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A simple question

I On a scale of 1 (very white) to 10 (very black), how black is this
box?

I Which box is blacker?



A simple question

I On a scale of 1 (very white) to 10 (very black), how black is this
box?

I Which box is blacker?



A simple question

I On a scale of 1 (very white) to 10 (very black), how black is this
box?

I Which box is blacker?



Another question
On a scale of 1 to 10, how relevant is this result for the query flowers?
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What have we learned?

1. We are good at pairwise comparisons

I Much worse at absolute relevance judgments
[Miller, 1956, Shiffrin and Nosofsky, 1994, Stewart, Brown, and Chater, 2005]

2. We are good at expressing sparse, partial preferences

I Much worse at expressing complete preferences

Complete preferences:

ftd.com

en.wikipedia.org/...

1800flowers.com

What you express:

ftd.com

en.wikipedia.org/...

1800flowers.com
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Ranking

Goal: Order set of items/results to best match your preferences

I Web search: Return most relevant URLs for user queries

I Recommendation systems:

I Movies to watch based on user’s past ratings
I News articles to read based on past browsing history
I Items to buy based on patron’s or other patrons’ purchases
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Ranking procedures
Goal: Order set of items/results to best match your preferences

1. Tractable: Run in polynomial time

2. Consistent: Recover true preferences given sufficient data

3. Realistic: Make use of ubiquitous partial preference data

Past work: 1+2 are possible given complete preference data
[Ravikumar, Tewari, and Yang, 2011, Buffoni, Calauzenes, Gallinari, and Usunier, 2011]

This work [Duchi, Mackey, and Jordan, 2013]

I Standard (tractable) procedures for ranking with partial
preferences are inconsistent

I Aggregating partial preferences into more complete preferences
can restore consistency

I New estimators based on U-statistics achieve 1+2+3
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Supervised ranking

Observe: Sequence of training examples

I Query Q: e.g., search term “flowers”

I Set of m items IQ to rank

I e.g., websites {1, 2, 3, 4}

I Label Y representing some preference
structure over items

I Item 1 preferred to {2, 3} and item 3 to 4

1

2 3

4

y12 y13

y34

Example: Y is a
graph on items
{1, 2, 3, 4}
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Supervised ranking

Observe: (Q1, Y1), . . . , (Qn, Yn)

Learn: Scoring function f to induce item rankings for each query

I Real-valued score for each item i in item set IQ

αi := fi(Q)

I Vector of scores f(Q) induces ranking over IQ

i ranked above j ⇐⇒ αi > αj
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Supervised ranking

Example: Scoring function f with scores

f1(Q) > f2(Q) > f3(Q)

induces same ranking as preference graph Y

1

2

3

Y

f1(Q) > f2(Q)

f2(Q) > f3(Q)



Supervised ranking

Observe: (Q1, Y1), . . . , (Qn, Yn)

Learn: Scoring function f to predict item ranking

Suffer loss: L(f(Q), Y )

I Encodes discord between observed label Y and prediction f(Q)

I Depends on specific ranking task and available data



Supervised ranking
Example: Pairwise loss

I Let Y = (weighted) adjacency matrix for a preference graph

I Yij = the preference weight on edge (i, j)

I Let α = f(Q) be the predicted scores for query Q
I Then, L(α, Y ) =

∑
i 6=j Yij1(αi≤αj)

I Imposes penalty for each misordered edge

1

2 3

4

y12 y13

y34

L(α, Y ) = Y121(α1≤α2) + Y131(α1≤α3) + Y341(α3≤α4)
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Supervised ranking

Observe: (Q1, Y1), . . . (Qn, Yn)

Learn: Scoring function f to rank items

Suffer loss: L(f(Q), Y )

Goal: Minimize the risk R(f) := E [L(f(Q), Y )]

Main Question:
Are there tractable ranking procedures that minimize R as n→∞?
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Tractable ranking
First try: Empirical risk minimization

← Intractable!

min
f

R̂n(f) := Ên [L(f(Q), Y )] =
1

n

∑n

k=1
L(f(Qk), Yk)

Idea: Replace loss L(α, Y ) with convex surrogate ϕ(α, Y )

L(α, Y ) =
∑

i 6=j Yij1(αi≤αj) ϕ(α, Y ) =
∑

i6=j Yijφ(αi − αj)

Hard Tractable
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Surrogate ranking

Idea: Empirical surrogate risk minimization

min
f

R̂ϕ,n(f) := Ên [ϕ(f(Q), Y )] =
1

n

∑n

k=1
ϕ(f(Qk), Yk)

I If ϕ convex, then minimization is tractable

I argminf R̂ϕ,n(f)
n→∞→ argminf Rϕ(f) := E [ϕ(f(Q), Y )]

Main Question:
Are these tractable ranking procedures consistent?

