Ranking, Aggregation, and You

Lester Mackey[†]

Collaborators: John C. Duchi † and Michael I. Jordan *

[†]Stanford University ^{*}UC Berkeley

October 5, 2014

A simple question

A simple question

On a scale of 1 (very white) to 10 (very black), how black is this box?

A simple question

- On a scale of 1 (very white) to 10 (very black), how black is this box?
- Which box is blacker?

Another question

On a scale of 1 to 10, how relevant is this result for the query *flowers*?

Another question

On a scale of 1 to 10, how relevant is this result for the query flowers?

Another question

Google	flowers
Search	About 849,000,000 results (0.31 seconds)
	Flower - Wikipedia, the free encyclopedia en.wikipedia.org/wiki/Flower A flower, sometimes known as a bloom or blossom, is the reproductive structure found in flowering plants (plants of the division Magnoliophyta, also called
	Church Street Flowers www.churchstreetflowers.com/ Florist specializing in contemporary custom designs for everyday occasions and weddings. Includes image galleries, business hours and location map.
	Flowers Same Day Flower Delivery, Send Flowers FromYouFlow www.fromyouflowers.com/ Order flowers for delivery today! Nationwide flower delivery, starting at \$25.49. Send flowers to celebrate every occasion with same day flower delivery.
	Flowers Online, Send Roses, Florist 1-800-FLOWERS.COM Delivery www.1800flowers.com/ Order flowers, roses, and gif baskets online & send same day flower delivery for birthdays and anniversaries from trusted florist 1-800-Flowers.com.

What have we learned?

What have we learned?

- 1. We are good at **pairwise** comparisons
 - Much worse at absolute relevance judgments

[Miller, 1956, Shiffrin and Nosofsky, 1994, Stewart, Brown, and Chater, 2005]

What have we learned?

- 1. We are good at **pairwise** comparisons
 - Much worse at absolute relevance judgments

[Miller, 1956, Shiffrin and Nosofsky, 1994, Stewart, Brown, and Chater, 2005]

- 2. We are good at expressing sparse, partial preferences
 - Much worse at expressing complete preferences

Goal: Order set of items/results to best match your preferences

Goal: Order set of items/results to best match your preferences

▶ Web search: Return most relevant URLs for user queries

Ranking

Goal: Order set of items/results to best match your preferences

- ▶ Web search: Return most relevant URLs for user queries
- Recommendation systems:
 - Movies to watch based on user's past ratings
 - News articles to read based on past browsing history
 - Items to buy based on patron's or other patrons' purchases

 $\textbf{Goal:} \ Order \ set \ of \ items/results \ to \ best \ match \ your \ preferences$

1. Tractable: Run in polynomial time

Goal: Order set of items/results to best match your preferences

- 1. Tractable: Run in polynomial time
- 2. Consistent: Recover true preferences given sufficient data

Goal: Order set of items/results to best match your preferences

- 1. Tractable: Run in polynomial time
- 2. Consistent: Recover true preferences given sufficient data
- 3. Realistic: Make use of ubiquitous partial preference data

Goal: Order set of items/results to best match your preferences

- 1. Tractable: Run in polynomial time
- 2. Consistent: Recover true preferences given sufficient data
- 3. Realistic: Make use of ubiquitous partial preference data

Past work: 1+2 are possible given complete preference data

[Ravikumar, Tewari, and Yang, 2011, Buffoni, Calauzenes, Gallinari, and Usunier, 2011]

Goal: Order set of items/results to best match your preferences

- 1. Tractable: Run in polynomial time
- 2. Consistent: Recover true preferences given sufficient data
- 3. Realistic: Make use of ubiquitous partial preference data

Past work: 1+2 are possible given complete preference data

[Ravikumar, Tewari, and Yang, 2011, Buffoni, Calauzenes, Gallinari, and Usunier, 2011]

This work [Duchi, Mackey, and Jordan, 2013]

Goal: Order set of items/results to best match your preferences

- 1. Tractable: Run in polynomial time
- 2. Consistent: Recover true preferences given sufficient data
- 3. Realistic: Make use of ubiquitous partial preference data

Past work: 1+2 are possible given complete preference data

[Ravikumar, Tewari, and Yang, 2011, Buffoni, Calauzenes, Gallinari, and Usunier, 2011]

This work [Duchi, Mackey, and Jordan, 2013]

Standard (tractable) procedures for ranking with partial preferences are inconsistent

Goal: Order set of items/results to best match your preferences

- 1. Tractable: Run in polynomial time
- 2. Consistent: Recover true preferences given sufficient data
- 3. Realistic: Make use of ubiquitous partial preference data

Past work: 1+2 are possible given complete preference data

[Ravikumar, Tewari, and Yang, 2011, Buffoni, Calauzenes, Gallinari, and Usunier, 2011]

This work [Duchi, Mackey, and Jordan, 2013]

- Standard (tractable) procedures for ranking with partial preferences are inconsistent
- Aggregating partial preferences into more complete preferences can restore consistency

Goal: Order set of items/results to best match your preferences

- 1. Tractable: Run in polynomial time
- 2. Consistent: Recover true preferences given sufficient data
- 3. Realistic: Make use of ubiquitous partial preference data

Past work: 1+2 are possible given complete preference data

[Ravikumar, Tewari, and Yang, 2011, Buffoni, Calauzenes, Gallinari, and Usunier, 2011]

This work [Duchi, Mackey, and Jordan, 2013]

- Standard (tractable) procedures for ranking with partial preferences are inconsistent
- Aggregating partial preferences into more complete preferences can restore consistency
- ▶ New estimators based on *U*-statistics achieve 1+2+3

Outline

Supervised Ranking

Formal definition Tractable surrogates Pairwise inconsistency

Aggregation

Restoring consistency Estimating complete preferences

U-statistics

Practical procedures Experimental results

Outline

Supervised Ranking

Formal definition Tractable surrogates Pairwise inconsistency

Aggregation

Restoring consistency Estimating complete preferences

U-statistics

Practical procedures Experimental results

Observe: Sequence of training examples

▶ Query *Q*: e.g., search term "flowers"

