## Mixed Membership Matrix Factorization

Lester Mackey University of California, Berkeley

Collaborators: David Weiss, University of Pennsylvania Michael I. Jordan, University of California, Berkeley

2011 Joint Statistical Meetings

## A Problem

|          | S |   | D |
|----------|---|---|---|
| <b>F</b> | 5 | 3 | ? |
|          | ? | 2 | ? |
|          | I | ? | 4 |

# Dyadic Data Prediction (DDP)

Background

DDP

#### Learning from Pairs

- Given two sets of objects
  - Set of users and set of items
- Observe labeled object pairs
  - User u gave item j a rating  $r_{uj}$  of 5
- Predict labels of unobserved pairs
  - How will user u rate item k?



### Examples

- Movie rating prediction in collaborative filtering
  - How will user u rate movie j?
- Click prediction in web search
  - Will user u click on URL j?
- Link prediction in a social network
  - Is user u friends with user j?

### Latent Factor Modeling / Matrix Factorization

Rennie & Srebro (2005); DeCoste (2006); Salakhutdinov & Mnih (2008); Takács et al. (2009); Lawrence & Urtasun (2009)

- Associate latent factor vector,  $\mathbf{a}_u \in \mathbb{R}^D$ , with each user u
- Associate latent factor vector,  $\mathbf{b}_j \in \mathbb{R}^D$ , with each item j
- Generate expected rating via inner product



#### Latent Factor Modeling / Matrix Factorization

Rennie & Srebro (2005); DeCoste (2006); Salakhutdinov & Mnih (2008); Takács et al. (2009): Lawrence & Urtasun (2009)

- Associate latent factor vector,  $\mathbf{a}_u \in \mathbb{R}^D$ , with each user u
- Associate latent factor vector,  $\mathbf{b}_i \in \mathbb{R}^D$ , with each item j
- Generate expected rating via inner product:  $\mathbb{E}(r_{uj}) = \mathbf{a}_u \cdot \mathbf{b}_j$

#### **Pro:** State-of-the-art predictive performance

- **Con:** Fundamentally static rating mechanism
  - Assumes user u rates according to  $\mathbf{a}_{u}$ , regardless of context
  - In reality, dyadic interactions are heterogeneous
    - User's ratings may be influenced by instantaneous mood
    - Distinct users may share single account or web browser

### Mixed Membership Topic Modeling

Airoldi, Blei, Fienberg, and Xing (2008); Porteous, Bart, and Welling (2008)

- Each user u maintains distribution over topics,  $\theta_{u}^{U} \in \mathbb{R}^{K^{U}}$
- Each item j maintains distribution over topics,  $\boldsymbol{\theta}_{j}^{\tilde{M}} \in \mathbb{R}^{K^{M}}$
- Expected rating  $\mathbb{E}(r_{uj})$  determined by *interaction-specific* topics sampled from user and item topic distributions



 $\mathbb{E}(r_{ui}) = f(z_{ui}^U, z_{ui}^M)$ 

### Mixed Membership Topic Modeling

Airoldi, Blei, Fienberg, and Xing (2008); Porteous, Bart, and Welling (2008)

- Each user u maintains distribution over topics,  $\theta_u^U \in \mathbb{R}^{K^U}$
- Each item j maintains distribution over topics,  $\boldsymbol{\theta}_{j}^{\tilde{M}} \in \mathbb{R}^{K^{M}}$
- Expected rating  $\mathbb{E}(r_{uj})$  determined by *interaction-specific* topics sampled from user and item topic distributions

### Pro: Context-sensitive clustering

- User moods: in the mood for comedy vs. romance
- Item contexts: opening night vs. in high school classroom
- Multiple raters per account: parent vs. child

#### Con: Purely groupwise interactions

- Assumes user and item interact only through their topics
- Relatively poor predictive performance

#### M3E Frameworl

## Mixed Membership Matrix Factorization (M<sup>3</sup>F)

**Goal:** Leverage the complementary strengths of latent factor models and mixed membership models for improved dyadic data prediction

