Sustainable Intermediation: Using Market Design to Improve the Provision of Sanitation¹

> Jean-François Houde^a Terence Johnson^b Molly Lipscomb^c Laura Schechter^d

> > ^aUW-Madison & NBER

^bUniversity of Notre Dame

^cUniversity of Virginia

^dUW-Madison

February 27, 2020

Motivation

- Despite rapid urbanization, many African countries *under-invest* in public infrastructure
- Consequence: Large portion of urban population is not connected to sewage network and rely on private laterines
- Almost 2 million people in peri-urban Dakar are not connected to the sewage system

Desludging in Senegal

- On average, every 6-12 months households need to desludge their pit
- Three technologies:
 - Mechanical: Truck + Pump + Treatment center (?)
 - Family: Family member + Street or open water
 - Baaypell: Hired worker + Street or open water
- Both manual options are *illegal* (rarely enforced)

Desludging in Senegal

- On average, every 6-12 months households need to desludge their pit
- Three technologies:
 - Mechanical: Truck + Pump + Treatment center (?)
 - Family: Family member + Street or open water
 - Baaypell: Hired worker + Street or open water
- Both manual options are *illegal* (rarely enforced)
- 47% of desludging in Dakar are performed with a truck, 27% by a family member, and 25% by a hired manual

Mechanical versus Manual Desludging

Mechanical versus Manual Desludging

Why? Mechanical Prices are 60% Higher than Baaypell

• Avg. prices in USD: Manual desludgings cost \$28 on average, while mechanical desludgings cost \$46 on average.

Market friction: Imperfect competition Desludgers Characteristics

Market friction: Imperfect competition

Average Transaction Prices for Mechanical Services

Market friction: Imperfect competition

Demand for Mechanical Services

Intervention: Just-in-time Auction Platorm

 Frequent, centralized, anonymous auctions reduce search times, undermine collusion, and mitigate price discrimination

Intervention: Just-in-time Auction Platorm

- Frequent, centralized, anonymous auctions reduce search times, undermine collusion, and mitigate price discrimination
- Implement just-in-time procurement auctions for desludging services: invite 8-20 desludgers to over 5,000 between 2013-2016

Intervention: Just-in-time Auction Platorm

- Frequent, centralized, anonymous auctions reduce search times, undermine collusion, and mitigate price discrimination
- Implement just-in-time procurement auctions for desludging services: invite 8-20 desludgers to over 5,000 between 2013-2016
- Auction as a "laboratory": The platform randomizes invitations (how many and which desludgers) + auction format
 - Auction design is *not* optimal

Auction Outcomes: Prices and Acceptance

Nbh.	Avg.	Avg. auction outcomes			Avg. prices	
	n	Accept	$b_{min} a=1$	n	prices	
$Combined^*$	377	0.43	24.88	60	28.27	
Guediawaye	547	0.28	23.87	535	26.20	
Niayes	1061	0.20	26.92	1330	25.47	
Pikine	399	0.30	20.81	667	23.38	
Rufisque	116	0.12	16.21	551	15.92	
Thiaroye	1248	0.31	24.14	1608	24.94	
Total	3748	1,050	22.03	4751	24.01	
Combined: Almedias Plateau Crand Dakar Parcelles						

Combined: Almadies, Plateau, Grand Dakar, Parcelles. Price units: CFA/1000.

Research Questions

• Less than 30% of calls end in a successful transaction, and the average clearing price is about \$42. Can we improve on this?

Research Questions

- Less than 30% of calls end in a successful transaction, and the average clearing price is about \$42. Can we improve on this?
- Three questions:
 - What is the effect of auction competition on prices and transaction probability?
 - 2 Are firms able to collude in the auctions? If so, how?
 - What would be the non-cooperative equilibrium allocations with competitive auctions (i.e. 40+ invited bidders)?

Research Questions

- Less than 30% of calls end in a successful transaction, and the average clearing price is about \$42. Can we improve on this?
- Three questions:
 - What is the effect of auction competition on prices and transaction probability?
 - 2 Are firms able to collude in the auctions? If so, how?
 - What would be the non-cooperative equilibrium allocations with competitive auctions (i.e. 40+ invited bidders)?
- We leverage experimental variation in competition and auction format to answer (1) and (2)
- Structural estimate the desidudging cost distribution to answer (3)

Outline

Auction Platform

2 Field experiment analysis

- Competition
- Collusion

3 Structural model

- Cost estimation
- Counter-factual: Competitive auctions

4 Conclusion

Platform Design: Sequence of Actions

- Client t calls the platform
- Auction format (50%): (i) open, or (ii) sealed-bid.
- 8 Random set of bidders are invited (A_t)
- Ouration = 60 minutes
- Olient is offered the lowest bid, and decides to accept or reject.
- All bidders are notified of the winning bid (not the identity)

Auction Experiment

- Common information available to bidders regarding client $t(I_t)$:
 - Location: Nearest landmark
 - Competition: Number of invited bidders
 - *Time:* Hour, day, month, etc.
- Experimental variation:
 - ▶ Format: Open auction (w/ hard closed) vs Sealed bid
 - Random invitations: $n \sim U[8, 21]$
 - Distance from garage to client
- Within auction information:
 - Reminders (minutes): 15, 30, 40, and 50
 - Open auction: Current lowest bid + Minutes left
 - Sealed-bid auction: Minutes left
 - ▶ Hard-close: Last 10 minutes of the open auction is sealed (e.g. eBay)

Summary statistics

Feature 1: Average price convergence

Feature 2: Participation Heterogeneity

Analysis 1: Field experiment

What is the effect of auction competition on prices and transactions?Are firms able to collude in the auctions? If so, how?