⇐⇒
Does argminf Rϕ(f) also minimize the true risk R(f)?
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Classification consistency

Consider the special case of classification

I Observe: query X, items {0, 1}, label Y01 = 1 or Y10 = 1

I Pairwise loss: L(α, Y ) = Y011(α0≤α1) + Y101(α1≤α0)

I Surrogate loss: ϕ(α, Y ) = Y01φ(α0 − α1) + Y10φ(α1 − α0)

Theorem: If φ is convex, procedure based on minimizing φ is
consistent if and only if φ′(0) < 0. [Bartlett, Jordan, and McAuliffe, 2006]

⇒ Tractable consistency for boosting, SVMs, logistic regression
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Ranking consistency?

Good news: Can characterize surrogate ranking consistency

Theorem:1 Procedure based on minimizing ϕ is consistent ⇐⇒

min
α

{
E[ϕ(α, Y ) | q]

∣∣∣∣ α 6∈ argmin
α′

E[L(α′, Y ) | q]
}

> min
α

E[ϕ(α, Y ) | q].

I Translation: ϕ is consistent if and only if minimizing conditional
surrogate risk gives correct ranking for every query

1
[Duchi, Mackey, and Jordan, 2013]
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Ranking consistency?

Bad news: The consequences are dire...

Consider the pairwise loss:

L(α, Y ) =
∑

i 6=j

Yij1(αi≤αj)

1

2 3

4

y12 y13

y34

Task: Find argminα E[L(α, Y ) | q]
I Classification (two node) case: Easy

I Choose α0 > α1 ⇐⇒ P[Class 0 | q] > P[Class 1 | q]

I General case: NP hard

I Unless P = NP , must restrict problem for tractable consistency
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Low noise distribution
Define: Average preference for item i over item j:

sij = E[Yij | q]

I We say i � j on average if sij > sji

Definition (Low noise distribution): If i � j on average and j � k
on average, then i � k on average.

2 3

1

s12 s31
s13

s23

Low noise
⇒ s13 > s31

I No cyclic preferences on average

I Find argminα E[L(α, Y ) | q]: Very easy
I Choose αi > αj ⇐⇒ sij > sji
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on average, then i � k on average.

2 3

1
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⇒ s13 > s31
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Ranking consistency?

Pairwise ranking surrogate:
[Herbrich, Graepel, and Obermayer, 2000, Freund, Iyer, Schapire, and Singer, 2003, Dekel, Manning, and Singer, 2004]

ϕ(α, Y ) =
∑

ij

Yijφ(αi − αj)

for φ convex with φ′(0) < 0. Common in ranking literature.

Theorem: ϕ is not consistent, even in low noise settings.
[Duchi, Mackey, and Jordan, 2013]

⇒ Inconsistency for RankBoost, RankSVM, Logistic Ranking...
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Ranking with pairwise data is challenging

I Inconsistent in general (unless P = NP )
I Low noise distributions

I Inconsistent for standard convex losses

ϕ(α, Y ) =
∑

ij

Yijφ(αi − αj)

I Inconsistent for margin-based convex losses

ϕ(α, Y ) =
∑

ij

φ(αi − αj − Yij)

Question:
Do tractable consistent losses exist for partial preference data?

Yes!
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Ranking with pairwise data is challenging
I Inconsistent in general (unless P = NP )
I Low noise distributions

I Inconsistent for standard convex losses

ϕ(α, Y ) =
∑

ij

Yijφ(αi − αj)

I Inconsistent for margin-based convex losses

ϕ(α, Y ) =
∑

ij

φ(αi − αj − Yij)

Question:
Do tractable consistent losses exist for partial preference data?

