Divide-and-Conquer Matrix Factorization

Lester Mackey ${ }^{\dagger}$

Collaborators:
Ameet Talwalkar
Michael I. Jordan ${ }^{\dagger \dagger}$
${ }^{\dagger}$ Stanford University \ddagger UCLA $\dagger \dagger$ UC Berkeley

December 14, 2015

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

$$
\left[\begin{array}{ccccc}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5
\end{array}\right]
$$

Examples

- Collaborative filtering: How will user i rate movie j ?
- Netflix: 40 million users, 200K movies and television shows
- Ranking on the web: Is URL j relevant to user i ?
- Google News: millions of articles, 1 billion users
- Link prediction: Is user i friends with user j ?
- Facebook: 1.5 billion users

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

$$
\left[\begin{array}{ccccc}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
2 & 3 & 1 & \ldots & 4 \\
3 & 4 & 5 & \ldots & 1 \\
2 & 5 & 3 & \ldots & 5
\end{array}\right]
$$

State of the art MC algorithms

- Strong estimation guarantees
- Plagued by expensive subroutines (e.g., truncated SVD)

This talk

- Present divide and conquer approaches for scaling up any MC algorithm while maintaining strong estimation guarantees

Exact Matrix Completion

Goal: Estimate a matrix $\mathbf{L}_{0} \in \mathbb{R}^{m \times n}$ given a subset of its entries

Noisy Matrix Completion

Goal: Given entries from a matrix $\mathbf{M}=\mathbf{L}_{0}+\mathbb{Z} \in \mathbb{R}^{m \times n}$ where \mathbb{Z} is entrywise noise and \mathbf{L}_{0} has rank $\mathbf{r} \ll m$, n, estimate \mathbf{L}_{0}

- Good news: \mathbf{L}_{0} has $\sim(m+n) r \ll m n$ degrees of freedom

- Factored form: $\mathbf{A B}{ }^{\top}$ for $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{n \times r}$
- Bad news: Not all low-rank matrices can be recovered

Question: What can go wrong?

What can go wrong?

Entire column missing

$$
\left[\begin{array}{llllll}
1 & 2 & ? & 3 & \ldots & 4 \\
3 & 5 & ? & 4 & \ldots & 1 \\
2 & 5 & ? & 2 & \ldots & 5
\end{array}\right]
$$

- No hope of recovery!

Solution: Uniform observation model

Assume that the set of s observed entries Ω is drawn uniformly at random:

$$
\Omega \sim \operatorname{Unif}(m, n, s)
$$

What can go wrong?

Bad spread of information

$$
\mathbf{L}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{lll}
1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Can only recover \mathbf{L} if \mathbf{L}_{11} is observed

Solution: Incoherence with standard basis (Candès and Recht, 2009)

A matrix $\mathbf{L}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(\mathbf{L})=r$ is incoherent if
Singular vectors are not too skewed: $\left\{\begin{array}{l}\max _{i}\left\|\mathbf{U U}^{\top} \mathbf{e}_{i}\right\|^{2} \leq \mu r / m \\ \max _{i}\left\|\mathbf{V V}^{\top} \mathbf{e}_{i}\right\|^{2} \leq \mu r / n\end{array}\right.$

$$
\text { and not too cross-correlated: }\left\|\mathbf{U V}^{\top}\right\|_{\infty} \leq \sqrt{\frac{\mu r}{m n}}
$$

(In this literature, it's good to be incoherent)

How do we estimate L_{0} ?

First attempt:
$\operatorname{minimize}_{\mathbf{A}} \quad \operatorname{rank}(\mathbf{A})$
subject to $\quad \sum_{(i, j) \in \Omega}\left(\mathbf{A}_{i j}-\mathbf{M}_{i j}\right)^{2} \leq \Delta^{2}$.
Problem: Computationally intractable!
Solution: Solve convex relaxation (Fazel, Hindi, and Boyd, 2001; Candès and Plan, 2010) $\operatorname{minimize}_{\mathbf{A}}\|\mathbf{A}\|_{*}$
subject to $\quad \sum_{(i, j) \in \Omega}\left(\mathbf{A}_{i j}-\mathbf{M}_{i j}\right)^{2} \leq \Delta^{2}$
where $\|\mathbf{A}\|_{*}=\sum_{k} \sigma_{k}(\mathbf{A})$ is the trace/nuclear norm of \mathbf{A}.

