Stein's Method for Matrix Concentration

Lester Mackey[†]

Collaborators: Michael I. Jordan[‡], Richard Y. Chen^{*}, Brendan Farrell^{*}, and Joel A. Tropp^{*}

[†]Stanford University [‡]University of California, Berkeley *California Institute of Technology

December 10, 2012

Concentration Inequalities

Matrix concentration

$$\mathbb{P}\{\|\boldsymbol{X} - \mathbb{E}\,\boldsymbol{X}\| \ge t\} \le \delta$$
$$\mathbb{P}\{\lambda_{\max}(\boldsymbol{X} - \mathbb{E}\,\boldsymbol{X}) \ge t\} \le \delta$$

Non-asymptotic control of random matrices with complex distributions

Applications

• Matrix completion from sparse random measurements

(Gross, 2011; Recht, 2011; Negahban and Wainwright, 2010; Mackey, Talwalkar, and Jordan, 2011)

• Randomized matrix multiplication and factorization

(Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011b)

• Convex relaxation of robust or chance-constrained optimization

(Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)

• Random graph analysis (Christofides and Markström, 2008; Oliveira, 2009)

Mackey (Stanford)

Stein's Method for Matrix Concentration

Motivation: Matrix Completion

Goal: Recover a matrix $\mathbf{L}_0 \in \mathbb{R}^{m \times n}$ from a subset of its entries

$$\begin{bmatrix} ? & ? & 1 & \dots & 4 \\ 3 & ? & ? & \dots & ? \\ ? & 5 & ? & \dots & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3 & 1 & \dots & 4 \\ 3 & 4 & 5 & \dots & 1 \\ 2 & 5 & 3 & \dots & 5 \end{bmatrix}$$

Examples

- Collaborative filtering: How will user *i* rate movie *j*?
- Ranking on the web: Is URL j relevant to user i?
- Link prediction: Is user *i* friends with user *j*?

Motivation: Matrix Completion

Goal: Recover a matrix $\mathbf{L}_0 \in \mathbb{R}^{m imes n}$ from a subset of its entries

$$\begin{bmatrix} ? & ? & 1 & \dots & 4 \\ 3 & ? & ? & \dots & ? \\ ? & 5 & ? & \dots & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 3 & 1 & \dots & 4 \\ 3 & 4 & 5 & \dots & 1 \\ 2 & 5 & 3 & \dots & 5 \end{bmatrix}$$

Bad News: Impossible to recover a generic matrix

• Too many degrees of freedom, too few observations

Good News:

- Small number of latent factors determine preferences
 - Movie ratings cluster by genre and director

$$\mathbf{L}_0 = \mathbf{A}$$

$$\mathbf{B}^{ op}$$

• These low-rank matrices are easier to complete

How to Complete a Low-rank Matrix

Suppose Ω is the set of observed entry locations.

First attempt: minimize_A rank A subject to $A_{ij} = L_{0ij}$ $(i, j) \in \Omega$

Problem: NP-hard \Rightarrow computationally intractable!

Solution: Solve **convex** relaxation (?) minimize_A $\|\mathbf{A}\|_*$ subject to $\mathbf{A}_{ij} = \mathbf{L}_{0ij}$ $(i, j) \in \Omega$

where $\left\|\mathbf{A}\right\|_{*} = \sum_{k} \sigma_{k}(\mathbf{A})$ is the trace/nuclear norm of \mathbf{A} .

Can Convex Optimization Recover L_0 ?

Yes, with high probability.

Theorem (Recht, 2011)

If $\mathbf{L}_0 \in \mathbb{R}^{m \times n}$ has rank r and $s \gtrsim \beta rn \log^2(n)$ entries are observed uniformly at random, then (under some technical conditions) convex optimization **recovers** \mathbf{L}_0 **exactly** with probability at least $1 - n^{-\beta}$.

- See also Gross (2011); Mackey, Talwalkar, and Jordan (2011)
- Past results (Candès and Recht, 2009; Candès and Tao, 2009) required stronger assumptions and more intensive analysis
- Streamlined approach reposes on a matrix variant of a classical Bernstein inequality (1946)

Scalar Bernstein Inequality

Theorem (Bernstein, 1946)

Let $(Y_k)_{k\geq 1}$ be independent random variables in \mathbb{R} satisfying $\mathbb{E} Y_k = 0$ and $|Y_k| \leq R$ for each index k. Define the variance parameter $\sigma^2 := \sum_k \mathbb{E} Y_k^2$. Then, for all $t \geq 0$, $\mathbb{P}\left\{ \left| \sum_k Y_k \right| \geq t \right\} \leq 2 \cdot \exp\left\{ \frac{-t^2}{2\sigma^2 + 2Rt/3} \right\}$

