Dividing, Conquering, and Mixing Matrix Factorizations

Lester Mackey ${ }^{\dagger}$

Collaborators: Ameet Talwalkar*, David Weiss ${ }^{\ddagger}$, Michael I. Jordan*
${ }^{\dagger}$ Stanford University * UC Berkeley $\quad \ddagger$ University of Pennsylvania
June 5, 2013

Part I

Divide-Factor-Combine

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

$$
\left[\begin{array}{ccccc}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5
\end{array}\right]
$$

Examples

- Collaborative filtering: How will user i rate movie j ?
- Netflix: 10 million users, 100K DVD titles
- Ranking on the web: Is URL j relevant to user i ?
- Google News: millions of articles, millions of users
- Link prediction: Is user i friends with user j ?
- Facebook: 500 million users

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

$$
\left[\begin{array}{ccccc}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5
\end{array}\right]
$$

State of the art MC algorithms

- Strong estimation guarantees
- Plagued by expensive subroutines (e.g., truncated SVD)

This talk

- Present divide and conquer approaches for scaling up any MC algorithm while maintaining strong estimation guarantees

Exact Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

Noisy Matrix Completion

Goal: Given entries from a matrix $\mathbf{M}=\mathbf{L}_{0}+\mathbb{Z} \in \mathbb{R}^{m \times n}$ where \mathbb{Z} is entrywise noise and \mathbf{L}_{0} has rank $\mathbf{r} \ll m$, n, estimate \mathbf{L}_{0}

- Good news: \mathbf{L}_{0} has $\sim(m+n) r \ll m n$ degrees of freedom

- Factored form: $\mathbf{A B} \mathbf{B}^{\top}$ for $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{n \times r}$
- Bad news: Not all low-rank matrices can be recovered

Question: What can go wrong?

What can go wrong?

Entire column missing

$$
\left[\begin{array}{llllll}
1 & 2 & ? & 3 & \ldots & 4 \\
3 & 5 & ? & 4 & \ldots & 1 \\
2 & 5 & ? & 2 & \ldots & 5
\end{array}\right]
$$

- No hope of recovery!

Solution: Uniform observation model

Assume that the set of s observed entries Ω is drawn uniformly at random:

$$
\Omega \sim \operatorname{Unif}(m, n, s)
$$

What can go wrong?

Bad spread of information

$$
\mathbf{L}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right][1]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Can only recover \mathbf{L} if \mathbf{L}_{11} is observed

Solution: Incoherence with standard basis (Candès and Recht, 2009)

A matrix $\mathbf{L}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(\mathbf{L})=r$ is incoherent if Singular vectors are not too skewed: $\left\{\begin{array}{l}\max _{i}\left\|\mathbf{U U}^{\top} \mathbf{e}_{i}\right\|^{2} \leq \mu r / m \\ \max _{i}\left\|\mathbf{V V}^{\top} \mathbf{e}_{i}\right\|^{2} \leq \mu r / n\end{array}\right.$ and not too cross-correlated: $\left\|\mathbf{U V}^{\top}\right\|_{\infty} \leq \sqrt{\frac{\mu r}{m n}}$

How do we estimate L_{0} ?

First attempt:
$\operatorname{minimize}_{\mathbf{A}} \quad \operatorname{rank}(\mathbf{A})$
subject to $\quad \sum_{(i, j) \in \Omega}\left(\mathbf{A}_{i j}-\mathbf{M}_{i j}\right)^{2} \leq \Delta^{2}$.
Problem: Computationally intractable!
Solution: Solve convex relaxation (Fazel, Hindi, and Boyd, 2001; Candès and Plan, 2010) $\operatorname{minimize}_{\mathbf{A}}\|\mathbf{A}\|_{*}$
subject to $\quad \sum_{(i, j) \in \Omega}\left(\mathbf{A}_{i j}-\mathbf{M}_{i j}\right)^{2} \leq \Delta^{2}$
where $\|\mathbf{A}\|_{*}=\sum_{k} \sigma_{k}(\mathbf{A})$ is the trace/nuclear norm of \mathbf{A}.