Question 1: What is the effect of competition on prices?

• Expected winning bid and participation:

In Winning $\text{Bid}_t = \alpha_1 n_t + \alpha_2 d_t + \alpha_3 1(\text{Open})_t + x_t \gamma + \epsilon_t$

Number of valid bids_t = $\beta_1 n_t + \beta_2 d_t + \alpha_3 1 (\text{Open})_t + x_t \gamma + \epsilon_t$

Where,

- ▶ Potential bidders (*n*): (i) all invited, (ii) active bidders
- Distance from client to garages (d): (i) average (all/active), and (ii) nearest garage (all/active)

Question 1: What is the effect of competition on prices?

• Expected winning bid and participation:

In Winning $\text{Bid}_t = \alpha_1 n_t + \alpha_2 d_t + \alpha_3 1(\text{Open})_t + x_t \gamma + \epsilon_t$

Number of valid bids_t = $\beta_1 n_t + \beta_2 d_t + \alpha_3 1 (\text{Open})_t + x_t \gamma + \epsilon_t$

Where,

- ▶ Potential bidders (n): (i) all invited, (ii) active bidders
- Distance from client to garages (d): (i) average (all/active), and (ii) nearest garage (all/active)
- Acceptance probability: Willingness to pay distribution

$$\mathsf{WTP}_t = x_t \beta + u_t / \sigma, \quad u_t \sim \mathcal{N}(0, 1)$$

 $\Rightarrow \mathsf{Pr}(\mathsf{Accept}|b_t^*, x_t) = 1 - \Phi\left((1/\sigma) \operatorname{\mathsf{In}} \mathsf{Winning} \ \mathsf{Bid}_t - x_t \beta / \sigma\right)$

Auction competition and winning bids Units: 1,000 CFA

Winning bid regressions

	(1)	(2)		
Mean distance	0.15 ^a	0.053		
	(0.040)	(0.041)		
Nb. Bidders	-0.17 ^a	-0.13ª		
	(0.029)	(0.030)		
Active		-0.24 ^a		
$ imes 1 (\leq 10 \text{km})$		(0.053)		
Min. distance		0.067ª		
(active)		(0.024)		
1(Open)	0.22 ^c	0.25 ^b		
	(0.12)	(0.12)		
^a p<0.01, ^b p<0.05, ^c p<0.1				

Auction competition and winning bids Units: 1,000 CFA

Winning bid regressions

Competition effect

	(1)	(2)		Comp	Competition	
				Low	High	
Mean distance	0.15 ^a	0.053				
	(0.040)	(0.041)	Mean winning	29	23	
Nb. Bidders	-0.17 ^a	-0.13 ^a	bid			
	(0.029)	(0.030)	Mean distance	9.8	23	
Active		-0.24 ^a	Nb. Bidders	10	16	
$ imes$ 1(\leq 10km)		(0.053)	Active	0	5	
Min. distance		0.067ª	$\times 1 (\leq 10 km)$			
(active)		(0.024)	Min. distance	18	3	
1(Open)	0.22 ^c	0.25 ^b	(active)			
	(0.12)	(0.12)	1(Open)	0.66	0.36	
^a p<0.01, ^b p<0.05, ^c p<0.1			Low: $(z_t \hat{\alpha})_{0.95}$.	High: (<i>z</i> ,	$(\hat{\alpha})_{0.05}$	

Auction competition and participation

	(1)	(2)
VARIABLES	Nb. Bids	1(Mono)
Bidders mean distance	0.014	-0.0030
	(0.012)	(0.0041)
Nb. Bidders	0.11 ^a	-0.027 ^a
	(0.0094)	(0.0030)
Active bidders × Less 10KM	0.17 ^a	-0.035 ^a
	(0.020)	(0.0056)
Min. distance (active)	-0.0074	0.0064 ^a
	(0.0053)	(0.0017)
1(Open)	-0.045	0.029 ^b
	(0.038)	(0.012)
Constant	1,634	2,326
	(8,109)	(2,842)
F-test (invitations)	61.4	44.4
Marginal effect (invitation index)	0.42	0.11
Mean dep. variable	1.99	0.44

Auction competition and desludging transactions

 $\Pr(\operatorname{Accept}|b_t^*, x_t) = 1 - \Phi((1/\sigma) \ln \operatorname{Winning Bid}_t - x_t \beta / \sigma)$