- Gaussian decay controlled by variance when t is small
- Exponential decay controlled by uniform bound for large t

Matrix Bernstein Inequality

I heorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let $(\mathbf{Y}_k)_{k\geq 1}$ be independent matrices in $\mathbb{R}^{m\times n}$ satisfying $\mathbb{E} \mathbf{Y}_k = \mathbf{0}$ and $\|\mathbf{Y}_k\| \leq R$ for each index k. Define the variance parameter $\sigma^2 := \max\left(\left\|\sum_k \mathbb{E} \mathbf{Y}_k \mathbf{Y}_k^\top\right\|, \left\|\sum_k \mathbb{E} \mathbf{Y}_k^\top \mathbf{Y}_k\right\|\right).$ Then, for all $t \geq 0$, $\mathbb{P}\left\{\left\|\sum_k \mathbf{Y}_k\right\| \geq t\right\} \leq (m+n) \cdot \exp\left\{\frac{-t^2}{3\sigma^2 + 2Rt}\right\}$

- See also Tropp (2011); Oliveira (2009); Recht (2011)
- Gaussian tail when t is small; exponential tail for large t

Matrix Bernstein Inequality

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

For all
$$t \ge 0$$
,
 $\mathbb{P}\left\{\left\|\sum_{k} \mathbf{Y}_{k}\right\| \ge t\right\} \le (m+n) \cdot \exp\left\{\frac{-t^{2}}{3\sigma^{2} + 2Rt}\right\}$

Consequences for matrix completion

- Recht (2011) showed that uniform sampling of entries captures most of the information in incoherent low-rank matrices
- Negahban and Wainwright (2010) showed that i.i.d. sampling of entries captures most of the information in non-spiky (near) low-rank matrices
- Foygel and Srebro (2011) characterized the generalization error of convex MC through Rademacher complexity

Concentration Inequalities

Matrix concentration

$$\mathbb{P}\{\lambda_{\max}(\boldsymbol{X} - \mathbb{E}\,\boldsymbol{X}) \ge t\} \le \delta$$

Difficulty: Matrix multiplication is not commutative $\Rightarrow e^{X+Y} \neq e^X e^Y$

Past approaches (Ahlswede and Winter, 2002; Oliveira, 2009; Tropp, 2011)

- Rely on deep results from matrix analysis
- Apply to sums of independent matrices and matrix martingales

This work

- Stein's method of exchangeable pairs (1972), as advanced by Chatterjee (2007) for scalar concentration
 - \Rightarrow Improved exponential tail inequalities (Hoeffding, Bernstein)
 - \Rightarrow Polynomial moment inequalities (Khintchine, Rosenthal)
 - $\Rightarrow\,$ Dependent sums and more general matrix functionals

Roadmap

Motivation

- Stein's Method Background and Notation
- Exponential Tail Inequalities
- 4 Polynomial Moment Inequalities
- Dependent Sequences

Hermitian matrices: $\mathbb{H}^d = \{ \boldsymbol{A} \in \mathbb{C}^{d \times d} : \boldsymbol{A} = \boldsymbol{A}^* \}$

• All matrices in this talk are Hermitian.

Maximum eigenvalue: $\lambda_{\max}(\cdot)$

Trace: tr B, the sum of the diagonal entries of B**Spectral norm:** ||B||, the maximum singular value of B

Matrix Stein Pair

Definition (Exchangeable Pair)

$$(Z, Z')$$
 is an exchangeable pair if $(Z, Z') \stackrel{d}{=} (Z', Z)$.

Definition (Matrix Stein Pair)

Let (Z, Z') be an exchangeable pair, and let $\Psi : \mathcal{Z} \to \mathbb{H}^d$ be a measurable function. Define the random matrices $X := \Psi(Z)$ and $X' := \Psi(Z')$. (X, X') is a *matrix Stein pair* with scale factor $\alpha \in (0, 1]$ if $\mathbb{E}[X' | Z] = (1 - \alpha)X$.