Questions:

- Will the nuclear norm heuristic successfully recover L_{0} ?
- Can nuclear norm minimization scale to large MC problems?

Noisy Nuclear Norm Heuristic: Does it work?

Yes, with high probability.

Typical Theorem

If \mathbf{L}_{0} with rank r is incoherent, $s \gtrsim r n \log ^{2}(n)$ entries of $\mathbf{M} \in \mathbb{R}^{m \times n}$ are observed uniformly at random, and $\hat{\mathbf{L}}$ solves the noisy nuclear norm heuristic, then

$$
\left\|\hat{\mathbf{L}}-\mathbf{L}_{0}\right\|_{F} \leq f(m, n) \Delta
$$

with high probability when $\left\|\mathrm{M}-\mathrm{L}_{0}\right\|_{F} \leq \Delta$.

- See Candès and Plan (2010); Mackey, Talwalkar, and Jordan (2011). See also Keshavan, Montanari, and Oh (2010); Negahban and Wainwright (2010)
- Implies exact recovery in the noiseless setting $(\Delta=0)$

Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...

- Standard interior point methods (Candes and Recht, 2009):

$$
\mathrm{O}\left(|\Omega|(m+n)^{3}+|\Omega|^{2}(m+n)^{2}+|\Omega|^{3}\right)
$$

- More efficient, tailored algorithms:
- Singular Value Thresholding (SVT) (Cai, Candès, and Shen, 2010)
- Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009)
- Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)
- All require rank- k truncated SVD on every iteration

Take away: Many provably accurate MC algorithms are too expensive for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm and still retain estimation guarantees?

Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer

(1) Divide M into submatrices.
(2) Complete each submatrix in parallel.
(Combine submatrix estimates to estimate \mathbf{L}_{0}.

Advantages

- Submatrix completion is often much cheaper than completing M
- Multiple submatrix completions can be carried out in parallel
- DFC works with any base MC algorithm
- With the right choice of division and recombination, yields estimation guarantees comparable to those of the base algorithm

DFC-Proj: Partition and Project

(1) Randomly partition \mathbf{M} into t column submatrices $\mathbf{M}=\left[\begin{array}{llll}\mathbf{C}_{1} & \mathbf{C}_{2} & \cdots & \mathbf{C}_{t}\end{array}\right]$ where each $\mathbf{C}_{i} \in \mathbb{R}^{m \times l}$
(2) Complete the submatrices in parallel to obtain

$$
\left[\begin{array}{llll}
\hat{\mathbf{C}}_{1} & \hat{\mathbf{C}}_{2} & \cdots & \hat{\mathbf{C}}_{t}
\end{array}\right]
$$

- Reduced cost: Expect t-fold speed-up per iteration
- Parallel computation: Pay cost of one cheaper MC
(3) Project submatrices onto a single low-dimensional column space
- Estimate column space of \mathbf{L}_{0} with column space of $\hat{\mathbf{C}}_{1}$

$$
\hat{\mathbf{L}}^{\text {proj }}=\hat{\mathbf{C}}_{1} \hat{\mathbf{C}}_{1}^{+}\left[\begin{array}{llll}
\hat{\mathbf{C}}_{1} & \hat{\mathbf{C}}_{2} & \cdots & \hat{\mathbf{C}}_{t}
\end{array}\right]
$$

- Common technique for randomized low-rank approximation (Frieze, Kannan, and Vempala, 1998)
- Minimal cost: $\mathrm{O}\left(m k^{2}+l k^{2}\right)$ where $k=\operatorname{rank}\left(\hat{\mathbf{L}}^{p r o j}\right)$
(4) Ensemble: Project onto column space of each $\hat{\mathbf{C}}_{j}$ and average

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2011)

If \mathbf{L}_{0} with rank r is incoherent and $s=\omega\left(r^{2} n \log ^{2}(n) / \epsilon^{2}\right)$ entries of $\mathbf{M} \in \mathbb{R}^{m \times n}$ are observed uniformly at random, then $l=o(n)$ random columns suffice to have

$$
\left\|\hat{\mathbf{L}}^{\text {proj }}-\mathbf{L}_{0}\right\|_{F} \leq(2+\epsilon) f(m, n) \Delta
$$

with high probability when $\left\|\mathbf{M}-\mathbf{L}_{0}\right\|_{F} \leq \Delta$ and the noisy nuclear norm heuristic is used as a base algorithm.