- ► Query Q: e.g., search term "flowers"
- Set of m items \mathcal{I}_Q to rank
 - \blacktriangleright e.g., websites $\{1,2,3,4\}$

- ► Query Q: e.g., search term "flowers"
- Set of m items \mathcal{I}_Q to rank
 - \blacktriangleright e.g., websites $\{1,2,3,4\}$
- ► Label Y representing some preference structure over items

- ► Query Q: e.g., search term "flowers"
- Set of m items \mathcal{I}_Q to rank
 - e.g., websites $\{1, 2, 3, 4\}$
- Label Y representing some preference structure over items
 - Item 1 preferred to $\{2,3\}$ and item 3 to 4

Example: Y is a graph on items $\{1, 2, 3, 4\}$

Observe: $(Q_1, Y_1), \ldots, (Q_n, Y_n)$

Learn: Scoring function f to induce item rankings for each query

Observe: $(Q_1, Y_1), \ldots, (Q_n, Y_n)$

Learn: Scoring function \boldsymbol{f} to induce item rankings for each query

• Real-valued score for each item i in item set \mathcal{I}_Q

$$\alpha_i := f_i(Q)$$

• Vector of scores f(Q) induces ranking over \mathcal{I}_Q

 $i \text{ ranked above } j \iff \alpha_i > \alpha_j$

Example: Scoring function f with scores

 $f_1(Q) > f_2(Q) > f_3(Q)$

induces same ranking as preference graph \boldsymbol{Y}

 $f_1(Q) > f_2(Q)$

 $f_2(Q) > f_3(Q)$

Observe: $(Q_1, Y_1), \dots, (Q_n, Y_n)$

Learn: Scoring function f to predict item ranking

Suffer loss: L(f(Q), Y)

- \blacktriangleright Encodes discord between observed label Y and prediction f(Q)
- Depends on specific ranking task and available data

Example: Pairwise loss

Example: Pairwise loss

- Let Y = (weighted) adjacency matrix for a preference graph
 - Y_{ij} = the preference weight on edge (i, j)

Example: Pairwise loss

- Let Y = (weighted) adjacency matrix for a preference graph
 - Y_{ij} = the preference weight on edge (i, j)
- \blacktriangleright Let $\alpha = f(Q)$ be the predicted scores for query Q

Example: Pairwise loss

- Let Y = (weighted) adjacency matrix for a preference graph
 - Y_{ij} = the preference weight on edge (i, j)
- \blacktriangleright Let $\alpha = f(Q)$ be the predicted scores for query Q
- Then, $L(\alpha, Y) = \sum_{i \neq j} Y_{ij} \mathbb{1}_{(\alpha_i \leq \alpha_j)}$
- Imposes penalty for each misordered edge

 $L(\alpha, Y) = Y_{12} \mathbf{1}_{(\alpha_1 \le \alpha_2)} + Y_{13} \mathbf{1}_{(\alpha_1 \le \alpha_3)} + Y_{34} \mathbf{1}_{(\alpha_3 \le \alpha_4)}$
Supervised ranking

Observe: $(Q_1, Y_1), \dots, (Q_n, Y_n)$ **Learn:** Scoring function f to rank items **Suffer loss:** L(f(Q), Y)

Goal: Minimize the risk $R(f) := \mathbb{E}\left[L(f(Q), Y)\right]$

Supervised ranking

Observe: $(Q_1, Y_1), \dots (Q_n, Y_n)$ **Learn:** Scoring function f to rank items **Suffer loss:** L(f(Q), Y)

Goal: Minimize the risk $R(f) := \mathbb{E} [L(f(Q), Y)]$

Main Question:

Are there tractable ranking procedures that minimize R as $n \to \infty$?

First try: Empirical risk minimization

$$\min_{f} \hat{R}_{n}(f) := \hat{\mathbb{E}}_{n} \left[L(f(Q), Y) \right] = \frac{1}{n} \sum_{k=1}^{n} L(f(Q_{k}), Y_{k})$$

First try: Empirical risk minimization \leftarrow Intractable!

$$\min_{f} \hat{R}_{n}(f) := \hat{\mathbb{E}}_{n} \left[L(f(Q), Y) \right] = \frac{1}{n} \sum_{k=1}^{n} L(f(Q_{k}), Y_{k})$$

First try: Empirical risk minimization \leftarrow Intractable!

$$\min_{f} \hat{R}_{n}(f) := \hat{\mathbb{E}}_{n} \left[L(f(Q), Y) \right] = \frac{1}{n} \sum_{k=1}^{n} L(f(Q_{k}), Y_{k})$$

$$L(\alpha, Y) = \sum_{i \neq j} Y_{ij} \mathbb{1}_{(\alpha_i \le \alpha_j)}$$

Hard

First try: Empirical risk minimization \leftarrow Intractable!

$$\min_{f} \hat{R}_{n}(f) := \hat{\mathbb{E}}_{n} \left[L(f(Q), Y) \right] = \frac{1}{n} \sum_{k=1}^{n} L(f(Q_{k}), Y_{k})$$

Idea: Replace loss $L(\alpha, Y)$ with convex surrogate $\varphi(\alpha, Y)$

$$L(\alpha, Y) = \sum_{i \neq j} Y_{ij} \mathbb{1}_{(\alpha_i \le \alpha_j)}$$

Hard

First try: Empirical risk minimization \leftarrow Intractable!

$$\min_{f} \hat{R}_{n}(f) := \hat{\mathbb{E}}_{n} \left[L(f(Q), Y) \right] = \frac{1}{n} \sum_{k=1}^{n} L(f(Q_{k}), Y_{k})$$

Idea: Replace loss $L(\alpha, Y)$ with convex surrogate $\varphi(\alpha, Y)$

Idea: Empirical surrogate risk minimization

$$\min_{f} \hat{R}_{\varphi,n}(f) := \hat{\mathbb{E}}_n \left[\varphi(f(Q), Y) \right] = \frac{1}{n} \sum_{k=1}^n \varphi(f(Q_k), Y_k)$$