- Matrix Stein pairs are exchangeable pairs
- Matrix Stein pairs always have zero mean

Mackey (Stanford)

The Conditional Variance

Definition (Conditional Variance)

Suppose that (X, X') is a matrix Stein pair with scale factor α , constructed from the exchangeable pair (Z, Z'). The *conditional variance* is the random matrix

$$\boldsymbol{\Delta}_{\boldsymbol{X}} := \boldsymbol{\Delta}_{\boldsymbol{X}}(Z) := \frac{1}{2\alpha} \mathbb{E} \left[(\boldsymbol{X} - \boldsymbol{X}')^2 \, | \, Z \right].$$

• Δ_X is a stochastic estimate for the variance, $\mathbb{E}\,X^2$

Exponential Concentration for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (X, X') be a matrix Stein pair with $X \in \mathbb{H}^d$. Suppose that $\Delta_X \preccurlyeq cX + v \mathbf{I}$ almost surely for $c, v \ge 0$. Then, for all $t \ge 0$, $\mathbb{P}\{\lambda_{\max}(X) \ge t\} \le d \cdot \exp\left\{\frac{-t^2}{2v + 2ct}\right\}$.

- ullet Control over the conditional variance Δ_X yields
 - Gaussian tail for $\lambda_{\max}({m X})$ for small t, exponential tail for large t
- When d = 1, improves scalar result of Chatterjee (2007)
- $\bullet\,$ The dimensional factor d cannot be removed

Matrix Hoeffding Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let $X = \sum_k Y_k$ for independent matrices in \mathbb{H}^d satisfying $\mathbb{E} Y_k = \mathbf{0}$ and $Y_k^2 \preccurlyeq A_k^2$ for deterministic matrices $(A_k)_{k>1}$. Define the variance parameter

rministic matrices $(\mathbf{A}_k)_{k \geq 1}$. Define the variance para

$$\sigma^2 := \left\| \sum_k A_k^2 \right\|.$$

Then, for all $t \ge 0$,

$$\mathbb{P}\left\{\lambda_{\max}\left(\sum_{k} \mathbf{Y}_{k}\right) \geq t\right\} \leq d \cdot \mathrm{e}^{-t^{2}/2\sigma^{2}}.$$

• Improves upon the matrix Hoeffding inequality of Tropp (2011)

- Optimal constant 1/2 in the exponent
- Can replace variance parameter with $\sigma^2 = \frac{1}{2} \left\| \sum_k \left(\boldsymbol{A}_k^2 + \mathbb{E} \, \boldsymbol{Y}_k^2 \right) \right\|$
 - Tighter than classical Hoeffding inequality (1963) when d = 1

Exponential Concentration: Proof Sketch

- 1. Matrix Laplace transform method (Ahlswede & Winter, 2002)
 - ullet Relate tail probability to the *trace* of the mgf of X

$$\mathbb{P}\{\lambda_{\max}(\boldsymbol{X}) \ge t\} \le \inf_{\theta > 0} e^{-\theta t} \cdot m(\theta)$$

where $m(\theta) := \mathbb{E} \operatorname{tr} e^{\theta X}$

• Problem: $e^{X+Y} \neq e^{X}e^{Y}$ when $X, Y \in \mathbb{H}^d$

How to bound the trace mgf?

- Past approaches: Golden-Thompson, Lieb's concavity theorem
- Chatterjee's strategy for scalar concentration
 - Control mgf growth by bounding derivative

$$m'(\theta) = \mathbb{E} \operatorname{tr} \boldsymbol{X} e^{\theta \boldsymbol{X}} \quad \text{for } \theta \in \mathbb{R}.$$

• Rewrite using exchangeable pairs

Method of Exchangeable Pairs

Lemma

Suppose that $(\boldsymbol{X}, \boldsymbol{X}')$ is a matrix Stein pair with scale factor α . Let $\boldsymbol{F} : \mathbb{H}^d \to \mathbb{H}^d$ be a measurable function satisfying $\mathbb{E} \| (\boldsymbol{X} - \boldsymbol{X}') \boldsymbol{F}(\boldsymbol{X}) \| < \infty.$

Then

$$\mathbb{E}[\boldsymbol{X} \ \boldsymbol{F}(\boldsymbol{X})] = \frac{1}{2\alpha} \mathbb{E}[(\boldsymbol{X} - \boldsymbol{X}')(\boldsymbol{F}(\boldsymbol{X}) - \boldsymbol{F}(\boldsymbol{X}'))].$$
(1)

Intuition

- Can characterize the distribution of a random matrix by integrating it against a class of test functions *F*
- Eq. 1 allows us to estimate this integral using the smoothness properties of ${m F}$ and the discrepancy ${m X}-{m X}'$

Exponential Concentration: Proof Sketch

2. Method of Exchangeable Pairs

• Rewrite the derivative of the trace mgf

$$m'(\theta) = \mathbb{E} \operatorname{tr} \boldsymbol{X} e^{\theta \boldsymbol{X}} = \frac{1}{2\alpha} \mathbb{E} \operatorname{tr} \left[(\boldsymbol{X} - \boldsymbol{X}') \left(e^{\theta \boldsymbol{X}} - e^{\theta \boldsymbol{X}'} \right) \right].$$