General M<sup>3</sup>F Framework (Mackey, Weiss, and Jordan, 2010):

- Users and items endowed both with latent factor vectors ( $\mathbf{a}_u$  and  $\mathbf{b}_i$ ) and with topic distribution parameters ( $\theta_u^U$  and  $\theta_i^M$ )
- To rate an item
  - User u draws topic i from  $\theta_u^U$
  - Item j draws topic k from  $\theta_i^M$
  - Expected rating



static base rating

- M<sup>3</sup>F models differ in specification of  $\beta_{ui}^{ik}$
- Fully Bayesian framework

#### M<sup>3</sup>F Framework

## Mixed Membership Matrix Factorization (M<sup>3</sup>F)

**Goal:** Leverage the complementary strengths of latent factor models and mixed membership models for improved dyadic data prediction

**General M<sup>3</sup>F Framework** (Mackey, Weiss, and Jordan, 2010):

• M<sup>3</sup>F models differ in specification of  $\beta_{ui}^{ik}$ 

#### Specific M<sup>3</sup>F Models:

- M<sup>3</sup>F Topic-Indexed Bias Model
- $M^3F$  Topic-Indexed Factor Model

## M<sup>3</sup>F Models

### M<sup>3</sup>F Topic-Indexed Bias Model (M<sup>3</sup>F-TIB)

• Contextual bias decomposes into latent user and latent item bias

$$\beta_{uj}^{ik} = c_u^k + d_j^i$$

- Item bias  $d_j^i$  influenced by user topic i
  - $\bullet\,$  Group predisposition toward liking/disliking item j
  - Captures polarizing Napoleon Dynamite effect
    - Certain movies provoke strongly differing reactions from otherwise similar users
- $\bullet~\mbox{User}$  bias  $c^k_u$  influenced by item topic k
  - Predisposition of  $\boldsymbol{u}$  toward liking/disliking item group

### M<sup>3</sup>F Topic-Indexed Factor Model (M<sup>3</sup>F-TIF)

• Contextual bias is an inner product of topic-indexed factor vectors

$$\beta_{uj}^{ik} = \mathbf{c}_u^k \cdot \mathbf{d}_j^i$$

- User u maintains latent vector  $\mathbf{c}_{u}^{k} \in \mathbb{R}^{\tilde{D}}$  for each item topic k
- Item j maintains latent vector  $\mathbf{d}_j^i \in \mathbb{R}^{\tilde{D}}$  for each user topic i
- Extends globally predictive factor vectors  $(\mathbf{a}_u, \mathbf{b}_j)$  with context-specific factors

## M<sup>3</sup>F Inference and Prediction

Goal: Predict unobserved labels given labeled pairs

M3E

Inference



• Posterior inference over latent topics and parameters intractable

- Use block Gibbs sampling with closed form conditionals
  - User parameters sampled in parallel (same for items)
  - Interaction-specific topics sampled in parallel

Mackey (UC Berkeley)

Mixed Membership Matrix Factorization

## M<sup>3</sup>F Inference and Prediction

Goal: Predict unobserved labels given labeled pairs

• Bayes optimal prediction under root mean squared error (RMSE)

Inference

M3E

$$\mathbf{M}^{3}\mathbf{F}\text{-}\mathbf{TIB:} \ \frac{1}{T} \sum_{t=1}^{T} \left( \mathbf{a}_{u}^{(t)} \cdot \mathbf{b}_{j}^{(t)} + \sum_{k=1}^{K^{M}} c_{u}^{k(t)} \theta_{jk}^{M(t)} + \sum_{i=1}^{K^{U}} d_{j}^{i(t)} \theta_{ui}^{U(t)} \right)$$

$$\mathbf{M}^{3}\mathbf{F}\text{-}\mathbf{TIF}\text{:}\ \frac{1}{T}\sum_{t=1}^{T}\left(\mathbf{a}_{u}^{(t)}\cdot\mathbf{b}_{j}^{(t)}+\sum_{i=1}^{K^{U}}\sum_{k=1}^{K^{M}}\theta_{ui}^{U(t)}\theta_{jk}^{M(t)}\mathbf{c}_{u}^{k(t)}\cdot\mathbf{d}_{j}^{i(t)}\right)$$