	Reduced-form			Probit	IV-Probit
VARIABLES	(1)	(2)	(3)	(4)	(5)
Active $\times 1 (\leq 10 km)$ Min. distance active Winning bid (log)	0.043 ^{<i>b</i>} (0.018)	-0.0083 (0.0061)	0.037 ^c (0.021) -0.0026 (0.0069)	-0.10ª (0.0080)	-0.12ª (0.042)
Correlation Bid and WTP F-test (invitations)					0.050 (0.17) 30.1

Platform demand: Elasticity and competition

Summary: Auction competition results

- Increasing auction competition can lower prices
- Bidder heterogeneity
 - Distance to client is critical for bids and participation
 - ▶ Participation: Active (1/3), Occasional (1/3), Never (1/3)
 - Optimal invitation list: Target active and nearby bidders
- Platform callers are very price sensitive
 - ► Average elasticity: -3

Question 2: Are firms colluding in the auctions?

• Assumption: Explicit cartel rings are not feasible

- Random invitations
- Anonymous bidding
- Private values

• Tacit collusion: Firms commit to strategies that limit competition

Question 2: Are firms colluding in the auctions?

• Assumption: Explicit cartel rings are not feasible

- Random invitations
- Anonymous bidding
- Private values
- Tacit collusion: Firms commit to strategies that limit competition
- Detecting collusion in auctions
 - Starting point: Collusive bids are inconsistent with profit maximization
 - Porter-Zona: Distance and bid ranks
 - Chassang et al.: Missing bids
 - ► Implication: Bidders could ↑ expected profits by changing bids

Tacit collusion across auction formats

• Sealed-bid auctions:

- Reference: McAffee and McMillen (1992)
- Weak Cartels collude on the reserve price (identical bids)
- Auction platform = Random assignment (lottery)
- Our setting: Random reserve price (WTP)

Tacit collusion across auction formats

• Sealed-bid auctions:

- Reference: McAffee and McMillen (1992)
- Weak Cartels collude on the reserve price (identical bids)
- Auction platform = Random assignment (lottery)
- Our setting: Random reserve price (WTP)

• Open auction:

- Claim: Collusion is more stable is open auctions
- References: Robinson (1985), Graham and Marshall (1987), Athey, Levin and Seira (2011)
- Why? Automatic detection + Punishment

Tacit collusion across auction formats

• Sealed-bid auctions:

- Reference: McAffee and McMillen (1992)
- Weak Cartels collude on the reserve price (identical bids)
- Auction platform = Random assignment (lottery)
- Our setting: Random reserve price (WTP)

• Open auction:

- Claim: Collusion is more stable is open auctions
- References: Robinson (1985), Graham and Marshall (1987), Athey, Levin and Seira (2011)
- Why? Automatic detection + Punishment
- Our setting: Open auctions with hard close
- Collusive is not necessarily more likely: Prisoner dilemma (sniping)
Collusion detection: Dominated strategies

• Dominated strategies in sealed-bid auctions

- Avoid "common" bids
- E.g.: If there is a mass-point at 25, submitting b = 25 is **never** optimal
- Dominant strategies in open auctions
 - Undercut if own cost is lower than current lowest bid
 - Submit bid after the last time interval

Collusion detection: Dominated strategies

• Dominated strategies in sealed-bid auctions

- Avoid "common" bids
- E.g.: If there is a mass-point at 25, submitting b = 25 is **never** optimal
- Dominant strategies in open auctions
 - Undercut if own cost is lower than current lowest bid
 - Submit bid after the last time interval
- Behavior affected by the degree of collusion
 - Tying: Bunching at common negotiated prices in sealed-bid auctions
 - Undercut: Bid below current lowest (conditional on participation)
 - Sniping: Avoid detection by submitting late bids in open auctions

Detection strategy (continued)

- Empirical challenge: Tacit collusion vs bounded-rationality
 - Sub-optimal bids can be due to mistakes or non-competitive behavior

• Example of mistakes:

- Inconsistent estimates of Pr(Win|b)
- Frictions: Round prices

Detection strategy (continued)

- Empirical challenge: Tacit collusion vs bounded-rationality
 - Sub-optimal bids can be due to *mistakes* or *non-competitive behavior*

• Example of mistakes:

- Inconsistent estimates of Pr(Win|b)
- Frictions: Round prices
- Identification: Random assignment of format and bidder types
 - 4 Auction heterogeneity: Document collusive behavior across formats
 - Firm heterogeneity: Compare behavior of "collusive" and "competitive" bidders across formats

Winning bid distribution across formats

- Common prices: 25, 30, 22, etc.
- Missing density (sealed): 24, 29, 21, etc.