Goal: Use the smoothness of $m{F}(m{X})=\mathrm{e}^{ hetam{X}}$ to bound the derivative

Mean Value Trace Inequality

Lemma (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Suppose that $g: \mathbb{R} \to \mathbb{R}$ is a weakly increasing function and that $h: \mathbb{R} \to \mathbb{R}$ is a function whose derivative h' is convex. For all matrices $A, B \in \mathbb{H}^d$, it holds that

$$\operatorname{tr}[(g(\boldsymbol{A}) - g(\boldsymbol{B})) \cdot (h(\boldsymbol{A}) - h(\boldsymbol{B}))] \leq \frac{1}{2} \operatorname{tr}[(g(\boldsymbol{A}) - g(\boldsymbol{B})) \cdot (\boldsymbol{A} - \boldsymbol{B}) \cdot (h'(\boldsymbol{A}) + h'(\boldsymbol{B}))]$$

• Standard matrix functions: If $g: \mathbb{R} \to \mathbb{R}$ and

$$oldsymbol{A} \coloneqq oldsymbol{Q} egin{bmatrix} \lambda_1 & & & \ & \ddots & \ & & \lambda_d \end{bmatrix} oldsymbol{Q}^*, \quad ext{then} \quad g(oldsymbol{A}) \coloneqq oldsymbol{Q} egin{bmatrix} g(\lambda_1) & & & \ & \ddots & \ & & g(\lambda_d) \end{bmatrix} oldsymbol{Q}^*$$

• Inequality does not hold without the trace

• For exponential concentration we let $g({\bm A})={\bm A}$ and $h({\bm B})={\rm e}^{\theta {\bm B}}$

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality

• Bound the derivative of the trace mgf

$$m'(\theta) = \frac{1}{2\alpha} \mathbb{E} \operatorname{tr} \left[(\boldsymbol{X} - \boldsymbol{X}') \left(e^{\theta \boldsymbol{X}} - e^{\theta \boldsymbol{X}'} \right) \right]$$

$$\leq \frac{\theta}{4\alpha} \mathbb{E} \operatorname{tr} \left[(\boldsymbol{X} - \boldsymbol{X}')^2 \cdot \left(e^{\theta \boldsymbol{X}} + e^{\theta \boldsymbol{X}'} \right) \right]$$

$$= \frac{\theta}{2\alpha} \mathbb{E} \operatorname{tr} \left[(\boldsymbol{X} - \boldsymbol{X}')^2 \cdot e^{\theta \boldsymbol{X}} \right]$$

$$= \theta \cdot \mathbb{E} \operatorname{tr} \left[\frac{1}{2\alpha} \mathbb{E} \left[(\boldsymbol{X} - \boldsymbol{X}')^2 | Z \right] \cdot e^{\theta \boldsymbol{X}} \right]$$

$$= \theta \cdot \mathbb{E} \operatorname{tr} \left[\Delta_{\boldsymbol{X}} e^{\theta \boldsymbol{X}} \right].$$

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality

• Bound the derivative of the trace mgf

$$m'(\theta) \leq \theta \cdot \mathbb{E} \operatorname{tr} \left[\Delta_{\boldsymbol{X}} e^{\theta \boldsymbol{X}} \right].$$

4. Conditional Variance Bound: $\Delta_X \preccurlyeq cX + v \mathbf{I}$

• Yields differential inequality

$$m'(\theta) \le c\theta \mathbb{E} \operatorname{tr} \left[\boldsymbol{X} e^{\theta \boldsymbol{X}} \right] + v\theta \mathbb{E} \operatorname{tr} \left[e^{\theta \boldsymbol{X}} \right]$$
$$= c\theta \cdot m'(\theta) + v\theta \cdot m(\theta).$$

 $\bullet\,$ Solve to bound $m(\theta)$ and thereby bound

$$\mathbb{P}\{\lambda_{\max}(\boldsymbol{X}) \ge t\} \le \inf_{\theta > 0} \mathrm{e}^{-\theta t} \cdot m(\theta) \le d \cdot \exp\left\{\frac{-t^2}{2v + 2ct}\right\}.$$

Refined Exponential Concentration

Relaxing the constraint $\Delta_X \preccurlyeq cX + v$

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (X, X') be a bounded matrix Stein pair with $X \in \mathbb{H}^d$. Define the function

$$r(\psi) := \frac{1}{\psi} \log \mathbb{E} \operatorname{tr}(e^{\psi \mathbf{\Delta}_{\mathbf{X}}}/d) \text{ for each } \psi > 0$$

