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box?

» Which box is blacker?
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Another question

Google

Search

flowers

About 849,000,000 results (0.31 seconds)

E Wiki . f
en.wikipedia.org/wiki/Flower

A flower, sometimes known as a bloom or blossom, is the reproductive structure found in
flowering plants (plants of the division Magnoliophyta, also called ...
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» Much worse at absolute relevance judgments
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What have we learned?

1. We are good at pairwise comparisons
» Much worse at absolute relevance judgments

[Miller, 1956, Shiffrin and Nosofsky, 1994, Stewart, Brown, and Chater, 2005]

2. We are good at expressing sparse, partial preferences
» Much worse at expressing complete preferences

Complete preferences: What you express:
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Ranking

Goal: Order set of items/results to best match your preferences
» Web search: Return most relevant URLs for user queries

» Recommendation systems:
» Movies to watch based on user’s past ratings
» News articles to read based on past browsing history
» |tems to buy based on patron’s or other patrons’ purchases
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Ranking procedures

Goal: Order set of items/results to best match your preferences
1. Tractable: Run in polynomial time
2. Consistent: Recover true preferences given sufficient data
3. Realistic: Make use of ubiquitous partial preference data

Past work: 1+2 are possible given complete preference data

[Ravikumar, Tewari, and Yang, 2011, Buffoni, Calauzenes, Gallinari, and Usunier, 2011]

This work [Duchi, Mackey, and Jordan, 2013]

» Standard (tractable) procedures for ranking with partial
preferences are inconsistent

» Aggregating partial preferences into more complete preferences
can restore consistency

» New estimators based on U-statistics achieve 1+2-+3
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Aggregation
Restoring consistency
Estimating complete preferences

U-statistics
Practical procedures
Experimental results
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Supervised ranking

Observe: Sequence of training examples

» Query Q: e.g., search term “flowers” Y12 Y13
» Set of m items 7 to rank @

» e.g., websites {1,2,3,4} @
» Label Y representing some preference Y34

structure over items

» Item 1 preferred to {2,3} and item 3 to 4
Example: Yisa

graph on items
{1,2,3,4}
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Supervised ranking

Observe: (Q1,Y1),...,(Qn,Yy)

Learn: Scoring function f to induce item rankings for each query

» Real-valued score for each item 7 in item set Z,
a; = fi(Q)
» Vector of scores f(()) induces ranking over Z

i ranked above j <= ;> o



Supervised ranking

Example: Scoring function f with scores

[1(Q) > f2(Q) > f3(Q)

induces same ranking as preference graph Y

[1(Q) > f2(Q)

f(Q) > f5(Q)

< (-



Supervised ranking

Observe: (Q1,Y1),...,(Qn,Yy)
Learn: Scoring function f to predict item ranking

Suffer loss: L(f(Q),Y)
» Encodes discord between observed label Y and prediction f(Q)
» Depends on specific ranking task and available data
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Supervised ranking

Example: Pairwise loss
» Let Y = (weighted) adjacency matrix for a preference graph
> Y;; = the preference weight on edge (i, j)
» Let a = f(Q) be the predicted scores for query Q)
> Then, L(Oz, Y) = 21#7 Y 1(a¢§uj)
» Imposes penalty for each misordered edge

Y12 Y13

"

L(Oé, Y) = }/12]-(a1§o¢2) + }/13]-(a1§o¢3) + }/34]-(a3§a4)
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Supervised ranking

Observe: (Q1,Y1),...(Qn, Yy)

Learn: Scoring function f to rank items

Suffer loss: L(f(Q),Y)

Goal: Minimize the risk R(f) :=E[L(f(Q),Y)]

Main Question:
Are there tractable ranking procedures that minimize R as n — oo?
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Tractable ranking

First try: Empirical risk minimization < Intractable!

min B, (/) = B, (L@, Y)) = Y0 L(F(@0. %)

n k=1

Idea: Replace loss L(a,Y") with convex surrogate ¢(«,Y)

L(e,Y) = 355 Yiil(auzay) oo, Y) =3, Yidlos — aj)

Hard Tractable



Surrogate ranking

Idea: Empirical surrogate risk minimization

n

min Bopn(f) = B [o(/(@), V)] = - 30 0f(@u),Yi)
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Surrogate ranking

