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Motivation

Concentration Inequalities

Matrix concentration

P{‖X − EX‖ ≥ t} ≤ δ

P{λmax(X − EX) ≥ t} ≤ δ

Non-asymptotic control of random matrices with complex
distributions

Applications

Matrix completion from sparse random measurements
(Gross, 2011; Recht, 2011; Negahban and Wainwright, 2010; Mackey, Talwalkar, and Jordan, 2011)

Randomized matrix multiplication and factorization
(Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011b)

Convex relaxation of robust or chance-constrained optimization
(Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)

Random graph analysis (Christofides and Markström, 2008; Oliveira, 2009)
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Motivation Matrix Completion

Motivation: Matrix Completion

Goal: Recover a matrix L0 ∈ R
m×n from a subset of its entries





? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5



 →





2 3 1 . . . 4
3 4 5 . . . 1
2 5 3 . . . 5





Examples

Collaborative filtering: How will user i rate movie j?

Ranking on the web: Is URL j relevant to user i?

Link prediction: Is user i friends with user j?
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Motivation Matrix Completion

Motivation: Matrix Completion

Goal: Recover a matrix L0 ∈ Rm×n from a subset of its entries





? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5



→





2 3 1 . . . 4
3 4 5 . . . 1
2 5 3 . . . 5





Bad News: Impossible to recover a generic matrix
Too many degrees of freedom, too few observations

Good News:

Small number of latent factors determine preferences
Movie ratings cluster by genre and director

L0 = A

B⊤

These low-rank matrices are easier to complete
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Motivation Matrix Completion

How to Complete a Low-rank Matrix

Suppose Ω is the set of observed entry locations.

First attempt:
minimizeA rankA

subject to Aij = L0ij (i, j) ∈ Ω

Problem: NP-hard ⇒ computationally intractable!

Solution: Solve convex relaxation (?)

minimizeA ‖A‖∗
subject to Aij = L0ij (i, j) ∈ Ω

where ‖A‖∗ =
∑

k σk(A) is the trace/nuclear norm of A.
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Motivation Matrix Completion

Can Convex Optimization Recover L0?

Yes, with high probability.

Theorem (Recht, 2011)

If L0 ∈ Rm×n has rank r and s & βrn log2(n) entries are observed
uniformly at random, then (under some technical conditions) convex
optimization recovers L0 exactly with probability at least 1− n−β .

See also Gross (2011); Mackey, Talwalkar, and Jordan (2011)

Past results (Candès and Recht, 2009; Candès and Tao, 2009) required
stronger assumptions and more intensive analysis

Streamlined approach reposes on a matrix variant of a classical
Bernstein inequality (1946)
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Motivation Matrix Completion

Scalar Bernstein Inequality

Theorem (Bernstein, 1946)

Let (Yk)k≥1 be independent random variables in R satisfying

EYk = 0 and |Yk| ≤ R for each index k.

Define the variance parameter

σ2 :=
∑

k
EY 2

k .

Then, for all t ≥ 0,

P

{
∣

∣

∣

∑

k
Yk

∣

∣

∣
≥ t

}

≤ 2 · exp
{ −t2
2σ2 + 2Rt/3

}

Gaussian decay controlled by variance when t is small

Exponential decay controlled by uniform bound for large t
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Motivation Matrix Completion

Matrix Bernstein Inequality

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (Yk)k≥1 be independent matrices in Rm×n satisfying

EYk = 0 and ‖Yk‖ ≤ R for each index k.

Define the variance parameter

σ2 := max
(
∥

∥

∥

∑

k
EYkY

⊤
k

∥

∥

∥
,
∥

∥

∥

∑

k
EY ⊤

k Yk

∥

∥

∥

)

.

