Matrix Completion and Matrix Concentration

Lester Mackey ${ }^{\dagger}$

Collaborators:
Ameet Talwalkar ${ }^{\ddagger}$, Michael I. Jordan ${ }^{\dagger \dagger}$,
Richard Y. Chen*, Brendan Farrell*, Joel A. Tropp*, and Daniel Paulin**
${ }^{\dagger}$ Stanford University \ddagger UCLA $\quad \dagger$ UC Berkeley
California Institute of Technology $\quad{ }^{ *}$ National University of Singapore

February 9, 2016

Part I

Divide-Factor-Combine

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

$$
\left[\begin{array}{ccccc}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5
\end{array}\right]
$$

Examples

- Collaborative filtering: How will user i rate movie j ?
- Netflix: 40 million users, 200K movies and television shows
- Ranking on the web: Is URL j relevant to user i ?
- Google News: millions of articles, 1 billion users
- Link prediction: Is user i friends with user j ?
- Facebook: 1.5 billion users

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

$$
\left[\begin{array}{ccccc}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5
\end{array}\right]
$$

State of the art MC algorithms

- Strong estimation guarantees
- Plagued by expensive subroutines (e.g., truncated SVD)

This talk

- Present divide and conquer approaches for scaling up any MC algorithm while maintaining strong estimation guarantees

Exact Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

Noisy Matrix Completion

Goal: Given entries from a matrix $\mathbf{M}=\mathbf{L}_{0}+\mathbb{Z} \in \mathbb{R}^{m \times n}$ where \mathbb{Z} is entrywise noise and \mathbf{L}_{0} has rank $\mathbf{r} \ll m$, n, estimate \mathbf{L}_{0}

- Good news: \mathbf{L}_{0} has $\sim(m+n) r \ll m n$ degrees of freedom

- Factored form: $\mathbf{A B}{ }^{\top}$ for $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{n \times r}$
- Bad news: Not all low-rank matrices can be recovered

Question: What can go wrong?

What can go wrong?

Entire column missing

$$
\left[\begin{array}{llllll}
1 & 2 & ? & 3 & \ldots & 4 \\
3 & 5 & ? & 4 & \ldots & 1 \\
2 & 5 & ? & 2 & \ldots & 5
\end{array}\right]
$$

- No hope of recovery!

Standard solution: Uniform observation model

Assume that the set of s observed entries Ω is drawn uniformly at random:

$$
\Omega \sim \operatorname{Unif}(m, n, s)
$$

- Can be relaxed to non-uniform row and column sampling (Negahban and Wainwright, 2010)

What can go wrong?

Bad spread of information

$$
\mathbf{L}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{lll}
1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Can only recover \mathbf{L} if \mathbf{L}_{11} is observed

Standard solution: Incoherence with standard basis (Candess and Recht, 2009)

A matrix $\mathbf{L}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(\mathbf{L})=r$ is incoherent if Singular vectors are not too skewed: $\left\{\begin{array}{l}\max _{i}\left\|\mathbf{U U}^{\top} \mathbf{e}_{i}\right\|^{2} \leq \mu r / m \\ \max _{i}\left\|\mathbf{V V}^{\top} \mathbf{e}_{i}\right\|^{2} \leq \mu r / n\end{array}\right.$ and not too cross-correlated: $\left\|\mathbf{U V}^{\top}\right\|_{\infty} \leq \sqrt{\frac{\mu r}{m n}}$
(In this literature, it's good to be incoherent)

How do we estimate L_{0} ?

First attempt:
$\operatorname{minimize}_{\mathbf{A}} \quad \operatorname{rank}(\mathbf{A})$
subject to $\quad \sum_{(i, j) \in \Omega}\left(\mathbf{A}_{i j}-\mathbf{M}_{i j}\right)^{2} \leq \Delta^{2}$.
Problem: Computationally intractable!
Solution: Solve convex relaxation (Fazel, Hindi, and Boyd, 2001; Candès and Plan, 2010) $\operatorname{minimize}_{\mathbf{A}}\|\mathbf{A}\|_{*}$
subject to $\quad \sum_{(i, j) \in \Omega}\left(\mathbf{A}_{i j}-\mathbf{M}_{i j}\right)^{2} \leq \Delta^{2}$
where $\|\mathbf{A}\|_{*}=\sum_{k} \sigma_{k}(\mathbf{A})$ is the trace/nuclear norm of \mathbf{A}.

Questions:

- Will the nuclear norm heuristic successfully recover L_{0} ?
- Can nuclear norm minimization scale to large MC problems?

Noisy Nuclear Norm Heuristic: Does it work?

Yes, with high probability.