Yes, if we aggregate!
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An observation

Can rewrite risk of pairwise loss

E[L(α, Y ) | q] =
∑

i 6=j

sij1(αi≤αj)

=
∑

i 6=j

max{sij − sji, 0}1(αi≤αj)

where sij = E[Yij | q].

I Only depends on net expected preferences: sij − sji
Consider the surrogate

ϕ(α, s) :=
∑

i 6=j

max{sij − sji, 0}φ(αi − αj)

6=
∑

i6=j

sijφ(αi − αj)

for φ non-increasing and convex, with φ′(0) < 0.

I Either i→ j penalized or j → i but not both

I Consistent whenever average preferences are acyclic
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What happened?

Old surrogates: E[ϕ(α, Y ) | q] = limk→∞
1
k

∑
k ϕ(α, Yk)

I Loss ϕ(α, Y ) applied to a single datapoint

New surrogates: ϕ(α,E[Y | q])

= limk→∞ ϕ(α,
1
k

∑
k Yk)

I Loss applied to aggregation of many datapoints

New framework: Ranking with aggregate losses

L(α, sk(Y1, . . . , Yk)) and ϕ(α, sk(Y1, . . . , Yk))

where sk is a structure function that aggregates first k datapoints

I sk combines partial preferences into more complete estimates

I Consistency characterization extends to this setting
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Complete data losses
I Normalized Discounted Cumulative Gain (NDCG)
I Precision, Precision@k
I Expected reciprocal rank (ERR)

Pros: Popular, well-motivated, admit tractable consistent surrogates
I e.g., Penalize mistakes at top of ranked list more heavily

Cons: Require complete preference data

Idea:
I Use aggregation to estimate complete preferences from partial

preferences

I Plug estimates into consistent surrogates
I Check that aggregation + surrogacy retains consistency
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Cascade model for click data
[Craswell, Zoeter, Taylor, and Ramsey, 2008, Chapelle, Metzler, Zhang, and Grinspan, 2009]

I Person i clicks on first relevant result, k(i)

I Relevance probability of item k is pk
I Probability of a click on item k is

pk

k−1∏

j=1

(1− pj)

I ERR loss assumes p is known

Estimate p via maximum likelihood on n clicks:

s = argmax
p∈[0,1]m

n∑

i=1

log pk(i) +

k(i)∑

j=1

log(1− pj).

⇒ Consistent ERR minimization under our framework
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Benefits of aggregation

I Tractable consistency for partial preference losses

argmin
f

lim
k→∞

E[ϕ(f(Q), sk(Y1, . . . , Yk))]

⇒
argmin

f
lim
k→∞

E[L(f(Q), sk(Y1, . . . , Yk))]

I Use complete data losses with realistic partial preference data
I Models process of generating relevance scores from

clicks/comparisons



What remains?
Before aggregation, we had

argmin
f

1

n

∑n

k=1
ϕ(f(Qk), Yk)

︸ ︷︷ ︸
empirical

→ argmin
f

E[ϕ(f(Q), Y )]︸ ︷︷ ︸
population

What’s a suitable empirical analogue R̂ϕ,n(f) with aggregation?

⇐⇒
When does

argmin
f

R̂ϕ,n(f)︸ ︷︷ ︸
empirical

→ argmin
f

lim
k→∞

E[ϕ(f(Q), sk(Y1, . . . , Yk))]
︸ ︷︷ ︸

population

?
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Data with aggregation

q1

q2

q3

q4

q5

Y1 Y2 Y3
... nq1

nq2

nq3

I Datapoint consists of query q
and preference judgment Y

I nq datapoints for query q

I Structure functions for
aggregation:

s(Y1, Y2, . . . , Yk)



Data with aggregation
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q3
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q5

Y1 Y2 Y3
... nq1

nq2

nq3

I Simple idea: for query q,
aggregate all Y1, Y2, . . . , Ynq

I Loss ϕ for query q is

nq · ϕ(α, s(Y1, . . . , Ynq))

Cons:

I Requires detailed knowledge of ϕ and sk(Y1, . . . , Yk) as k →∞

Ideal procedure:

I Agnostic to form of aggregation

I Take advantage of independence of Y1, Y2, . . .
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Digression: U -statistics

q

nq
︷ ︸︸ ︷

k
︸ ︷︷ ︸

I U-statistic: classical tool in statistics

I Given X1, . . . , Xn, estimate E[g(X1, . . . , Xk)]
for g symmetric

I Idea: Average all estimates based on k
datapoints

Un =

(
n

k

)−1 ∑

i1<···<ik

g(Xi1 , Xi2 , . . . , Xik)