Then, for all t ≥ 0,

P

{
∥

∥

∥

∑

k
Yk

∥

∥

∥
≥ t

}

≤ (m+ n) · exp
{ −t2
3σ2 + 2Rt

}

See also Tropp (2011); Oliveira (2009); Recht (2011)

Gaussian tail when t is small; exponential tail for large t
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Motivation Matrix Completion

Matrix Bernstein Inequality

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

For all t ≥ 0,

P

{
∥

∥

∥

∑

k
Yk

∥

∥

∥
≥ t

}

≤ (m+ n) · exp
{ −t2
3σ2 + 2Rt

}

Consequences for matrix completion

Recht (2011) showed that uniform sampling of entries captures
most of the information in incoherent low-rank matrices

Negahban and Wainwright (2010) showed that i.i.d. sampling of
entries captures most of the information in non-spiky (near)
low-rank matrices

Foygel and Srebro (2011) characterized the generalization error
of convex MC through Rademacher complexity
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Motivation Matrix Concentration

Concentration Inequalities

Matrix concentration

P{λmax(X − EX) ≥ t} ≤ δ

Difficulty: Matrix multiplication is not commutative

⇒ eX+Y 6= eXeY

Past approaches (Ahlswede and Winter, 2002; Oliveira, 2009; Tropp, 2011)

Rely on deep results from matrix analysis

Apply to sums of independent matrices and matrix martingales

This work

Stein’s method of exchangeable pairs (1972), as advanced by
Chatterjee (2007) for scalar concentration
⇒ Improved exponential tail inequalities (Hoeffding, Bernstein)
⇒ Polynomial moment inequalities (Khintchine, Rosenthal)
⇒ Dependent sums and more general matrix functionals
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Motivation Matrix Concentration

Roadmap

1 Motivation

2 Stein’s Method Background and Notation

3 Exponential Tail Inequalities

4 Polynomial Moment Inequalities

5 Dependent Sequences

6 Extensions
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Background

Notation

Hermitian matrices: Hd = {A ∈ Cd×d : A = A∗}
All matrices in this talk are Hermitian.

Maximum eigenvalue: λmax(·)
Trace: trB, the sum of the diagonal entries of B

Spectral norm: ‖B‖, the maximum singular value of B
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Background

Matrix Stein Pair

Definition (Exchangeable Pair)

(Z,Z ′) is an exchangeable pair if (Z,Z ′)
d
= (Z ′, Z).

Definition (Matrix Stein Pair)

Let (Z,Z ′) be an exchangeable pair, and let Ψ : Z → Hd be a
measurable function. Define the random matrices

X := Ψ(Z) and X ′ := Ψ(Z ′).

(X,X ′) is a matrix Stein pair with scale factor α ∈ (0, 1] if

E[X ′ |Z] = (1− α)X.

Matrix Stein pairs are exchangeable pairs

Matrix Stein pairs always have zero mean
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Background

The Conditional Variance

Definition (Conditional Variance)

Suppose that (X,X ′) is a matrix Stein pair with scale factor α,
constructed from the exchangeable pair (Z,Z ′). The conditional

variance is the random matrix

∆X := ∆X(Z) :=
1

2α
E
[

(X −X ′)2 |Z
]

.

∆X is a stochastic estimate for the variance, EX2

Take-home Message

Control over ∆X yields control over λmax(X)
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Exponential Tail Inequalities

Exponential Concentration for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (X,X ′) be a matrix Stein pair with X ∈ Hd. Suppose that

∆X 4 cX + v I almost surely for c, v ≥ 0.

Then, for all t ≥ 0,

P{λmax(X) ≥ t} ≤ d · exp
{ −t2
2v + 2ct

}

.

Control over the conditional variance ∆X yields

Gaussian tail for λmax(X) for small t, exponential tail for large t

When d = 1, improves scalar result of Chatterjee (2007)

The dimensional factor d cannot be removed
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Exponential Tail Inequalities

Matrix Hoeffding Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let X =
∑

k Yk for independent matrices in Hd satisfying

EYk = 0 and Y 2
k 4 A2

k

for deterministic matrices (Ak)k≥1. Define the variance parameter

σ2 :=
∥

∥

∥

∑

k
A2
k

∥

∥

∥
.

Then, for all t ≥ 0,

P

{

λmax

(

∑

k
Yk

)

≥ t
}

≤ d · e−t2/2σ2 .

