Problem Set 4

Due: Thursday, October 22, 2015

Instructions:

- You may appeal to any result proved in class or proved in the course textbooks.
- Any request to "find" requires proof that all requested properties are satisfied.

Problem 1 (Minimum Risk Scale Equivariance). Suppose that $X=\left(X_{1}, \ldots, X_{n}\right)$ comes from a scale family with density

$$
f_{\tau}(x)=\frac{1}{\tau^{n}} f\left(\frac{x_{1}}{\tau}, \ldots, \frac{x_{n}}{\tau}\right)
$$

for known f and unknown scale parameter $\tau>0$ and that

$$
Z=\left(\frac{X_{1}}{X_{n}}, \ldots, \frac{X_{n-1}}{X_{n}}, \frac{X_{n}}{\left|X_{n}\right|}\right) .
$$

(a) Show that the minimum risk scale equivariant estimator of τ under the loss

$$
\gamma\left(\frac{d}{\tau^{r}}\right)=\frac{\left(d-\tau^{r}\right)^{2}}{\tau^{2 r}}
$$

is given by

$$
\delta^{*}(X)=\frac{\delta_{0}(X) \mathbb{E}_{1}\left[\delta_{0}(X) \mid Z\right]}{\mathbb{E}_{1}\left[\delta_{0}^{2}(X) \mid Z\right]}
$$

(b) Show that a minimum risk scale equivariant estimator of τ under the loss

$$
\gamma\left(\frac{d}{\tau^{r}}\right)=\frac{\left|d-\tau^{r}\right|}{\tau^{r}}
$$

is given by

$$
\delta^{*}(X)=\frac{\delta_{0}(X)}{w^{*}(Z)}
$$

with $w^{*}(Z)$ any scale median of $\delta_{0}(X)$ under the conditional distribution of X given Z with $\tau=1$. That is, $w^{*}(z)$ satisfies

$$
\mathbb{E}_{1}\left[\delta_{0}(X) \mathbb{I}\left(\delta_{0}(X) \geq w^{*}(Z)\right) \mid Z\right]=\mathbb{E}_{1}\left[\delta_{0}(X) \mathbb{I}\left(\delta_{0}(X) \leq w^{*}(Z)\right) \mid Z\right]
$$

Hint: You might find it useful to prove the claim in Exercise 3.7a in Chapter 3 of TPE.

In part (b) you may assume that X has a continuous probability density function $f(\cdot ; \theta)$ with respect to Lebesgue measure.

Problem 2 (Bayes Estimation). Suppose that Θ follows a log-normal distribution with known hyperparameters $\mu_{0} \in \mathbb{R}$ and $\sigma_{0}^{2}>0$ and that, given $\Theta=\theta,\left(X_{1}, \ldots, X_{n}\right)$ is an i.i.d. sample from $\operatorname{Unif}(0, \theta)$.
(a) What is the posterior distribution of $\log (\Theta)$?
(b) Let δ_{τ} represent the Bayes estimator of θ under the loss

$$
L(\theta, d)= \begin{cases}0 & \text { if } \frac{1}{\tau} \leq \frac{\theta}{d} \leq \tau \\ 1 & \text { otherwise }\end{cases}
$$

for fixed $\tau>1$. Find a simple, closed-form expression for the limit of δ_{τ} as $\tau \rightarrow 1$.
Note: Part (b) concerns Bayes estimators of θ, not of $\log (\theta)$, but part (a) is still relevant.

Problem 3 (Conjugacy). A family $\Pi=\left\{\pi_{\kappa}: \kappa \in K\right\}$ of prior probability densities indexed by the hyperparameter κ is said to be conjugate for a model $\mathcal{P}=\{f(\cdot \mid \theta): \theta \in \Omega\}$ of likelihoods if, for each prior $\pi_{\kappa} \in \Pi$, the posterior $\pi_{\kappa}(\theta \mid x) \propto f(x \mid \theta) \pi_{\kappa}(\theta)$ is also in Π. That is, $\pi_{\kappa}(\theta \mid x)=\pi_{\kappa^{\prime}}(\theta)$ for some index $\kappa^{\prime} \in K$ depending on κ and x. Posterior analysis is greatly simplified when the mapping $(\kappa, x) \mapsto \kappa^{\prime}$ has a known closed form. For each model below, find a conjugate prior family under which the posterior hyperparameter κ^{\prime} is a simple, closed-form function of the data x and the prior hyperparameter κ :
(a) $\left(X_{1}, \ldots, X_{n}\right) \stackrel{\text { iid }}{\sim} \operatorname{Gamma}(\alpha, \beta)$ with unknown shape α and rate β.
(b) $\left(X_{1}, \ldots, X_{n}\right) \stackrel{\text { iid }}{\sim} \operatorname{Beta}(\alpha, \beta)$ with unknown shape parameters (α, β).
(c) The family defined by the linear observation model $Y_{i} \stackrel{\text { ind }}{\sim} \mathcal{N}\left(\beta_{1}+\beta_{2} x_{i}, \sigma^{2}\right)$ for $i \in$ $\{1, \ldots, n\}$ where $x_{i} \in \mathbb{R}$ and $\sigma^{2}>0$ are known and $\beta_{1}, \beta_{2} \in \mathbb{R}$ are unknown.

Problem 4 (Posterior Quantiles). Consider a Bayesian inference setting in which the posterior mean $\mathbb{E}[\Theta \mid X=x]$ is finite for each x. Show that under the loss function

$$
L(\theta, a)= \begin{cases}k_{1}|\theta-a| & \text { if } a \leq \theta \\ k_{2}|\theta-a| & \text { otherwise }\end{cases}
$$

with $k_{1}, k_{2}>0$ constant and for p an appropriate function of k_{1} and k_{2}, every p-th quantile of the posterior distribution is a Bayes estimator.

Problem 5 (Bayesian Prediction).
(a) Let $\mathbf{Z} \in \mathbb{R}^{p}$ be a random vector and $Y \in \mathbb{R}$ be a random variable. Our goal is to learn a prediction rule $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ to best predict the value of Y given \mathbf{Z}. We will measure the goodness of our predictions using the risk function

$$
\begin{equation*}
\mathbb{E}\left[(Y-f(\mathbf{Z}))^{2}\right] \tag{1}
\end{equation*}
$$

Assuming that the joint distribution of (\mathbf{Z}, Y) is known, find the optimal prediction rule f.
(b) Now, let $\Theta \in \Omega$ be a random variable with distribution Λ, and, given $\Theta=\theta$, let X_{1}, \ldots, X_{n+1} be drawn i.i.d. from a density p_{θ}. Let $\mu(\theta)$ represent the mean under p_{θ}. First, find the Bayes estimate of $\mu(\theta)$ under squared error loss given only the first n observations X_{1}, \ldots, X_{n}. Next, find the function f of $\left(X_{1}, \ldots, X_{n}\right)$ that best predicts X_{n+1} under the average risk

$$
\mathbb{E}\left[\mathbb{E}_{\Theta}\left[\left(X_{n+1}-f\left(X_{1}, \ldots, X_{n}\right)\right)^{2}\right]\right]
$$

Note the close relationship between optimal prediction and optimal estimation.