Questions:

- Will the nuclear norm heuristic successfully recover L_{0} ?
- Can nuclear norm minimization scale to large MC problems?

Noisy Nuclear Norm Heuristic: Does it work?

Yes, with high probability.

Typical Theorem

If \mathbf{L}_{0} with rank r is incoherent, $s \gtrsim r n \log ^{2}(n)$ entries of $\mathbf{M} \in \mathbb{R}^{m \times n}$ are observed uniformly at random, and $\hat{\mathbf{L}}$ solves the noisy nuclear norm heuristic, then

$$
\left\|\hat{\mathbf{L}}-\mathbf{L}_{0}\right\|_{F} \leq f(m, n) \Delta
$$

with high probability when $\left\|\mathrm{M}-\mathrm{L}_{0}\right\|_{F} \leq \Delta$.

- See Candès and Plan (2010); Mackey, Talwalkar, and Jordan (2014b); Keshavan, Montanari, and Oh (2010); Negahban and Wainwright (2010)
- Implies exact recovery in the noiseless setting $(\Delta=0)$

Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...

- Standard interior point methods (Candes and Recht, 2009):

$$
\mathrm{O}\left(|\Omega|(m+n)^{3}+|\Omega|^{2}(m+n)^{2}+|\Omega|^{3}\right)
$$

- More efficient, tailored algorithms:
- Singular Value Thresholding (SVT) (Cai, Candès, and Shen, 2010)
- Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009a)
- Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)
- All require rank- k truncated SVD on every iteration

Take away: These provably accurate MC algorithms are too expensive for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm and still retain estimation guarantees?

Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer

(1) Divide M into submatrices.
(2) Factor each submatrix in parallel.
(c) Combine submatrix estimates to estimate L_{0}.

Advantages

- Submatrix completion is often much cheaper than completing M
- Multiple submatrix completions can be carried out in parallel
- DFC works with any base MC algorithm
- With the right choice of division and recombination, yields estimation guarantees comparable to those of the base algorithm

DFC-Proj: Partition and Project

(1) Randomly partition \mathbf{M} into t column submatrices $\mathbf{M}=\left[\begin{array}{llll}\mathbf{C}_{1} & \mathbf{C}_{2} & \cdots & \mathbf{C}_{t}\end{array}\right]$ where each $\mathbf{C}_{i} \in \mathbb{R}^{m \times l}$
(2) Complete the submatrices in parallel to obtain

$$
\left[\begin{array}{llll}
\hat{\mathbf{C}}_{1} & \hat{\mathbf{C}}_{2} & \cdots & \hat{\mathbf{C}}_{t}
\end{array}\right]
$$

- Reduced cost: Expect t-fold speed-up per iteration
- Parallel computation: Pay cost of one cheaper MC
(3) Project submatrices onto a single low-dimensional column space
- Estimate column space of \mathbf{L}_{0} with column space of $\hat{\mathbf{C}}_{1}$

$$
\hat{\mathbf{L}}^{\text {proj }}=\hat{\mathbf{C}}_{1} \hat{\mathbf{C}}_{1}^{+}\left[\begin{array}{llll}
\hat{\mathbf{C}}_{1} & \hat{\mathbf{C}}_{2} & \cdots & \hat{\mathbf{C}}_{t}
\end{array}\right]
$$

- Common technique for randomized low-rank approximation (Frieze, Kannan, and Vempala, 1998)
- Minimal cost: $\mathrm{O}\left(m k^{2}+l k^{2}\right)$ where $k=\operatorname{rank}\left(\hat{\mathbf{L}}^{p r o j}\right)$
(4) Ensemble: Project onto column space of each $\hat{\mathbf{C}}_{j}$ and average

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2014b)

If \mathbf{L}_{0} with rank r is incoherent and $s=\omega\left(r^{2} n \log ^{2}(n) / \epsilon^{2}\right)$ entries of $\mathbf{M} \in \mathbb{R}^{m \times n}$ are observed uniformly at random, then $l=o(n)$ random columns suffice to have

$$
\left\|\hat{\mathbf{L}}^{\text {proj }}-\mathbf{L}_{0}\right\|_{F} \leq(2+\epsilon) f(m, n) \Delta
$$

with high probability when $\left\|\mathbf{M}-\mathbf{L}_{0}\right\|_{F} \leq \Delta$ and the noisy nuclear norm heuristic is used as a base algorithm.