Idea: Empirical surrogate risk minimization

$$\min_{f} \hat{R}_{\varphi,n}(f) := \hat{\mathbb{E}}_n \left[\varphi(f(Q), Y) \right] = \frac{1}{n} \sum_{k=1}^n \varphi(f(Q_k), Y_k)$$

• If φ convex, then minimization is tractable

Idea: Empirical surrogate risk minimization

$$\min_{f} \hat{R}_{\varphi,n}(f) := \hat{\mathbb{E}}_n \left[\varphi(f(Q), Y) \right] = \frac{1}{n} \sum_{k=1}^n \varphi(f(Q_k), Y_k)$$

If φ convex, then minimization is tractable
argmin_f R̂_{φ,n}(f) → argmin_f R_φ(f) := E [φ(f(Q), Y)]

Idea: Empirical surrogate risk minimization

$$\min_{f} \hat{R}_{\varphi,n}(f) := \hat{\mathbb{E}}_n \left[\varphi(f(Q), Y) \right] = \frac{1}{n} \sum_{k=1}^n \varphi(f(Q_k), Y_k)$$

If φ convex, then minimization is tractable
argmin_f R̂_{φ,n}(f) → argmin_f R_φ(f) := E [φ(f(Q), Y)]

Main Question:

Are these tractable ranking procedures consistent?

Idea: Empirical surrogate risk minimization

$$\min_{f} \hat{R}_{\varphi,n}(f) := \hat{\mathbb{E}}_n \left[\varphi(f(Q), Y) \right] = \frac{1}{n} \sum_{k=1}^n \varphi(f(Q_k), Y_k)$$

If φ convex, then minimization is tractable
argmin_f R̂_{φ,n}(f) → argmin_f R_φ(f) := E [φ(f(Q), Y)]

Main Question:

Are these tractable ranking procedures consistent?

Does $\operatorname{argmin}_{f} R_{\varphi}(f)$ also minimize the true risk R(f)?

Consider the special case of classification

Consider the special case of classification

• Observe: query X, items $\{0,1\}$, label $Y_{01} = 1$ or $Y_{10} = 1$

Consider the special case of classification

- Observe: query X, items $\{0,1\}$, label $Y_{01} = 1$ or $Y_{10} = 1$
- ► Pairwise loss: $L(\alpha, Y) = Y_{01}1_{(\alpha_0 \leq \alpha_1)} + Y_{10}1_{(\alpha_1 \leq \alpha_0)}$

Consider the special case of classification

- Observe: query X, items $\{0,1\}$, label $Y_{01} = 1$ or $Y_{10} = 1$
- ► Pairwise loss: $L(\alpha, Y) = Y_{01}1_{(\alpha_0 \leq \alpha_1)} + Y_{10}1_{(\alpha_1 \leq \alpha_0)}$
- ► Surrogate loss: $\varphi(\alpha, Y) = Y_{01}\phi(\alpha_0 \alpha_1) + Y_{10}\phi(\alpha_1 \alpha_0)$

Consider the special case of classification

- Observe: query X, items $\{0,1\}$, label $Y_{01} = 1$ or $Y_{10} = 1$
- ► Pairwise loss: $L(\alpha, Y) = Y_{01}1_{(\alpha_0 \leq \alpha_1)} + Y_{10}1_{(\alpha_1 \leq \alpha_0)}$
- ► Surrogate loss: $\varphi(\alpha, Y) = Y_{01}\phi(\alpha_0 \alpha_1) + Y_{10}\phi(\alpha_1 \alpha_0)$

Theorem: If ϕ is convex, procedure based on minimizing ϕ is consistent if and only if $\phi'(0) < 0$. [Bartlett, Jordan, and McAuliffe, 2006]

⇒ Tractable consistency for boosting, SVMs, logistic regression

Good news: Can characterize surrogate ranking consistency

¹[Duchi, Mackey, and Jordan, 2013]

Good news: Can characterize surrogate ranking consistency

Theorem:¹ Procedure based on minimizing φ is consistent \iff

$$\min_{\alpha} \left\{ \mathbb{E}[\varphi(\alpha, Y) \mid q] \mid \alpha \notin \operatorname*{argmin}_{\alpha'} \mathbb{E}[L(\alpha', Y) \mid q] \right\} \\ > \min_{\alpha} \mathbb{E}[\varphi(\alpha, Y) \mid q].$$

Translation: φ is consistent if and only if minimizing conditional surrogate risk gives correct ranking for every query

¹[Duchi, Mackey, and Jordan, 2013]

Bad news: The consequences are dire...

Bad news: The consequences are dire...

Consider the pairwise loss:

$$L(\alpha, Y) = \sum_{i \neq j} Y_{ij} \mathbb{1}_{(\alpha_i \le \alpha_j)}$$

Bad news: The consequences are dire...

Consider the pairwise loss:

$$L(\alpha, Y) = \sum_{i \neq j} Y_{ij} \mathbb{1}_{(\alpha_i \le \alpha_j)}$$

Task: Find $\operatorname{argmin}_{\alpha} \mathbb{E}[L(\alpha, Y) \mid q]$

Bad news: The consequences are dire...

Consider the pairwise loss:

$$L(\alpha, Y) = \sum_{i \neq j} Y_{ij} \mathbb{1}_{(\alpha_i \le \alpha_j)}$$

Task: Find $\operatorname{argmin}_{\alpha} \mathbb{E}[L(\alpha, Y) \mid q]$

- Classification (two node) case: Easy
 - Choose $\alpha_0 > \alpha_1 \iff \mathbb{P}[\mathsf{Class} \ 0 \mid q] > \mathbb{P}[\mathsf{Class} \ 1 \mid q]$

Bad news: The consequences are dire...