- Can sample vanishingly small fraction of columns $(l / n \rightarrow 0)$
- Implies exact recovery for noiseless $(\Delta=0)$ setting

DFC Estimation Error

Figure : Estimation error of DFC and base algorithm (APG) with $m=10 K$ and $r=10$.

DFC Speed-up

Figure: Speed-up over base algorithm (APG) for random matrices with $r=0.001 m$ and 4% of entries revealed.

Application: Collaborative filtering

Task: Given a sparsely observed matrix of user-item ratings, predict the unobserved ratings

Challenges

- Full-rank rating matrix
- Noisy, non-uniform observations

The Data

- Netflix Prize Dataset ${ }^{1}$
- 100 million ratings in $\{1, \ldots, 5\}$
- 17,770 movies, 480,189 users
${ }^{1}$ http://www.netflixprize.com/

Application: Collaborative filtering

Method	Netflix	
	RMSE	Time
Base algorithm (APG)	0.8433	2653.1 s
DFC-PROJ-25\%	0.8436	689.5 s
DFC-PROJ-10\%	0.8484	289.7 s
DFC-PROJ-Ens-25\%	0.8411	689.5 s
DFC-PROJ-EnS-10\%	0.8433	289.7 s

Robust Matrix Factorization

Goal: Given a matrix $\mathbf{M}=\mathbf{L}_{0}+\mathrm{S}_{0}+\mathrm{Z}$ where L_{0} is low-rank, S_{0} is sparse, and \mathbb{Z} is entrywise noise, recover \mathbf{L}_{0} (Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candès, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candès, and Ma, 2010)

- S_{0} can be viewed as an outlier/gross corruption matrix
- Ordinary PCA breaks down in this setting
- Harder than MC: outlier locations are unknown
- More expensive than MC: dense, fully observed matrices

Application: Video background modeling

Task

- Each video frame forms one column of matrix M
- Decompose \mathbf{M} into stationary background \mathbf{L}_{0} and moving foreground objects S_{0}

Challenges

- Video is noisy
- Foreground corruption is often clustered, not uniform

Part II

Mixed Membership Matrix Factorization

Matrix Completion

Learning from Pairs

- Given two sets of objects
- Set of users and set of items
- Observe labeled object pairs
- User u gave item j a rating $r_{u j}$ of 5
- Predict labels of unobserved pairs
- How will user u rate item k ?

Examples

- Movie rating prediction in collaborative filtering
- How will user u rate movie j ?
- Click prediction in web search
- Will user u click on URL j ?
- Link prediction in a social network
- Is user u friends with user j ?

Prior Models for Matrix Completion

Latent Factor Modeling / Matrix Factorization

Rennie \& Srebro (2005); DeCoste (2006); Salakhutdinov \& Mnih (2008); Takács et al. (2009); Lawrence \& Urtasun (2009)

- Associate latent factor vector, $\mathbf{a}_{u} \in \mathbb{R}^{D}$, with each user u
- Associate latent factor vector, $\mathbf{b}_{j} \in \mathbb{R}^{D}$, with each item j
- Generate expected rating via inner product

$$
\mathbb{E}\left(\boldsymbol{r}_{u j}\right)=\mathbf{a}_{\boldsymbol{u}} \cdot \mathbf{b}_{j}=3
$$