Then, for all $t \ge 0$ and all $\psi > 0$,

$$\mathbb{P}\{\lambda_{\max}(\boldsymbol{X}) \ge t\} \le d \cdot \exp\left\{\frac{-t^2}{2r(\psi) + 2t/\sqrt{\psi}}\right\}.$$

 $\bullet \ r(\psi)$ measures typical magnitude of conditional variance

•
$$\mathbb{E}\lambda_{\max}(\boldsymbol{\Delta}_{\boldsymbol{X}}) \leq \inf_{\psi>0} \left[r(\psi) + \frac{\log d}{\psi} \right]$$

When d = 1, improves scalar result of Chatterjee (2008)
Proof extends to unbounded random matrices

Mackey (Stanford)

Matrix Bernstein Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let $(\boldsymbol{Y}_k)_{k\geq 1}$ be independent matrices in \mathbb{H}^d satisfying

 $\mathbb{E} \mathbf{Y}_k = \mathbf{0}$ and $\|\mathbf{Y}_k\| \le R$ for each index k.

Define the variance parameter

$$\sigma^2 := \left\| \sum_k \mathbb{E} \, \boldsymbol{Y}_k^2 \right\|.$$

Then, for all $t \ge 0$,

$$\mathbb{P}\left\{\lambda_{\max}\left(\sum_{k} \mathbf{Y}_{k}\right) \geq t\right\} \leq d \cdot \exp\left\{\frac{-t^{2}}{3\sigma^{2} + 2Rt}\right\}$$

Gaussian tail controlled by improved variance when t is small
 Key proof idea: Apply refined concentration, and bound
 r(ψ) = ¹/_ψ log E tr(e^{ψΔ}x/d) using unrefined concentration
 Constants better than Oliveira (2009), worse than Tropp (2011)

Mackey (Stanford)

Polynomial Moments for Random Matrices

I heorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let p = 1 or $p \ge 1.5$. Suppose that $(\boldsymbol{X}, \boldsymbol{X}')$ is a matrix Stein pair where $\mathbb{E} \operatorname{tr} |\boldsymbol{X}|^{2p} < \infty$. Then $\left(\mathbb{E} \operatorname{tr} |\boldsymbol{X}|^{2p} \right)^{1/2p} \le \sqrt{2p-1} \cdot \left(\mathbb{E} \operatorname{tr} \boldsymbol{\Delta}_{\boldsymbol{X}}^{p} \right)^{1/2p}$.

- Moral: The conditional variance controls the moments of $oldsymbol{X}$
- Generalizes Chatterjee's version (2007) of the scalar Burkholder-Davis-Gundy inequality (Burkholder, 1973)
 - See also Pisier & Xu (1997); Junge & Xu (2003, 2008)
- Proof techniques mirror those for exponential concentration
- Also holds for infinite dimensional Schatten-class operators

Matrix Khintchine Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let $(\varepsilon_k)_{k\geq 1}$ be an independent sequence of Rademacher random variables and $(A_k)_{k\geq 1}$ be a deterministic sequence of Hermitian matrices. Then if p = 1 or $p \geq 1.5$,

$$\mathbb{E}\operatorname{tr}\left(\sum_{k}\varepsilon_{k}\boldsymbol{A}_{k}\right)^{2p} \leq (2p-1)^{p}\cdot\operatorname{tr}\left(\sum_{k}\boldsymbol{A}_{k}^{2}\right)^{p}.$$

- Noncommutative Khintchine inequality (Lust-Piquard, 1986; Lust-Piquard and Pisier, 1991) is a dominant tool in applied matrix analysis
 - e.g., Used in analysis of column sampling and projection for approximate SVD (Rudelson and Vershynin, 2007)
- Stein's method offers an unusually concise proof
- The constant $\sqrt{2p-1}$ is within $\sqrt{\mathrm{e}}$ of optimal

Adding Dependence

Motivation

- Matrix Completion
- Matrix Concentration
- 2 Stein's Method Background and Notation
- 3 Exponential Tail Inequalities
- 4 Polynomial Moment Inequalities
- 5 Dependent Sequences
 - Sums of Conditionally Zero-mean Matrices
 - Combinatorial Sums

6 Extensions

Sums of Conditionally Zero-mean Matrices

Definition (Sum of Conditionally Zero-Mean Matrices)

Given a sequence of Hermitian matrices $(Y_k)_{k=1}^n$ satisfying the Conditional zero mean property $\mathbb{E}[Y_k | (Y_j)_{j \neq k}] = \mathbf{0}$ for all k, define the random sum $X := \sum_{k=1}^n Y_k$.