Consider the pairwise loss:

$$L(\alpha, Y) = \sum_{i \neq j} Y_{ij} \mathbb{1}_{(\alpha_i \le \alpha_j)}$$

Task: Find $\operatorname{argmin}_{\alpha} \mathbb{E}[L(\alpha, Y) \mid q]$

Classification (two node) case: Easy

- Choose $\alpha_0 > \alpha_1 \iff \mathbb{P}[\mathsf{Class} \ 0 \mid q] > \mathbb{P}[\mathsf{Class} \ 1 \mid q]$
- General case: NP hard
 - Unless P = NP, must restrict problem for tractable consistency

Low noise distribution

Define: Average preference for item *i* over item *j*:

$$s_{ij} = \mathbb{E}[Y_{ij} \mid q]$$

• We say $i \succ j$ on average if $s_{ij} > s_{ji}$

Low noise distribution

Define: Average preference for item *i* over item *j*:

$$s_{ij} = \mathbb{E}[Y_{ij} \mid q]$$

• We say $i \succ j$ on average if $s_{ij} > s_{ji}$

Definition (Low noise distribution): If $i \succ j$ on average and $j \succ k$ on average, then $i \succ k$ on average.

No cyclic preferences on average

Low noise distribution

Define: Average preference for item *i* over item *j*:

$$s_{ij} = \mathbb{E}[Y_{ij} \mid q]$$

• We say $i \succ j$ on average if $s_{ij} > s_{ji}$

Definition (Low noise distribution): If $i \succ j$ on average and $j \succ k$ on average, then $i \succ k$ on average.

- No cyclic preferences on average
- Find $\operatorname{argmin}_{\alpha} \mathbb{E}[L(\alpha, Y) \mid q]$: Very easy
 - Choose $\alpha_i > \alpha_j \iff s_{ij} > s_{ji}$

Low noise $\Rightarrow s_{13} > s_{31}$

Pairwise ranking surrogate:

[Herbrich, Graepel, and Obermayer, 2000, Freund, Iyer, Schapire, and Singer, 2003, Dekel, Manning, and Singer, 2004]

$$\varphi(\alpha, Y) = \sum_{ij} Y_{ij} \phi(\alpha_i - \alpha_j)$$

for ϕ convex with $\phi'(0) < 0$. Common in ranking literature.

Pairwise ranking surrogate:

[Herbrich, Graepel, and Obermayer, 2000, Freund, Iyer, Schapire, and Singer, 2003, Dekel, Manning, and Singer, 2004]

$$\varphi(\alpha, Y) = \sum_{ij} Y_{ij} \phi(\alpha_i - \alpha_j)$$

for ϕ convex with $\phi'(0) < 0$. Common in ranking literature.

Theorem: φ is not consistent, even in low noise settings. [Duchi, Mackey, and Jordan, 2013]

Pairwise ranking surrogate:

[Herbrich, Graepel, and Obermayer, 2000, Freund, Iyer, Schapire, and Singer, 2003, Dekel, Manning, and Singer, 2004]

$$\varphi(\alpha, Y) = \sum_{ij} Y_{ij} \phi(\alpha_i - \alpha_j)$$

for ϕ convex with $\phi'(0) < 0$. Common in ranking literature.

Theorem: φ is not consistent, even in low noise settings. [Duchi, Mackey, and Jordan, 2013]

⇒ Inconsistency for RankBoost, RankSVM, Logistic Ranking...

• Inconsistent in general (unless P = NP)

- Inconsistent in general (unless P = NP)
- Low noise distributions

- Inconsistent in general (unless P = NP)
- Low noise distributions
 - Inconsistent for standard convex losses

$$\varphi(\alpha, Y) = \sum_{ij} Y_{ij} \phi(\alpha_i - \alpha_j)$$

- Inconsistent in general (unless P = NP)
- Low noise distributions
 - Inconsistent for standard convex losses

$$\varphi(\alpha, Y) = \sum_{ij} Y_{ij} \phi(\alpha_i - \alpha_j)$$

Inconsistent for margin-based convex losses

$$\varphi(\alpha, Y) = \sum_{ij} \phi(\alpha_i - \alpha_j - Y_{ij})$$

- Inconsistent in general (unless P = NP)
- Low noise distributions
 - Inconsistent for standard convex losses

$$\varphi(\alpha, Y) = \sum_{ij} Y_{ij} \phi(\alpha_i - \alpha_j)$$

Inconsistent for margin-based convex losses

$$\varphi(\alpha, Y) = \sum_{ij} \phi(\alpha_i - \alpha_j - Y_{ij})$$

Question:

Do tractable consistent losses exist for partial preference data?
Ranking with pairwise data is challenging

- Inconsistent in general (unless P = NP)
- Low noise distributions
 - Inconsistent for standard convex losses

$$\varphi(\alpha, Y) = \sum_{ij} Y_{ij} \phi(\alpha_i - \alpha_j)$$

Inconsistent for margin-based convex losses

$$\varphi(\alpha, Y) = \sum_{ij} \phi(\alpha_i - \alpha_j - Y_{ij})$$

Question:

Do tractable consistent losses exist for partial preference data?

Yes!

Ranking with pairwise data is challenging

- Inconsistent in general (unless P = NP)
- Low noise distributions
 - Inconsistent for standard convex losses

$$\varphi(\alpha, Y) = \sum_{ij} Y_{ij} \phi(\alpha_i - \alpha_j)$$

Inconsistent for margin-based convex losses

$$\varphi(\alpha, Y) = \sum_{ij} \phi(\alpha_i - \alpha_j - Y_{ij})$$

Question:

Do tractable consistent losses exist for partial preference data?

Yes, if we aggregate!

Outline

Supervised Ranking

Formal definition Tractable surrogates Pairwise inconsistency

Aggregation

Restoring consistency Estimating complete preferences

U-statistics

Practical procedures Experimental results

Can rewrite risk of pairwise loss

$$\mathbb{E}[L(\alpha, Y) \mid q] = \sum_{i \neq j} s_{ij} \mathbb{1}_{(\alpha_i \leq \alpha_j)}$$

where $s_{ij} = \mathbb{E}[Y_{ij} \mid q]$.

Can rewrite risk of pairwise loss

$$\mathbb{E}[L(\alpha, Y) \mid q] = \sum_{i \neq j} s_{ij} \mathbb{1}_{(\alpha_i \le \alpha_j)} = \sum_{i \neq j} \max\{s_{ij} - s_{ji}, 0\} \mathbb{1}_{(\alpha_i \le \alpha_j)}$$

where $s_{ij} = \mathbb{E}[Y_{ij} \mid q]$.