Prior Models for Matrix Completion

Latent Factor Modeling / Matrix Factorization

Rennie \& Srebro (2005); DeCoste (2006); Salakhutdinov \& Mnih (2008); Takács et al. (2009); Lawrence \& Urtasun (2009)

- Associate latent factor vector, $\mathbf{a}_{u} \in \mathbb{R}^{D}$, with each user u
- Associate latent factor vector, $\mathbf{b}_{j} \in \mathbb{R}^{D}$, with each item j
- Generate expected rating via inner product: $\mathbb{E}\left(r_{u j}\right)=\mathbf{a}_{u} \cdot \mathbf{b}_{j}$

Pro: State-of-the-art predictive performance
Con: Fundamentally static rating mechanism

- Assumes user u rates according to \mathbf{a}_{u}, regardless of context
- In reality, dyadic interactions are heterogeneous
- User's ratings may be influenced by instantaneous mood
- Distinct users may share single account or web browser

Prior Models for Matrix Completion

Mixed Membership Topic Modeling

Airoldi, Blei, Fienberg, and Xing (2008); Porteous, Bart, and Welling (2008)

- Each user u maintains distribution over topics, $\theta_{u}^{U} \in \mathbb{R}^{K^{U}}$
- Each item j maintains distribution over topics, $\theta_{j}^{M} \in \mathbb{R}^{K^{M}}$
- Expected rating $\mathbb{E}\left(r_{u j}\right)$ determined by interaction-specific topics sampled from user and item topic distributions

Topic $z_{u j}^{M}$

$$
\mathbb{E}\left(r_{u j}\right)=f\left(z_{u j}^{U}, z_{u j}^{M}\right)
$$

Prior Models for Matrix Completion

Mixed Membership Topic Modeling

Airoldi, Blei, Fienberg, and Xing (2008); Porteous, Bart, and Welling (2008)

- Each user u maintains distribution over topics, $\theta_{u}^{U} \in \mathbb{R}^{K^{U}}$
- Each item j maintains distribution over topics, $\theta_{j}^{M} \in \mathbb{R}^{K^{M}}$
- Expected rating $\mathbb{E}\left(r_{u j}\right)$ determined by interaction-specific topics sampled from user and item topic distributions

Pro: Context-sensitive clustering

- User moods: in the mood for comedy vs. romance
- Item contexts: opening night vs. in high school classroom
- Multiple raters per account: parent vs. child

Con: Purely groupwise interactions

- Assumes user and item interact only through their topics
- Relatively poor predictive performance

Mixed Membership Matrix Factorization ($\mathrm{M}^{3} \mathrm{~F}$)

Goal: Leverage the complementary strengths of latent factor models and mixed membership models for improved matrix completion

General M ${ }^{3}$ F Framework (Mackey, Weiss, and Jordan, 2010):

- Users and items endowed both with latent factor vectors (\mathbf{a}_{u} and \mathbf{b}_{j}) and with topic distribution parameters (θ_{u}^{U} and θ_{j}^{M})
- To rate an item
- User u draws topic i from θ_{u}^{U}
- Item j draws topic k from θ_{j}^{M}
- Expected rating

$$
\mathbb{E}\left(r_{u j}\right)=\underbrace{\mathbf{a}_{u} \cdot \mathbf{b}_{j}}_{\text {static base rating }}+\underbrace{\beta_{u j}^{i k}}_{\text {context-sensitive bias }}
$$

- $\mathrm{M}^{3} \mathrm{~F}$ models differ in specification of $\beta_{u j}^{i k}$
- Fully Bayesian framework

Mixed Membership Matrix Factorization ($\mathrm{M}^{3} \mathrm{~F}$)

Goal: Leverage the complementary strengths of latent factor models and mixed membership models for improved matrix completion

General \mathbf{M}^{3} F Framework (Mackey, Weiss, and Jordan, 2010):

- $\mathrm{M}^{3} \mathrm{~F}$ models differ in specification of $\beta_{u j}^{i k}$