Typical Theorem

If \mathbf{L}_{0} with rank r is incoherent, $s \gtrsim r n \log ^{2}(n)$ entries of $\mathbf{M} \in \mathbb{R}^{m \times n}$ are observed uniformly at random, and $\hat{\mathbf{L}}$ solves the noisy nuclear norm heuristic, then

$$
\left\|\hat{\mathbf{L}}-\mathbf{L}_{0}\right\|_{F} \leq f(m, n) \Delta
$$

with high probability when $\left\|\mathrm{M}-\mathrm{L}_{0}\right\|_{F} \leq \Delta$.

- See Candès and Plan (2010); Mackey, Talwalkar, and Jordan (2011); Keshavan, Montanari, and Oh (2010); Negahban and Wainwright (2010)
- Implies exact recovery in the noiseless setting $(\Delta=0)$

Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...

- Standard interior point methods (Candes and Recht, 2009):

$$
\mathrm{O}\left(|\Omega|(m+n)^{3}+|\Omega|^{2}(m+n)^{2}+|\Omega|^{3}\right)
$$

- More efficient, tailored algorithms:
- Singular Value Thresholding (SVT) (Cai, Candès, and Shen, 2010)
- Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009)
- Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)
- All require rank- k truncated SVD on every iteration

Take away: These provably accurate MC algorithms are too expensive for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm and still retain estimation guarantees?

Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer

(1) Divide M into submatrices.
(2) Complete each submatrix in parallel.
(0) Combine submatrix estimates, using techniques from randomized low-rank approximation.

Advantages

- Completing a submatrix often much cheaper than completing M
- Multiple submatrix completions can be carried out in parallel
- DFC works with any base MC algorithm
- The right choices of division and recombination yield estimation guarantees comparable to those of the base algorithm

DFC-Proj: Partition and Project

(1) Randomly partition \mathbf{M} into t column submatrices $\mathbf{M}=\left[\begin{array}{llll}\mathbf{C}_{1} & \mathbf{C}_{2} & \cdots & \mathbf{C}_{t}\end{array}\right]$ where each $\mathbf{C}_{i} \in \mathbb{R}^{m \times l}$
(2) Complete the submatrices in parallel to obtain

$$
\left[\begin{array}{llll}
\hat{\mathbf{C}}_{1} & \hat{\mathbf{C}}_{2} & \cdots & \hat{\mathbf{C}}_{t}
\end{array}\right]
$$

- Reduced cost: Expect t-fold speed-up per iteration
- Parallel computation: Pay cost of one cheaper MC
(3) Project submatrices onto a single low-dimensional column space
- Estimate column space of \mathbf{L}_{0} with column space of $\hat{\mathbf{C}}_{1}$

$$
\hat{\mathbf{L}}^{\text {proj }}=\hat{\mathbf{C}}_{1} \hat{\mathbf{C}}_{1}^{+}\left[\begin{array}{llll}
\hat{\mathbf{C}}_{1} & \hat{\mathbf{C}}_{2} & \cdots & \hat{\mathbf{C}}_{t}
\end{array}\right]
$$

- Common technique for randomized low-rank approximation (Frieze, Kannan, and Vempala, 1998)
- Minimal cost: $\mathrm{O}\left(m k^{2}+l k^{2}\right)$ where $k=\operatorname{rank}\left(\hat{\mathbf{L}}^{p r o j}\right)$
(4) Ensemble: Project onto column space of each $\hat{\mathbf{C}}_{j}$ and average

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2014b)

If \mathbf{L}_{0} with rank r is incoherent and $s=\omega\left(r^{2} n \log ^{2}(n) / \epsilon^{2}\right)$ entries of $\mathbf{M} \in \mathbb{R}^{m \times n}$ are observed uniformly at random, then $l=o(n)$ random columns suffice to have

$$
\left\|\hat{\mathbf{L}}^{p r o j}-\mathbf{L}_{0}\right\|_{F} \leq(2+\epsilon) f(m, n) \Delta
$$

with high probability when $\left\|\mathbf{M}-\mathbf{L}_{0}\right\|_{F} \leq \Delta$ and the noisy nuclear norm heuristic is used as a base algorithm.

- Can sample vanishingly small fraction of columns $(l / n \rightarrow 0)$
- Implies exact recovery for noiseless $(\Delta=0)$ setting
- Analysis streamlined by matrix Bernstein inequality

DFC: Does it work?

Yes, with high probability.

Proof Ideas:

(1) If L_{0} is incoherent (has good spread of information), its partitioned submatrices are incoherent w.h.p.
(2) Each submatrix has sufficiently many observed entries w.h.p.
\Rightarrow Submatrix completion succeeds
(3) Random submatrix captures the full column space of L_{0} w.h.p.