▶ Only depends on net expected preferences: $s_{ij} - s_{ji}$

Can rewrite risk of pairwise loss

$$\mathbb{E}[L(\alpha, Y) \mid q] = \sum_{i \neq j} s_{ij} \mathbb{1}_{(\alpha_i \le \alpha_j)} = \sum_{i \neq j} \max\{s_{ij} - s_{ji}, 0\} \mathbb{1}_{(\alpha_i \le \alpha_j)}$$

where $s_{ij} = \mathbb{E}[Y_{ij} \mid q]$.

 \blacktriangleright Only depends on net expected preferences: $s_{ij}-s_{ji}$ Consider the surrogate

$$\varphi(\alpha, s) := \sum_{i \neq j} \max\{s_{ij} - s_{ji}, 0\} \phi(\alpha_i - \alpha_j)$$

for ϕ non-increasing and convex, with $\phi'(0) < 0$.

Can rewrite risk of pairwise loss

$$\mathbb{E}[L(\alpha, Y) \mid q] = \sum_{i \neq j} s_{ij} \mathbb{1}_{(\alpha_i \le \alpha_j)} = \sum_{i \neq j} \max\{s_{ij} - s_{ji}, 0\} \mathbb{1}_{(\alpha_i \le \alpha_j)}$$

where $s_{ij} = \mathbb{E}[Y_{ij} \mid q]$.

 \blacktriangleright Only depends on net expected preferences: $s_{ij}-s_{ji}$ Consider the surrogate

$$\varphi(\alpha, s) := \sum_{i \neq j} \max\{s_{ij} - s_{ji}, 0\} \phi(\alpha_i - \alpha_j) \neq \sum_{i \neq j} s_{ij} \phi(\alpha_i - \alpha_j)$$

for ϕ non-increasing and convex, with $\phi'(0) < 0$.

• Either $i \rightarrow j$ penalized or $j \rightarrow i$ but not both

Can rewrite risk of pairwise loss

$$\mathbb{E}[L(\alpha, Y) \mid q] = \sum_{i \neq j} s_{ij} \mathbb{1}_{(\alpha_i \le \alpha_j)} = \sum_{i \neq j} \max\{s_{ij} - s_{ji}, 0\} \mathbb{1}_{(\alpha_i \le \alpha_j)}$$

where $s_{ij} = \mathbb{E}[Y_{ij} \mid q]$.

 \blacktriangleright Only depends on net expected preferences: $s_{ij}-s_{ji}$ Consider the surrogate

$$\varphi(\alpha, s) := \sum_{i \neq j} \max\{s_{ij} - s_{ji}, 0\} \phi(\alpha_i - \alpha_j) \neq \sum_{i \neq j} s_{ij} \phi(\alpha_i - \alpha_j)$$

for ϕ non-increasing and convex, with $\phi'(0) < 0$.

- Either $i \rightarrow j$ penalized or $j \rightarrow i$ but not both
- Consistent whenever average preferences are acyclic

Old surrogates: $\mathbb{E}[\varphi(\alpha, Y) \mid q] = \lim_{k \to \infty} \frac{1}{k} \sum_{k} \varphi(\alpha, Y_k)$

 \blacktriangleright Loss $\varphi(\alpha,Y)$ applied to a single datapoint

Old surrogates: $\mathbb{E}[\varphi(\alpha, Y) \mid q] = \lim_{k \to \infty} \frac{1}{k} \sum_{k} \varphi(\alpha, Y_k)$

 \blacktriangleright Loss $\varphi(\alpha,Y)$ applied to a single datapoint

New surrogates: $\varphi(\alpha, \mathbb{E}[Y \mid q]) = \lim_{k \to \infty} \varphi(\alpha, \frac{1}{k} \sum_k Y_k)$

Loss applied to aggregation of many datapoints

Old surrogates: $\mathbb{E}[\varphi(\alpha, Y) \mid q] = \lim_{k \to \infty} \frac{1}{k} \sum_{k} \varphi(\alpha, Y_k)$

 \blacktriangleright Loss $\varphi(\alpha,Y)$ applied to a single datapoint

New surrogates: $\varphi(\alpha, \mathbb{E}[Y \mid q]) = \lim_{k \to \infty} \varphi(\alpha, \frac{1}{k} \sum_k Y_k)$

Loss applied to aggregation of many datapoints

New framework: Ranking with aggregate losses

$$L(\alpha, s_k(Y_1, \dots, Y_k))$$
 and $\varphi(\alpha, s_k(Y_1, \dots, Y_k))$

where s_k is a structure function that aggregates first k datapoints

Old surrogates: $\mathbb{E}[\varphi(\alpha, Y) \mid q] = \lim_{k \to \infty} \frac{1}{k} \sum_{k} \varphi(\alpha, Y_k)$

 \blacktriangleright Loss $\varphi(\alpha,Y)$ applied to a single datapoint

New surrogates: $\varphi(\alpha, \mathbb{E}[Y \mid q]) = \lim_{k \to \infty} \varphi(\alpha, \frac{1}{k} \sum_k Y_k)$

Loss applied to aggregation of many datapoints

New framework: Ranking with aggregate losses

$$L(\alpha, s_k(Y_1, \dots, Y_k))$$
 and $\varphi(\alpha, s_k(Y_1, \dots, Y_k))$

where s_k is a structure function that aggregates first k datapoints \triangleright s_k combines partial preferences into more complete estimates

Old surrogates: $\mathbb{E}[\varphi(\alpha, Y) \mid q] = \lim_{k \to \infty} \frac{1}{k} \sum_{k} \varphi(\alpha, Y_k)$

 \blacktriangleright Loss $\varphi(\alpha,Y)$ applied to a single datapoint

New surrogates: $\varphi(\alpha, \mathbb{E}[Y \mid q]) = \lim_{k \to \infty} \varphi(\alpha, \frac{1}{k} \sum_k Y_k)$

Loss applied to aggregation of many datapoints

New framework: Ranking with aggregate losses

$$L(\alpha, s_k(Y_1, \dots, Y_k))$$
 and $\varphi(\alpha, s_k(Y_1, \dots, Y_k))$

where s_k is a structure function that aggregates first k datapoints

- s_k combines partial preferences into more complete estimates
- Consistency characterization extends to this setting

Aggregation via structure function

 Y_1, Y_2, \ldots, Y_k

 $s_k(Y_1,\ldots,Y_k)$

Aggregation via structure function

Question: When does aggregation help?