- Can sample vanishingly small fraction of columns $(l / n \rightarrow 0)$
- Implies exact recovery for noiseless $(\Delta=0)$ setting
- Analysis streamlined by matrix Bernstein inequality

DFC: Does it work?

Yes, with high probability.

Proof Ideas:

(1) If L_{0} is incoherent (has good spread of information), its partitioned submatrices are incoherent w.h.p.
(2) Each submatrix has sufficiently many observed entries w.h.p.
\Rightarrow Submatrix completion succeeds
(3) Random submatrix captures the full column space of L_{0} w.h.p.

- Analysis builds on randomized ℓ_{2} regression work of Drineas, Mahoney, and Muthukrishnan (2008)
\Rightarrow Column projection succeeds

DFC Noisy Recovery Error

Figure : Recovery error of DFC relative to base algorithm (APG) with $m=10 \mathrm{~K}$ and $r=10$.

DFC Speed-up

Figure: Speed-up over base algorithm (APG) for random matrices with $r=0.001 m$ and 4% of entries revealed.

Application: Collaborative filtering

Task: Given a sparsely observed matrix of user-item ratings, predict the unobserved ratings

Issues

- Full-rank rating matrix
- Noisy, non-uniform observations

The Data

- Netflix Prize Dataset ${ }^{1}$
- 100 million ratings in $\{1, \ldots, 5\}$
- 17,770 movies, 480,189 users
${ }^{1}$ http://www.netflixprize.com/

Application: Collaborative filtering

Task: Predict unobserved user-item ratings

Method	Netflix	
	RMSE	Time
APG	0.8433	2653.1 s
DFC-Proj-25\%	0.8436	689.5 s
DFC-Proj-10\%	0.8484	289.7 s
DFC-Proj-Ens-25\%	0.8411	689.5 s
DFC-Proj-Ens-10\%	0.8433	289.7 s

Robust Matrix Factorization

Goal: Given a matrix $\mathbf{M}=\mathbf{L}_{0}+\mathrm{S}_{0}+\mathbb{Z}$ where L_{0} is low-rank, S_{0} is sparse, and \mathbb{Z} is entrywise noise, recover \mathbf{L}_{0} (Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candès, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candès, and Ma, 2010)

Examples:

- Background modeling/foreground activity detection

S

(Candès, Li, Ma, and Wright, 2011)

Robust Matrix Factorization

Goal: Given a matrix $\mathbf{M}=\mathbf{L}_{0}+\mathrm{S}_{0}+\mathrm{Z}$ where L_{0} is low-rank, S_{0} is sparse, and \mathbb{Z} is entrywise noise, recover \mathbf{L}_{0} (Chandrasekaran, Sanghavi, Parrilo, and Willsky, 2009; Candès, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candès, and Ma, 2010)

- S_{0} can be viewed as an outlier/gross corruption matrix
- Ordinary PCA breaks down in this setting
- Harder than MC: outlier locations are unknown
- More expensive than MC: dense, fully observed matrices

How do we recover L_{0} ?

First attempt:
$\operatorname{minimize}_{\mathbf{L}, \mathbf{S}} \quad \operatorname{rank}(\mathbf{L})+\lambda \operatorname{card}(\mathbf{S})$
subject to $\|\mathbf{M}-\mathbf{L}-\mathbf{S}\|_{F} \leq \Delta$.
Problem: Computationally intractable!
Solution: Convex relaxation
$\operatorname{minimize}_{\mathbf{L}, \mathbf{S}} \quad\|\mathbf{L}\|_{*}+\lambda\|\mathbf{S}\|_{1}$
subject to $\|\mathbf{M}-\mathbf{L}-\mathbf{S}\|_{F} \leq \Delta$.
where $\|\mathbf{S}\|_{1}=\sum_{i j} \mathbf{S}_{i j}$ is the ℓ_{1} entrywise norm of \mathbf{S}.
Question: Does it work?

- Will noisy Principal Component Pursuit (PCP) recover L_{0} ?