- Analysis builds on randomized ℓ_{2} regression work of Drineas, Mahoney, and Muthukrishnan (2008)
\Rightarrow Column projection succeeds

DFC Noisy Recovery Error

Figure : Recovery error of DFC relative to base algorithm (APG) with $m=10 K$ and $r=10$.

DFC Speed-up

Figure: Speed-up over base algorithm (APG) for random matrices with $r=0.001 m$ and 4% of entries revealed.

Application: Collaborative filtering

Task: Given a sparsely observed matrix of user-item ratings, predict the unobserved ratings

Issues

- Full-rank rating matrix
- Noisy, non-uniform observations

The Data

- Netflix Prize Dataset ${ }^{1}$
- 100 million ratings in $\{1, \ldots, 5\}$
- 17,770 movies, 480,189 users
${ }^{1}$ http://www.netflixprize.com/

Application: Collaborative filtering

Task: Predict unobserved user-item ratings

Method	Netflix	
	RMSE	Time
Base method (APG)	0.8433	2653.1 s
DFC-Proj-25\%	0.8436	689.5 s
DFC-Proj-10\%	0.8484	289.7 s
DFC-Proj-Ens-25\%	0.8411	689.5 s
DFC-Proj-Ens-10\%	0.8433	289.7 s

Future Directions

New Applications and Datasets

- Practical structured recovery problems with large-scale or real-time requirements
- Video background modeling via robust matrix factorization (Mackey, Talwalkar, and Jordan, 2014b)
- Image tagging / video event detection via subspace segmentation (Talwalkar, Mackey, Mu, Chang, and Jordan, 2013)

New Divide-and-Conquer Strategies

- Other ways to reduce computation while preserving accuracy
- More extensive use of ensembling

DFC-NYS: Generalized Nyström Decomposition

(1) Choose a random column submatrix $\mathbf{C} \in \mathbb{R}^{m \times l}$ and a random row submatrix $\mathbf{R} \in \mathbb{R}^{d \times n}$ from M . Call their intersection \mathbf{W}.

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{W} & \mathbf{M}_{12} \\
\mathbf{M}_{21} & \mathbf{M}_{22}
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{c}
\mathbf{W} \\
\mathbf{M}_{21}
\end{array}\right] \quad \mathbf{R}=\left[\begin{array}{ll}
\mathbf{W} & \mathbf{M}_{12}
\end{array}\right]
$$

(2) Recover the low rank components of \mathbf{C} and \mathbf{R} in parallel to obtain $\hat{\mathbf{C}}$ and $\hat{\mathbf{R}}$
(3) Recover \mathbf{L}_{0} from $\hat{\mathbf{C}}, \hat{\mathbf{R}}$, and their intersection $\hat{\mathbf{W}}$

$$
\hat{\mathbf{L}}^{n y s}=\hat{\mathbf{C}} \hat{\mathbf{W}}^{+} \hat{\mathbf{R}}
$$

- Generalized Nyström method (Goreinov, Tytryshnikov, and Zamarashkin, 1997)
- Minimal cost: $\mathrm{O}\left(m k^{2}+l k^{2}+d k^{2}\right)$ where $k=\operatorname{rank}\left(\hat{\mathbf{L}}^{n y s}\right)$
(Ensemble: Run p times in parallel and average estimates

Future Directions

New Applications and Datasets

- Practical structured recovery problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies

- Other ways to reduce computation while preserving accuracy
- More extensive use of ensembling

New Theory

- Analyze statistical implications of divide and conquer algorithms
- Trade-off between statistical and computational efficiency
- Impact of ensembling
- Developing suite of matrix concentration inequalities to aid in the analysis of randomized algorithms with matrix data

Part II

Stein's Method for Matrix Concentration

Concentration Inequalities

Matrix concentration

$$
\begin{gathered}
\mathbb{P}\{\|\boldsymbol{X}-\mathbb{E} \boldsymbol{X}\| \geq t\} \leq \delta \\
\mathbb{P}\left\{\lambda_{\max }(\boldsymbol{X}-\mathbb{E} \boldsymbol{X}) \geq t\right\} \leq \delta
\end{gathered}
$$

- Non-asymptotic control of random matrices with complex distributions

Applications

- Matrix completion from sparse random measurements
(Gross, 2011; Recht, 2011; Negahban and Wainwright, 2010; Mackey, Talwalkar, and Jordan, 2014b)
- Randomized matrix multiplication and factorization
(Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011)
- Convex relaxation of robust or chance-constrained optimization
(Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)
- Random graph analysis (Chistofides and Markstrïn, 2008; Oliveira, 2009)

Concentration Inequalities

Matrix concentration

$$
\mathbb{P}\left\{\lambda_{\max }(\boldsymbol{X}-\mathbb{E} \boldsymbol{X}) \geq t\right\} \leq \delta
$$

