STATS 300A THEORY OF STATISTICS Stanford University, Fall 2015

Problem Set 2

Due: Thursday, October 8, 2015

Reading: K 3.4-3.6, 4.1-4.2

Instructions:

- You may appeal to any result proved in class or proved in the course textbooks.
- Any request to find a statistic with certain properties requires proof that those properties are satisfied.

Problem 1. Suppose that X_1, \ldots, X_n are i.i.d. Poisson random variables with mean λ and that we aim to estimate $g(\lambda) = \exp(-\lambda) = \mathbb{P}_{\lambda}[X=0]$.

- (a) Show that $S_1 = \mathbb{I}(X_1 = 0)$ and $S_2 = \frac{1}{n} \sum_{i=1}^n \mathbb{I}(X_i = 0)$ are unbiased estimates of $g(\lambda)$.
- (b) Show that $T = \sum_{i=1}^{n} X_i$ is sufficient.
- (c) Compute the Rao-Blackwellized estimators $S_i^* = \mathbb{E}[S_i \mid T]$ for $i \in \{1, 2\}$. How does your answer relate to completeness?

Problem 2. An exponential random variable with failure rate parameter $\lambda > 0$ has density

$$f(t;\lambda) = \begin{cases} \lambda \exp\left(-\lambda t\right) & \text{for } t > 0\\ 0 & \text{otherwise} \end{cases}$$

- (a) Find the distribution of $Y = \lambda X$ when $X \sim \text{Exp}(\lambda)$.
- (b) Let X_1, \ldots, X_n be an i.i.d. sample from $\text{Exp}(\lambda)$. Show that

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \text{and} \quad \frac{\sum_{i=1}^{n} X_i^2}{\bar{X}^2}$$

are independent.

(c) Show that \bar{X} and $\frac{X_{(1)}}{X_{(n)}}$ are independent.

Problem 3. Consider an i.i.d. sample (X_1, X_2, \ldots, X_n) with $X_i \sim \text{Unif}[\theta - a, \theta + a]$ for $a \in \mathbb{R}$ known.

(a) Show that $T = (X_{(1)}, X_{(n)})$ is sufficient.

(b) Suppose that we wish to estimate θ under the quadratic loss $L(\theta, d) = (\theta - d)^2$. While the sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ appears to be a reasonable estimate, it turns out to be inadmissible when n > 2. Show this by deriving an estimator with strictly better MSE than that of \bar{X} . (Your estimator should have a simple form.)

Problem 4. Nowadays, unbiasedness is often used to develop estimates of the risk of an estimator. Suppose that $X \in \mathbb{R}^p$ has a multivariate normal distribution with mean vector μ and known covariance $\sigma^2 I$, and let δ be a known differentiable estimator of μ satisfying $\mathbb{E}\left[\|\delta(X)\|_2^2\right] < \infty$ and $\mathbb{E}\left[\left\|\frac{\partial}{\partial x_i}\delta_i(X)\right\|\right] < \infty$ for $i \in \{1, \ldots, p\}$.

- (a) Derive the UMVUE of the squared-error risk $\mathbb{E}\left[\|\mu \delta(X)\|_2^2\right]$. You may find Problem 2 of Homework 1 useful.
- (b) Although the true risk is nonnegative, the UMVUE can take on negative values. How can this be addressed by introducing bias?

Problem 5. Let X and Y be i.i.d. exponential random variables with mean $1/\theta$ or equivalently with density

$$f(t;\theta) = \begin{cases} \theta \exp(-\theta t) & \text{for } t > 0\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the UMVUE for the mean $1/\theta$.
- (b) Show that the geometric mean $(XY)^{1/2}$ has smaller mean squared error than the UMVUE for all θ .
- (c) Find an estimator which has even smaller mean squared error for all θ .

Problem 6. How much time did you spend on this problem set?