Mixed Membership Matrix Factorization

Lester Mackey
University of California, Berkeley

Collaborators:
David Weiss, University of Pennsylvania
Michael I. Jordan, University of California, Berkeley

2011 Joint Statistical Meetings

A Problem

Dyadic Data Prediction (DDP)

Learning from Pairs

- Given two sets of objects
- Set of users and set of items
- Observe labeled object pairs
- User u gave item j a rating $r_{u j}$ of 5
- Predict labels of unobserved pairs
- How will user u rate item k ?

Examples

5	3	$?$
$?$	2	$?$
I	$?$	4

WETFIXX

- Movie rating prediction in collaborative filtering
- How will user u rate movie j ?
- Click prediction in web search
- Will user u click on URL j ?
- Link prediction in a social network
- Is user u friends with user j ?

Prior Models for Dyadic Data

Latent Factor Modeling / Matrix Factorization

Rennie \& Srebro (2005); DeCoste (2006); Salakhutdinov \& Mnih (2008); Takács et al. (2009); Lawrence \& Urtasun (2009)

- Associate latent factor vector, $\mathbf{a}_{u} \in \mathbb{R}^{D}$, with each user u
- Associate latent factor vector, $\mathbf{b}_{j} \in \mathbb{R}^{D}$, with each item j
- Generate expected rating via inner product

$$
\mathbb{E}\left(r_{u j}\right)=\mathbf{a}_{u} \cdot \mathbf{b}_{j}=3
$$

Prior Models for Dyadic Data

Latent Factor Modeling / Matrix Factorization

Rennie \& Srebro (2005); DeCoste (2006); Salakhutdinov \& Mnih (2008); Takács et al. (2009); Lawrence \& Urtasun (2009)

- Associate latent factor vector, $\mathbf{a}_{u} \in \mathbb{R}^{D}$, with each user u
- Associate latent factor vector, $\mathbf{b}_{j} \in \mathbb{R}^{D}$, with each item j
- Generate expected rating via inner product: $\mathbb{E}\left(r_{u j}\right)=\mathbf{a}_{u} \cdot \mathbf{b}_{j}$

Pro: State-of-the-art predictive performance
Con: Fundamentally static rating mechanism

- Assumes user u rates according to \mathbf{a}_{u}, regardless of context
- In reality, dyadic interactions are heterogeneous
- User's ratings may be influenced by instantaneous mood
- Distinct users may share single account or web browser

Prior Models for Dyadic Data

Mixed Membership Topic Modeling

Airoldi, Blei, Fienberg, and Xing (2008); Porteous, Bart, and Welling (2008)

- Each user u maintains distribution over topics, $\theta_{u}^{U} \in \mathbb{R}^{K^{U}}$
- Each item j maintains distribution over topics, $\theta_{j}^{M} \in \mathbb{R}^{K^{M}}$
- Expected rating $\mathbb{E}\left(r_{u j}\right)$ determined by interaction-specific topics sampled from user and item topic distributions

Topic $z_{u j}^{M}$

$$
\mathbb{E}\left(r_{u j}\right)=f\left(z_{u j}^{U}, z_{u j}^{M}\right)
$$

Prior Models for Dyadic Data

Mixed Membership Topic Modeling

Airoldi, Blei, Fienberg, and Xing (2008); Porteous, Bart, and Welling (2008)

- Each user u maintains distribution over topics, $\theta_{u}^{U} \in \mathbb{R}^{K^{U}}$
- Each item j maintains distribution over topics, $\theta_{j}^{M} \in \mathbb{R}^{K^{M}}$
- Expected rating $\mathbb{E}\left(r_{u j}\right)$ determined by interaction-specific topics sampled from user and item topic distributions
Pro: Context-sensitive clustering
- User moods: in the mood for comedy vs. romance
- Item contexts: opening night vs. in high school classroom
- Multiple raters per account: parent vs. child

Con: Purely groupwise interactions

- Assumes user and item interact only through their topics
- Relatively poor predictive performance

Mixed Membership Matrix Factorization ($\mathrm{M}^{3} \mathrm{~F}$)

Goal: Leverage the complementary strengths of latent factor models and mixed membership models for improved dyadic data prediction

General M ${ }^{3}$ F Framework (Mackey, Weiss, and Jordan, 2010):