Specific $\mathbf{M}^{3} \mathbf{F}$ Models:

- M^{3} F Topic-Indexed Bias Model
- M^{3} F Topic-Indexed Factor Model

$M^{3} F$ Models

$\mathrm{M}^{3}{ }^{\mathrm{F}}$ Topic-Indexed Bias Model ($\mathrm{M}^{3} \mathrm{~F}$-TIB)

- Contextual bias decomposes into latent user and latent item bias

$$
\beta_{u j}^{i k}=c_{u}^{k}+d_{j}^{i}
$$

- Item bias d_{j}^{i} influenced by user topic i
- Group predisposition toward liking/disliking item j
- Captures polarizing Napoleon Dynamite effect
- Certain movies provoke strongly differing reactions from otherwise similar users
- User bias c_{u}^{k} influenced by item topic k
- Predisposition of u toward liking/disliking item group

$M^{3} \mathrm{~F}$ Inference and Prediction

Goal: Predict unobserved labels given labeled pairs

- Posterior inference over latent topics and parameters intractable
- Use block Gibbs sampling with closed form conditionals
- User parameters sampled in parallel (same for items)
- Interaction-specific topics sampled in parallel

$M^{3} F$ Inference and Prediction

Goal: Predict unobserved labels given labeled pairs

- Bayes optimal prediction under root mean squared error (RMSE)

Experimental Evaluation

The Setup

- Evaluate rating prediction performance on Netflix Prize Dataset ${ }^{2}$
- 100 million ratings in $\{1, \ldots, 5\}$
- 17,770 movies, 480,189 users
- RMSE as primary evaluation metric
- Compare to state-of-the-art latent factor model
- Bayesian Probabilistic Matrix Factorization ${ }^{3}$ (BPMF)
- $\mathrm{M}^{3} \mathrm{~F}$ reduces to BPMF when no topics are sampled
- Matlab/MEX implementation on dual quad-core CPUs

[^0]
Netflix Prize Data

Question: How does performance vary with latent dimensionality?

- Contrast $\mathrm{M}^{3} \mathrm{~F}$-TIB $\left(K^{U}, K^{M}\right)=(4,1)$ with BPMF
- 500 Gibbs samples for $\mathrm{M}^{3} \mathrm{~F}$-TIB and BPMF

Method	RMSE	Time
BPMF/15	0.9121	27.8 s
TIB $/ 15$	$\mathbf{0 . 9 0 9 0}$	46.3 s
BPMF $/ 30$	0.9047	38.6 s
TIB $/ 30$	$\mathbf{0 . 9 0 1 5}$	56.9 s
BPMF/40	0.9027	48.3 s
TIB/40	$\mathbf{0 . 8 9 9 0}$	70.5 s
BPMF/60	0.9002	94.3 s
TIB/60	$\mathbf{0 . 8 9 6 2}$	97.0 s
BPMF $/ 120$	0.8956	273.7 s
TIB $/ 120$	$\mathbf{0 . 8 9 3 4}$	285.2 s
BPMF $/ 240$	0.8938	1152.0 s
TIB $/ 240$	$\mathbf{0 . 8 9 2 9}$	1158.2 s

Stratification

Question: Where are improvements over BPMF being realized?

Figure : RMSE improvements over BPMF/40 on the Netflix Prize as a function of movie or user rating count. Left: Each bin represents $1 / 6$ of the movie base. Right: Each bin represents $1 / 8$ of the user base.

The Napoleon Dynamite Effect

Question: Do $\mathrm{M}^{3} \mathrm{~F}$ models capture polarization effects?
Table: Top 200 Movies from the Netflix Prize dataset with the highest and lowest cross-topic variance in $\mathbb{E}\left(d_{j}^{i} \mid \mathbf{r}^{(\mathrm{v})}\right)$.