Difficulty: Matrix multiplication is not commutative

$$
\Rightarrow \mathrm{e}^{\boldsymbol{X}+\boldsymbol{Y}} \neq \mathrm{e}^{\boldsymbol{X}} \mathrm{e}^{\boldsymbol{Y}} \neq \mathrm{e}^{\boldsymbol{Y}} \mathrm{e}^{\boldsymbol{X}}
$$

Past approaches (Ahlswede and Winter, 2002; Oliveira, 2009; Tropp, 2011)

- Rely on deep results from matrix analysis
- Apply to sums of independent matrices and matrix martingales

Our work (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a; Paulin, Mackey, and Tropp, 2016)

- Stein's method of exchangeable pairs (1972), as advanced by Chatterjee (2007) for scalar concentration
\Rightarrow Improved exponential tail inequalities
(Hoeffding, Bernstein, Bounded differences)
\Rightarrow Polynomial moment inequalities (Khintchine, Rosenthal)
\Rightarrow Dependent sums and more general matrix functionals

Roadmap

4 Motivation

(5) Stein's Method Background and Notation
(6) Exponential Tail Inequalities
(7) Polynomial Moment Inequalities
(8) Extensions

Notation

Hermitian matrices: $\mathbb{H}^{d}=\left\{\boldsymbol{A} \in \mathbb{C}^{d \times d}: \boldsymbol{A}=\boldsymbol{A}^{*}\right\}$

- All matrices in this talk are Hermitian.

Maximum eigenvalue: $\lambda_{\max }(\cdot)$
Trace: $\operatorname{tr} \boldsymbol{B}$, the sum of the diagonal entries of \boldsymbol{B}
Spectral norm: $\|\boldsymbol{B}\|$, the maximum singular value of \boldsymbol{B}

Matrix Stein Pair

Definition (Exchangeable Pair)

$\left(Z, Z^{\prime}\right)$ is an exchangeable pair if $\left(Z, Z^{\prime}\right) \stackrel{d}{=}\left(Z^{\prime}, Z\right)$.

Definition (Matrix Stein Pair)

Let $\left(Z, Z^{\prime}\right)$ be an exchangeable pair, and let $\Psi: \mathcal{Z} \rightarrow \mathbb{H}^{d}$ be a measurable function. Define the random matrices

$$
\boldsymbol{X}:=\boldsymbol{\Psi}(Z) \quad \text { and } \quad \boldsymbol{X}^{\prime}:=\boldsymbol{\Psi}\left(Z^{\prime}\right)
$$

$\left(\boldsymbol{X}, \boldsymbol{X}^{\prime}\right)$ is a matrix Stein pair with scale factor $\alpha \in(0,1]$ if

$$
\mathbb{E}\left[\boldsymbol{X}^{\prime} \mid Z\right]=(1-\alpha) \boldsymbol{X}
$$

- Matrix Stein pairs are exchangeable pairs
- Matrix Stein pairs always have zero mean

Method of Exchangeable Pairs

Why Matrix Stein pairs?

- Furnish more convenient expressions for moments of \boldsymbol{X}

Lemma (Method of Exchangeable Pairs)

Let $\left(\boldsymbol{X}, \boldsymbol{X}^{\prime}\right)$ be a matrix Stein pair with scale factor α and $\boldsymbol{F}: \mathbb{H}^{d} \rightarrow \mathbb{H}^{d}$ a measurable function with $\mathbb{E}\left\|\left(\boldsymbol{X}-\boldsymbol{X}^{\prime}\right) \boldsymbol{F}(\boldsymbol{X})\right\|<\infty$. Then

$$
\begin{equation*}
\mathbb{E}[\boldsymbol{X} \boldsymbol{F}(\boldsymbol{X})]=\frac{1}{2 \alpha} \mathbb{E}\left[\left(\boldsymbol{X}-\boldsymbol{X}^{\prime}\right)\left(\boldsymbol{F}(\boldsymbol{X})-\boldsymbol{F}\left(\boldsymbol{X}^{\prime}\right)\right)\right] . \tag{1}
\end{equation*}
$$

Intuition

- Expressions like $\mathbb{E}\left[\boldsymbol{X} \mathrm{e}^{\theta \boldsymbol{X}}\right]$ and $\mathbb{E}\left[\boldsymbol{X}^{p}\right]$ arise naturally in concentration settings
- Eq. 1 allows us to bound these integrals using the smoothness properties of \boldsymbol{F} and the discrepancy $\boldsymbol{X}-\boldsymbol{X}^{\prime}$

The Conditional Variance

Why Matrix Stein pairs?