Idea: Empirical surrogate risk minimization

min Ronlf) = B [0(£(Q), V)] = — S Qi) V)

» If ¢ convex, then minimization is tractable
— 00

> argmin; Ron(f) "= argmin; R,(f) := E[p(f(Q),Y)]

Main Question:
Are these tractable ranking procedures consistent?
<~
Does argmin; R,(f) also minimize the true risk R(f)?
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Classification consistency

Consider the special case of classification
» Observe: query X, items {0, 1}, label Yo; =1 or Y19 =1
» Pairwise loss: L(a,Y) = Yp11(ag<ar) + Y10l (a1 <a0)
» Surrogate loss: p(,Y) = Yoio(ag — ) + Yipo(ap — )

Theorem: If ¢ is convex, procedure based on minimizing ¢ is
consistent if and only if ¢'(0) < 0. [artiett, Jordan, and McAuiifte, 2006]

= Tractable consistency for boosting, SVMs, logistic regression
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l[Duchi, Mackey, and Jordan, 2013]



Ranking consistency?

Good news: Can characterize surrogate ranking consistency

Theorem:! Procedure based on minimizing ¢ is consistent <=

mm{EwmAﬂ|d

«

a g argrlninE[L(a’, Y) | q]}

o

> minEfg(,Y) | gl

» Translation: ¢ is consistent if and only if minimizing conditional
surrogate risk gives correct ranking for every query

l[Duchi, Mackey, and Jordan, 2013]
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Ranking consistency?

Bad news: The consequences are dire...

Consider the pairwise loss: Y12 Y13

S Vil (®) @
i Y34

Task: Find argmin, E[L(«,Y") | ¢
» Classification (two node) case: Easy
» Choose ag > a1 <= P[Class 0| ¢g] > P[Class 1 | ¢]

» General case: NP hard

» Unless P = N P, must restrict problem for tractable consistency
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Low noise distribution
Define: Average preference for item i over item j:

Sij = E[Yij | 4]
» We say ¢ > j on average if s;; > s,

Definition (Low noise distribution): If i > j on average and j > k
on average, then i > k on average.

oN

S12 331 13 » No cyclic preferences on average
,/ » Find argmin, E[L(«,Y’) | ¢]: Very easy
@*SQSH » Choose Q> O <= Sij > Sji
Low noise

= S13 > S31
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Pairwise ranking surrogate:

[Herbrich, Graepel, and Obermayer, 2000, Freund, lyer, Schapire, and Singer, 2003, Dekel, Manning, and Singer, 2004]
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Ranking consistency?

Pairwise ranking surrogate:

[Herbrich, Graepel, and Obermayer, 2000, Freund, lyer, Schapire, and Singer, 2003, Dekel, Manning, and Singer, 2004]

p(e,Y) =) Yid(oi — )
]
for ¢ convex with ¢/(0) < 0. Common in ranking literature.

Theorem: ¢ is not consistent, even in low noise settings.

[Duchi, Mackey, and Jordan, 2013]

= Inconsistency for RankBoost, RankSVM, Logistic Ranking...
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Ranking with pairwise data is challenging

» Inconsistent in general (unless P = NP)
» Low noise distributions
» |Inconsistent for standard convex losses

p(,Y) = Vijd(ai — o)
ij
» Inconsistent for margin-based convex losses

pla,Y) = Z P(a; — aj — Yy5)

Question:
Do tractable consistent losses exist for partial preference data?

Yes!



Ranking with pairwise data is challenging

» Inconsistent in general (unless P = NP)
» Low noise distributions
» Inconsistent for standard convex losses

Y) =) Yié(a
]
» Inconsistent for margin-based convex losses

Z¢ a; — aj — Yij)

Question:
Do tractable consistent losses exist for partial preference data?

Yes, if we aggregate!



Outline

Aggregation
Restoring consistency
Estimating complete preferences
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An observation

Can rewrite risk of pairwise loss

E[L(,Y) [ q] =) sijlia<ay = _max{si; — $ji, 0}1(a,<a))
i7] i#]
where s;; = E[Y;; | q].
» Only depends on net expected preferences: s;; — s;
Consider the surrogate

o(a, s) = Z max{s;; — sji, 0}p(ci — a;) # Z Sij¢
i#i #i

for ¢ non-increasing and convex, with ¢'(0) < 0.
» Either ¢ — j penalized or 7 — ¢ but not both

» Consistent whenever average preferences are acyclic
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What happened?

