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Part I

Divide-Factor-Combine
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Introduction

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries ? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5

→
 2 3 1 . . . 4

3 4 5 . . . 1
2 5 3 . . . 5


Examples

Collaborative filtering: How will user i rate movie j?

Netflix: 10 million users, 100K DVD titles

Ranking on the web: Is URL j relevant to user i?

Google News: millions of articles, millions of users

Link prediction: Is user i friends with user j?

Facebook: 500 million users
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Introduction

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries ? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5

→
 2 3 1 . . . 4

3 4 5 . . . 1
2 5 3 . . . 5


State of the art MC algorithms

Strong estimation guarantees

Plagued by expensive subroutines (e.g., truncated SVD)

This talk

Present divide and conquer approaches for scaling up any MC
algorithm while maintaining strong estimation guarantees
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Matrix Completion Background

Exact Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries
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Matrix Completion Background

Noisy Matrix Completion

Goal: Given entries from a matrix M = L0 + Z ∈ Rm×n where Z is
entrywise noise and L0 has rank r� m,n, estimate L0

Good news: L0 has ∼ (m+ n)r � mn degrees of freedom

L0 = A

B>

Factored form: AB> for A ∈ Rm×r and B ∈ Rn×r

Bad news: Not all low-rank matrices can be recovered

Question: What can go wrong?
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Matrix Completion Background

What can go wrong?

Entire column missing 1 2 ? 3 . . . 4
3 5 ? 4 . . . 1
2 5 ? 2 . . . 5


No hope of recovery!

Solution: Uniform observation model

Assume that the set of s observed entries Ω is drawn uniformly at
random:

Ω ∼ Unif(m,n, s)
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Matrix Completion Background

What can go wrong?

Bad spread of information

L =

1
0
0

[1][1 0 0
]

=

1 0 0
0 0 0
0 0 0


Can only recover L if L11 is observed

Solution: Incoherence with standard basis (Candès and Recht, 2009)

A matrix L = UΣV> ∈ Rm×n with rank(L) = r is incoherent if

Singular vectors are not too skewed:

{
maxi ‖UU>ei‖2 ≤ µr/m

maxi ‖VV>ei‖2 ≤ µr/n

and not too cross-correlated:‖UV>‖∞ ≤
√

µr

mn

Mackey (Stanford) Dividing, Conquering, and Mixing MF June 5, 2013 8 / 39



Matrix Completion Background

How do we estimate L0?

First attempt:

minimizeA rank(A)

subject to
∑

(i,j)∈Ω(Aij −Mij)
2 ≤ ∆2.

Problem: Computationally intractable!

Solution: Solve convex relaxation (Fazel, Hindi, and Boyd, 2001; Candès and Plan, 2010)

minimizeA ‖A‖∗
subject to

∑
(i,j)∈Ω(Aij −Mij)

2 ≤ ∆2

where ‖A‖∗ =
∑

k σk(A) is the trace/nuclear norm of A.

Questions:

Will the nuclear norm heuristic successfully recover L0?

Can nuclear norm minimization scale to large MC problems?

Mackey (Stanford) Dividing, Conquering, and Mixing MF June 5, 2013 9 / 39



Matrix Completion Background

Noisy Nuclear Norm Heuristic: Does it work?

Yes, with high probability.

Typical Theorem

If L0 with rank r is incoherent, s & rn log2(n) entries of M ∈ Rm×n

are observed uniformly at random, and L̂ solves the noisy nuclear
norm heuristic, then

‖L̂− L0‖F ≤ f(m,n)∆

with high probability when ‖M− L0‖F ≤ ∆.

See Candès and Plan (2010); Mackey, Talwalkar, and Jordan
(2011). See also Keshavan, Montanari, and Oh (2010);
Negahban and Wainwright (2010)

Implies exact recovery in the noiseless setting (∆ = 0)
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Matrix Completion Background

Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...