- Normalized Discounted Cumulative Gain (NDCG)
- Precision, Precision@k
- Expected reciprocal rank (ERR)

Pros: Popular, well-motivated, admit tractable consistent surrogates

• e.g., Penalize mistakes at top of ranked list more heavily

- Normalized Discounted Cumulative Gain (NDCG)
- Precision, Precision@k
- Expected reciprocal rank (ERR)

Pros: Popular, well-motivated, admit tractable consistent surrogates

e.g., Penalize mistakes at top of ranked list more heavily

Cons: Require complete preference data

- Normalized Discounted Cumulative Gain (NDCG)
- Precision, Precision@k
- Expected reciprocal rank (ERR)

Pros: Popular, well-motivated, admit tractable consistent surrogates

e.g., Penalize mistakes at top of ranked list more heavily

Cons: Require complete preference data

Idea:

 Use aggregation to estimate complete preferences from partial preferences

- Normalized Discounted Cumulative Gain (NDCG)
- Precision, Precision@k
- Expected reciprocal rank (ERR)

Pros: Popular, well-motivated, admit tractable consistent surrogates

e.g., Penalize mistakes at top of ranked list more heavily

Cons: Require complete preference data

Idea:

- Use aggregation to estimate complete preferences from partial preferences
- Plug estimates into consistent surrogates

- Normalized Discounted Cumulative Gain (NDCG)
- Precision, Precision@k
- Expected reciprocal rank (ERR)

Pros: Popular, well-motivated, admit tractable consistent surrogates

e.g., Penalize mistakes at top of ranked list more heavily

Cons: Require complete preference data

Idea:

- Use aggregation to estimate complete preferences from partial preferences
- Plug estimates into consistent surrogates
- Check that aggregation + surrogacy retains consistency

[Craswell, Zoeter, Taylor, and Ramsey, 2008, Chapelle, Metzler, Zhang, and Grinspan, 2009]

• Person *i* clicks on first relevant result, k(i)

[Craswell, Zoeter, Taylor, and Ramsey, 2008, Chapelle, Metzler, Zhang, and Grinspan, 2009]

- Person i clicks on first relevant result, k(i)
- Relevance probability of item k is p_k

[Craswell, Zoeter, Taylor, and Ramsey, 2008, Chapelle, Metzler, Zhang, and Grinspan, 2009]

- Person i clicks on first relevant result, k(i)
- Relevance probability of item k is p_k
- Probability of a click on item k is

$$p_k \prod_{j=1}^{k-1} (1-p_j)$$

[Craswell, Zoeter, Taylor, and Ramsey, 2008, Chapelle, Metzler, Zhang, and Grinspan, 2009]

- Person i clicks on first relevant result, k(i)
- Relevance probability of item k is p_k
- Probability of a click on item k is

$$p_k \prod_{j=1}^{k-1} (1-p_j)$$

• ERR loss assumes p is known

[Craswell, Zoeter, Taylor, and Ramsey, 2008, Chapelle, Metzler, Zhang, and Grinspan, 2009]

- Person i clicks on first relevant result, k(i)
- Relevance probability of item k is p_k
- Probability of a click on item k is

$$p_k \prod_{j=1}^{k-1} (1-p_j)$$

ERR loss assumes p is known Estimate p via maximum likelihood on n clicks:

$$s = \operatorname*{argmax}_{p \in [0,1]^m} \sum_{i=1}^n \log p_{k(i)} + \sum_{j=1}^{k(i)} \log(1-p_j).$$

 \Rightarrow Consistent ERR minimization under our framework

Benefits of aggregation

Tractable consistency for partial preference losses

$$\operatorname{argmin}_{f} \lim_{k \to \infty} \mathbb{E}[\varphi(f(Q), s_k(Y_1, \dots, Y_k))]$$

$$\Rightarrow$$

$$\operatorname{argmin}_{f} \lim_{k \to \infty} \mathbb{E}[L(f(Q), s_k(Y_1, \dots, Y_k))]$$

Use complete data losses with realistic partial preference data
 Models process of generating relevance scores from clicks/comparisons

What remains?

Before aggregation, we had

$$\underset{f}{\operatorname{argmin}} \underbrace{\frac{1}{n} \sum_{k=1}^{n} \varphi(f(Q_k), Y_k)}_{\text{empirical}} \to \underset{f}{\operatorname{argmin}} \underbrace{\mathbb{E}[\varphi(f(Q), Y)]}_{f}$$

What remains?

Before aggregation, we had

$$\underset{f}{\operatorname{argmin}} \underbrace{\frac{1}{n} \sum_{k=1}^{n} \varphi(f(Q_k), Y_k)}_{\text{empirical}} \to \underset{f}{\operatorname{argmin}} \underbrace{\mathbb{E}[\varphi(f(Q), Y)]}_{f}$$

What's a suitable empirical analogue $\widehat{R}_{\varphi,n}(f)$ with aggregation?

What remains?

Before aggregation, we had

$$\underset{f}{\operatorname{argmin}} \underbrace{\frac{1}{n} \sum_{k=1}^{n} \varphi(f(Q_k), Y_k)}_{\text{empirical}} \to \underset{f}{\operatorname{argmin}} \underbrace{\mathbb{E}[\varphi(f(Q), Y)]}_{f}$$

What's a suitable empirical analogue $\widehat{R}_{\varphi,n}(f)$ with aggregation?