Improves upon the matrix Hoeffding inequality of Tropp (2011)
Optimal constant 1/2 in the exponent

Can replace variance parameter with σ2 = 1
2

∥

∥

∑

k

(

A2
k + EY 2

k

)
∥

∥

Tighter than classical Hoeffding inequality (1963) when d = 1
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

1. Matrix Laplace transform method (Ahlswede & Winter, 2002)

Relate tail probability to the trace of the mgf of X

P{λmax(X) ≥ t} ≤ inf
θ>0

e−θt ·m(θ)

where m(θ) := E tr eθX

Problem: eX+Y 6= eXeY when X,Y ∈ Hd

How to bound the trace mgf?

Past approaches: Golden-Thompson, Lieb’s concavity theorem

Chatterjee’s strategy for scalar concentration

Control mgf growth by bounding derivative

m′(θ) = E trXeθX for θ ∈ R.

Rewrite using exchangeable pairs
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Exponential Tail Inequalities

Method of Exchangeable Pairs

Lemma

Suppose that (X,X ′) is a matrix Stein pair with scale factor α. Let
F : Hd → Hd be a measurable function satisfying

E‖(X −X ′)F (X)‖ <∞.

Then

E[X F (X)] =
1

2α
E[(X −X ′)(F (X)− F (X ′))]. (1)

Intuition

Can characterize the distribution of a random matrix by
integrating it against a class of test functions F

Eq. 1 allows us to estimate this integral using the smoothness
properties of F and the discrepancy X −X ′
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

2. Method of Exchangeable Pairs

Rewrite the derivative of the trace mgf

m′(θ) = E trXeθX =
1

2α
E tr

[

(X −X ′)
(

eθX − eθX
′)]

.

Goal: Use the smoothness of F (X) = eθX to bound the derivative
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Exponential Tail Inequalities

Mean Value Trace Inequality

Lemma (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Suppose that g : R → R is a weakly increasing function and that
h : R → R is a function whose derivative h′ is convex. For all
matrices A,B ∈ Hd, it holds that

tr[(g(A)− g(B)) · (h(A)− h(B))] ≤
1

2
tr[(g(A)− g(B)) · (A−B) · (h′(A) + h′(B))].

Standard matrix functions: If g : R → R and

A := Q







λ1
. . .

λd






Q∗, then g(A) := Q







g(λ1)
. . .

g(λd)






Q∗

Inequality does not hold without the trace
For exponential concentration we let g(A) = A and h(B) = eθB
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality

Bound the derivative of the trace mgf

m′(θ) =
1

2α
E tr

[

(X −X ′)
(

eθX − eθX
′)]

≤ θ

4α
E tr

[

(X −X ′)2 ·
(

eθX + eθX
′)]

=
θ

2α
E tr

[

(X −X ′)2 · eθX
]

= θ · E tr

[

1

2α
E
[

(X −X ′)2 |Z
]

· eθX
]

= θ · E tr
[

∆X eθX
]

.
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality

Bound the derivative of the trace mgf

m′(θ) ≤ θ · E tr
[

∆X eθX
]

.

4. Conditional Variance Bound: ∆X 4 cX + v I

Yields differential inequality

m′(θ) ≤ cθE tr
[

X eθX
]

+ vθE tr
[

eθX
]

= cθ ·m′(θ) + vθ ·m(θ).

Solve to bound m(θ) and thereby bound

P{λmax(X) ≥ t} ≤ inf
θ>0

e−θt ·m(θ) ≤ d · exp
{ −t2
2v + 2ct

}

.
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Exponential Tail Inequalities

Refined Exponential Concentration

Relaxing the constraint ∆X 4 cX + v

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (X,X ′) be a bounded matrix Stein pair with X ∈ Hd. Define
the function

r(ψ) :=
1

ψ
logE tr(eψ∆X/d) for each ψ > 0.