Question: Is it efficient?

- Can noisy PCP scale to large RMF problems?

Noisy Principal Component Pursuit: Does it work?

Yes, with high probability.

Theorem (Zhou, Li, Wright, Candès, and Ma, 2010)

If \mathbf{L}_{0} with rank r is incoherent, and $\mathrm{S}_{0} \in \mathbb{R}^{m \times n}$ contains s non-zero entries with uniformly distributed locations, then if

$$
r=O\left(m / \log ^{2} n\right) \quad \text { and } \quad s \leq c \cdot m n
$$

the minimizer to the problem

$$
\begin{aligned}
& \operatorname{minimize}_{\mathbf{L}, \mathbf{S}} \quad\|\mathbf{L}\|_{*}+\lambda\|\mathbf{S}\|_{1} \\
& \text { subject to }
\end{aligned}\|\mathbf{M}-\mathbf{L}-\mathbf{S}\|_{F} \leq \Delta .
$$

with $\lambda=1 / \sqrt{n}$ satisfies

$$
\left\|\hat{\mathbf{L}}-\mathbf{L}_{0}\right\|_{F} \leq f(m, n) \Delta
$$

with high probability when $\left\|\mathbf{M}-\mathbf{L}_{0}-\mathrm{S}_{0}\right\|_{F} \leq \Delta$.

- See also Agarwal, Negahban, and Wainwright (2011)

Noisy Principal Component Pursuit: Is it efficient?

Not quite...

- Standard interior point methods: $\mathrm{O}\left(n^{6}\right)$ (Chandasselaran, Sanghavi, Pariilo, and Willsky, 2009)
- More efficient, tailored algorithms:
- Accelerated Proximal Gradient (APG) (Lin, Ganesh, Wright, Wu, Chen, and Ma, 2009b)
- Augmented Lagrange Multiplier (ALM) (Lin, Chen, w_{u}, and Ma , 2009a)
- Require rank- k truncated SVD on every iteration
- Best case $\operatorname{SVD}(m, n, k)=\mathrm{O}(m n k)$

Idea: Leverage the divide-and-conquer techniques developed for MC in the RMF setting

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2014b)

If \mathbf{L}_{0} with rank r is incoherent, and $\mathrm{S}_{0} \in \mathbb{R}^{m \times n}$ contains $s \leq c \cdot m n$ non-zero entries with uniformly distributed locations, then

$$
l=O\left(\frac{r^{2} \log ^{2}(n)}{\epsilon^{2}}\right)
$$

random columns suffice to have

$$
\left\|\hat{\mathbf{L}}^{\text {proj }}-\mathbf{L}_{0}\right\|_{F} \leq(2+\epsilon) f(m, n) \Delta
$$

with high probability when $\left\|\mathbf{M}-\mathbf{L}_{0}-\mathbf{S}_{0}\right\|_{F} \leq \Delta$ and noisy principal component pursuit is used as the base algorithm.

- Can sample polylogarithmic number of columns
- Implies exact recovery for noiseless $(\Delta=0)$ setting

DFC Estimation Error

Figure : Estimation error of DFC and base algorithm (APG) with $m=1 K$ and $r=10$.

DFC Speed-up

Figure: Speed-up over base algorithm (APG) for random matrices with $r=0.01 \mathrm{~m}$ and 10% of entries corrupted.

Application: Video background modeling

Task

- Each video frame forms one column of matrix M
- Decompose M into stationary background \mathbf{L}_{0} and moving foreground objects S_{0}

Challenges

- Video is noisy
- Foreground corruption is often clustered, not uniform

Application: Video background modeling

Example: Significant foreground variation

Specs

- 1 minute of airport surveillance (Li, Huang, Gu, and Tian, 2004)
- 1000 frames, 25344 pixels
- Base algorithm: half an hour
- DFC: 7 minutes

Application: Video background modeling

Example: Changes in illumination

Specs

- 1.5 minutes of lobby surveillance (Li, Huang, Gu, and Tian, 2004)
- 1546 frames, 20480 pixels
- Base algorithm: 1.5 hours
- DFC: 8 minutes

