Weighted Classification Cascades for Optimizing Discovery Significance

Lester Mackey[†]

Collaborators: Jordan Bryan † and Man Yue Mo

[†]Stanford University

December 13, 2014

Hypothesis Testing in High-Energy Physics

Goal: Given a collection of **events** (high-energy particle collisions) and a definition of "interesting" (e.g., Higgs boson produced), detect whether any interesting events occurred

- Interesting events = signal events
- Other events (e.g., no Higgs produced) = background events

Why? To test predictions of physical models

- Standard Model of physics predicts existence of elementary particles and various modes of particle decay
 - Claim: Higgs bosons exist and often decay into tau particles
- To substantiate claim experimentally, must distinguish
 - Higgs to tau tau decay events (signal events)
 - Other events with similar characteristics (background events)

Hypothesis Testing in High-Energy Physics

Goal: Given a collection of **events** (high-energy particle collisions), test whether any signal events occurred

How?

- Event represented as features (momenta and energy) of particles produced by collision
 - Ideally: Test based on distributions of signal and background
 - Signal and background event distributions complex and difficult to characterize explicitly: hinders development of analytical test
- Identify relatively signal-rich selection region by training classifier on labeled training data
- Test new dataset for signal by counting events in selection region and computing (approximate) "significance value" or *p*-value under Poisson likelihood ratio test

Background

Approximate Median Significance (AMS)

How to estimate significance of new event data?

- Dataset $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$ with event feature vectors $x_i \in \mathcal{X}$ and labels $y_i \in \{-1, 1\} = \{\text{background, signal}\}$
- Classifier $g: \mathcal{X} \to \{-1, 1\}$ assigning labels to events $x \in \mathcal{X}$
- True positive count $s_{\mathcal{D}}(g) = \sum_{i=1}^{n} \mathbb{I}[g(x_i) = 1, y_i = 1]$
- False positive count $b_{\mathcal{D}}(g) = \sum_{i=1}^{n} \mathbb{I}[g(x_i) = 1, y_i = -1]$
- Approximate Median Significance (AMS) (Cowan et al., 2011)

$$AMS_2(g, \mathcal{D}) = \sqrt{2\left(\left(s_{\mathcal{D}}(g) + b_{\mathcal{D}}(g)\right)\log\left(\frac{s_{\mathcal{D}}(g) + b_{\mathcal{D}}(g)}{b_{\mathcal{D}}(g)}\right) - s_{\mathcal{D}}(g)\right)}$$

- \bullet Approximates $1-p\mbox{-value}$ quantile of Poisson model test statistic
- Measures significance in units of standard deviation or σ 's
 - $\bullet~{\rm Typically}>5\sigma$ needed to declare signal discovery significant

Mackey (Stanford)

Approximate Median Significance (AMS)

Training goal: Select classifier g to maximize AMS_2 on future data

Standard two-stage approach

- Withhold fraction of training events
- Stage 1: Train any standard classifier on remaining events
- Stage 2: Order held-out events by classifier scores and select new classification threshold to minimize AMS_2 on held-out data
- **Pros:** Requires only standard classification tools; works with any classifier
- Con: Stage 2 prone to overfitting, may require hand tuning
- \bullet Con: Stage 1 ignores AMS_2 objective, optimizes classification error

This talk: A more direct approach to optimizing training AMS_2 that only requires standard classification tools and works with any classifier supporting class weights

Weighted Classification Cascades

Algorithm (Weighted Classification Cascade for Maximizing AMS_2)

- initialize signal class weight: $u_0^{\rm SIG} > 0$
- for t = 1 to T
 - compute background class weight: $u_{t-1}^{\text{BAC}} \leftarrow e^{u_{t-1}^{\text{SIG}}} u_{t-1}^{\text{SIG}} 1$
 - train any weighted classifier:

 $g_t \leftarrow \text{approximate minimizer of weighted classification error}$

 $b_{\mathcal{D}}(g) u_{t-1}^{\text{BAC}} + \tilde{s}_{\mathcal{D}}(g) u_{t-1}^{\text{SIG}}$

(where $\tilde{s}_{\mathcal{D}}(g) = \sum_{i=1}^{n} \mathbb{I}[y_i = 1] - s_{\mathcal{D}}(g)$ = false negative count)

• update signal class weight: $u_t^{\text{SIG}} \leftarrow \log(s_{\mathcal{D}}(g_t)/b_{\mathcal{D}}(g_t) + 1)$

• return g_T

Advantages

- $\bullet~\mbox{Reduces}$ optimizing AMS_2 to series of classification problems
- Can use any weighted classification procedure
- AMS_2 improves if g_t decreases weighted classification error

Questions: Where does this come from? Why should this work?