Then, for all t ≥ 0 and all ψ > 0,

P{λmax(X) ≥ t} ≤ d · exp
{ −t2
2r(ψ) + 2t/

√
ψ

}

.

r(ψ) measures typical magnitude of conditional variance

Eλmax(∆X) ≤ infψ>0

[

r(ψ) + log d
ψ

]

When d = 1, improves scalar result of Chatterjee (2008)
Proof extends to unbounded random matrices
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Exponential Tail Inequalities

Matrix Bernstein Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (Yk)k≥1 be independent matrices in Hd satisfying

EYk = 0 and ‖Yk‖ ≤ R for each index k.

Define the variance parameter

σ2 :=
∥

∥

∥

∑

k
EY 2

k

∥

∥

∥
.

Then, for all t ≥ 0,

P

{

λmax

(

∑

k
Yk

)

≥ t
}

≤ d · exp
{ −t2
3σ2 + 2Rt

}

Gaussian tail controlled by improved variance when t is small
Key proof idea: Apply refined concentration, and bound
r(ψ) = 1

ψ
logE tr(eψ∆X/d) using unrefined concentration

Constants better than Oliveira (2009), worse than Tropp (2011)
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Polynomial Moment Inequalities

Polynomial Moments for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let p = 1 or p ≥ 1.5. Suppose that (X,X ′) is a matrix Stein pair
where E tr |X|2p <∞. Then

(

E tr |X|2p
)1/2p ≤

√

2p− 1 ·
(

E tr∆p
X

)1/2p
.

Moral: The conditional variance controls the moments of X

Generalizes Chatterjee’s version (2007) of the scalar
Burkholder-Davis-Gundy inequality (Burkholder, 1973)

See also Pisier & Xu (1997); Junge & Xu (2003, 2008)

Proof techniques mirror those for exponential concentration

Also holds for infinite dimensional Schatten-class operators
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Polynomial Moment Inequalities

Matrix Khintchine Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (εk)k≥1 be an independent sequence of Rademacher random
variables and (Ak)k≥1 be a deterministic sequence of Hermitian
matrices. Then if p = 1 or p ≥ 1.5,

E tr
(

∑

k
εkAk

)2p

≤ (2p− 1)p · tr
(

∑

k
A2
k

)p

.

Noncommutative Khintchine inequality (Lust-Piquard, 1986; Lust-Piquard

and Pisier, 1991) is a dominant tool in applied matrix analysis

e.g., Used in analysis of column sampling and projection for
approximate SVD (Rudelson and Vershynin, 2007)

Stein’s method offers an unusually concise proof

The constant
√
2p− 1 is within

√
e of optimal
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Dependent Sequences

Adding Dependence

1 Motivation
Matrix Completion
Matrix Concentration

2 Stein’s Method Background and Notation

3 Exponential Tail Inequalities

4 Polynomial Moment Inequalities

5 Dependent Sequences
Sums of Conditionally Zero-mean Matrices
Combinatorial Sums

6 Extensions
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Dependent Sequences Sums of Conditionally Zero-mean Matrices

Sums of Conditionally Zero-mean Matrices

Definition (Sum of Conditionally Zero-Mean Matrices)

Given a sequence of Hermitian matrices (Yk)
n
k=1 satisfying the

Conditional zero mean property E[Yk | (Yj)j 6=k] = 0

for all k, define the random sum X :=
∑n

k=1Yk.

Note: (Yk)k≥1 is a martingale difference sequence

Examples

Sums of independent centered random matrices
Many sums of conditionally independent random matrices:

Yk ⊥⊥ (Yj)j 6=k | Z and E[Yk |Z] = 0

Rademacher series with random matrix coefficients

X =
∑

k
εkWk

(Wk)k≥1 Hermitian, (εk)k≥1 independent Rademacher
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Dependent Sequences Sums of Conditionally Zero-mean Matrices

Sums of Conditionally Zero-mean Matrices

Definition (Conditional Zero Mean Property)