- Give rise to a measure of spread of the distribution of \boldsymbol{X}

Definition (Conditional Variance)

Suppose that $\left(\boldsymbol{X}, \boldsymbol{X}^{\prime}\right)$ is a matrix Stein pair with scale factor α, constructed from the exchangeable pair $\left(Z, Z^{\prime}\right)$. The conditional variance is the random matrix

$$
\boldsymbol{\Delta}_{\boldsymbol{X}}:=\boldsymbol{\Delta}_{\boldsymbol{X}}(Z):=\frac{1}{2 \alpha} \mathbb{E}\left[\left(\boldsymbol{X}-\boldsymbol{X}^{\prime}\right)^{2} \mid Z\right] .
$$

- Δ_{X} is a stochastic estimate for the variance,

$$
\mathbb{E} \boldsymbol{X}^{2}=\frac{1}{2 \alpha} \mathbb{E}\left[\left(\boldsymbol{X}-\boldsymbol{X}^{\prime}\right)^{2}\right]=\mathbb{E} \boldsymbol{\Delta}_{\boldsymbol{X}}
$$

Take-home Message

Control over $\boldsymbol{\Delta}_{\boldsymbol{X}}$ yields control over $\lambda_{\text {max }}(\boldsymbol{X})$

Exponential Concentration for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)
Let $\left(\boldsymbol{X}, \boldsymbol{X}^{\prime}\right)$ be a matrix Stein pair with $\boldsymbol{X} \in \mathbb{H}^{d}$. Suppose that

$$
\boldsymbol{\Delta}_{\boldsymbol{X}} \preccurlyeq c \boldsymbol{X}+v \mathbf{I} \quad \text { almost surely for } \quad c, v \geq 0
$$

Then, for all $t \geq 0$,

$$
\mathbb{P}\left\{\lambda_{\max }(\boldsymbol{X}) \geq t\right\} \leq d \cdot \exp \left\{\frac{-t^{2}}{2 v+2 c t}\right\}
$$

- Control over the conditional variance $\boldsymbol{\Delta}_{\boldsymbol{X}}$ yields
- Gaussian tail for $\lambda_{\max }(\boldsymbol{X})$ for small t, exponential tail for large t
- When $d=1$, reduces to scalar result of Chatterjee (2007)
- The dimensional factor d cannot be removed

Matrix Hoeffding Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Let $\boldsymbol{X}=\sum_{k} \boldsymbol{Y}_{k}$ for independent matrices in \mathbb{H}^{d} satisfying

$$
\mathbb{E} \boldsymbol{Y}_{k}=\mathbf{0} \quad \text { and } \quad \boldsymbol{Y}_{k}^{2} \preccurlyeq \boldsymbol{A}_{k}^{2}
$$

for deterministic matrices $\left(\boldsymbol{A}_{k}\right)_{k \geq 1}$. Define the scale parameter

$$
\sigma^{2}:=\left\|\sum_{k} \boldsymbol{A}_{k}^{2}\right\|
$$

Then, for all $t \geq 0$,

$$
\mathbb{P}\left\{\lambda_{\max }\left(\sum_{k} \boldsymbol{Y}_{k}\right) \geq t\right\} \leq d \cdot \mathrm{e}^{-t^{2} / 2 \sigma^{2}}
$$

- Improves upon the matrix Hoeffding inequality of Tropp (2011)
- Optimal constant $1 / 2$ in the exponent
- Can replace scale parameter with $\sigma^{2}=\frac{1}{2}\left\|\sum_{k}\left(\boldsymbol{A}_{k}^{2}+\mathbb{E} \boldsymbol{Y}_{k}^{2}\right)\right\|$
- Tighter than classical scalar Hoeffding inequality (1963)

Exponential Concentration: Proof Sketch

1. Matrix Laplace transform method (Ahlswede \& Winter, 2002)

- Relate tail probability to the trace of the mgf of \boldsymbol{X}

$$
\mathbb{P}\left\{\lambda_{\max }(\boldsymbol{X}) \geq t\right\} \leq \inf _{\theta>0} \mathrm{e}^{-\theta t} \cdot m(\theta)
$$

where $m(\theta):=\mathbb{E} \operatorname{tr}^{\theta} \mathrm{e}^{\boldsymbol{X}}$.
How to bound the trace mgf?

- Past approaches: Golden-Thompson, Lieb's concavity theorem
- Chatterjee's strategy for scalar concentration
- Control mgf growth by bounding derivative

$$
m^{\prime}(\theta)=\mathbb{E} \operatorname{tr} \boldsymbol{X} \mathrm{e}^{\theta \boldsymbol{X}} \quad \text { for } \theta \in \mathbb{R} .
$$

- Perfectly suited for rewriting using exchangeable pairs!