Movie Title	$\mathbb{E}\left(d_{j}^{i} \mid \mathbf{r}^{(\mathrm{v})}\right)$
Napoleon Dynamite	-0.11 ± 0.93
Fahrenheit 9/11	-0.06 ± 0.90
Chicago	-0.12 ± 0.78
The Village	-0.14 ± 0.71
Lost in Translation	-0.02 ± 0.70
LotR: The Fellowship of the Ring	0.15 ± 0.00
LotR: The Two Towers	0.18 ± 0.00
LotR: The Return of the King	0.24 ± 0.00
Star Wars: Episode V	0.35 ± 0.00
Raiders of the Lost Ark	0.29 ± 0.00

Conclusions

$\mathrm{M}^{3} \mathrm{~F}$ framework for matrix completion

- Strong predictive performance and static specificity of latent factor models
- Clustered context-sensitivity of mixed membership topic models
- Outperforms pure latent factor modeling while fitting fewer parameters
- Greatest improvements for high-variance, sparsely rated items

Future work

- Modeling user choice: missingness is informative
- Nonparametric priors on topic parameters
- Alternative approaches to inference

The End

Thanks!

References I

Airoldi, E., Blei, D., Fienberg, S., and Xing, E. Mixed membership stochastic blockmodels. JMLR, 9:1981-2014, 2008.
Cai, J. F., Candès, E. J., and Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4), 2010.
Candès, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9 (6):717-772, 2009.

Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? Journal of the ACM, 58(3):1-37, 2011.
Candès, E.J. and Plan, Y. Matrix completion with noise. Proceedings of the IEEE, 98(6):925-936, 2010.
Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. Sparse and low-rank matrix decompositions. In Allerton Conference on Communication, Control, and Computing, 2009.

DeCoste, D. Collaborative prediction using ensembles of maximum margin matrix factorizations. In ICML, 2006.
Fazel, M., Hindi, H., and Boyd, S. P. A rank minimization heuristic with application to minimum order system approximation. In In Proceedings of the 2001 American Control Conference, pp. 4734-4739, 2001.

Frieze, A., Kannan, R., and Vempala, S. Fast Monte Carlo algorithms for finding low-rank approximations. In Foundations of Computer Science, 1998.

Keshavan, R. H., Montanari, A., and Oh, S. Matrix completion from noisy entries. Journal of Machine Learning Research, 99: 2057-2078, 2010.

Lawrence, N.D. and Urtasun, R. Non-linear matrix factorization with Gaussian processes. In ICML, 2009.
Lin, Z., Chen, M., Wu, L., and Ma, Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215, 2009.

Mackey, L., Weiss, D., and Jordan, M. I. Mixed membership matrix factorization. In ICML, June 2010.
Mackey, L., Talwalkar, A., and Jordan, M. I. Divide-and-conquer matrix factorization. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F. C. N., and Weinberger, K. Q. (eds.), Advances in Neural Information Processing Systems 24, pp. 1134-1142. 2011.

Negahban, S. and Wainwright, M. J. Restricted strong convexity and weighted matrix completion: Optimal bounds with noise. arXiv:1009.2118v2[cs.IT], 2010.

References II

Porteous, I., Bart, E., and Welling, M. Multi-HDP: A non parametric Bayesian model for tensor factorization. In AAAI, 2008. Rennie, J. and Srebro, N. Fast maximum margin matrix factorization for collaborative prediction. In ICML, 2005.

Salakhutdinov, R. and Mnih, A. Bayesian probabilistic matrix factorization using Markov chain Monte Marlo. In ICML, 2008.
Takács, G., Pilászy, I., Németh, B., and Tikk, D. Scalable collaborative filtering approaches for large recommender systems. JMLR, 10:623-656, 2009.

Toh, K. and Yun, S. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pacific Journal of Optimization, 6(3):615-640, 2010.

Zhou, Z., Li, X., Wright, J., Candès, E. J., and Ma, Y. Stable principal component pursuit. In IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1518-1522, 2010.

[^0]: ${ }^{2}$ http://www.netflixprize.com/
 ${ }^{3}$ Salakhutdinov and Mnih (2008)