When does

$$\underset{f}{\operatorname{argmin}} \underbrace{\widehat{R}_{\varphi,n}(f)}_{\mathsf{empirical}} \to \underset{f}{\operatorname{argmin}} \underbrace{\lim_{k \to \infty} \mathbb{E}[\varphi(f(Q), s_k(Y_1, \dots, Y_k))]}_{\mathsf{population}}?$$

Outline

Supervised Ranking

Formal definition Tractable surrogates Pairwise inconsistency

Aggregation

Restoring consistency Estimating complete preferences

U-statistics

Practical procedures Experimental results

- Datapoint consists of query q and preference judgment Y
- n_q datapoints for query q
- Structure functions for aggregation:

$$s(Y_1, Y_2, \ldots, Y_k)$$

- ► Simple idea: for query q, aggregate all Y₁, Y₂,..., Y_{nq}
- Loss φ for query q is

$$n_q \cdot \varphi(\boldsymbol{\alpha}, s(Y_1, \ldots, Y_{n_q}))$$

- ► Simple idea: for query q, aggregate all Y₁, Y₂,...,Y_{nq}
- Loss φ for query q is

$$n_q \cdot \varphi(\boldsymbol{\alpha}, s(Y_1, \ldots, Y_{n_q}))$$

Cons:

▶ Requires detailed knowledge of φ and $s_k(Y_1, \ldots, Y_k)$ as $k \to \infty$

- ▶ Simple idea: for query q, aggregate all $Y_1, Y_2, \ldots, Y_{n_q}$
- Loss φ for query q is

$$n_q \cdot \varphi(\alpha, s(Y_1, \ldots, Y_{n_q}))$$

Cons:

▶ Requires detailed knowledge of φ and $s_k(Y_1, \ldots, Y_k)$ as $k \to \infty$

Ideal procedure:

- Agnostic to form of aggregation
- Take advantage of independence of Y_1, Y_2, \ldots

Digression: U-statistics

U-statistic: classical tool in statistics

- ▶ Given X₁,..., X_n, estimate E[g(X₁,..., X_k)] for g symmetric
- Idea: Average all estimates based on k datapoints

$$U_n = \binom{n}{k}^{-1} \sum_{i_1 < \dots < i_k} g(X_{i_1}, X_{i_2}, \dots, X_{i_k})$$

Data with aggregation: U-statistic in the loss

• Target: $\mathbb{E}[\varphi(\alpha, s(Y_1, \ldots, Y_k)) \mid q]$
Data with aggregation: U-statistic in the loss

- Target: $\mathbb{E}[\varphi(\alpha, s(Y_1, \dots, Y_k)) \mid q]$
- ▶ Idea: Estimate with *U*-statistic:

$$\binom{n_q}{k}^{-1} \sum_{i_1 < \dots < i_k} \varphi(\alpha, s(Y_{i_1}, \dots, Y_{i_k}))$$

Data with aggregation: U-statistic in the loss

- Target: $\mathbb{E}[\varphi(\alpha, s(Y_1, \dots, Y_k)) \mid q]$
- ▶ Idea: Estimate with *U*-statistic:

$$\binom{n_q}{k}^{-1} \sum_{i_1 < \dots < i_k} \varphi(\alpha, s(Y_{i_1}, \dots, Y_{i_k}))$$

Empirical risk for scoring function f:

$$\widehat{R}_{\varphi,n}(f) = \frac{1}{n} \sum_{q} n_q {\binom{n_q}{k}}^{-1} \sum_{i_1 < \dots < i_k} \varphi(f(q), s(Y_{i_1}, \dots, Y_{i_k}))$$

Convergence of *U*-statistic procedures

Empirical risk for scoring function f:

$$\widehat{R}_{\varphi,n}(f) = \frac{1}{n} \sum_{q} n_q {\binom{n_q}{k}}^{-1} \sum_{i_1 < \dots < i_k} \varphi(f(q), s(Y_{i_1}, \dots, Y_{i_k}))$$

Theorem: If we choose $k_n = o(n)$ but $k_n \to \infty$, then *uniformly* in f

$$\widehat{R}_{\varphi,n}(f) \to \underbrace{\lim_{k \to \infty} \mathbb{E}[\varphi(f(Q), s(Y_1, \dots, Y_k))]}_{\text{Limiting aggregated loss}}$$

New procedure for learning to rank

2

3

Use loss function that aggregates *per-query*:

$$\widehat{R}_{\varphi,n}(f) = \frac{1}{n} \sum_{q} n_q {\binom{n_q}{k}}^{-1} \sum_{i_1 < \dots < i_k} \varphi(f(q), s(Y_{i_1}, \dots, Y_{i_k}))$$

Learn ranking function by taking

$$\widehat{f} \in \operatorname*{argmin}_{f \in \mathcal{F}} \widehat{R}_{\varphi, n}(f)$$

 Can optimize by stochastic gradient descent over queries q and subsets (i₁,..., i_k)

Image ranking

Microsoft Learning to Rank Web10K dataset

- Microsoft Learning to Rank Web10K dataset
 - 10,000 queries issued
 - 100 items per query
 - Estimated relevance score $r \in \mathbb{R}$ for each query/result pair

- Microsoft Learning to Rank Web10K dataset
 - 10,000 queries issued
 - 100 items per query
 - Estimated relevance score $r \in \mathbb{R}$ for each query/result pair
- Generating pairwise preferences
 - Choose query q uniformly at random
 - Choose pair (i, j) of items, and set $i \succ j$ with probability

$$p_{ij} = \frac{1}{1 + \exp(r_j - r_i)}$$

- Microsoft Learning to Rank Web10K dataset
 - 10,000 queries issued
 - 100 items per query
 - Estimated relevance score $r \in \mathbb{R}$ for each query/result pair
- Generating pairwise preferences
 - Choose query q uniformly at random
 - Choose pair (i, j) of items, and set $i \succ j$ with probability

$$p_{ij} = \frac{1}{1 + \exp(r_j - r_i)}$$

Aggregate scores by setting

$$s_i = \sum_{j \neq i} \log \frac{\widehat{P}(j \prec i)}{\widehat{P}(i \prec j)}$$

Benefits of aggregation

Image ranking

- Setup [Grangier and Bengio 2008]
 - Take most common image search queries on google.com
 - Train an independent ranker based on aggregated preference statistics for each query
 - Compare with standard, disaggregated image-ranking approaches

Image ranking experiments

Highly ranked items from Corel Image Database for query tree car.