Exponential Concentration: Proof Sketch

2. Method of Exchangeable Pairs

- Rewrite the derivative of the trace mgf

$$
m^{\prime}(\theta)=\mathbb{E} \operatorname{tr} \boldsymbol{X} \mathrm{e}^{\theta \boldsymbol{X}}=\frac{1}{2 \alpha} \mathbb{E} \operatorname{tr}\left[\left(\boldsymbol{X}-\boldsymbol{X}^{\prime}\right)\left(\mathrm{e}^{\theta \boldsymbol{X}}-\mathrm{e}^{\theta \boldsymbol{X}^{\prime}}\right)\right] .
$$

Goal: Use the smoothness of $\boldsymbol{F}(\boldsymbol{X})=\mathrm{e}^{\theta \boldsymbol{X}}$ to bound the derivative

Mean Value Trace Inequality

Lemma (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)

Suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$ is a weakly increasing function and that $h: \mathbb{R} \rightarrow \mathbb{R}$ is a function with convex derivative h^{\prime}. For all matrices
$\boldsymbol{A}, \boldsymbol{B} \in \mathbb{H}^{d}$, it holds that

$$
\begin{gathered}
\operatorname{tr}[(g(\boldsymbol{A})-g(\boldsymbol{B})) \cdot(h(\boldsymbol{A})-h(\boldsymbol{B}))] \leq \\
\frac{1}{2} \operatorname{tr}\left[(g(\boldsymbol{A})-g(\boldsymbol{B})) \cdot(\boldsymbol{A}-\boldsymbol{B}) \cdot\left(h^{\prime}(\boldsymbol{A})+h^{\prime}(\boldsymbol{B})\right)\right] .
\end{gathered}
$$

- Standard matrix functions: If $g: \mathbb{R} \rightarrow \mathbb{R}$ and

$$
\boldsymbol{A}:=\boldsymbol{Q}\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{d}
\end{array}\right] \boldsymbol{Q}^{*}, \quad \text { then } g(\boldsymbol{A}):=\boldsymbol{Q}\left[\begin{array}{lll}
g\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & g\left(\lambda_{d}\right)
\end{array}\right] \boldsymbol{Q}^{*}
$$

- For exponential concentration we let $g(\boldsymbol{A})=\boldsymbol{A}$ and $h(\boldsymbol{B})=\mathrm{e}^{\theta \boldsymbol{B}}$
- Inequality does not hold without the trace

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality

- Bound the derivative of the trace mgf

$$
\begin{aligned}
m^{\prime}(\theta) & =\frac{1}{2 \alpha} \mathbb{E} \operatorname{tr}\left[\left(\boldsymbol{X}-\boldsymbol{X}^{\prime}\right)\left(\mathrm{e}^{\theta \boldsymbol{X}}-\mathrm{e}^{\theta \boldsymbol{X}^{\prime}}\right)\right] \\
& \leq \frac{\theta}{4 \alpha} \mathbb{E} \operatorname{tr}\left[\left(\boldsymbol{X}-\boldsymbol{X}^{\prime}\right)^{2} \cdot\left(\mathrm{e}^{\theta \boldsymbol{X}}+\mathrm{e}^{\theta \boldsymbol{X}^{\prime}}\right)\right] \\
& =\frac{\theta}{2 \alpha} \mathbb{E} \operatorname{tr}\left[\left(\boldsymbol{X}-\boldsymbol{X}^{\prime}\right)^{2} \cdot \mathrm{e}^{\theta \boldsymbol{X}}\right] \\
& =\theta \cdot \mathbb{E} \operatorname{tr}\left[\frac{1}{2 \alpha} \mathbb{E}\left[\left(\boldsymbol{X}-\boldsymbol{X}^{\prime}\right)^{2} \mid Z\right] \cdot \mathrm{e}^{\theta \boldsymbol{X}}\right] \\
& =\theta \cdot \mathbb{E} \operatorname{tr}\left[\boldsymbol{\Delta}_{\boldsymbol{X}} \mathrm{e}^{\theta \boldsymbol{X}}\right] .
\end{aligned}
$$

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality

- Bound the derivative of the trace mgf

$$
m^{\prime}(\theta) \leq \theta \cdot \mathbb{E} \operatorname{tr}\left[\boldsymbol{\Delta}_{\boldsymbol{X}} \mathrm{e}^{\theta \boldsymbol{X}}\right]
$$