Mackey (Stanford)

The Difficulty of Optimizing AMS

Approximate Median Significance (squared and halved)

$$\frac{1}{2} \text{AMS}_2^2(g, \mathcal{D}) = \left(s_{\mathcal{D}}(g) + b_{\mathcal{D}}(g)\right) \log\left(\frac{s_{\mathcal{D}}(g) + b_{\mathcal{D}}(g)}{b_{\mathcal{D}}(g)}\right) - s_{\mathcal{D}}(g)$$

- True positive count $s_{\mathcal{D}}(g) = \sum_{i=1}^{n} \mathbb{I}[g(x_i) = 1, y_i = 1]$
- False positive count $b_{\mathcal{D}}(g) = \sum_{i=1}^{n} \mathbb{I}[g(x_i) = 1, y_i = -1]$

 $\frac{1}{2}AMS_2^2$ is

- Combinatorial, as a function of indicator functions
- Non-decomposable across events, due to logarithm
- Convex in $(s_{\mathcal{D}}(g), b_{\mathcal{D}}(g))$, bad for maximization

Linearizing AMS with Convex Duality

Observation:

$$\frac{1}{2} \text{AMS}_2^2(g, \mathcal{D}) = b_{\mathcal{D}}(g) f_2\left(\frac{s_{\mathcal{D}}(g)}{b_{\mathcal{D}}(g)}\right) = b_{\mathcal{D}}(g) \sup_u u \frac{s_{\mathcal{D}}(g)}{b_{\mathcal{D}}(g)} - f_2^*(u)$$
$$= \sup_u u s_{\mathcal{D}}(g) - f_2^*(u) b_{\mathcal{D}}(g)$$
$$= -\inf_u u \tilde{s}_{\mathcal{D}}(g) + f_2^*(u) b_{\mathcal{D}}(g) - u \sum_{i=1}^n \mathbb{I}[y_i = 1]$$

- where $f_2(t) = (1+t)\log(1+t) t$ is convex
- f₂ admits variational representation f₂(t) = sup_u ut f₂^{*}(u) in terms of convex conjugate f₂^{*}(u) ≜ sup_t tu f₂(t) = e^u u 1
- Since false negative count $\tilde{s}_{\mathcal{D}}(g) = \sum_{i=1}^{n} \mathbb{I}[y_i = 1] s_{\mathcal{D}}(g)$

Optimizing AMS with Coordinate Descent

Take-away

$$-\frac{1}{2}\operatorname{AMS}_{2}^{2}(g,\mathcal{D}) = \inf_{u} u \,\tilde{s}_{\mathcal{D}}(g) + (e^{u} - u - 1) \,b_{\mathcal{D}}(g) - u \sum_{i=1}^{n} \mathbb{I}[y_{i} = 1]$$

• Maximizing AMS₂ is equivalent to minimizing weighted error $R_2(g, u, D) \triangleq u \,\tilde{s}_D(g) + (e^u - u - 1) \, b_D(g) - u \sum_{i=1}^n \mathbb{I}[y_i = 1]$ over classifiers g and signal class weight u jointly

Optimize $R_2(g, u, D)$ with coordinate descent

- Update g_t for fixed u_{t-1} : train weighted classifier
- Update u_t for fixed g_t : closed form, $u = \log(s_{\mathcal{D}}(g_t)/b_{\mathcal{D}}(g_t) + 1)$
- AMS₂ increases whenever a new g_{t+1} achieves smaller weighted classification error with respect to u_t than its predecessor g_t : $-\frac{1}{2}AMS_2(g_{t+1})^2 \leq R_2(g_{t+1}, u_t) < R_2(g_t, u_t) = -\frac{1}{2}AMS_2(g_t)^2$
- Minorization-maximization algorithm (like EM)