• Note: $(\mathbf{Y}_k)_{k\geq 1}$ is a martingale difference sequence

Examples

- Sums of independent centered random matrices
- Many sums of conditionally independent random matrices: $\mathbf{Y}_k \perp \perp (\mathbf{Y}_j)_{j \neq k} \mid Z$ and $\mathbb{E}[\mathbf{Y}_k \mid Z] = \mathbf{0}$
 - Rademacher series with random matrix coefficients

$$oldsymbol{X} = \sum_k arepsilon_k oldsymbol{W}_k$$

• $({oldsymbol W}_k)_{k\geq 1}$ Hermitian, $(\varepsilon_k)_{k\geq 1}$ independent Rademacher

Sums of Conditionally Zero-mean Matrices

Definition (Conditional Zero Mean Property)

 $\mathbb{E}[\boldsymbol{Y}_k \,|\, (\boldsymbol{Y}_j)_{j \neq k}] = \boldsymbol{0}$

Matrix Stein Pair for $oldsymbol{X} \mathrel{\mathop:}= \sum_{k=1}^n oldsymbol{Y}_k$

- Let $oldsymbol{Y}_k$ and $oldsymbol{Y}_k$ be conditionally i.i.d. given $(oldsymbol{Y}_j)_{j
 eq k}$
- Draw index K uniformly from $\{1,\ldots,n\}$

• Define
$$oldsymbol{X}' \mathrel{\mathop:}= oldsymbol{X} + oldsymbol{Y}'_K - oldsymbol{Y}_K$$

• Check Stein pair condition

$$\begin{split} \mathbb{E}[\boldsymbol{X} - \boldsymbol{X}' \mid (\boldsymbol{Y}_j)_{j \ge 1}] &= \mathbb{E}[\boldsymbol{Y}_K - \boldsymbol{Y}'_K \mid (\boldsymbol{Y}_j)_{j \ge 1}] \\ &= \frac{1}{n} \sum_{k=1}^n \left(\boldsymbol{Y}_k - \mathbb{E}[\boldsymbol{Y}'_k \mid (\boldsymbol{Y}_j)_{j \ne k}] \right) \\ &= \frac{1}{n} \sum_{k=1}^n \boldsymbol{Y}_k = \frac{1}{n} \boldsymbol{X} \end{split}$$

Sums of Conditionally Zero-mean Matrices

Definition (Conditional Zero Mean Property)

$$\mathbb{E}[\boldsymbol{Y}_k \,|\, (\boldsymbol{Y}_j)_{j \neq k}] = \boldsymbol{0}$$

Conditional Variance for $oldsymbol{X} \mathrel{\mathop:}= oldsymbol{Y} - \mathbb{E}\,oldsymbol{Y}$

$$\begin{split} \boldsymbol{\Delta}_{\boldsymbol{X}} &= \frac{n}{2} \cdot \mathbb{E}\left[(\boldsymbol{X} - \boldsymbol{X}')^2 \,|\, (\boldsymbol{Y}_j)_{j \ge 1} \right] \\ &= \frac{n}{2} \cdot \mathbb{E}\left[(\boldsymbol{Y}_K - \boldsymbol{Y}'_K)^2 \,|\, (\boldsymbol{Y}_j)_{j \ge 1} \right] \\ &= \frac{1}{2} \sum_{k=1}^n \left(\boldsymbol{Y}_k^2 + \mathbb{E}[\boldsymbol{Y}_k^2 \,|\, (\boldsymbol{Y}_j)_{j \ne k}] \right) \end{split}$$

 \Rightarrow Conditional variance controlled when summands are bounded

 \Rightarrow Dependent analogues of concentration and moment inequalities

Combinatorial Sums of Matrices

Definition (Combinatorial Matrix Statistic)

Given a deterministic array $(A_{jk})_{j,k=1}^n$ of Hermitian matrices and a uniformly random permutation π on $\{1, \ldots, n\}$, define the combinatorial matrix statistic

$$oldsymbol{Y} \coloneqq \sum_{j=1}^n oldsymbol{A}_{j\pi(j)}$$
 with mean $\mathbb{E} oldsymbol{Y} = rac{1}{n} \sum_{j,k=1}^n oldsymbol{A}_{jk}.$

• Generalizes the scalar statistics studied by Hoeffding (1951)

