.

Two other examples of sufficient statistic are:

Example 6 (Max of Uniform). Let X1, X2, ..., Xn be i.i.d. according to uniform distribution
U(0, θ). Then T (x) = max(X1, ..., Xn) is sufficient. The intuition behind this is the following:
think of X1, X2, · · · , Xn as n numbers on the real line, then the remaining n − 1 numbers,
given the maximum is fixed at t, behave like n− 1 i.i.d random samples drawn from U(0, t).
Since this conditional distribution is independent of θ, T (x) is sufficient.

Example 7 (Order Statistics). Let X1, X2, ..., Xn be i.i.d. with any model. Then the order
statistics T = X(1) ≤ X(2) ≤ · · · ≤ X(n) are sufficient. To see this, note that given T the
possible values of X are the n! permutations of T . By symmetry, we can see that each of
these permutations has equal probability of 1

n!
. Thus the conditional distribution X|T (x) = t

is independent of θ. Therefore the order statistics are sufficient, regardless of the model.

From the viewpoint of decision theory, data reduction via a sufficient statistic represents
lossless data compression: any risk curve that can be achieved by a decision procedure based
on X can also be achieved by a (possibly randomized) decision procedure based on T (X).
This is made precise in the following theorem.

Theorem 1. (TPE 1.6, Theorem 6.1) If X ∼ Pθ ∈ P and T is sufficient for P , then, for any
decision procedure δ, there is a (possibly randomized) decision procedure of equal risk that
depends on X only through T (X).

To see why the theorem is true, note that given an independent source of randomness
U , we can always sample a new dataset X ′ = f(T (X), U) from the conditional distribution
P (X | T (X)) and define a randomized procedure

δ∗(X,U) , δ(f(T (X), U)) = δ(X ′)
d
= δ(X).

The equality in distribution implies that δ̂ and δ have equal risk, and this procedure is valid
since, by sufficiency, X | T (X) does not depend on θ.

In practice it is seldom necessary to regenerate a dataset from sufficient statistics to
achieve accurate inference; rather, we will see in a future lecture that the risk of a decision
procedure can often be matched or improved upon by a non-randomized decision procedure
based on sufficient statistics alone.
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1.3.1 The Neyman-Fisher Factorization Criterion

Checking the definition of sufficiency directly is often a tedious exercise. A much simpler
characterization of sufficiency is available whenever our model distributions admit densities
(w.r.t. a common σ-finite measure).

Theorem 2 (Neyman-Fisher Factorization Criterion (NFFC), TSH, p. 19). Suppose each
Pθ ∈ P has density p(x; θ) w.r.t. a common σ-finite measure µ, i.e., dPθ

dµ
= p(x; θ). Then

T (X) is sufficient if and only if p(x; θ) = gθ(T (x))h(x) for some gθ, h.

In other words, a necessary and sufficient condition for T (X) to be sufficient is that the
density p(x; θ) can be factorized into two factors where the first factor may depend on θ but
depends on x only through T (x) while the second factor is independent of θ.

Example 8 (i.i.d. Normal). Let Xi be i.i.d. N(µ, σ2) and θ = (µ, σ2). The joint distribution
is

p(x; θ) =
n∏
i=1

1√
2πσ2

e−
1

2σ2
(Xi−µ)2

=

(
1√

2πσ2

)n
e

1
2σ2

(−
∑n
i=1X

2
i +2µ

∑n
i=1Xi−nµ2)

= gθ(T (X))

where T (X) = (
∑n

i=1X
2
i ,
∑n

i=1 Xi) is sufficient.

Now, let’s move on to the proof of NFFC. Here we will just prove the discrete case.

Proof. (Discrete Case)
Suppose p(x; θ) = gθ(T (x))h(x). Since Pθ(X = x|T (X) = t) = 0 whenever t 6= T (x), so

we may focus our attention on conditionals of the form Pθ(X = x|T (X) = T (x)). We have

Pθ(X = x|T (X) = T (x)) =
Pθ(X = x, T (X) = T (x))

Pθ(T (X) = T (x))
=

Pθ(X = x)

Pθ(T (X) = T (x))

=
gθ(T (x))h(x)∑

x′∈X p(x
′; θ)1(T (x′) = T (x))

=
gθ(T (x))h(x)∑

x′∈X gθ(T (x))h(x′)1(T (x′) = T (x))

=
h(x)∑

x′∈X h(x′)1(T (x′) = T (x))

which has no θ dependence, so T is sufficient.
Conversely, suppose Pθ(X = x|T (X) = T (x)) is independent of θ. Then, defining h(x) ,

Pθ(X = x|T (X) = T (x)), we have

p(x; θ) = Pθ(X = x) = Pθ(X = x, T (X) = T (x))

= Pθ(X = x|T (X) = T (x))Pθ(T (X) = T (x))

= h(x)gθ(T (x)),

which establishes the factorization criterion.
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1.3.2 Summary

Let’s wrap up this section by summarizing the benefits of data reduction:

1. Data reduction via sufficient statistics never impairs our risk, while (we will see that)
irrelevant attributes can in fact lead to increased risk.

2. Data reduction can increase interpretability.

3. Data reduction generally reduces storage requirements and often reduces the subse-
quent computational costs of inference.

Note however that reduction via sufficiency can also increase the computational complexity of
inference, in some instances even turning a computationally tractable inference problem into
an intractable one. See Montanari (2014) for examples of this counterintuitive phenomenon.
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