Future Directions

New Applications and Datasets

- Practical problems with large-scale or real-time requirements

Example: Large-scale Affinity Estimation

Goal: Estimate semantic similarity between pairs of datapoints

- Motivation: Assign class labels to datapoints based on similarity

Examples from computer vision

- Image tagging: tree vs. firefighter vs. Tony Blair
- Video / multimedia content detection: wedding vs. concert
- Face clustering:

Application: Content detection, 9K YouTube videos, 20 classes

- Baseline: Low Rank Representation (Liu, Lin, and Yu, 2010)
- Strong guarantees but 1.5 days to run
- Divide and conquer (Talwalkar, Mackey, Mu, Chang, and Jordan, 2013)
- Comparable guarantees
- Comparable performance in 1 hour (5 subproblems)

Future Directions

New Applications and Datasets

- Practical problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies

- Other ways to reduce computation while preserving accuracy

DFC-NYS: Generalized Nyström Decomposition

(1) Choose a random column submatrix $\mathbf{C} \in \mathbb{R}^{m \times l}$ and a random row submatrix $\mathbf{R} \in \mathbb{R}^{d \times n}$ from M . Call their intersection \mathbf{W}.

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{W} & \mathbf{M}_{12} \\
\mathbf{M}_{21} & \mathbf{M}_{22}
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{c}
\mathbf{W} \\
\mathbf{M}_{21}
\end{array}\right] \quad \mathbf{R}=\left[\begin{array}{ll}
\mathbf{W} & \mathbf{M}_{12}
\end{array}\right]
$$

(2) Recover the low rank components of \mathbf{C} and \mathbf{R} in parallel to obtain $\hat{\mathbf{C}}$ and $\hat{\mathbf{R}}$
(3) Recover \mathbf{L}_{0} from $\hat{\mathbf{C}}, \hat{\mathbf{R}}$, and their intersection $\hat{\mathbf{W}}$

$$
\hat{\mathbf{L}}^{n y s}=\hat{\mathbf{C}} \hat{\mathbf{W}}^{+} \hat{\mathbf{R}}
$$

- Generalized Nyström method (Goreinov, Tytryshnikov, and Zamarashkin, 1997)
- Minimal cost: $\mathrm{O}\left(m k^{2}+l k^{2}+d k^{2}\right)$ where $k=\operatorname{rank}\left(\hat{\mathbf{L}}^{n y s}\right)$
(Ensemble: Run p times in parallel and average estimates

Future Directions

New Applications and Datasets

- Practical problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies

- Other ways to reduce computation while preserving accuracy
- More extensive use of ensembling

New Theory

- Analyze statistical implications of divide and conquer algorithms
- Trade-off between statistical and computational efficiency
- Impact of ensembling
- Developing suite of matrix concentration inequalities to aid in the analysis of randomized algorithms with matrix data

Concentration Inequalities

Matrix concentration

$$
\begin{gathered}
\mathbb{P}\{\|\boldsymbol{X}-\mathbb{E} \boldsymbol{X}\| \geq t\} \leq \delta \\
\mathbb{P}\left\{\lambda_{\max }(\boldsymbol{X}-\mathbb{E} \boldsymbol{X}) \geq t\right\} \leq \delta
\end{gathered}
$$

- Non-asymptotic control of random matrices with complex distributions

Applications

- Matrix completion from sparse random measurements
(Gross, 2011; Recht, 2011; Negahban and Wainwright, 2010; Mackey, Talwalkar, and Jordan, 2014b)
- Randomized matrix multiplication and factorization
(Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011)
- Convex relaxation of robust or chance-constrained optimization
(Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)
- Random graph analysis (Christofides and Markströn, 2008; Oliveira, 2009)

Concentration Inequalities

Matrix concentration

$$
\mathbb{P}\left\{\lambda_{\max }(\boldsymbol{X}-\mathbb{E} \boldsymbol{X}) \geq t\right\} \leq \delta
$$

Difficulty: Matrix multiplication is not commutative

$$
\Rightarrow \mathrm{e}^{\boldsymbol{X}+\boldsymbol{Y}} \neq \mathrm{e}^{\boldsymbol{X}} \mathrm{e}^{\boldsymbol{Y}} \neq \mathrm{e}^{\boldsymbol{Y}} \mathrm{e}^{\boldsymbol{X}}
$$