4. Conditional Variance Bound: $\boldsymbol{\Delta}_{\boldsymbol{X}} \preccurlyeq c \boldsymbol{X}+v \mathbf{I}$

- Yields differential inequality

$$
\begin{aligned}
m^{\prime}(\theta) & \leq c \theta \mathbb{E} \operatorname{tr}\left[\boldsymbol{X} \mathrm{e}^{\theta \boldsymbol{X}}\right]+v \theta \mathbb{E} \operatorname{tr}\left[\mathrm{e}^{\theta \boldsymbol{X}}\right] \\
& =c \theta \cdot m^{\prime}(\theta)+v \theta \cdot m(\theta)
\end{aligned}
$$

- Solve to bound $m(\theta)$ and thereby bound

$$
\mathbb{P}\left\{\lambda_{\max }(\boldsymbol{X}) \geq t\right\} \leq \inf _{\theta>0} \mathrm{e}^{-\theta t} \cdot m(\theta) \leq d \cdot \exp \left\{\frac{-t^{2}}{2 v+2 c t}\right\}
$$

Polynomial Moments for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)
Let $p=1$ or $p \geq 1.5$. Suppose that $\left(\boldsymbol{X}, \boldsymbol{X}^{\prime}\right)$ is a matrix Stein pair where $\mathbb{E}\|\boldsymbol{X}\|_{2 p}^{2 p}<\infty$. Then

$$
\left(\mathbb{E}\|\boldsymbol{X}\|_{2 p}^{2 p}\right)^{1 / 2 p} \leq \sqrt{2 p-1} \cdot\left(\mathbb{E}\left\|\boldsymbol{\Delta}_{\boldsymbol{X}}\right\|_{p}^{p}\right)^{1 / 2 p}
$$

- Moral: The conditional variance controls the moments of \boldsymbol{X}
- Generalizes Chatterjee's version (2007) of the scalar Burkholder-Davis-Gundy inequality (Burkholder, 1973)
- See also Pisier \& Xu (1997); Junge \& Xu $(2003,2008)$
- Proof techniques mirror those for exponential concentration
- Also holds for infinite-dimensional Schatten-class operators

Application: Matrix Khintchine Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a)
Let $\left(\varepsilon_{k}\right)_{k \geq 1}$ be an independent sequence of Rademacher random variables and $\left(\boldsymbol{A}_{k}\right)_{k \geq 1}$ be a deterministic sequence of Hermitian matrices. Then if $p=1$ or $p \geq 1.5$,

$$
\left(\mathbb{E}\left\|\sum_{k} \varepsilon_{k} \boldsymbol{A}_{k}\right\|_{2 p}^{2 p}\right)^{1 / 2 p} \leq \sqrt{2 p-1} \cdot\left\|\left(\sum_{k} \boldsymbol{A}_{k}^{2}\right)^{1 / 2}\right\|_{2 p}
$$

- Noncommutative Khintchine inequality (Lust-Piquard, 1986; Lust-Piquard and Pisier, 1991) is a dominant tool in applied matrix analysis
- e.g., Used in analysis of column sampling and projection for approximate SVD (Rudelson and Vershynin, 2007)
- Stein's method offers an unusually concise proof
- The constant $\sqrt{2 p-1}$ is within $\sqrt{\mathrm{e}}$ of optimal

Extensions

Refined Exponential Concentration

- Relate trace mgf of conditional variance to trace mgf of \boldsymbol{X}
- Yields matrix generalization of classical Bernstein inequality
- Offers tool for unbounded random matrices

General Complex Matrices

- Map any matrix $\boldsymbol{B} \in \mathbb{C}^{d_{1} \times d_{2}}$ to a Hermitian matrix via dilation

$$
\mathscr{D}(\boldsymbol{B}):=\left[\begin{array}{cc}
\mathbf{0} & \boldsymbol{B} \\
\boldsymbol{B}^{*} & \mathbf{0}
\end{array}\right] \in \mathbb{H}^{d_{1}+d_{2}} .
$$

- Preserves spectral information: $\lambda_{\max }(\mathscr{D}(\boldsymbol{B}))=\|\boldsymbol{B}\|$

Dependent Sequences

- Combinatorial matrix statistics (e.g., sampling w/o replacement)
- Dependent bounded differences inequality for matrices

General Exchangeable Matrix Pairs (Paulin, Mackey, and Tropp, 2016)

References I

Ahlswede, R. and Winter, A. Strong converse for identification via quantum channels. IEEE Trans. Inform. Theory, 48(3): 569-579, Mar. 2002.

Burkholder, D. L. Distribution function inequalities for martingales. Ann. Probab., 1:19-42, 1973. doi: 10.1214/aop/1176997023.

Cai, J. F., Candès, E. J., and Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4), 2010.
Candès, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9 (6):717-772, 2009.