Standard interior point methods (Candès and Recht, 2009):
O(|Ω|(m+ n)3 + |Ω|2(m+ n)2 + |Ω|3)

More efficient, tailored algorithms:

Singular Value Thresholding (SVT) (Cai, Candès, and Shen, 2010)

Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009)

Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)

All require rank-k truncated SVD on every iteration

Take away: Many provably accurate MC algorithms are too
expensive for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm
and still retain estimation guarantees?
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Matrix Completion DFC

Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer

1 Divide M into submatrices.

2 Complete each submatrix in parallel.

3 Combine submatrix estimates to estimate L0.

Advantages

Submatrix completion is often much cheaper than completing M

Multiple submatrix completions can be carried out in parallel

DFC works with any base MC algorithm

With the right choice of division and recombination, yields
estimation guarantees comparable to those of the base algorithm
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Matrix Completion DFC

DFC-Proj: Partition and Project

1 Randomly partition M into t column submatrices
M =

[
C1 C2 · · · Ct

]
where each Ci ∈ Rm×l

2 Complete the submatrices in parallel to obtain[
Ĉ1 Ĉ2 · · · Ĉt

]
Reduced cost: Expect t-fold speed-up per iteration
Parallel computation: Pay cost of one cheaper MC

3 Project submatrices onto a single low-dimensional column space
Estimate column space of L0 with column space of Ĉ1

L̂proj = Ĉ1Ĉ
+
1

[
Ĉ1 Ĉ2 · · · Ĉt

]
Common technique for randomized low-rank approximation
(Frieze, Kannan, and Vempala, 1998)

Minimal cost: O(mk2 + lk2) where k = rank(L̂proj)

4 Ensemble: Project onto column space of each Ĉj and average
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Matrix Completion DFC

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2011)

If L0 with rank r is incoherent and s = ω(r2n log2(n)/ε2) entries of
M ∈ Rm×n are observed uniformly at random, then l = o(n) random
columns suffice to have

‖L̂proj − L0‖F ≤ (2 + ε)f(m,n)∆

with high probability when ‖M− L0‖F ≤ ∆ and the noisy nuclear
norm heuristic is used as a base algorithm.

Can sample vanishingly small fraction of columns (l/n→ 0)

Implies exact recovery for noiseless (∆ = 0) setting
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Matrix Completion Simulations

DFC Estimation Error
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Figure : Estimation error of DFC and base algorithm (APG) with
m = 10K and r = 10.
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Matrix Completion Simulations

DFC Speed-up
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Figure : Speed-up over base algorithm (APG) for random matrices with
r = 0.001m and 4% of entries revealed.
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Matrix Completion CF

Application: Collaborative filtering

Task: Given a sparsely observed matrix of user-item ratings, predict
the unobserved ratings

Challenges

Full-rank rating matrix

Noisy, non-uniform observations

The Data

Netflix Prize Dataset1

100 million ratings in {1, . . . , 5}
17,770 movies, 480,189 users

1http://www.netflixprize.com/
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Matrix Completion CF

Application: Collaborative filtering

Method
Netflix

RMSE Time

Base algorithm (APG) 0.8433 2653.1s

DFC-Proj-25% 0.8436 689.5s
DFC-Proj-10% 0.8484 289.7s
DFC-Proj-Ens-25% 0.8411 689.5s
DFC-Proj-Ens-10% 0.8433 289.7s
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RMF Background

Robust Matrix Factorization

Goal: Given a matrix M = L0 + S0 + Z where L0 is low-rank, S0 is
sparse, and Z is entrywise noise, recover L0 (Chandrasekaran, Sanghavi, Parrilo, and

Willsky, 2009; Candès, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candès, and Ma, 2010)

M L0 S0

S0 can be viewed as an outlier/gross corruption matrix

Ordinary PCA breaks down in this setting

Harder than MC: outlier locations are unknown

More expensive than MC: dense, fully observed matrices
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RMF Video

Application: Video background modeling

Task

Each video frame forms one column of matrix M

Decompose M into stationary background L0 and moving
foreground objects S0

M L0 S0

Challenges

Video is noisy

Foreground corruption is often clustered, not uniform
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Part II

Mixed Membership Matrix
Factorization
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Background Matrix Completion

Matrix Completion

Learning from Pairs

Given two sets of objects

Set of users and set of items

Observe labeled object pairs

User u gave item j a rating ruj of 5

Predict labels of unobserved pairs

How will user u rate item k?