Example

• Sampling without replacement from $\{m{B}_1,\ldots,m{B}_n\}$

$$oldsymbol{W} := \sum_{j=1}^s oldsymbol{B}_{\pi(j)}$$

Combinatorial Sums of Matrices

Definition (Combinatorial Matrix Statistic)

$$oldsymbol{Y} \mathrel{\mathop:}= \sum_{j=1}^n oldsymbol{A}_{j\pi(j)}$$
 with mean $\mathbb{E}\,oldsymbol{Y} = rac{1}{n}\sum_{j,k=1}^noldsymbol{A}_{jk}$

Matrix Stein Pair for $oldsymbol{X} \mathrel{\mathop:}= oldsymbol{Y} - \mathbb{E}\,oldsymbol{Y}$

 \bullet Draw indices (J,K) uniformly from $\{1,\ldots,n\}^2$

• Define
$$\pi' := \pi \circ (J, K)$$
 and $\mathbf{X}' := \sum_{j=1}^{n} \mathbf{A}_{j\pi'(j)} - \mathbb{E} \mathbf{Y}$

• Check Stein pair condition

$$\mathbb{E}[\boldsymbol{X} - \boldsymbol{X}' \mid \pi] = \mathbb{E}\left[\boldsymbol{A}_{J\pi(J)} + \boldsymbol{A}_{K\pi(K)} - \boldsymbol{A}_{J\pi(K)} - \boldsymbol{A}_{K\pi(J)} \mid \pi\right]$$
$$= \frac{1}{n^2} \sum_{j,k=1}^n \boldsymbol{A}_{j\pi(j)} + \boldsymbol{A}_{k\pi(k)} - \boldsymbol{A}_{j\pi(k)} - \boldsymbol{A}_{k\pi(j)}$$
$$= \frac{2}{n} (\boldsymbol{Y} - \mathbb{E} \boldsymbol{Y}) = \frac{2}{n} \boldsymbol{X}$$

Combinatorial Sums of Matrices

Definition (Combinatorial Matrix Statistic)

$$oldsymbol{Y} := \sum_{j=1}^n oldsymbol{A}_{j\pi(j)}$$
 with mean $\mathbb{E} oldsymbol{Y} = rac{1}{n} \sum_{j,k=1}^n oldsymbol{A}_{jk}.$

Conditional Variance for $\boldsymbol{X} \mathrel{\mathop:}= \boldsymbol{Y} - \mathbb{E}\, \boldsymbol{Y}$

$$\begin{aligned} \boldsymbol{\Delta}_{\boldsymbol{X}}(\pi) &= \frac{n}{4} \mathbb{E} \left[(\boldsymbol{X} - \boldsymbol{X}')^2 \, | \, \pi \right] \\ &= \frac{1}{4n} \sum_{j,k=1}^n \left[\boldsymbol{A}_{j\pi(j)} + \boldsymbol{A}_{k\pi(k)} - \boldsymbol{A}_{j\pi(k)} - \boldsymbol{A}_{k\pi(j)} \right]^2 \\ &\preccurlyeq \frac{1}{n} \sum_{j,k=1}^n \left[\boldsymbol{A}_{j\pi(j)}^2 + \boldsymbol{A}_{k\pi(k)}^2 + \boldsymbol{A}_{j\pi(k)}^2 + \boldsymbol{A}_{k\pi(j)}^2 \right] \end{aligned}$$

 \Rightarrow Conditional variance controlled when summands are bounded \Rightarrow Dependent analogues of concentration and moment inequalities

Mackey (Stanford)

Stein's Method for Matrix Concentration

December 10, 2012 33 / 35

Extensions

General Complex Matrices

• Map any matrix $oldsymbol{B} \in \mathbb{C}^{d_1 imes d_2}$ to a Hermitian matrix via *dilation*

$$\mathscr{D}(oldsymbol{B}):=egin{bmatrix} oldsymbol{0} & oldsymbol{B}\ oldsymbol{B}^* & oldsymbol{0}\end{bmatrix}\in\mathbb{H}^{d_1+d_2}.$$

• Preserves spectral information: $\lambda_{\max}(\mathscr{D}(\boldsymbol{B})) = \|\boldsymbol{B}\|$

Beyond Sums

- Matrix-valued functions satisfying a self-reproducing property
 - e.g., Matrix second-order Rademacher chaos: $\sum_{j,k} \varepsilon_j \varepsilon_k A_{jk}$
 - Yields a dependent bounded differences inequality for matrices

Generalized Matrix Stein Pairs

• Satisfy $\mathbb{E}[g(\mathbf{X}) - g(\mathbf{X}') | Z] = \alpha \mathbf{X}$ almost surely for $g : \mathbb{R} \to \mathbb{R}$ weakly increasing.

