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Introduction

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries ? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5

→
 2 3 1 . . . 4

3 4 5 . . . 1
2 5 3 . . . 5


Examples

Collaborative filtering: How will user i rate movie j?

Netflix: 40 million users, 200K movies and television shows

Ranking on the web: Is URL j relevant to user i?

Google News: millions of articles, 1 billion users

Link prediction: Is user i friends with user j?

Facebook: 1.5 billion users
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Introduction

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries ? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5

→
 2 3 1 . . . 4

3 4 5 . . . 1
2 5 3 . . . 5


State of the art MC algorithms

Strong estimation guarantees

Plagued by expensive subroutines (e.g., truncated SVD)

This talk

Present divide and conquer approaches for scaling up any MC
algorithm while maintaining strong estimation guarantees
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Matrix Completion Background

Exact Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries
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Matrix Completion Background

Noisy Matrix Completion

Goal: Given entries from a matrix M = L0 + Z ∈ Rm×n where Z is
entrywise noise and L0 has rank r� m,n, estimate L0

Good news: L0 has ∼ (m+ n)r � mn degrees of freedom

L0 = A

B>

Factored form: AB> for A ∈ Rm×r and B ∈ Rn×r

Bad news: Not all low-rank matrices can be recovered

Question: What can go wrong?
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Matrix Completion Background

What can go wrong?

Entire column missing 1 2 ? 3 . . . 4
3 5 ? 4 . . . 1
2 5 ? 2 . . . 5


No hope of recovery!

Solution: Uniform observation model

Assume that the set of s observed entries Ω is drawn uniformly at
random:

Ω ∼ Unif(m,n, s)
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Matrix Completion Background

What can go wrong?

Bad spread of information

L =

1
0
0

[1][1 0 0
]

=

1 0 0
0 0 0
0 0 0


Can only recover L if L11 is observed

Solution: Incoherence with standard basis (Candès and Recht, 2009)

A matrix L = UΣV> ∈ Rm×n with rank(L) = r is incoherent if

Singular vectors are not too skewed:

{
maxi ‖UU>ei‖2 ≤ µr/m

maxi ‖VV>ei‖2 ≤ µr/n

and not too cross-correlated:‖UV>‖∞ ≤
√

µr

mn

(In this literature, it’s good to be incoherent)
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Matrix Completion Background

How do we estimate L0?

First attempt:

minimizeA rank(A)

subject to
∑

(i,j)∈Ω(Aij −Mij)
2 ≤ ∆2.

Problem: Computationally intractable!

Solution: Solve convex relaxation (Fazel, Hindi, and Boyd, 2001; Candès and Plan, 2010)

minimizeA ‖A‖∗
subject to

∑
(i,j)∈Ω(Aij −Mij)

2 ≤ ∆2

where ‖A‖∗ =
∑

k σk(A) is the trace/nuclear norm of A.

Questions:

Will the nuclear norm heuristic successfully recover L0?

Can nuclear norm minimization scale to large MC problems?
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Matrix Completion Background

Noisy Nuclear Norm Heuristic: Does it work?

Yes, with high probability.

Typical Theorem

If L0 with rank r is incoherent, s & rn log2(n) entries of M ∈ Rm×n

are observed uniformly at random, and L̂ solves the noisy nuclear
norm heuristic, then

‖L̂− L0‖F ≤ f(m,n)∆

with high probability when ‖M− L0‖F ≤ ∆.

See Candès and Plan (2010); Mackey, Talwalkar, and Jordan
(2014b); Keshavan, Montanari, and Oh (2010); Negahban and
Wainwright (2010)

Implies exact recovery in the noiseless setting (∆ = 0)
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Matrix Completion Background

Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...

Standard interior point methods (Candès and Recht, 2009):
O(|Ω|(m+ n)3 + |Ω|2(m+ n)2 + |Ω|3)

More efficient, tailored algorithms:

Singular Value Thresholding (SVT) (Cai, Candès, and Shen, 2010)

Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009a)

Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)

All require rank-k truncated SVD on every iteration

Take away: These provably accurate MC algorithms are too
expensive for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm
and still retain estimation guarantees?
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Matrix Completion DFC

Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer

1 Divide M into submatrices.

2 Factor each submatrix in parallel.

3 Combine submatrix estimates to estimate L0.

Advantages

Submatrix completion is often much cheaper than completing M

Multiple submatrix completions can be carried out in parallel

DFC works with any base MC algorithm

With the right choice of division and recombination, yields
estimation guarantees comparable to those of the base algorithm
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Matrix Completion DFC