Past approaches (Ahlswede and Winter, 2002; Oliveira, 2009; Tropp, 2011)

- Rely on deep results from matrix analysis
- Apply to sums of independent matrices and matrix martingales

Our work (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a; Paulin, Mackey, and Tropp, 2015)

- Stein's method of exchangeable pairs (1972), as advanced by Chatterjee (2007) for scalar concentration
\Rightarrow Improved exponential tail inequalities
(Hoeffding, Bernstein, Bounded differences)
\Rightarrow Polynomial moment inequalities (Khintchine, Rosenthal)
\Rightarrow Dependent sums and more general matrix functionals

Example: Matrix Bounded Differences Inequality

Corollary (Paulin, Mackey, and Tropp, 2015)

Suppose $Z=\left(Z_{1}, \ldots, Z_{n}\right)$ has independent coordinates, and

$$
\left(\boldsymbol{H}\left(z_{1}, \ldots, z_{j}, \ldots, z_{n}\right)-\boldsymbol{H}\left(z_{1}, \ldots, z_{j}^{\prime}, \ldots, z_{n}\right)\right)^{2} \preccurlyeq \boldsymbol{A}_{j}^{2}
$$

for all j and values $z_{1}, \ldots, z_{n}, z_{j}^{\prime}$. Define the boundedness parameter

$$
\sigma^{2}:=\left\|\sum_{j=1}^{n} \boldsymbol{A}_{j}^{2}\right\|
$$

If each \boldsymbol{A}_{j} is $d \times d$, then, for all $t \geq 0$,

$$
\mathbb{P}\left\{\lambda_{\max }(\boldsymbol{H}(Z)-\mathbb{E} \boldsymbol{H}(Z)) \geq t\right\} \leq d \cdot \mathrm{e}^{-t^{2} /\left(2 \sigma^{2}\right)}
$$

- Improves prior results in the literature (e.g., Tropp, 2011)
- Useful for analyzing
- Multiclass classifier performance (Machart and Ralaivola, 2012)
- Crowdsourcing accuracy (Dalvi, Dasgupta, Kumar, and Rastogi, 2013)
- Convergence in non-differentiable optimization (Zhou and Hu, 2014)

Future Directions

New Applications and Datasets

- Practical problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies

- Other ways to reduce computation while preserving accuracy
- More extensive use of ensembling

New Theory

- Analyze statistical implications of divide and conquer algorithms
- Trade-off between statistical and computational efficiency
- Impact of ensembling
- Developing suite of matrix concentration inequalities to aid in the analysis of randomized algorithms with matrix data

The End

Thanks!

References

Agarwal, A., Negahban, S., and Wainwright, M. J. Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions. In International Conference on Machine Learning, 2011.
Ahlswede, R. and Winter, A. Strong converse for identification via quantum channels. IEEE Trans. Inform. Theory, 48(3): 569-579, Mar. 2002.
Cai, J. F., Candès, E. J., and Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4), 2010.
Candès, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9 (6):717-772, 2009.

Candès, E. J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? Journal of the ACM, 58(3):1-37, 2011.
Candès, E.J. and Plan, Y. Matrix completion with noise. Proceedings of the IEEE, 98(6):925-936, 2010.
Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Willsky, A. S. Sparse and low-rank matrix decompositions. In Allerton Conference on Communication, Control, and Computing, 2009.
Chandrasekaran, V., Parrilo, P. A., and Willsky, A. S. Latent variable graphical model selection via convex optimization. preprint, 2010.
Chatterjee, S. Stein's method for concentration inequalities. Probab. Theory Related Fields, 138:305-321, 2007.
Cheung, S.-S., So, A. Man-Cho, and Wang, K. Chance-constrained linear matrix inequalities with dependent perturbations: a safe tractable approximation approach. Available at http://www.optimization-online.org/DB_FILE/2011/01/2898.pdf, 2011.
Christofides, D. and Markström, K. Expansion properties of random cayley graphs and vertex transitive graphs via matrix martingales. Random Struct. Algorithms, 32(1):88-100, 2008.
Dalvi, N., Dasgupta, A., Kumar, R., and Rastogi, V. Aggregating crowdsourced binary ratings. In Proceedings of the 22 Nd International Conference on World Wide Web, WWW '13, pp. 285-294, Republic and Canton of Geneva, Switzerland, 2013.
Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Relative-error CUR matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30:844-881, 2008.
Fazel, M., Hindi, H., and Boyd, S. P. A rank minimization heuristic with application to minimum order system approximation. In In Proceedings of the 2001 American Control Conference, pp. 4734-4739, 2001.