Timing of winning bid across formats

Collusive behavior across formats

	(1)	(2) (3)		(4)			
		Winning bi	First bid				
VARIABLES	1(Ties)	.(Ties) 1(Round) 1		minutes			
1(Open)	-0.09 ^a	-0.09 ^a	0.3 ^a	3.5 ^a			
	(0.01)	(0.02)	(0.01)	(0.5)			
Competition controls	Y	Y	Y	Y			
Observations	2,884	4,158	4,158	4,158			
R-squared	0.048	0.082	0.147	0.217			
Dep. variable	0.2	0.5	0.3	17			
Standard errors in parentheses							
^a p<0.01, ^b p<0.05, ^c p<0.1							

Collusion vs Biased beliefs

- **Hypothesis:** Tie probability in sealed-bid auctions is uncorrelated with the probability of *avoiding competition* in open auctions
- Rejection of this hypothesis is consistent with collusive behavior

Collusion vs Biased beliefs

- **Hypothesis:** Tie probability in sealed-bid auctions is uncorrelated with the probability of *avoiding competition* in open auctions
- Rejection of this hypothesis is consistent with collusive behavior

• Why?

- Common beliefs in open auctions = Current lowest bid
- "Mistakes" in open auctions are not due to beliefs heterogeneity
- Negative correlation between "sniping" and "tying"
 - * Competitive bidders maximize individual profits
 - ★ *Collusive* bidders use dominated strategies
- **Caveat:** Cannot (completely) rule out the possibility that sophisticated bidders are more attentive

Identifying *collusive* types from sealed-bid auctions

• Sample:

- Bids in sealed-bid auctions with 2+ bids received
- ► Active bidders: Bidders with 30+ valid bids over the sample

Identifying *collusive* types from sealed-bid auctions

Sample:

- Bids in sealed-bid auctions with 2+ bids received
- ► Active bidders: Bidders with 30+ valid bids over the sample

Implementation

Dependent variable:

$$y_{it} = \sum_{j \in \mathcal{J}_t \setminus i} \mathbb{1}(b_{it} = b_{jt}) \rightarrow \mathsf{Tie}_{it} = \mathbb{1}(y_{it} > 0)$$

where \mathcal{J}_t is the set of invited bidders in t.

Conditional tie probability (probit)

$$\Pr(\mathsf{Tie}_{it} = 1 | x_{it}) = \Phi\left(\hat{\theta}_i + x_{it}\hat{\beta}\right)$$

• Collusive bidder type: $\hat{\theta}_i$

Distribution of tie-probability index $\hat{\theta}_i$

Number of active bidders: 35

Collusive bidding strategy: Sealed-bid Auctions

	(1)	(2)	(3)			
VARIABLES	Bid amount	1(Round bid)	1(Sniping)			
Tie FE	0.70 ^a	0.14 ^a	-0.011			
	(0.21)	(0.013)	(0.035)			
Observations	4,504	4,504	4,504			
R-squared	0.234	0.173	0.048			
Mean variable	27.1	0.59	0.22			
Nb cluster	35	35	35			
Robust standard errors in parentheses						
^a p<0.01, ^b p<0.05, ^c p<0.1						

Collusive bidding strategy: Open Auctions

	(1)	(2)	(3)	(4)			
VARIABLES	1(Undercut)	1(Bid above)	1(Sniping)	Bid time			
Tie FE	-0.061ª	0.028 ^a	-0.18 ^a	-7.16 ^a			
	(0.016)	(0.0081)	(0.025)	(1.14)			
Observations	1,924	1,924	3,866	3,866			
R-squared	0.085	0.041	0.250	0.222			
Mean variable	0.37	0.040	0.22	26.8			
Nb cluster	35	35	35	35			
Robust standard errors in parentheses							
^a p<0.01, ^b p<0.05, ^c p<0.1							

(1) and (2) are estimated in the sample of bids placed after a "price message"

Winning bid: Competition & Collusion

	(1)	(2)	(3)	(4)			
VARIABLES	Price	Price	Log Price	Log Price			
Avg. tie prob index		0.84 ^a		0.035 ^a			
		(0.14)		(0.0054)			
Nb. Bidders	-0.13 ^a	-0.12 ^a	-0.0046 ^a	-0.0043 ^a			
	(0.028)	(0.028)	(0.0010)	(0.0010)			
Active bidders	-0.23ª	-0.25 ^a	-0.011ª	-0.011 ^a			
× Less 10km	(0.049)	(0.048)	(0.0019)	(0.0019)			
Min. distance	0.058 ^a	0.068 ^a	0.0019 ^a	0.0023 ^a			
	(0.019)	(0.019)	(0.00070)	(0.00070)			
1(Open)	0.21 ^b	0.19 ^c	0.0085 ^b	0.0077 ^c			
	(0.11)	(0.11)	(0.0040)	(0.0039)			
R-squared	0.325	0.331	0.342	0.349			
Comp. effect (sd)	0.78	0.89	0.030	0.035			
Robust standard errors in parentheses							
^a p<0.01, ^b p<0.05, ^c p<0.1							

Collusion: Summary

• Ties/snipping is (partially) due to collusion

- Group of active bidders avoid competition (dominated strategies)
- Collusive bidders: More likely to tie, high bids and less likely to delay
- Competitive bidders delay bidding in open auctions (not in sealed-bid)
- Bounded rationality unlikely to (fully) explain results
 - Pricing friction: Round prices are less common in open auctions
 - Collusive bidders play dominated strategies in **both** formats

Analysis 2: Bidding in the Sealed-bid Auction

• Bidder *i*'s expected profits from submitting a bid *b_i*:

$$\pi_{it}(c_{it}) = \max_{b_i \in \mathcal{B}_i} \quad (b_i - c_{it})D(b_i|I_t) \operatorname{Pr}(Win|b_i, I_t)$$

where $c_{it} = \bar{c}_{it} + \gamma_{it}$ (IPV).