- Users and items endowed both with latent factor vectors (a_{u} and \mathbf{b}_{j}) and with topic distribution parameters (θ_{u}^{U} and θ_{j}^{M})
- To rate an item
- User u draws topic i from θ_{u}^{U}
- Item j draws topic k from θ_{j}^{M}
- Expected rating

$$
\mathbb{E}\left(r_{u j}\right)=\underbrace{\mathbf{a}_{u} \cdot \mathbf{b}_{j}}_{\text {static base rating }}+\underbrace{\beta_{u j}^{i k}}_{\text {context-sensitive bias }}
$$

- $\mathrm{M}^{3} \mathrm{~F}$ models differ in specification of $\beta_{u j}^{i k}$
- Fully Bayesian framework

Mixed Membership Matrix Factorization ($\mathrm{M}^{3} \mathrm{~F}$)

Goal: Leverage the complementary strengths of latent factor models and mixed membership models for improved dyadic data prediction

General M ${ }^{3}$ F Framework (Mackey, Weiss, and Jordan, 2010):

- $\mathrm{M}^{3} \mathrm{~F}$ models differ in specification of $\beta_{u j}^{i k}$

Specific $\mathbf{M}^{3} \mathbf{F}$ Models:

- M^{3} F Topic-Indexed Bias Model
- $\mathrm{M}^{3} \mathrm{~F}$ Topic-Indexed Factor Model

$M^{3} F$ Models

$\mathbf{M}^{3} \mathbf{F}$ Topic-Indexed Bias Model (\mathbf{M}^{3} F-TIB)

- Contextual bias decomposes into latent user and latent item bias

$$
\beta_{u j}^{i k}=c_{u}^{k}+d_{j}^{i}
$$

- Item bias d_{j}^{i} influenced by user topic i
- Group predisposition toward liking/disliking item j
- Captures polarizing Napoleon Dynamite effect
- Certain movies provoke strongly differing reactions from otherwise similar users
- User bias c_{u}^{k} influenced by item topic k
- Predisposition of u toward liking/disliking item group

M ${ }^{3}$ F Models

$\mathbf{M}^{3} \mathbf{F}$ Topic-Indexed Factor Model (\mathbf{M}^{3} F-TIF)

- Contextual bias is an inner product of topic-indexed factor vectors

$$
\beta_{u j}^{i k}=\mathbf{c}_{u}^{k} \cdot \mathbf{d}_{j}^{i}
$$

- User u maintains latent vector $\mathbf{c}_{u}^{k} \in \mathbb{R}^{\tilde{D}}$ for each item topic k
- Item j maintains latent vector $\mathbf{d}_{j}^{i} \in \mathbb{R}^{\tilde{D}}$ for each user topic i
- Extends globally predictive factor vectors $\left(\mathbf{a}_{u}, \mathbf{b}_{j}\right)$ with context-specific factors

$\mathrm{M}^{3} \mathrm{~F}$ Inference and Prediction

Goal: Predict unobserved labels given labeled pairs

- Posterior inference over latent topics and parameters intractable
- Use block Gibbs sampling with closed form conditionals
- User parameters sampled in parallel (same for items)
- Interaction-specific topics sampled in parallel

$M^{3} \mathrm{~F}$ Inference and Prediction

Goal: Predict unobserved labels given labeled pairs

- Bayes optimal prediction under root mean squared error (RMSE)

$$
\begin{aligned}
& \text { M }^{3} \text { F-TIB: } \frac{1}{T} \sum_{t=1}^{T}\left(\mathbf{a}_{u}^{(t)} \cdot \mathbf{b}_{j}^{(t)}+\sum_{k=1}^{K^{M}} c_{u}^{k(t)} \theta_{j k}^{M(t)}+\sum_{i=1}^{K^{U}} d_{j}^{i(t)} \theta_{u i}^{U(t)}\right) \\
& \text { M }^{3} \text { F-TIF: } \frac{1}{T} \sum_{t=1}^{T}\left(\mathbf{a}_{u}^{(t)} \cdot \mathbf{b}_{j}^{(t)}+\sum_{i=1}^{K^{U}} \sum_{k=1}^{K^{M}} \theta_{u i}^{U(t)} \theta_{j k}^{M(t)} \mathbf{c}_{u}^{k(t)} \cdot \mathbf{d}_{j}^{i(t)}\right)
\end{aligned}
$$

