Model Compression with Generative Adversarial Networks

Model Compression

Motivation: More accurate machine
learning models often demand more com-

putation and memory at test time, mak-

ing them difficult to deploy on CPU- or
memory-constrained devices.

Model compression trains a less ex-
pensive student model to mimic the ex-

pensive teacher model while maintaining
most of the original accuracy.

Problem: The teacher’s training data is
typically reused for compression, leading
to suboptimal performance

Our Contributions

(GAN-assisted model compression
(GAN-MC): We augment the compres-
sion dataset with synthetic data from a

generative adversarial network (GAN).

Deep neural network GAN-MC: On
CIFAR-10 image classification, GAN-MC
consistently improves student test accu-
racy across architectures and losses.
Random Forest GAN-MC: For ran-
dom forest teachers, we demonstrate 25
to 336-tfold reductions in execution and
storage costs with less than 1.2% loss in
test performance across a suite of real-
world tabular datasets.

Compression Score: We introduce a

new measure for evaluating the quality
of GAN-generated datasets and illustrate
1ts advantages over the popular Inception

Score on CIFAR-10.

DNN Compression

Given a compression dataset of n feature
vectors paired with teacher logit vectors,
{(zW, 2W), ., (2™, 20N 1] framed
the compression task as multitask regres-
sion with L? loss,

L(0) = ||g(x:0) — 2|2

g(x; @) is the vector of logits predicted by
the student for feature vector x.

2] introduced an alternative compression
objective function, indexed by a temper-
ature parameter 1 > 0. Specifically, the
student is trained to mimic the annealed
teacher class probabilities,

- exp(z;/T)
42/ T) = > rexp(z/T)

for each class 7 by solving a multitask re-

oression problem with cross-entropy loss,

Lp(0) = —Z]- q;(#/T) log(gq,(9=0)/T)).

Random Forest Compression

Focusing on the common setting of bi-
nary classification with labels in {0, 1},
we propose to train a student regression
random forest to predict a teacher forest’s
outputted probability p of a datapoint x
having the label 1.
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G AN-assisted Model Compression (GAN-MC)

Main ldea

When fresh data is unavailable for model compression, we augment the compression

dataset with synthetic feature vectors from a generative adversarial network (GAN)

designed to approximate the training data distribution.

We use the auxiliary classifier GAN (AC-GAN) of |3].

The generator G produces synthetic feature vectors X ¢ope = G(W, C) from random
noise W and class label C' ~ p,

For each feature vector o, discriminator D predicts the probability of each class label

P(C' | x) and of the data source being real or fake, P(S | x) for S € {real, fake}

Given a training dataset D,qq, the training objectives are the expected conditional
log-likelithood of the correct source and the correct class of a teature vector:

Lsource = ?TLMZ@,QGDM log P(S = real | x) + Ellog P(S = fake | G(W,C)),
Letass = 15,12 (r.0)ep, 108 P(C = ¢ | ¥) + Ellog P(C' | G(W, ()],

[n the adversarial game, the generator G is trained to maximize Lgjgss — Lsource, and

the discriminator D 18 trained to maximize L ogss + Lsoyrce.

Convolutional Neural Networks on CIFAR-10

o
~
¢
¢
¢
i

©
~
&)}
O
(®))]
«
\
\

Test Accuracy
o o
~ ~
N Ul

Test Accuracy

o o
N

o

~

w
o
w

0.72 1

o
N

0.0 0.2 0.4 06 0.8 1.0
Probability of Training on GAN Data, prake

®
]
I
I
]
]
®
I
I
I
I
I
1 1
I
I
]
I
I
¢
0

50 100 150 200 250 300 350 400
Training Epoch for GAN

Figure: GAN-MC student accuracy using

different mixtures of GAN and training

data (pfake = 0 = only training data)

Figure: Effect of GAN quality on
GAN-MC student test accuracy
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original supervised learning task with
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Figure: GAN-MC complements standard
Image augmentation
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Figure: (left) Student accuracy on Higgs 100k; (right) Student error vs. speed-up across tabular datasets

Compression Score

To evaluate the quality of a generated
dataset D relative to a real dataset D,
we define a Compression Score based
on the test accuracy acc(D) of a student
trained for one epoch with compression
set D to mimic a teacher pre-trained on
Dreal:

CompressionScore(D; D,cy)
acc(D) — accmode

acC(Dreqr) — ACCmode
The term accyoge represents the accuracy

obtained by always predicting the most
common class in D,eqr. A higher Com-
pression ocore 1s designed to indicate a
higher quality dataset D.

Compression vs. Inception

Real Data

[nception: 11.2 = 0.1
Compression: 0.994 4= 0.003

Well-trained GAN
i g |

[Inception: 5.80 &= 0.06
Compression: 0.778 &= 0.002

[nception: 5.93 == 0.00
Compression: 0.702 4= 0.002
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