Analysis 2: Bidding in the Sealed-bid Auction

• Bidder *i*'s expected profits from submitting a bid *b_i*:

$$\pi_{it}(c_{it}) = \max_{b_i \in \mathcal{B}_i} \quad (b_i - c_{it})D(b_i|I_t) \operatorname{Pr}(Win|b_i, I_t)$$

where $c_{it} = \bar{c}_{it} + \gamma_{it}$ (IPV).

- Round bids and ties: If consideration set is very rich (e.g. B = ℜ₊), some bids b_{it} are dominated for any c_{it} ≥ 0 (e.g. b_{it} = 25K).
- Solution: Partial collusion via limited consideration-sets
 - ▶ Choice-set: Bids chosen more frequently than 5% by bidder i (6-29)
 - Implication: Collusive types have limited consideration sets
 - Sample selection: Bidders who submit at least 20 bids (46 bidders)

Analysis 2: Bidding in the Sealed-bid Auction

• Bidder *i*'s expected profits from submitting a bid *b_i*:

$$\pi_{it}(c_{it}) = \max_{b_i \in \mathcal{B}_i} \quad (b_i - c_{it})D(b_i|I_t) \operatorname{Pr}(Win|b_i, I_t)$$

where $c_{it} = \bar{c}_{it} + \gamma_{it}$ (IPV).

Round bids and ties: If consideration set is very rich (e.g. B = ℜ₊), some bids b_{it} are dominated for any c_{it} ≥ 0 (e.g. b_{it} = 25K).

• Solution: Partial collusion via limited consideration-sets

- ▶ Choice-set: Bids chosen more frequently than 5% by bidder i (6-29)
- Implication: Collusive types have limited consideration sets
- Sample selection: Bidders who submit at least 20 bids (46 bidders)
- Conditional on being invited, bidder *i* submits an offer if:

$$E_{\gamma_{it}}\left[\pi_{it}(\bar{c}_{it}+\gamma_{it})|I_t,\bar{c}_{it}\right] > \kappa_{it}+\epsilon_{it}$$

where ϵ_{it} is IPV.

We'll work backwards through the game/estimation, then discuss the counterfactuals:

- Desludging cost: \bar{c}_{it} , $F(\gamma_{it})$
- **2** Outside option: κ_i , $G(\epsilon_{it})$
- Sounter-factual: Equilibrium prices with competitive auctions

Step 1: Desludging Cost Estimation

• **Expected profits:** Bidder *i*'s expected profits from submitting a bid *b* with cost *c_{it}* with information set *l_{it}*:

$$\pi_{i}(b, c_{it}, I_{it}) = \underbrace{\Pr[\text{Win}|b, I_{it}]}_{\Pr(\text{Winning})} \underbrace{D[b|I_{it}]}_{\text{Demand}} \underbrace{(b - c_{it})}_{\text{Margin}}$$

• **Probability of winning:** Let \tilde{A}_{-i} be the number of bids besides *i*, so

$$\Pr[\text{Win}|b, I_{it}] = \underbrace{\Pr[\tilde{A}_{-i} = 0|I_{it}]}_{\text{Monopolist}} + \underbrace{(1 - \Pr[\tilde{A}_{-i} = 0|I_{it}])}_{\text{Contested auction}} \underbrace{\Pr[\min b_{-i} > b|\tilde{A}_{-i} > 0, I_{it}]}_{\text{Lowest bidder}}$$
Beliefs: Empirical frequency $\widehat{\Pr}[\text{Win}|b_i, I_t] = \Pr(b_{-i} > b_i|I_t)$

Cost Estimation: Revealed Preference Inequalities

• For each chosen bid *b_{it}*:

$$\begin{split} \hat{H}(b_{it}|I_t)(b_{it} - c_{it}) &\geq \hat{H}(b'|I_t)(b' - c_{it}), b' \in \mathcal{B}_i \\ \to c_{it} &\leq \frac{\hat{H}(b_{it}|I_t)b_{it} - \hat{H}(b'|I_t)b'}{H(b_{it}) - H(b')} = \mu_{it}(b_{it}, b'), \forall b' > b_{it} \\ \to c_{it} &\geq \frac{\hat{H}(b'I_t)b' - \hat{H}(b_{it}|I_t)b_{it}}{H(b') - H(b_{it})} = \mu_{it}(b', b_{it}), \forall b' < b_{it} \end{split}$$