Experimental Evaluation

The Data

- Real-world movie rating collaborative filtering datasets
- 1 M MovieLens Dataset ${ }^{1}$
- 1 million ratings in $\{1, \ldots, 5\}$
- 6,040 users, 3,952 movies
- EachMovie Dataset
- 2.8 million ratings in $\{1, \ldots, 6\}$
- 1,648 movies, 74,424 users
- Netflix Prize Dataset ${ }^{2}$
- 100 million ratings in $\{1, \ldots, 5\}$
- 17,770 movies, 480,189 users

[^0]
Experimental Evaluation

The Setup

- Evaluate movie rating prediction performance on each dataset
- RMSE as primary evaluation metric
- Performance averaged over standard train-test splits
- Compare to state-of-the-art latent factor models
- Bayesian Probabilistic Matrix Factorization ${ }^{3}$ (BPMF)
- $\mathrm{M}^{3} \mathrm{~F}$ reduces to BPMF when no topics are sampled
- Gaussian process matrix factorization model ${ }^{4}$ (L\&U)
- Matlab/MEX implementation on dual quad-core CPUs

[^1]
1M MovieLens Data

Question: How does $\mathrm{M}^{3} \mathrm{~F}$ performance vary with number of topics and static factor dimensionality?

- 3,000 Gibbs samples for M ${ }^{3}$ F-TIB and BPMF
- 512 Gibbs samples for $\mathrm{M}^{3} \mathrm{~F}$-TIF $(\tilde{D}=2)$

ethod	D=10	D=20	D=30	D=40
BPMF	0.8695	0.8622	. 8621	0.8609
$\mathrm{M}^{3} \mathrm{~F}$-TIB $(1,1)$	0.8671	0.861	. 861	860
$\mathrm{M}^{3} \mathrm{~F}$-TIF (1,2)	0.8664	0.8629	. 8622	0.8616
$\mathrm{M}^{3} \mathrm{~F}$-TIF (2,1)	0.8674	0.8605	0.8605	0.8595
$\mathrm{M}^{3} \mathrm{~F}$-TIF $(2,2)$	0.8642	0.8584*	0.8584	0.8592
$\mathrm{M}^{3} \mathrm{~F}$-TIB $(1,2)$	0.8669	0.8611	0.8604	0.8603
$\mathrm{M}^{3} \mathrm{~F}$-TIB $(2,1)$	0.8649	0.8593	0.8581*	0.8577*
$\mathrm{M}^{3} \mathrm{~F}$-TIB $(2,2)$	0.8658	0.8609	0.8605	0.8599
L\&U (2009)	0.8801 (RBF)		0.8791 (Linear)	

EachMovie Data

Question: How does $\mathrm{M}^{3} \mathrm{~F}$ performance vary with number of topics and static factor dimensionality?

- 3,000 Gibbs samples for M ${ }^{3}$ F-TIB and BPMF
- 512 Gibbs samples for $\mathrm{M}^{3} \mathrm{~F}$-TIF $(\tilde{D}=2)$

Method	$\mathbf{D}=\mathbf{1 0}$	$\mathbf{D}=\mathbf{2 0}$	$\mathbf{D}=\mathbf{3 0}$	$\mathbf{D}=\mathbf{4 0}$
BPMF	1.1229	1.1212	1.1203	1.1163
M^{3} F-TIB (1,1)	1.1205	1.1188	1.1183	1.1168
M^{3} F-TIF (1,2)	1.1351	1.1179	1.1095	1.1072
M^{3} F-TIF (2,1)	1.1366	1.1161	1.1088	1.1058
M^{3} F-TIF (2,2)	1.1211	1.1043	1.1035	1.1020
M^{3} F-TIB (1,2)	1.1217	1.1081	1.1016	1.0978
M^{3} F-TIB (2,1)	1.1186	1.1004	1.0952	1.0936
M^{3} F-TIB (2,2)	$\mathbf{1 . 1 1 0 1}^{*}$	$\mathbf{1 . 0 9 6 1 *}$	$\mathbf{1 . 0 9 1 8}^{*}$	$\mathbf{1 . 0 9 0 5}{ }^{*}$
L\&U (2009)	1.1111 (RBF)	1.0981 (Linear)		

Netflix Prize Data

Question: How does performance vary with latent dimensionality?