DFC-Proj: Partition and Project

1 Randomly partition M into t column submatrices
M =

[
C1 C2 · · · Ct

]
where each Ci ∈ Rm×l

2 Complete the submatrices in parallel to obtain[
Ĉ1 Ĉ2 · · · Ĉt

]
Reduced cost: Expect t-fold speed-up per iteration
Parallel computation: Pay cost of one cheaper MC

3 Project submatrices onto a single low-dimensional column space
Estimate column space of L0 with column space of Ĉ1

L̂proj = Ĉ1Ĉ
+
1

[
Ĉ1 Ĉ2 · · · Ĉt

]
Common technique for randomized low-rank approximation
(Frieze, Kannan, and Vempala, 1998)

Minimal cost: O(mk2 + lk2) where k = rank(L̂proj)

4 Ensemble: Project onto column space of each Ĉj and average
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Matrix Completion DFC

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2014b)

If L0 with rank r is incoherent and s = ω(r2n log2(n)/ε2) entries of
M ∈ Rm×n are observed uniformly at random, then l = o(n) random
columns suffice to have

‖L̂proj − L0‖F ≤ (2 + ε)f(m,n)∆

with high probability when ‖M− L0‖F ≤ ∆ and the noisy nuclear
norm heuristic is used as a base algorithm.

Can sample vanishingly small fraction of columns (l/n→ 0)

Implies exact recovery for noiseless (∆ = 0) setting

Analysis streamlined by matrix Bernstein inequality
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Matrix Completion DFC

DFC: Does it work?

Yes, with high probability.

Proof Ideas:

1 If L0 is incoherent (has good spread of information), its
partitioned submatrices are incoherent w.h.p.

2 Each submatrix has sufficiently many observed entries w.h.p.

⇒ Submatrix completion succeeds
3 Random submatrix captures the full column space of L0 w.h.p.

Analysis builds on randomized `2 regression work of Drineas,
Mahoney, and Muthukrishnan (2008)

⇒ Column projection succeeds
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Matrix Completion Simulations

DFC Noisy Recovery Error
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Figure : Recovery error of DFC relative to base algorithm (APG) with
m = 10K and r = 10.
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Matrix Completion Simulations

DFC Speed-up
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Figure : Speed-up over base algorithm (APG) for random matrices with
r = 0.001m and 4% of entries revealed.
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Matrix Completion CF

Application: Collaborative filtering

Task: Given a sparsely observed matrix of user-item ratings, predict
the unobserved ratings

Issues

Full-rank rating matrix

Noisy, non-uniform observations

The Data

Netflix Prize Dataset1

100 million ratings in {1, . . . , 5}
17,770 movies, 480,189 users

1http://www.netflixprize.com/
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Matrix Completion CF

Application: Collaborative filtering

Task: Predict unobserved user-item ratings

Method
Netflix

RMSE Time

APG 0.8433 2653.1s

DFC-Proj-25% 0.8436 689.5s
DFC-Proj-10% 0.8484 289.7s
DFC-Proj-Ens-25% 0.8411 689.5s
DFC-Proj-Ens-10% 0.8433 289.7s
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Robust Matrix Factorization Background

Robust Matrix Factorization

Goal: Given a matrix M = L0 + S0 + Z where L0 is low-rank, S0 is
sparse, and Z is entrywise noise, recover L0 (Chandrasekaran, Sanghavi, Parrilo, and

Willsky, 2009; Candès, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candès, and Ma, 2010)

Examples:

Background modeling/foreground activity detection
M L0 S

(Candès, Li, Ma, and Wright, 2011)
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Robust Matrix Factorization Background

Robust Matrix Factorization

Goal: Given a matrix M = L0 + S0 + Z where L0 is low-rank, S0 is
sparse, and Z is entrywise noise, recover L0 (Chandrasekaran, Sanghavi, Parrilo, and

Willsky, 2009; Candès, Li, Ma, and Wright, 2011; Zhou, Li, Wright, Candès, and Ma, 2010)

M L0 S0

S0 can be viewed as an outlier/gross corruption matrix

Ordinary PCA breaks down in this setting

Harder than MC: outlier locations are unknown

More expensive than MC: dense, fully observed matrices
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Robust Matrix Factorization Background

How do we recover L0?

First attempt:

minimizeL,S rank(L) + λ card(S)

subject to ‖M− L− S‖F ≤ ∆.

Problem: Computationally intractable!