Where $\hat{H}(b_{it}|I_t)(b_{it}-c_{it}) = \widehat{\Pr}[\operatorname{Win}|b_{it},I_t]\hat{D}[b_{it}|I_t](b_{it}-c_{it}).$

Cost Estimation: Revealed Preference Inequalities

• For each chosen bid *b_{it}*:

$$\begin{split} \hat{H}(b_{it}|I_t)(b_{it} - c_{it}) &\geq \hat{H}(b'|I_t)(b' - c_{it}), b' \in \mathcal{B}_i \\ \to c_{it} &\leq \frac{\hat{H}(b_{it}|I_t)b_{it} - \hat{H}(b'|I_t)b'}{H(b_{it}) - H(b')} = \mu_{it}(b_{it}, b'), \forall b' > b_{it} \\ \to c_{it} &\geq \frac{\hat{H}(b'I_t)b' - \hat{H}(b_{it}|I_t)b_{it}}{H(b') - H(b_{it})} = \mu_{it}(b', b_{it}), \forall b' < b_{it} \end{split}$$

Where $\hat{H}(b_{it}|I_t)(b_{it} - c_{it}) = \widehat{\Pr}[\operatorname{Win}|b_{it}, I_t]\hat{D}[b_{it}|I_t](b_{it} - c_{it}).$ • If $c_{it} = x_{it}\beta + \gamma_{it}$, the likelihood can be formed as follows:

$$\Pr(b_{it} = b_k | I_t, x_{it}) = F(\mu_{it,k} - x_{it}\beta) - F(\mu_{it,k-1} - x_{it}\beta)$$

• Functional form: Mixture-of-normals $F(\gamma)$ (Coppenjans, JoE, 2001).

Estimation Results: Desludging Cost

Step 2: Participation Probability Model

- Timing assumption:
 - **1** Bidders observe: $I_t, \bar{c}_{it}, \kappa_{it}, \epsilon_{it}$
 - 2 Entry decision: $a_{it} = 1$ if $E(\pi_{it} | \bar{c}_{it}, I_t) > \kappa_{it} + \epsilon_{it}$
 - If $a_{it} = 1$, each bidder observes γ_{it} and submits b_{it}

Step 2: Participation Probability Model

- Timing assumption:
 - **1** Bidders observe: $I_t, \bar{c}_{it}, \kappa_{it}, \epsilon_{it}$
 - 2 Entry decision: $a_{it} = 1$ if $E(\pi_{it} | \bar{c}_{it}, I_t) > \kappa_{it} + \epsilon_{it}$
 - If $a_{it} = 1$, each bidder observes γ_{it} and submits b_{it}
- Expected profits based on the limited choice-set:

$$E(\pi_{it}|ar{c}_{it},I_t) = \int \max_{b'\in\mathcal{B}_i} \hat{H}(b')(b'-ar{c}_{it}-\gamma)f(\gamma|\hat{ heta})d\gamma)$$

where $\bar{c}_{it} = x_{it}\hat{\beta}$.

Step 2: Participation Probability Model

- Timing assumption:
 - **1** Bidders observe: $I_t, \bar{c}_{it}, \kappa_{it}, \epsilon_{it}$
 - 2 Entry decision: $a_{it} = 1$ if $E(\pi_{it} | \bar{c}_{it}, I_t) > \kappa_{it} + \epsilon_{it}$
 - If $a_{it} = 1$, each bidder observes γ_{it} and submits b_{it}
- Expected profits based on the limited choice-set:

$$E(\pi_{it}|\bar{c}_{it},I_t) = \int \max_{b'\in\mathcal{B}_i} \hat{H}(b')(b'-\bar{c}_{it}-\gamma)f(\gamma|\hat{\theta})d\gamma)$$

where $\bar{c}_{it} = x_{it}\hat{\beta}$. • If $\epsilon_{it} \sim N(0, \sigma_{\epsilon}^2)$ and $\kappa_i = z_i \delta$, this leads to a standard Probit model:

$$\Pr(a_{it} = 1 | I_{it}, x_{it}, z_{it}) = \Phi\left(\frac{E(\pi_{it} | \bar{c}_{it}, I_t) - z_{it}\delta}{\sigma_{\epsilon}}\right)$$

Average Outside Options – κ_{it} (Units: CFA) Vertical line = Expected platform profits (450)

Entry cost estimates

• **Goal:** What would be the non-cooperative equilibrium allocations with competitive auctions (i.e. 40+ invited bidders)?