References I

Frieze, A., Kannan, R., and Vempala, S. Fast Monte-Carlo algorithms for finding low-rank approximations. In Foundations of Computer Science, 1998.

Goreinov, S. A., Tyrtyshnikov, E. E., and Zamarashkin, N. L. A theory of pseudoskeleton approximations. Linear Algebra and its Applications, 261(1-3):1-21, 1997.
Gross, D. Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inform. Theory, 57(3):1548-1566, Mar. 2011.

Hsu, D., Kakade, S. M., and Zhang, T. Dimension-free tail inequalities for sums of random matrices. Available at arXiv:1104.1672, 2011.

Keshavan, R. H., Montanari, A., and Oh, S. Matrix completion from noisy entries. Journal of Machine Learning Research, 99: 2057-2078, 2010.
Li, L., Huang, W., Gu, I. Y. H., and Tian, Q. Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing, 13(11):1459-1472, 2004.

Lin, Z., Chen, M., Wu, L., and Ma, Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report UILU-ENG-09-2215, 2009a.
Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., and Ma, Y. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. UIUC Technical Report UILU-ENG-09-2214, 2009 b.
Liu, G., Lin, Z., and Yu, Y. Robust subspace segmentation by low-rank representation. In International Conference on Machine Learning, 2010.

Machart, P. and Ralaivola, L. Confusion Matrix Stability Bounds for Multiclass Classification. Available at http://arXiv.org/abs/1202.6221, February 2012.
Mackey, L., Jordan, M. I., Chen, R. Y., Farrell, B., and Tropp, J. A. Matrix concentration inequalities via the method of exchangeable pairs. The Annals of Probability, 42(3):906-945, 2014a.

Mackey, L., Talwalkar, A., and Jordan, M. I. Distributed matrix completion and robust factorization. Journal of Machine Learning Research, 2014b. In press.

References II

Min, K., Zhang, Z., Wright, J., and Ma, Y. Decomposing background topics from keywords by principal component pursuit. In Conference on Information and Knowledge Management, 2010.

Negahban, S. and Wainwright, M. J. Restricted strong convexity and weighted matrix completion: Optimal bounds with noise. arXiv:1009.2118v2[cs.IT], 2010.
Nemirovski, A. Sums of random symmetric matrices and quadratic optimization under orthogonality constraints. Math. Program., 109:283-317, January 2007. ISSN 0025-5610. doi: 10.1007/s10107-006-0033-0. URL http://dl.acm.org/citation.cfm?id=1229716.1229726.

Oliveira, R. I. Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges. Available at arXiv:0911.0600, Nov. 2009.
Paulin, D., Mackey, L., and Tropp, J. A. Efron-Stein Inequalities for Random Matrices. The Annals of Probability, to appear 2015.

Recht, B. Simpler approach to matrix completion. J. Mach. Learn. Res., 12:3413-3430, 2011.
So, A. Man-Cho. Moment inequalities for sums of random matrices and their applications in optimization. Math. Program., 130 (1):125-151, 2011.

Stein, C. A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proc. 6th Berkeley Symp. Math. Statist. Probab., Berkeley, 1972. Univ. California Press.

Talwalkar, Ameet, Mackey, Lester, Mu, Yadong, Chang, Shih-Fu, and Jordan, Michael I. Distributed low-rank subspace segmentation. December 2013.
Toh, K. and Yun, S. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pacific Journal of Optimization, 6(3):615-640, 2010.
Tropp, J. A. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., August 2011.
Zhou, Enlu and Hu, Jiaqiao. Gradient-based adaptive stochastic search for non-differentiable optimization. Automatic Control, IEEE Transactions on, 59(7):1818-1832, 2014.
Zhou, Z., Li, X., Wright, J., Candès, E. J., and Ma, Y. Stable principal component pursuit. In IEEE International Symposium on Information Theory Proceedings (ISIT), pp. 1518-1522, 2010.