Examples
Movie rating prediction in collaborative filtering

How will user u rate movie j?
Click prediction in web search

Will user u click on URL j?
Link prediction in a social network

Is user u friends with user j?
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Background Prior Models

Prior Models for Matrix Completion

Latent Factor Modeling / Matrix Factorization
Rennie & Srebro (2005); DeCoste (2006); Salakhutdinov & Mnih (2008); Takács et al. (2009); Lawrence & Urtasun (2009)

Associate latent factor vector, au ∈ RD, with each user u
Associate latent factor vector, bj ∈ RD, with each item j
Generate expected rating via inner product

Mackey (Stanford) Dividing, Conquering, and Mixing MF June 5, 2013 23 / 39



Background Prior Models

Prior Models for Matrix Completion

Latent Factor Modeling / Matrix Factorization
Rennie & Srebro (2005); DeCoste (2006); Salakhutdinov & Mnih (2008); Takács et al. (2009); Lawrence & Urtasun (2009)

Associate latent factor vector, au ∈ RD, with each user u
Associate latent factor vector, bj ∈ RD, with each item j
Generate expected rating via inner product: E(ruj) = au · bj

Pro: State-of-the-art predictive performance

Con: Fundamentally static rating mechanism

Assumes user u rates according to au, regardless of context

In reality, dyadic interactions are heterogeneous

User’s ratings may be influenced by instantaneous mood
Distinct users may share single account or web browser

Mackey (Stanford) Dividing, Conquering, and Mixing MF June 5, 2013 24 / 39



Background Prior Models

Prior Models for Matrix Completion

Mixed Membership Topic Modeling
Airoldi, Blei, Fienberg, and Xing (2008); Porteous, Bart, and Welling (2008)

Each user u maintains distribution over topics, θUu ∈ RKU

Each item j maintains distribution over topics, θMj ∈ RKM

Expected rating E(ruj) determined by interaction-specific topics
sampled from user and item topic distributions
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Background Prior Models

Prior Models for Matrix Completion

Mixed Membership Topic Modeling
Airoldi, Blei, Fienberg, and Xing (2008); Porteous, Bart, and Welling (2008)

Each user u maintains distribution over topics, θUu ∈ RKU

Each item j maintains distribution over topics, θMj ∈ RKM

Expected rating E(ruj) determined by interaction-specific topics
sampled from user and item topic distributions

Pro: Context-sensitive clustering

User moods: in the mood for comedy vs. romance

Item contexts: opening night vs. in high school classroom

Multiple raters per account: parent vs. child

Con: Purely groupwise interactions

Assumes user and item interact only through their topics

Relatively poor predictive performance
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M3F Framework

Mixed Membership Matrix Factorization (M3F)

Goal: Leverage the complementary strengths of latent factor models
and mixed membership models for improved matrix completion

General M3F Framework (Mackey, Weiss, and Jordan, 2010):

Users and items endowed both with latent factor vectors (au and
bj) and with topic distribution parameters (θUu and θMj )

To rate an item

User u draws topic i from θUu
Item j draws topic k from θMj
Expected rating

E(ruj) = au · bj︸ ︷︷ ︸
static base rating

+ βik
uj︸︷︷︸

context-sensitive bias

M3F models differ in specification of βik
uj

Fully Bayesian framework
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M3F Framework

Mixed Membership Matrix Factorization (M3F)

Goal: Leverage the complementary strengths of latent factor models
and mixed membership models for improved matrix completion

General M3F Framework (Mackey, Weiss, and Jordan, 2010):

M3F models differ in specification of βik
uj

Specific M3F Models:

M3F Topic-Indexed Bias Model

M3F Topic-Indexed Factor Model
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M3F Framework

M3F Models

M3F Topic-Indexed Bias Model (M3F-TIB)