- **Goal:** What would be the non-cooperative equilibrium allocations with competitive auctions (i.e. 40+ invited bidders)?
- Assumptions:
 - Platform designer observes (*c
 {it}*, κ{it}), and the distribution of private values (*w_{it}*, γ_{it}, ε_{it})
 - Firms decide to enter simultaneously and non-cooperatively

- **Goal:** What would be the non-cooperative equilibrium allocations with competitive auctions (i.e. 40+ invited bidders)?
- Assumptions:
 - Platform designer observes (*c
 {it}*, κ{it}), and the distribution of private values (*w_{it}*, γ_{it}, ε_{it})
 - Firms decide to enter simultaneously and non-cooperatively
- Using the revelation principle (Myerson, 1981), the incentive compatible expected payment to firm *i* is:

$$E_{\tilde{A}_{t},\gamma_{t},w_{t}}\left[P_{it}(\gamma_{it},\gamma_{-i,t},w_{t},\tilde{A}_{t})(\bar{c}_{ij}+\psi(\gamma_{it}))\left|A_{t}\right]\right]$$

- Where,
 - ▶ $P_{it}(\gamma_{it}, \gamma_{-i,t}, w_t, \tilde{A}_t)$ is a (non-increasing) probability of selecting firm *i*
 - \tilde{A}_t is the set of bidders competing for client t
 - $\bar{c}_{ij} + \psi(\gamma_{it}) = \bar{c}_{it} + \gamma_{it} + \frac{F(\gamma_{it})}{f(\gamma_{it})}$ is the informationally adjusted cost of i

• The expected profit conditional on participating is:

$$\bar{\pi}_{ij}(A_t) = E_{\tilde{A}_{it},\gamma_i,w_i} \left[\int_{\gamma_{ij}}^{\infty} P_{ij}(z,\gamma_{i,-j},w_i,\tilde{A}_{it})dz \middle| A_t \right] \text{ (Ass.: Efficient selection.)}$$
$$= E_{\tilde{A}_{it},\gamma_{it}} \left[\underbrace{\int_{\gamma_{ij}}^{\infty} D_i(\bar{c}_{ij} + \psi(z)) \operatorname{Pr}\left(\min_{k \in \tilde{A}_{it}} \bar{c}_{kt} + \psi(\gamma_{kt}) > c_{it} + \psi(z)\right) dz}_{E(\pi_{it}|\gamma_{it},\tilde{A}_s)} \middle| A_t \right]$$

where the distribution of \tilde{A}_{it} is derived from the entry prob. of rivals. • **Bayes-Nash equilibrium:** Participation is consistent with $\bar{\pi}_{it}(A_t)$,

$$\rho_{it}(I_t, A_t) = \Phi\left(\frac{\bar{\pi}_{in}^{\rho}(A_t) - \kappa_i}{\sigma_{\epsilon}}\right).$$

• The expected profit conditional on participating is:

$$\bar{\pi}_{ij}(A_t) = E_{\tilde{A}_{it},\gamma_i,w_i} \left[\int_{\gamma_{ij}}^{\infty} P_{ij}(z,\gamma_{i,-j},w_i,\tilde{A}_{it})dz \middle| A_t \right] \text{ (Ass.: Efficient selection.)}$$
$$= E_{\tilde{A}_{it},\gamma_{it}} \left[\underbrace{\int_{\gamma_{ij}}^{\infty} D_i(\bar{c}_{ij} + \psi(z)) \operatorname{Pr}\left(\min_{k \in \tilde{A}_{it}} \bar{c}_{kt} + \psi(\gamma_{kt}) > c_{it} + \psi(z)\right) dz}_{E(\pi_{it} \mid \gamma_{it}, \tilde{A}_s)} \middle| A_t \right]$$

where the distribution of \tilde{A}_{it} is derived from the entry prob. of rivals.

• **Bayes-Nash equilibrium:** Participation is consistent with $\bar{\pi}_{it}(A_t)$,

$$\rho_{it}(I_t, A_t) = \Phi\left(\frac{\bar{\pi}_{in}^{\rho}(A_t) - \kappa_i}{\sigma_{\epsilon}}\right).$$

- Solution algorithm: (Importance sampling)
 - Compute $E_{\gamma_{it}}(\pi_{it}|\tilde{A}_s)$ for random list s = 1, ..., S (independent of ρ).
 - At iteration k, evaluate the probability of observing each \tilde{A}_s using ρ_{it}^{k-1}
 - Update the best-response of each player until convergence

Counter-Factual Results: Comparison to Current Platform Invitation list: Every active bidders (46)

		Counter-factual		Observed platform (sealed)			
Nbh.	Ν	Offers	Entry	Accept	Offers	Entry	Accept
			Freq.	Freq.		Freq.	Freq.
Almadies	81	16.82	0.25	0.76	24.60	0.16	0.42
Dakar Plateau	23	20.03	0.21	0.67	27.95	0.13	0.30
Grand Dakar	34	17.33	0.23	0.62	23.38	0.18	0.21
Parcelles	68	14.50	0.27	0.89	22.05	0.19	0.46
Guediawaye	296	17.91	0.30	0.62	24.54	0.18	0.27
Niayes	631	21.32	0.27	0.47	28.17	0.13	0.25
Pikine	205	16.43	0.28	0.60	22.28	0.20	0.33
Rufisque	81	24.25	0.18	0.08	25.51	0.08	0.05
Thiaroye	683	18.02	0.28	0.67	24.98	0.18	0.33
Total	2102	18.93	0.27	0.58	25.53	0.16	0.29

Notes: Price units: 1,000 CFA. Sample: Sealed-bid auctions. Specification: Heterogenous belief model (1).