SVM

1. Partial preference data is abundant and (more) reliable

- 1. Partial preference data is abundant and (more) reliable
- 2. General theory of ranking consistency: When is

$$\underset{f}{\operatorname{argmin}} \mathbb{E}[\varphi(f(Q), s)] \subseteq \underset{f}{\operatorname{argmin}} \mathbb{E}[L(f(Q), s)]?$$

- Tractable consistency difficult with partial preference data
- Possible with complete preference data

- 1. Partial preference data is abundant and (more) reliable
- 2. General theory of ranking consistency: When is

$$\underset{f}{\operatorname{argmin}} \mathbb{E}[\varphi(f(Q), s)] \subseteq \underset{f}{\operatorname{argmin}} \mathbb{E}[L(f(Q), s)]?$$

- Tractable consistency difficult with partial preference data
- Possible with complete preference data
- 3. Aggregation can bridge the gap
 - \blacktriangleright Can transform pairwise preferences/click data into scores s

- 1. Partial preference data is abundant and (more) reliable
- 2. General theory of ranking consistency: When is

$$\underset{f}{\operatorname{argmin}} \mathbb{E}[\varphi(f(Q), s)] \subseteq \underset{f}{\operatorname{argmin}} \mathbb{E}[L(f(Q), s)]?$$

- Tractable consistency difficult with partial preference data
- Possible with complete preference data
- 3. Aggregation can bridge the gap
 - \blacktriangleright Can transform pairwise preferences/click data into scores s
- 4. Practical consistent procedures via $U\mbox{-statistic}$ aggregation
 - Allows for arbitrary aggregation s
 - High-probability convergence of the learned ranking function

- Empirical directions
 - Apply to more ranking problems!
 - Which aggregation procedures perform best?
 - How much aggregation is enough?

- Empirical directions
 - Apply to more ranking problems!
 - Which aggregation procedures perform best?
 - How much aggregation is enough?
- Statistical questions: beyond consistency
 - How does aggregation impact rate of convergence?
 - Can we design statistically efficient ranking procedures?

- Empirical directions
 - Apply to more ranking problems!
 - Which aggregation procedures perform best?
 - How much aggregation is enough?
- Statistical questions: beyond consistency
 - How does aggregation impact rate of convergence?
 - Can we design statistically efficient ranking procedures?
- Other ways of dealing with realistic partial preference data?

References I

- P. L. Bartlett, M. I. Jordan, and J. McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101:138–156, 2006.
- D. Buffoni, C. Calauzenes, P. Gallinari, and N. Usunier. Learning scoring functions with order-preserving losses and standardized supervision. In Proceedings of the 28th International Conference on Machine Learning, 2011.
- O. Chapelle, D. Metzler, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded relevance. In Conference on Information and Knowledge Management, 2009.
- N. Craswell, O. Zoeter, M. J. Taylor, and B. Ramsey. An experimental comparison of click position-bias models. In Web Search and Data Mining (WSDM), pages 87–94, 2008.
- O. Dekel, C. Manning, and Y. Singer. Log-linear models for label ranking. In Advances in Neural Information Processing Systems 16, 2004.
- J. C. Duchi, L. Mackey, and M. I. Jordan. The asymptotics of ranking algorithms. Annals of Statistics, 2013.
- Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. Efficient boosting algorithms for combining preferences. Journal of Machine Learning Research, 4:933–969, 2003.
- R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In Advances in Large Margin Classifiers. MIT Press, 2000.
- G. Miller. The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychology Review, 63:81–97, 1956.
- P. Ravikumar, A. Tewari, and E. Yang. On NDCG consistency of listwise ranking methods. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, 2011.
- R. Shiffrin and R. Nosofsky. Seven plus or minus two: a commentary on capacity limitations. Psychological Review, 101(2): 357–361, 1994.
- N. Stewart, G. Brown, and N. Chater. Absolute identification by relative judgment. *Psychological Review*, 112(4):881–911, 2005.

Surrogate loss $\varphi(\alpha, s) = \sum_{ij} s_{ij} \phi(\alpha_i - \alpha_j)$

Aggregate

Surrogate loss $\varphi(\alpha, s) = \sum_{ij} s_{ij} \phi(\alpha_i - \alpha_j)$

$$\sum_{s} p(s)\varphi(\alpha, s) = \frac{1}{2}\varphi(\alpha, s') + \frac{1}{2}\varphi(\alpha, s')$$

$$\propto s_{12}\phi(\alpha_1 - \alpha_2) + s_{13}\phi(\alpha_1 - \alpha_3) + s_{23}\phi(\alpha_2 - \alpha_3) + s_{31}\phi(\alpha_3 - \alpha_1)$$

$$s_{12}\phi(\alpha_1 - \alpha_2) + s_{13}\phi(\alpha_1 - \alpha_3) + s_{23}\phi(\alpha_2 - \alpha_3) + s_{31}\phi(\alpha_3 - \alpha_1)$$

$$s_{12}\phi(\alpha_1 - \alpha_2) + s_{13}\phi(\alpha_1 - \alpha_3) + s_{23}\phi(\alpha_2 - \alpha_3) + s_{31}\phi(\alpha_3 - \alpha_1)$$

 $s_{12}\phi(\alpha_1 - \alpha_2) + s_{13}\phi(\alpha_1 - \alpha_3) + s_{23}\phi(\alpha_2 - \alpha_3) + s_{31}\phi(\alpha_3 - \alpha_1)$

 $s_{12}\phi(\alpha_1 - \alpha_2) + s_{13}\phi(\alpha_1 - \alpha_3) + s_{23}\phi(\alpha_2 - \alpha_3) + s_{31}\phi(\alpha_3 - \alpha_1)$

More bang for your \$\$ by increasing to 0 from left: $\alpha_1 \downarrow$. Result:

$$\alpha^* = \underset{\alpha}{\operatorname{argmin}} \sum_{ij} s_{ij} \phi(\alpha_i - \alpha_j)$$

can have $\alpha_2^* > \alpha_1^*$, even if $s_{13} - s_{31} > s_{12} + s_{23}$.