Solution: Convex relaxation

minimizeL,S ‖L‖∗ + λ‖S‖1

subject to ‖M− L− S‖F ≤ ∆.

where ‖S‖1 =
∑

ij Sij is the `1 entrywise norm of S.

Question: Does it work?

Will noisy Principal Component Pursuit (PCP) recover L0?

Question: Is it efficient?

Can noisy PCP scale to large RMF problems?
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Robust Matrix Factorization Background

Noisy Principal Component Pursuit: Does it work?

Yes, with high probability.

Theorem (Zhou, Li, Wright, Candès, and Ma, 2010)

If L0 with rank r is incoherent, and S0 ∈ Rm×n contains s non-zero
entries with uniformly distributed locations, then if

r = O
(
m/ log2 n

)
and s ≤ c ·mn,

the minimizer to the problem

minimizeL,S ‖L‖∗ + λ‖S‖1

subject to ‖M− L− S‖F ≤ ∆.

with λ = 1/
√
n satisfies

‖L̂− L0‖F ≤ f(m,n)∆

with high probability when ‖M− L0 − S0‖F ≤ ∆.

See also Agarwal, Negahban, and Wainwright (2011)
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Robust Matrix Factorization Background

Noisy Principal Component Pursuit: Is it efficient?

Not quite...

Standard interior point methods: O(n6) (Chandrasekaran, Sanghavi, Parrilo, and

Willsky, 2009)

More efficient, tailored algorithms:

Accelerated Proximal Gradient (APG) (Lin, Ganesh, Wright, Wu, Chen, and Ma,

2009b)

Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009a)

Require rank-k truncated SVD on every iteration
Best case SVD(m,n, k) = O(mnk)

Idea: Leverage the divide-and-conquer techniques developed for MC
in the RMF setting
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Robust Matrix Factorization Background

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2014b)

If L0 with rank r is incoherent, and S0 ∈ Rm×n contains s ≤ c ·mn
non-zero entries with uniformly distributed locations, then

l = O

(
r2 log2(n)

ε2

)
random columns suffice to have

‖L̂proj − L0‖F ≤ (2 + ε)f(m,n)∆

with high probability when ‖M− L0 − S0‖F ≤ ∆ and noisy principal
component pursuit is used as the base algorithm.

Can sample polylogarithmic number of columns

Implies exact recovery for noiseless (∆ = 0) setting
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Robust Matrix Factorization Simulations

DFC Estimation Error
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Figure : Estimation error of DFC and base algorithm (APG) with
m = 1K and r = 10.

Mackey (Stanford) Divide-and-Conquer Matrix Factorization December 14, 2015 25 / 42



Robust Matrix Factorization Simulations

DFC Speed-up
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Figure : Speed-up over base algorithm (APG) for random matrices with
r = 0.01m and 10% of entries corrupted.
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Robust Matrix Factorization Video

Application: Video background modeling

Task

Each video frame forms one column of matrix M

Decompose M into stationary background L0 and moving
foreground objects S0

M L0 S0

Challenges

Video is noisy

Foreground corruption is often clustered, not uniform
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Robust Matrix Factorization Video

Application: Video background modeling

Example: Significant foreground variation

Specs

1 minute of airport surveillance (Li, Huang, Gu, and Tian, 2004)

1000 frames, 25344 pixels

Base algorithm: half an hour

DFC: 7 minutes
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Robust Matrix Factorization Video

Application: Video background modeling

Example: Changes in illumination

Specs

1.5 minutes of lobby surveillance (Li, Huang, Gu, and Tian, 2004)

1546 frames, 20480 pixels

Base algorithm: 1.5 hours

DFC: 8 minutes
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Future Directions

Future Directions

New Applications and Datasets

Practical problems with large-scale or real-time requirements
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Future Directions

Example: Large-scale Affinity Estimation

Goal: Estimate semantic similarity between pairs of datapoints

Motivation: Assign class labels to datapoints based on similarity

Examples from computer vision

Image tagging: tree vs. firefighter vs. Tony Blair

Video / multimedia content detection: wedding vs. concert

Face clustering:

Application: Content detection, 9K YouTube videos, 20 classes
Baseline: Low Rank Representation (Liu, Lin, and Yu, 2010)

Strong guarantees but 1.5 days to run

Divide and conquer (Talwalkar, Mackey, Mu, Chang, and Jordan, 2013)

Comparable guarantees
Comparable performance in 1 hour (5 subproblems)
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Future Directions

Future Directions

New Applications and Datasets

Practical problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies

Other ways to reduce computation while preserving accuracy
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Future Directions