Counter-Factual Results: Comparison to Market Prices

Invitation list: All active bidders (46)

		Со	Average		
Nbh.	Ν	Offers	Entry	Accept	transac.
			Freq.	Freq.	prices
Combined*	206	16.50	0.25	0.77	28.27
Guediawaye	296	17.91	0.30	0.62	26.20
Niayes	631	21.32	0.27	0.47	25.47
Pikine	205	16.43	0.28	0.60	23.38
Rufisque	81	24.25	0.18	0.08	15.92
Thiaroye	683	18.02	0.28	0.67	24.94
Total	2102	18.93	0.27	0.58	24.01

Notes: Price units: 1,000 CFA. Sample: Sealed-bid auctions. Specification: Heterogenous belief model (1). Combined arrondissements: Almadies, Plateau, Grand Dakar, Parcelles.

Conclusion

- Market-based solution to a development problem
- Randomization provides great instruments
 - Identify demand/WTP
 - Measure the effect of competition/collusion
- Firms make low expected profits, driving low participation, but have high margins, and consumers are very elastic
- The lowest cost firms have high outside option value, drop out of the market relatively quickly
 - Some rents must be left on the table in order to convince the highest productivity firms to continue to participate.
Summary Statistics

	Old paltform		New pla	tform
	Average	SD	Average	SD
Nb. of auctions	2669		2005	
Nb. of clients	2488		1680	
Nb. of completed jobs	862		481	
Auction format $=$ Open	0.501	0.500	0.495	0.500
Probability of bidding	0.115	0.153	0.102	0.140
Invited auctions per firm	352	240	239	102
Number of firms	109		92	
Number of potential bidders	14	2	11	2
Valid bids per successful auction	2.878	1.529	1.848	1.042
Auctions with zero bids (%)	0.069	0.254	0.283	0.450

Number of Auctions per Month

Total Invitations per Desludger

Return

Example: Win probability for two bidders and two auctions Beliefs = Heterogenous

	Beliefs:	Heterogeneous	Beliefs:	Open auction
VARABLES	(1)	(2)	(3)	(4)
Distance (km)	0.020	0.020	0.021	0.021
	(0.001)	(0.001)	(0.001)	(0.001)
Association	0.261	0.261	0.215	0.214
	(0.020)	(0.020)	(0.020)	(0.020)
1(Single truck)	0.088	0.087	0.081	0.081
	(0.011)	(0.011)	(0.011)	(0.011)
Nb. Trucks	0.058	0.058	0.062	0.062
	(0.005)	(0.006)	(0.006)	(0.006)
Nb. bidders invited		0.001		0.002
		(0.001)		(0.001)
% invitees same garage		-0.034		-0.070
		(0.027)		(0.027)
Mixture weight: type 1	0.796	0.197	0.865	0.880
Location: type 2	-0.031	-0.028	-0.005	0.048
Std-deviation: type 1	0.230	0.231	0.256	0.279
Std-deviation: type 2	0.504	0.509	0.575	0.585
% violations	0.063	0.063	0.037	0.037
LLF/N	-2.334	-2.334	-2.156	-2.156

Estimation Results: Desludging Cost Distribution

Control variables (FE): neighborhood, garage, company, month, year, dow, and client lat/long coordinates (continuous). Mean bid: 2.71.

Return

	Beliefs: Heterogeneous		Beliefs:	Open auction	
	(1)	(2)	(3)	(4)	
Expected profits	6.96	6.96	5.39	5.38	
	(0.50)	(0.50)	(0.38)	(0.38)	
Association	0.51	0.51	0.45	0.45	
	(0.08)	(0.08)	(0.07)	(0.07)	
1(Single truck)	0.19	0.19	0.17	0.17	
	(0.05)	(0.05)	(0.05)	(0.05)	
Nb. Trucks)	0.07	0.07	0.07	0.07	
	(0.02)	(0.02)	(0.02)	(0.02)	
Indicator: Lunch	-0.09	-0.09	-0.06	-0.06	
	(0.03)	(0.03)	(0.03)	(0.03)	
Indicator: Afternoon	-0.14	-0.14	-0.09	-0.09	
	(0.05)	(0.05)	(0.05)	(0.05)	
Nb. bidders invited		0.01		0.01	
		(0.01)		(0.01)	
% invitees same garage		-0.04		-0.05	
		(0.13)		(0.13)	
$\hat{\sigma}_{\epsilon}$	0.144	0.144	0.186	0.186	
LLF/N	-0.476	-0.476	-0.473	-0.473	

Estimation Results: Participation Probability Model

Controls (FE): garage, company, month, year, and dow. Units: x10,000 CFA.