Extensions

References I

- Ahlswede, R. and Winter, A. Strong converse for identification via quantum channels. IEEE Trans. Inform. Theory, 48(3): 569–579, Mar. 2002.
- Bernstein, S. The theory of probabilities. Gastehizdat Publishing House, 1946.
- Burkholder, D. L. Distribution function inequalities for martingales. Ann. Probab., 1:19–42, 1973. doi: 10.1214/aop/1176997023.
- Candès, E. J. and Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math., 9:717-772, 2009.
- Candès, E. J. and Tao, T. The power of convex relaxation: Near-optimal matrix completion. IEEE Trans. Info. Theory, 2009. URL arXiv:0903.1476. To appear. Available at arXiv:0903.1476.
- Chatterjee, S. Stein's method for concentration inequalities. Probab. Theory Related Fields, 138:305-321, 2007.
- Chatterjee, S. Concentration inequalities with exchangeable pairs. PhD thesis, Stanford University, Palo Alto, Feb. 2008. URL arxiv:math/0507526v1.
- Cheung, S.-S., So, A. Man-Cho, and Wang, K. Chance-constrained linear matrix inequalities with dependent perturbations: A safe tractable approximation approach. Available at http://www.optimization-online.org/DB_FTLE/2011/01/2898.pdf, 2011.
- Christofides, D. and Markström, K. Expansion properties of random cayley graphs and vertex transitive graphs via matrix martingales. *Random Struct. Algorithms*, 32(1):88–100, 2008.
- Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30:844–881, 2008.
- Foygel, R. and Srebro, N. Concentration-based guarantees for low-rank matrix reconstruction. Journal of Machine Learning Research - Proceedings Track, 19:315–340, 2011.
- Gross, D. Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inform. Theory, 57(3):1548–1566, Mar. 2011.
- Hoeffding, W. A combinatorial central limit theorem. Ann. Math. Statist., 22:558-566, 1951.
- Hoeffding, W. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13–30, 1963.

Extensions

References II

- Hsu, D., Kakade, S. M., and Zhang, T. Dimension-free tail inequalities for sums of random matrices. Available at arXiv:1104.1672, 2011a.
- Hsu, D., Kakade, S. M., and Zhang, T. Dimension-free tail inequalities for sums of random matrices. arXiv:1104.1672v3[math.PR], 2011b.
- Junge, M. and Xu, Q. Noncommutative Burkholder/Rosenthal inequalities. Ann. Probab., 31(2):948-995, 2003.
- Junge, M. and Xu, Q. Noncommutative Burkholder/Rosenthal inequalities II: Applications. Israel J. Math., 167:227-282, 2008.
- Lust-Piquard, F. Inégalités de Khintchine dans C_p (1). C. R. Math. Acad. Sci. Paris, 303(7):289–292, 1986.
- Lust-Piquard, F. and Pisier, G. Noncommutative Khintchine and Paley inequalities. Ark. Mat., 29(2):241-260, 1991.
- Mackey, L., Talwalkar, A., and Jordan, M. I. Divide-and-conquer matrix factorization. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. C. N., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 24, pp. 1134–1142. 2011.
- Mackey, L., Jordan, M. I., Chen, R. Y., Farrell, B., and Tropp, J. A. Matrix concentration inequalities via the method of exchangeable pairs. URL http://arxiv.org/abs/1201.6002, 2012.
- Negahban, S. and Wainwright, M. J. Restricted strong convexity and weighted matrix completion: Optimal bounds with noise. arXiv:1009.2118v2[cs.IT], 2010.
- Nemirovski, A. Sums of random symmetric matrices and quadratic optimization under orthogonality constraints. Math. Program., 109:283–317, January 2007. ISSN 0025-5610. doi: 10.1007/s10107-006-0033-0. URL http://dl.acm.org/citation.cfm?id=1229716.1229726.
- Oliveira, R. I. Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges. Available at arXiv:0911.0600, Nov. 2009.
- Pisier, G. and Xu, Q. Non-commutative martingale inequalities. Comm. Math. Phys., 189(3):667-698, 1997.
- Recht, B. Simpler approach to matrix completion. J. Mach. Learn. Res., 12:3413-3430, 2011.
- Rudelson, M. and Vershynin, R. Sampling from large matrices: An approach through geometric functional analysis. J. Assoc. Comput. Mach., 54(4):Article 21, 19 pp., Jul. 2007. (electronic).
- So, A. Man-Cho. Moment inequalities for sums of random matrices and their applications in optimization. Math. Program., 130 (1):125–151, 2011.
- Stein, C. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. 6th Berkeley Symp. Math. Statist. Probab., Berkeley, 1972. Univ. California Press.
- Tropp, J. A. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., August 2011.