- Contrast $\mathrm{M}^{3} \mathrm{~F}$-TIB $\left(K^{U}, K^{M}\right)=(4,1)$ with BPMF
- 500 Gibbs samples for $\mathrm{M}^{3} \mathrm{~F}$-TIB and BPMF

Method	RMSE	Time
BPMF/15	0.9121	27.8 s
TIB $/ 15$	$\mathbf{0 . 9 0 9 0}$	46.3 s
BPMF $/ 30$	0.9047	38.6 s
TIB $/ 30$	$\mathbf{0 . 9 0 1 5}$	56.9 s
BPMF/40	0.9027	48.3 s
TIB $/ 40$	$\mathbf{0 . 8 9 9 0}$	70.5 s
BPMF/60	0.9002	94.3 s
TIB/60	$\mathbf{0 . 8 9 6 2}$	97.0 s
BPMF $/ 120$	0.8956	273.7 s
TIB $/ 120$	$\mathbf{0 . 8 9 3 4}$	285.2 s
BPMF $/ 240$	0.8938	1152.0 s
TIB $/ 240$	$\mathbf{0 . 8 9 2 9}$	1158.2 s

Stratification

Question: Where are improvements over BPMF being realized?

Figure: RMSE improvements over BPMF/40 on the Netflix Prize as a function of movie or user rating count. Left: Each bin represents $1 / 6$ of the movie base. Right: Each bin represents $1 / 8$ of the user base.

The Napolean Dynamite Effect

Question: Do $\mathrm{M}^{3} \mathrm{~F}$ models capture polarization effects?
Table: Top 200 Movies from the Netflix Prize dataset with the highest and lowest cross-topic variance in $\mathbb{E}\left(d_{j}^{i} \mid \mathbf{r}^{(\mathrm{v})}\right)$.

Movie Title	$\mathbb{E}\left(d_{j}^{i} \mid \mathbf{r}^{(\mathrm{v})}\right)$
Napoleon Dynamite	-0.11 ± 0.93
Fahrenheit 9/11	-0.06 ± 0.90
Chicago	-0.12 ± 0.78
The Village	-0.14 ± 0.71
Lost in Translation	-0.02 ± 0.70
LotR: The Fellowship of the Ring	0.15 ± 0.00
LotR: The Two Towers	0.18 ± 0.00
LotR: The Return of the King	0.24 ± 0.00
Star Wars: Episode V	0.35 ± 0.00
Raiders of the Lost Ark	0.29 ± 0.00

Conclusions

New framework for dyadic data prediction

- Strong predictive performance and static specificity of latent factor models
- Clustered context-sensitivity of mixed membership topic models
- Outperforms pure latent factor modeling while fitting fewer parameters
- Greatest improvements for high-variance, sparsely rated items

Future work

- Modeling user choice: missingness is informative
- Nonparametric priors on topic parameters
- Alternative approaches to inference

References

Airoldi, E., Blei, D., Fienberg, S., and Xing, E. Mixed membership stochastic blockmodels. JMLR, 9:1981-2014, 2008.
DeCoste, D. Collaborative prediction using ensembles of maximum margin matrix factorizations. In ICML, 2006.
Lawrence, N.D. and Urtasun, R. Non-linear matrix factorization with Gaussian processes. In ICML, 2009.
Mackey, L., Weiss, D., and Jordan, M. I. Mixed membership matrix factorization. In ICML, June 2010.
Porteous, I., Bart, E., and Welling, M. Multi-HDP: A non parametric Bayesian model for tensor factorization. In AAAI, 2008.
Rennie, J. and Srebro, N. Fast maximum margin matrix factorization for collaborative prediction. In ICML, 2005.
Salakhutdinov, R. and Mnih, A. Bayesian probabilistic matrix factorization using Markov chain Monte Marlo. In ICML, 2008.
Takács, G., Pilászy, I., Németh, B., and Tikk, D. Scalable collaborative filtering approaches for large recommender systems. JMLR, 10:623-656, 2009.

The End

Thanks!

[^0]: ${ }^{1}$ http://www.grouplens.org/
 ${ }^{2}$ http://www.netflixprize.com/

[^1]: ${ }^{3}$ Salakhutdinov and Mnih (2008)
 ${ }^{4}$ Lawrence and Urtasun (2009)