Candès, E.J. and Plan, Y. Matrix completion with noise. Proceedings of the IEEE, 98(6):925 -936, 2010.
Chatterjee, S. Stein's method for concentration inequalities. Probab. Theory Related Fields, 138:305-321, 2007.
Cheung, S.-S., So, A. Man-Cho, and Wang, K. Chance-constrained linear matrix inequalities with dependent perturbations: a safe tractable approximation approach. Available at http://www.optimization-online.org/DB_FILE/2011/01/2898.pdf, 2011.

Christofides, D. and Markström, K. Expansion properties of random cayley graphs and vertex transitive graphs via matrix martingales. Random Struct. Algorithms, 32(1):88-100, 2008.

Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30:844-881, 2008.

Fazel, M., Hindi, H., and Boyd, S. P. A rank minimization heuristic with application to minimum order system approximation. In In Proceedings of the 2001 American Control Conference, pp. 4734-4739, 2001.

Frieze, A., Kannan, R., and Vempala, S. Fast Monte-Carlo algorithms for finding low-rank approximations. In Foundations of Computer Science, 1998.
Goreinov, S. A., Tyrtyshnikov, E. E., and Zamarashkin, N. L. A theory of pseudoskeleton approximations. Linear Algebra and its Applications, 261(1-3):1-21, 1997.

Gross, D. Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inform. Theory, 57(3):1548-1566, Mar. 2011.

References II

Hoeffding, W. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13-30, 1963.
Hsu, D., Kakade, S. M., and Zhang, T. Dimension-free tail inequalities for sums of random matrices. Available at arXiv:1104.1672, 2011.
Junge, M. and $\mathrm{Xu}_{\mathrm{u}}, \mathrm{Q}$. Noncommutative Burkholder/Rosenthal inequalities. Ann. Probab., 31(2):948-995, 2003.
Junge, M. and Xu, Q. Noncommutative Burkholder/Rosenthal inequalities II: Applications. Israel J. Math., 167:227-282, 2008.
Keshavan, R. H., Montanari, A., and Oh, S. Matrix completion from noisy entries. Journal of Machine Learning Research, 99: 2057-2078, 2010.
Lin, Z., Chen, M., Wu, L., and Ma, Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215, 2009.
Lust-Piquard, F. Inégalités de Khintchine dans $C_{p}(1<p<\infty)$. C. R. Math. Acad. Sci. Paris, 303(7):289-292, 1986.
Lust-Piquard, F. and Pisier, G. Noncommutative Khintchine and Paley inequalities. Ark. Mat., 29(2):241-260, 1991.
Mackey, L., Talwalkar, A., and Jordan, M. I. Divide-and-conquer matrix factorization. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. C. N., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 24, pp. 1134-1142. 2011.

Mackey, L., Jordan, M. I., Chen, R. Y., Farrell, B., and Tropp, J. A. Matrix concentration inequalities via the method of exchangeable pairs. The Annals of Probability, 42(3):906-945, 2014a.
Mackey, L., Talwalkar, A., and Jordan, M. I. Distributed matrix completion and robust factorization. Journal of Machine Learning Research, 2014b. In press.

Negahban, S. and Wainwright, M. J. Restricted strong convexity and weighted matrix completion: Optimal bounds with noise. arXiv: 1009.2118v2[cs.IT], 2010.
Nemirovski, A. Sums of random symmetric matrices and quadratic optimization under orthogonality constraints. Math. Program., 109:283-317, January 2007. ISSN 0025-5610. doi: 10.1007/s10107-006-0033-0. URL http://dl.acm.org/citation.cfm?id=1229716.1229726.

References II

Oliveira, R. I. Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges. Available at arXiv:0911.0600, Nov. 2009.

Paulin, D., Mackey, L., and Tropp, J. A. Efron-Stein Inequalities for Random Matrices. The Annals of Probability, to appear 2016.

Pisier, G. and Xu, Q. Non-commutative martingale inequalities. Comm. Math. Phys., 189(3):667-698, 1997.
Recht, B. Simpler approach to matrix completion. J. Mach. Learn. Res., 12:3413-3430, 2011.
Rudelson, M. and Vershynin, R. Sampling from large matrices: An approach through geometric functional analysis. J. Assoc. Comput. Mach., 54(4):Article 21, 19 pp., Jul. 2007. (electronic).

So, A. Man-Cho. Moment inequalities for sums of random matrices and their applications in optimization. Math. Program., 130 (1):125-151, 2011.

Stein, C. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. 6th Berkeley Symp. Math. Statist. Probab., Berkeley, 1972. Univ. California Press.

Talwalkar, Ameet, Mackey, Lester, Mu, Yadong, Chang, Shih-Fu, and Jordan, Michael I. Distributed low-rank subspace segmentation. December 2013.

Toh, K. and Yun, S. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pacific Journal of Optimization, 6(3):615-640, 2010.
Tropp, J. A. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., August 2011.