#### The Data

## Experimental Evaluation

#### The Data

- Real-world movie rating collaborative filtering datasets
- IM Moviel ens Dataset<sup>1</sup>
  - 1 million ratings in  $\{1, \ldots, 5\}$
  - 6,040 users, 3,952 movies
- EachMovie Dataset
  - 2.8 million ratings in  $\{1, \ldots, 6\}$
  - 1,648 movies, 74,424 users
- Netflix Prize Dataset<sup>2</sup>
  - 100 million ratings in  $\{1, \ldots, 5\}$
  - 17,770 movies, 480,189 users

<sup>2</sup>http://www.netflixprize.com/

<sup>&</sup>lt;sup>1</sup>http://www.grouplens.org/

## Experimental Evaluation

### The Setup

• Evaluate movie rating prediction performance on each dataset

- RMSE as primary evaluation metric
- Performance averaged over standard train-test splits
- Compare to state-of-the-art latent factor models
  - Bayesian Probabilistic Matrix Factorization<sup>3</sup> (BPMF)
    - $\bullet~\ensuremath{\mathsf{M}^3\mathsf{F}}\xspace$  reduces to BPMF when no topics are sampled
  - Gaussian process matrix factorization model<sup>4</sup> (L&U)
- Matlab/MEX implementation on dual quad-core CPUs

<sup>4</sup>Lawrence and Urtasun (2009)

<sup>&</sup>lt;sup>3</sup>Salakhutdinov and Mnih (2008)

## 1M MovieLens Data

**Question:** How does M<sup>3</sup>F performance vary with number of topics and static factor dimensionality?

- 3,000 Gibbs samples for M<sup>3</sup>F-TIB and BPMF
- 512 Gibbs samples for  $M^3F$ -TIF ( $\tilde{D} = 2$ )

| Method                     | D=10   | D=20    | D=30    | D=40     |
|----------------------------|--------|---------|---------|----------|
| BPMF                       | 0.8695 | 0.8622  | 0.8621  | 0.8609   |
| M <sup>3</sup> F-TIB (1,1) | 0.8671 | 0.8614  | 0.8616  | 0.8605   |
| $M^{3}F-TIF(1,2)$          | 0.8664 | 0.8629  | 0.8622  | 0.8616   |
| $M^{3}F-TIF(2,1)$          | 0.8674 | 0.8605  | 0.8605  | 0.8595   |
| M <sup>3</sup> F-TIF (2,2) | 0.8642 | 0.8584* | 0.8584  | 0.8592   |
| M <sup>3</sup> F-TIB (1,2) | 0.8669 | 0.8611  | 0.8604  | 0.8603   |
| M <sup>3</sup> F-TIB (2,1) | 0.8649 | 0.8593  | 0.8581* | 0.8577*  |
| M <sup>3</sup> F-TIB (2,2) | 0.8658 | 0.8609  | 0.8605  | 0.8599   |
| L&U (2009)                 | 0.8801 | (RBF)   | 0.8791  | (Linear) |

## EachMovie Data

**Question:** How does M<sup>3</sup>F performance vary with number of topics and static factor dimensionality?

- 3,000 Gibbs samples for M<sup>3</sup>F-TIB and BPMF
- 512 Gibbs samples for  $M^3F$ -TIF ( $\tilde{D} = 2$ )