Old surrogates: E[p(a,Y) | ¢ = limy,0 7 2 (V)
» Loss ¢(a,Y) applied to a single datapoint

New surrogates: (o, E[Y | ¢]) = limy_oo (e, £ >4 Vi)
» Loss applied to aggregation of many datapoints

New framework: Ranking with aggregate losses
L, (Y., Vi) and (e, si(Yi,...,Y0)

where s is a structure function that aggregates first k& datapoints
» s, combines partial preferences into more complete estimates

» Consistency characterization extends to this setting
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Question: When does aggregation help?
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Complete data losses

» Normalized Discounted Cumulative Gain (NDCG)
» Precision, Precision@k
» Expected reciprocal rank (ERR)

Pros: Popular, well-motivated, admit tractable consistent surrogates
» e.g., Penalize mistakes at top of ranked list more heavily

Cons: Require complete preference data

Idea:
» Use aggregation to estimate complete preferences from partial
preferences
» Plug estimates into consistent surrogates
» Check that aggregation + surrogacy retains consistency
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[Craswell, Zoeter, Taylor, and Ramsey, 2008, Chapelle, Metzler, Zhang, and Grinspan, 2009]

» Person i clicks on first relevant result, k(i)
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[Craswell, Zoeter, Taylor, and Ramsey, 2008, Chapelle, Metzler, Zhang, and Grinspan, 2009]
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» Relevance probability of item k is py
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[Craswell, Zoeter, Taylor, and Ramsey, 2008, Chapelle, Metzler, Zhang, and Grinspan, 2009]
» Person i clicks on first relevant result, k(i)
» Relevance probability of item k is py

» Probability of a click on item £ is
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Cascade model for click data

[Craswell, Zoeter, Taylor, and Ramsey, 2008, Chapelle, Metzler, Zhang, and Grinspan, 2009]
» Person i clicks on first relevant result, k(i)
» Relevance probability of item k is py

» Probability of a click on item £ is

k-1
P H(l —pj)
j=1

» ERR loss assumes p is known

Estimate p via maximum likelihood on n clicks:

n k(4)
5= argmaxz log pr() + Z log(1 — pj).
pel01]™ j=1

= Consistent ERR minimization under our framework



Benefits of aggregation

» Tractable consistency for partial preference losses

argmin lim Elp(f(Q), sk(Y1,...,Y%))]

f k—o0
=
arg]rcnin I}gglo E[L(f(Q),sk(Y1,...,Ys))]

» Use complete data losses with realistic partial preference data

» Models process of generating relevance scores from
clicks/comparisons
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What remains?

Before aggregation, we had

swgmin = 37 o(/(Qu). Y1) — argmin E[p(/(Q). V)
;oo _

-~

empirical population

What's a suitable empirical analogue }A%%n(f) with aggregation?

<
When does
argmin ]/%%n(f) — argmin lim E[p(f(Q), sx(Y1, ..., Y%))]?
f —— f k—oo

N J/
-

empirical population



Outline

U-statistics
Practical procedures
Experimental results



Data with aggregation

| MEmFL T T T T 7a » Datapoint consists of query ¢
Q[T T ]Me and preference judgment Y’
@G| [T 111 ]ng » n, datapoints for query ¢

Q[T TTTT] » Structure functions for

5 | L1 1] aggregation:

R 8(}/1, Y2; s 7Yk‘)



Data with aggregation

q1
q2
q3
44
qs

Y A A
[T 1]

i
[

» Simple idea: for query g,
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» Loss ¢ for query q is
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Data with aggregation

el T TN
@ [ TTTTTTT 17 » Simple idea: for query ¢,
B[ T 11T ]ng aggregate all Y1, Y,,...,Y,,
a | [ TTTT1T1] » Loss ¢ for query q is
a | [ []

T ng - pla, s(Yr,...,Yn,))

* Lol ___
Cons:

» Requires detailed knowledge of ¢ and si(Y1,...,Y%) as k — oo

Ideal procedure:
» Agnostic to form of aggregation
» Take advantage of independence of Y7, Y5, ...