Contextual bias decomposes into latent user and latent item bias

βik
uj = cku + dij

Item bias dij influenced by user topic i

Group predisposition toward liking/disliking item j
Captures polarizing Napoleon Dynamite effect

Certain movies provoke strongly differing reactions from
otherwise similar users

User bias cku influenced by item topic k

Predisposition of u toward liking/disliking item group
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M3F Framework

M3F Inference and Prediction

Goal: Predict unobserved labels given labeled pairs

Posterior inference over latent topics and parameters intractable

Use block Gibbs sampling with closed form conditionals

User parameters sampled in parallel (same for items)
Interaction-specific topics sampled in parallel
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M3F Inference

M3F Inference and Prediction

Goal: Predict unobserved labels given labeled pairs

Bayes optimal prediction under root mean squared error (RMSE)

M3F-TIB:
1

T

T∑
t=1

a(t)
u · b(t)

j +
KM∑
k=1

ck(t)
u θ

M(t)
jk +

KU∑
i=1

d
i(t)
j θ

U(t)
ui
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Experiments

Experimental Evaluation

The Setup

Evaluate rating prediction performance on Netflix Prize Dataset2

100 million ratings in {1, . . . , 5}
17,770 movies, 480,189 users
RMSE as primary evaluation metric

Compare to state-of-the-art latent factor model
Bayesian Probabilistic Matrix Factorization3 (BPMF)

M3F reduces to BPMF when no topics are sampled

Matlab/MEX implementation on dual quad-core CPUs

2http://www.netflixprize.com/
3Salakhutdinov and Mnih (2008)
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Experiments Netflix

Netflix Prize Data

Question: How does performance vary with latent dimensionality?

Contrast M3F-TIB (KU , KM) = (4, 1) with BPMF

500 Gibbs samples for M3F-TIB and BPMF

Method RMSE Time
BPMF/15 0.9121 27.8s
TIB/15 0.9090 46.3s
BPMF/30 0.9047 38.6s
TIB/30 0.9015 56.9s
BPMF/40 0.9027 48.3s
TIB/40 0.8990 70.5s
BPMF/60 0.9002 94.3s
TIB/60 0.8962 97.0s
BPMF/120 0.8956 273.7s
TIB/120 0.8934 285.2s
BPMF/240 0.8938 1152.0s
TIB/240 0.8929 1158.2s
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Experiments Netflix

Stratification

Question: Where are improvements over BPMF being realized?

Figure : RMSE improvements over BPMF/40 on the Netflix Prize as a
function of movie or user rating count. Left: Each bin represents 1/6 of
the movie base. Right: Each bin represents 1/8 of the user base.
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Experiments Netflix

The Napoleon Dynamite Effect

Question: Do M3F models capture polarization effects?

Table : Top 200 Movies from the Netflix Prize dataset with the highest
and lowest cross-topic variance in E(dij |r(v)).

Movie Title E(dij |r(v))

Napoleon Dynamite -0.11 ± 0.93
Fahrenheit 9/11 -0.06 ± 0.90
Chicago -0.12 ± 0.78
The Village -0.14 ± 0.71
Lost in Translation -0.02 ± 0.70

LotR: The Fellowship of the Ring 0.15 ± 0.00
LotR: The Two Towers 0.18 ± 0.00
LotR: The Return of the King 0.24 ± 0.00
Star Wars: Episode V 0.35 ± 0.00
Raiders of the Lost Ark 0.29 ± 0.00
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Conclusions

Conclusions

M3F framework for matrix completion

Strong predictive performance and static specificity of latent
factor models

Clustered context-sensitivity of mixed membership topic models

Outperforms pure latent factor modeling while fitting fewer
parameters

Greatest improvements for high-variance, sparsely rated items

Future work

Modeling user choice: missingness is informative

Nonparametric priors on topic parameters

Alternative approaches to inference
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Conclusions

The End

Thanks!

PΩ(C2)PΩ(C1)PΩ(M) Ĉ1 Ĉ2 L̂proj

Divide Factor Combine
. . . . . .

PΩ(Ct) Ĉt

(Project)
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