Optimizing Alternative Significance Measures

Simpler Form of AMS: $AMS_3(g, D) = s_D(g) / \sqrt{b_D(g)}$

- Approximates $AMS_2 = AMS_3 \times \sqrt{1 + O((s/b)^3)}$ when $s \ll b$
- Amenable to weighted classification cascading $\frac{1}{2}AMS_3^2(g, \mathcal{D}) = b_{\mathcal{D}}(g)f_3\left(\frac{s_{\mathcal{D}}(g)}{b_{\mathcal{D}}(g)}\right) \quad \text{for convex} \quad f_3(t) = (1/2)t^2$
- (Can also support uncertainty in $b: b_{\mathcal{D}}(g) \leftarrow b_{\mathcal{D}}(g) + \sigma_b$)

Algorithm (Weighted Classification Cascade for Maximizing AMS_3) • for t = 1 to T

- compute background class weight: $u_{t-1}^{\text{BAC}} \leftarrow (u^{\text{SIG}})^2/2$
- train any weighted classifier:

 $g_t \leftarrow \mathsf{approximate}\xspace$ minimizer of weighted classification error

 $b_{\mathcal{D}}(g) u_{t-1}^{\text{BAC}} + \tilde{s}_{\mathcal{D}}(g) u_{t-1}^{\text{SIG}}$

• update signal class weight: $u_t^{\text{SIG}} \leftarrow s_{\mathcal{D}}(g_t)/b_{\mathcal{D}}(g_t)$

HiggsML Challenge Case Study

Cascading in the Wild

- $\bullet\,$ So far, recipe for turning classifier into training $\rm AMS\,$ maximizer
- Must be coupled with effective regularization strategies to ensure adequate test set generalization
- Team mymo incorporated two practical variants of cascading into HiggsML challenge solution, placing 31st out of 1800 teams

Cascading Variant 1

- Fit each classifier g_t using XGBoost implementation of gradient tree boosting¹
- To curb overfitting, computed true and false positive counts on held-out dataset \mathcal{D}_{val} and updated the class weight parameter u_t^{sig} using $s_{\mathcal{D}_{val}}(g_t)$ and $b_{\mathcal{D}_{val}}(g_t)$ in lieu of $s_{\mathcal{D}}(g_t)$ and $b_{\mathcal{D}}(g_t)$

¹https://github.com/tqchen/xgboost

Mackey (Stanford)

HiggsML Challenge Case Study

Cascading in the Wild

- $\bullet\,$ So far, recipe for turning classifier into training $\rm AMS\,$ maximizer
- Must be coupled with effective regularization strategies to ensure adequate test set generalization
- Team mymo incorporated two practical variants of cascading into HiggsML challenge solution, placing 31st out of 1800 teams

Cascading Variant 2

- Maintained single persistent classifier, the complexity of which grew on each cascade round
- Developed a customized XGBoost classifier that, on cascade round *t*, introduced a single new decision tree based on the gradient of the round *t* weighted classification error
- In effect, each classifier g_t was warm-started from the prior round classifier g_{t-1}

HiggsML Challenge Case Study

Cascading in the Wild

- $\bullet\,$ So far, recipe for turning classifier into training $\rm AMS\,$ maximizer
- Must be coupled with effective regularization strategies to ensure adequate test set generalization
- Team mymo incorporated two practical variants of cascading into HiggsML challenge solution, placing 31st out of 1800 teams

Final Solution

- Ensemble of cascade procedures of each variant and several non-cascaded (standard two-stage / hand-tuned) XGBoost, random forest, and neural network models
- Ensemble of all non-cascade models yielded a private leaderboard score of 3.67 (roughly 198th place)
- Each cascade variant alone yielded 3.65
- Incorporating the cascade models into ensemble yielded 3.72594

Beyond the HiggsML Challenge

Next Steps

- More comprehensive, controlled empirical evaluation of cascading
- More extensive exploration of strategies for ensuring good generalization

Thanks!

References I

Cowan, Glen, Cranmer, Kyle, Gross, Eilam, and Vitells, Ofer. Asymptotic formulae for likelihood-based tests of new physics. The European Physical Journal C-Particles and Fields, 71(2):1–19, 2011.