Digression: U-statistics

L

»{ili!ﬁi!ﬁiﬁﬁ]@:

» [-statistic: classical tool in statistics

» Given Xi,..., X, estimate E[g(X1, ..., Xi)]
for g symmetric

» ldea: Average all estimates based on k
datapoints

—1
n
Un:(k> > 9(Xiy, Xiyy o X))

1< <ip
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n
¢ CH Target: E[p(a, s(Y1,...,Y%)) | ¢

» ldea: Estimate with U-statistic:

(7:1) ! > plens(Yi, ... Y)

i <o iy
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Data with aggregation: U-statistic in the loss

n

—_—
qH:.:- » Target: E[p(a, s(Y1,...,Ys)) | ¢

» ldea: Estimate with U-statistic:

(Zq>1 S ol s(Yi, o, Y))

11 <o <tp

Q

» Empirical risk for scoring function f:

ol | 1=l



Convergence of U-statistic procedures

Empirical risk for scoring function f:
~ 1 ng\ "
Rl =2 5m (1) X e @i 1)
q 11 <o <ig

Theorem: If we choose k,, = o(n) but k,, — oo, then uniformly in f

Ron(f) = lim E[p(f(Q),s(Y1, ..., Yi))]

k—00
N

J/

Limiting agEregated loss



New procedure for learning to rank

» Use loss function that aggregates per-query:

(;) Ronlf) =

(M) @i )

i1 <<

» Learn ranking function by taking

f € argmin R, ,,(f)
feFr

-

» Can optimize by stochastic gradient descent over
queries ¢ and subsets (iy, ..., i)



Experiments

» Web search

» Image ranking
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Web search

» Microsoft Learning to Rank Web10K dataset
» 10,000 queries issued
» 100 items per query
» Estimated relevance score r € R for each query/result pair

» Generating pairwise preferences
» Choose query ¢ uniformly at random
» Choose pair (i, ) of items, and set i > j with probability
1
L+ exp(r; — 1)

Dij =

» Aggregate scores by setting

Zlog/\]'<l

J#i P(i < j)



Benefits of aggregation

NDCG risk as a function of aggregation level k
for n = 10° samples

0.85

—=— Aggregate
— Pairwise
----- Score—based

0.8

NDCG@10
o
o

o
3

0.65

10



Image ranking

> Setup [Grangier and Bengio 2008]

» Take most common image search queries on google.com

» Train an independent ranker based on aggregated preference
statistics for each query

» Compare with standard, disaggregated image-ranking
approaches



Image ranking experiments

Highly ranked items from Corel Image Database for query tree car:

Aggregated

SVM
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Conclusions

1. Partial preference data is abundant and (more) reliable
2. General theory of ranking consistency: When is

arg;ninE[sO(f(Q),S)] C arg;ninE[L(f(Q),S)}?

» Tractable consistency difficult with partial preference data
» Possible with complete preference data

3. Aggregation can bridge the gap
» Can transform pairwise preferences/click data into scores s
4. Practical consistent procedures via U-statistic aggregation

» Allows for arbitrary aggregation s
» High-probability convergence of the learned ranking function
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Future work

» Empirical directions

» Apply to more ranking problems!
» Which aggregation procedures perform best?
» How much aggregation is enough?

» Statistical questions: beyond consistency

» How does aggregation impact rate of convergence?
» Can we design statistically efficient ranking procedures?

» Other ways of dealing with realistic partial preference data?
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What is the problem?

s120(0n — ag) + s130(0n — ) + SezPp(a — ) + ss1P(az — o)

oN

3
12 34, i[

S
aizp(on - as) / 82?)%@
\

More bang for your $$ by increasing to 0 from left: oy . Result:

o = argmin Z sijP(a; — ay)
[e% ..
ij

can have af > af, even if s13 — s31 > S12 + Sa3.



	Supervised Ranking
	Formal definition
	Tractable surrogates
	Pairwise inconsistency

	Aggregation
	Restoring consistency
	Estimating complete preferences

	U-statistics
	Practical procedures
	Experimental results

	Appendix