E[Yk | (Yj)j 6=k] = 0

Matrix Stein Pair for X :=
∑n

k=1 Yk

Let Y ′
k and Yk be conditionally i.i.d. given (Yj)j 6=k

Draw index K uniformly from {1, . . . , n}
Define X ′ := X + Y ′

K − YK

Check Stein pair condition

E[X −X ′ | (Yj)j≥1] = E[YK − Y ′
K | (Yj)j≥1]

=
1

n

∑n

k=1

(

Yk − E[Y ′
k | (Yj)j 6=k]

)

=
1

n

∑n

k=1
Yk =

1

n
X
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Dependent Sequences Sums of Conditionally Zero-mean Matrices

Sums of Conditionally Zero-mean Matrices

Definition (Conditional Zero Mean Property)

E[Yk | (Yj)j 6=k] = 0

Conditional Variance for X := Y − EY

∆X =
n

2
· E

[

(X −X ′)2 | (Yj)j≥1

]

=
n

2
· E

[

(YK − Y ′
K)

2 | (Yj)j≥1

]

=
1

2

∑n

k=1

(

Y 2
k + E[Y 2

k | (Yj)j 6=k]
)

.

⇒ Conditional variance controlled when summands are bounded

⇒ Dependent analogues of concentration and moment inequalities
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Dependent Sequences Combinatorial Sums

Combinatorial Sums of Matrices

Definition (Combinatorial Matrix Statistic)

Given a deterministic array (Ajk)
n
j,k=1 of Hermitian matrices and a

uniformly random permutation π on {1, . . . , n}, define the
combinatorial matrix statistic

Y :=
∑n

j=1
Ajπ(j) with mean EY =

1

n

∑n

j,k=1
Ajk.

Generalizes the scalar statistics studied by Hoeffding (1951)

Example

Sampling without replacement from {B1, . . . ,Bn}
W :=

∑s

j=1
Bπ(j)
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Dependent Sequences Combinatorial Sums

Combinatorial Sums of Matrices

Definition (Combinatorial Matrix Statistic)

Y :=
∑n

j=1
Ajπ(j) with mean EY =

1

n

∑n

j,k=1
Ajk.

Matrix Stein Pair for X := Y − EY

Draw indices (J,K) uniformly from {1, . . . , n}2
Define π′ := π ◦ (J,K) and X ′ :=

∑n
j=1Ajπ′(j) − EY

Check Stein pair condition

E[X −X ′ | π] = E
[

AJπ(J) +AKπ(K) −AJπ(K) −AKπ(J) | π
]

=
1

n2

∑n

j,k=1
Ajπ(j) +Akπ(k) −Ajπ(k) −Akπ(j)

=
2

n
(Y − EY ) =

2

n
X
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Dependent Sequences Combinatorial Sums

Combinatorial Sums of Matrices

Definition (Combinatorial Matrix Statistic)

Y :=
∑n

j=1
Ajπ(j) with mean EY =

1

n

∑n

j,k=1
Ajk.

Conditional Variance for X := Y − EY

∆X(π) =
n

4
E
[

(X −X ′)2 | π
]

=
1

4n

∑n

j,k=1

[

Ajπ(j) +Akπ(k) −Ajπ(k) −Akπ(j)

]2

4
1

n

∑n

j,k=1

[

A2
jπ(j) +A2

kπ(k) +A2
jπ(k) +A2

kπ(j)

]

⇒ Conditional variance controlled when summands are bounded

⇒ Dependent analogues of concentration and moment inequalities
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Extensions

Extensions

General Complex Matrices

Map any matrix B ∈ C
d1×d2 to a Hermitian matrix via dilation

D(B) :=

[

0 B

B∗
0

]

∈ H
d1+d2 .

Preserves spectral information: λmax(D(B)) = ‖B‖

Beyond Sums

Matrix-valued functions satisfying a self-reproducing property

e.g., Matrix second-order Rademacher chaos:
∑

j,k εjεkAjk

Yields a dependent bounded differences inequality for matrices

Generalized Matrix Stein Pairs

Satisfy E[g(X)− g(X ′) |Z] = αX almost surely for
g : R → R weakly increasing.
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