| Method                     | D=10    | D=20    | D=30    | D=40     |
|----------------------------|---------|---------|---------|----------|
| BPMF                       | 1.1229  | 1.1212  | 1.1203  | 1.1163   |
| M <sup>3</sup> F-TIB (1,1) | 1.1205  | 1.1188  | 1.1183  | 1.1168   |
| $M^{3}F-TIF(1,2)$          | 1.1351  | 1.1179  | 1.1095  | 1.1072   |
| M <sup>3</sup> F-TIF (2,1) | 1.1366  | 1.1161  | 1.1088  | 1.1058   |
| M <sup>3</sup> F-TIF (2,2) | 1.1211  | 1.1043  | 1.1035  | 1.1020   |
| M <sup>3</sup> F-TIB (1,2) | 1.1217  | 1.1081  | 1.1016  | 1.0978   |
| M <sup>3</sup> F-TIB (2,1) | 1.1186  | 1.1004  | 1.0952  | 1.0936   |
| M <sup>3</sup> F-TIB (2,2) | 1.1101* | 1.0961* | 1.0918* | 1.0905*  |
| L&U (2009)                 | 1.1111  | (RBF)   | 1.0981  | (Linear) |

## Netflix Prize Data

Question: How does performance vary with latent dimensionality?

- Contrast  $M^{3}F$ -TIB  $(K^{U}, K^{M}) = (4, 1)$  with BPMF
- 500 Gibbs samples for M<sup>3</sup>F-TIB and BPMF



#### Netflix

## Stratification

Question: Where are improvements over BPMF being realized?



Figure: RMSE improvements over BPMF/40 on the Netflix Prize as a function of movie or user rating count. Left: Each bin represents 1/6 of the movie base. Right: Each bin represents 1/8 of the user base.

## The Napolean Dynamite Effect

Question: Do M<sup>3</sup>F models capture polarization effects?

Experiments

Netflix

Table: Top 200 Movies from the Netflix Prize dataset with the highest and lowest cross-topic variance in  $\mathbb{E}(d_i^i | \mathbf{r}^{(v)})$ .

| Movie Title                      | $\mathbb{E}(d_j^i   \mathbf{r}^{(\mathrm{v})})$ |
|----------------------------------|-------------------------------------------------|
| Napoleon Dynamite                | $\textbf{-0.11}\pm0.93$                         |
| Fahrenheit 9/11                  | $\textbf{-0.06} \pm \textbf{0.90}$              |
| Chicago                          | $\textbf{-0.12}\pm0.78$                         |
| The Village                      | -0.14 $\pm$ 0.71                                |
| Lost in Translation              | $\textbf{-0.02}\pm0.70$                         |
| LotR: The Fellowship of the Ring | $0.15\pm0.00$                                   |
| LotR: The Two Towers             | $0.18\pm0.00$                                   |
| LotR: The Return of the King     | $0.24\pm0.00$                                   |
| Star Wars: Episode V             | $0.35\pm0.00$                                   |
| Raiders of the Lost Ark          | $0.29\pm0.00$                                   |

#### New framework for dyadic data prediction

- Strong predictive performance and static specificity of latent factor models
- Clustered context-sensitivity of mixed membership topic models
- Outperforms pure latent factor modeling while fitting fewer parameters
- Greatest improvements for high-variance, sparsely rated items

#### Future work

- Modeling user choice: missingness is informative
- Nonparametric priors on topic parameters
- Alternative approaches to inference

#### Conclusions

## References

- Airoldi, E., Blei, D., Fienberg, S., and Xing, E. Mixed membership stochastic blockmodels. *JMLR*, 9:1981–2014, 2008.
- DeCoste, D. Collaborative prediction using ensembles of maximum margin matrix factorizations. In *ICML*, 2006.
- Lawrence, N.D. and Urtasun, R. Non-linear matrix factorization with Gaussian processes. In *ICML*, 2009.
- Mackey, L., Weiss, D., and Jordan, M. I. Mixed membership matrix factorization. In *ICML*, June 2010.
- Porteous, I., Bart, E., and Welling, M. Multi-HDP: A non parametric Bayesian model for tensor factorization. In *AAAI*, 2008.
- Rennie, J. and Srebro, N. Fast maximum margin matrix factorization for collaborative prediction. In *ICML*, 2005.
- Salakhutdinov, R. and Mnih, A. Bayesian probabilistic matrix factorization using Markov chain Monte Marlo. In *ICML*, 2008.
- Takács, G., Pilászy, I., Németh, B., and Tikk, D. Scalable collaborative filtering approaches for large recommender systems. *JMLR*, 10:623–656, 2009.

## The End