Data with aggregation: U -statistic in the loss

q
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I Target: E[ϕ(α, s(Y1, . . . , Yk)) | q]

I Idea: Estimate with U -statistic:

(
nq
k

)−1 ∑

i1<···<ik

ϕ(α, s(Yi1 , . . . , Yik))

I Empirical risk for scoring function f :

R̂ϕ,n(f) =

1
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∑

q

nq

(
nq
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)−1 ∑

i1<···<ik
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Convergence of U -statistic procedures

Empirical risk for scoring function f :

R̂ϕ,n(f) =
1

n

∑

q

nq

(
nq
k

)−1 ∑

i1<···<ik

ϕ(f(q), s(Yi1 , . . . , Yik))

Theorem: If we choose kn = o(n) but kn →∞, then uniformly in f

R̂ϕ,n(f)→ lim
k→∞

E[ϕ(f(Q), s(Y1, . . . , Yk))]
︸ ︷︷ ︸

Limiting aggregated loss



New procedure for learning to rank

1

2

3

4

I Use loss function that aggregates per-query:

R̂ϕ,n(f) =

1

n

∑

q

nq

(
nq
k

)−1 ∑

i1<···<ik

ϕ(f(q), s(Yi1 , . . . , Yik))

I Learn ranking function by taking

f̂ ∈ argmin
f∈F

R̂ϕ,n(f)

I Can optimize by stochastic gradient descent over
queries q and subsets (i1, . . . , ik)



Experiments

I Web search

I Image ranking



Web search
I Microsoft Learning to Rank Web10K dataset

I 10,000 queries issued
I 100 items per query
I Estimated relevance score r ∈ R for each query/result pair

I Generating pairwise preferences

I Choose query q uniformly at random
I Choose pair (i, j) of items, and set i � j with probability

pij =
1

1 + exp(rj − ri)

I Aggregate scores by setting

si =
∑

j 6=i

log
P̂ (j ≺ i)

P̂ (i ≺ j)
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Benefits of aggregation

NDCG risk as a function of aggregation level k
for n = 106 samples
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Image ranking

I Setup [Grangier and Bengio 2008]

I Take most common image search queries on google.com

I Train an independent ranker based on aggregated preference
statistics for each query

I Compare with standard, disaggregated image-ranking
approaches



Image ranking experiments

Highly ranked items from Corel Image Database for query tree car:

Aggregated

SVM

PLSA



Conclusions

1. Partial preference data is abundant and (more) reliable

2. General theory of ranking consistency: When is

argmin
f

E[ϕ(f(Q), s)] ⊆ argmin
f

E[L(f(Q), s)]?

I Tractable consistency difficult with partial preference data
I Possible with complete preference data

3. Aggregation can bridge the gap

I Can transform pairwise preferences/click data into scores s

4. Practical consistent procedures via U -statistic aggregation

I Allows for arbitrary aggregation s
I High-probability convergence of the learned ranking function
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Future work

I Empirical directions
I Apply to more ranking problems!
I Which aggregation procedures perform best?
I How much aggregation is enough?

I Statistical questions: beyond consistency
I How does aggregation impact rate of convergence?
I Can we design statistically efficient ranking procedures?

I Other ways of dealing with realistic partial preference data?
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What is the problem?

Surrogate loss ϕ(α, s) =
∑

ij sijφ(αi − αj)
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p(s) = .5 p(s′) = .5 Aggregate

∑

s

p(s)ϕ(α, s) =
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2
ϕ(α, s′) +

1

2
ϕ(α, s′)

∝ s12φ(α1 − α2) + s13φ(α1 − α3) + s23φ(α2 − α3) + s31φ(α3 − α1)
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What is the problem?

s12φ(α1 − α2) + s13φ(α1 − α3) + s23φ(α2 − α3) + s31φ(α3 − α1)

More bang for your $$ by increasing to 0 from left: α1 ↓. Result:

α∗ = argmin
α

∑

ij

sijφ(αi − αj)

can have α∗2 > α∗1, even if s13 − s31 > s12 + s23.
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