DFC-Nys: Generalized Nyström Decomposition

1 Choose a random column submatrix C ∈ Rm×l and a random
row submatrix R ∈ Rd×n from M. Call their intersection W.

M =

[
W M12

M21 M22

]
C =

[
W

M21

]
R = [W M12]

2 Recover the low rank components of C and R in parallel to
obtain Ĉ and R̂

3 Recover L0 from Ĉ, R̂, and their intersection Ŵ

L̂nys = ĈŴ+R̂

Generalized Nyström method (Goreinov, Tyrtyshnikov, and Zamarashkin, 1997)

Minimal cost: O(mk2 + lk2 + dk2) where k = rank(L̂nys)

4 Ensemble: Run p times in parallel and average estimates
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Future Directions

Future Directions

New Applications and Datasets

Practical problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies

Other ways to reduce computation while preserving accuracy

More extensive use of ensembling

New Theory

Analyze statistical implications of divide and conquer algorithms

Trade-off between statistical and computational efficiency
Impact of ensembling

Developing suite of matrix concentration inequalities to aid in
the analysis of randomized algorithms with matrix data
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Future Directions

Concentration Inequalities

Matrix concentration

P{‖X − EX‖ ≥ t} ≤ δ

P{λmax(X − EX) ≥ t} ≤ δ

Non-asymptotic control of random matrices with complex
distributions

Applications

Matrix completion from sparse random measurements
(Gross, 2011; Recht, 2011; Negahban and Wainwright, 2010; Mackey, Talwalkar, and Jordan, 2014b)

Randomized matrix multiplication and factorization
(Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011)

Convex relaxation of robust or chance-constrained optimization
(Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)

Random graph analysis (Christofides and Markström, 2008; Oliveira, 2009)

Mackey (Stanford) Divide-and-Conquer Matrix Factorization December 14, 2015 35 / 42



Future Directions

Concentration Inequalities

Matrix concentration
P{λmax(X − EX) ≥ t} ≤ δ

Difficulty: Matrix multiplication is not commutative
⇒ eX+Y 6= eXeY 6= eY eX

Past approaches (Ahlswede and Winter, 2002; Oliveira, 2009; Tropp, 2011)

Rely on deep results from matrix analysis

Apply to sums of independent matrices and matrix martingales

Our work (Mackey, Jordan, Chen, Farrell, and Tropp, 2014a; Paulin, Mackey, and Tropp, 2015)

Stein’s method of exchangeable pairs (1972), as advanced by
Chatterjee (2007) for scalar concentration
⇒ Improved exponential tail inequalities

(Hoeffding, Bernstein, Bounded differences)
⇒ Polynomial moment inequalities (Khintchine, Rosenthal)
⇒ Dependent sums and more general matrix functionals
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Future Directions

Example: Matrix Bounded Differences Inequality

Corollary (Paulin, Mackey, and Tropp, 2015)

Suppose Z = (Z1, . . . , Zn) has independent coordinates, and(
H(z1, . . . , zj, . . . , zn)−H(z1, . . . , z

′
j, . . . , zn)

)2
4 A2

j

for all j and values z1, . . . , zn, z
′
j. Define the boundedness parameter

σ2 :=
∥∥∥∑n

j=1
A2
j

∥∥∥.
If each Aj is d× d, then, for all t ≥ 0,

P{λmax(H(Z)− EH(Z)) ≥ t} ≤ d · e−t2/(2σ2).

Improves prior results in the literature (e.g., Tropp, 2011)
Useful for analyzing

Multiclass classifier performance (Machart and Ralaivola, 2012)

Crowdsourcing accuracy (Dalvi, Dasgupta, Kumar, and Rastogi, 2013)

Convergence in non-differentiable optimization (Zhou and Hu, 2014)
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Future Directions

Future Directions

New Applications and Datasets

Practical problems with large-scale or real-time requirements

New Divide-and-Conquer Strategies

Other ways to reduce computation while preserving accuracy

More extensive use of ensembling

New Theory

Analyze statistical implications of divide and conquer algorithms

Trade-off between statistical and computational efficiency
Impact of ensembling

Developing suite of matrix concentration inequalities to aid in
the analysis of randomized algorithms with matrix data
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Future Directions

The End

Thanks!

PΩ(C2)PΩ(C1)PΩ(M) Ĉ1 Ĉ2 L̂proj

Divide Factor

(Nyström)

PΩ(C) PΩ(R) R̂Ĉ L̂nysPΩ(M)

Divide Factor

Combine
. . . . . .

PΩ(Ct) Ĉt

(Project)

Combine
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