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Idea of This Paper

Nonparametric identification of demand when one has micro data
linking the characteristics of individual consumers to their
choices.

Micro data creates a kind of panel data structure of
consumers-within-markets.

Our main insight: micro data can substantially reduce the reliance
on instrumental variable for identification. Still need instruments
for prices.
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Very Broad Background

I Empirical IO has been criticized in the past for estimating
models that are rich & complicated, but maybe not
well-identified (Angrist and Pischke, 2010).

I There has been a lot of work on formal identification in IO.

I Nonparametric identification can help us understand basic
sources of identification and also understand the role of
parametric assumptions, which we are likely to continue to
use.
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Demand Estimation

I Unobserved product characteristics (“demand shocks”) that
vary across products and markets present a challenge to
identification of demand.

I Each shock affects the quantity demanded, and price, of all
related goods.

I In the case of “market level data,” Berry & Haile (2014)
obtain identification with instruments for all endogenous
variables: the prices and quantities of all goods in the demand
system.
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Market Level Instruments

I With J products, 2J endogenous variables: J prices, p, and J
quantities or “market shares,” s.

I Berry and Haile (2014) then require 2J instruments: J “BLP
instruments” (exogenous characteristics of other products)
plus J cost shifters

I Functional form restrictions can reduce this number.
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Index, Invert, IV

In the market-level context:

xjtβ + ξjt︸ ︷︷ ︸
index

= σ−1j︸︷︷︸
inverse

(s, p)︸ ︷︷ ︸
IVs

(β normalized to one to choose units). E.g. for the logit:

σ−1(s, p) = ln(sj)− ln(s0) + αpjt .

With micro data:

I use an index in consumer characteristics, z

I add the panel-data like possibility of within-market movement
in the space of z , exploiting variation choice probabilities
while holding ξjt fixed.
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Micro Data

Micro data discrete choice is much older than market level, but did
not originally address endogeneity. There are many identification
papers on discrete choice, but much not on our context of
consumers-within-markets and market-level endogeneity.

McFadden, et al, (1977): household level transport demand for
auto v. bus shifted by wage-time-distance to work, auto ownership,
etc. Distance is also used in modern studies of schools, hospitals,
jobs, etc. In autos: family size × size, rural × pickup, education ×
import. Many others!

Voting example: income, education, age race, urban/rural shift
voting preferences, but not just the preference for one candidate.
Not a clear exclusive assignment of, say, education to the taste for
one party or the other.
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Example: Job Vacancies as Differentiated Products
Azar, Berry, Marinescu (2019)

Simplified version: i is applicant, j is job listing, t is commuting
zone:

uijt = xjtβ + αwjt + zijtγ + ξjt︸ ︷︷ ︸
index

+νigt(λ) + εijt

where zijt is distance to job, the errors are nested logit (on, say,
occupation), xjt are unobserved job characteristics and wjt is the
endogenous wage (need IVs)

The current paper can provide a nonparametric identification
foundation for frameworks like this, using an index that
generalizes

zijtγ + ξjt

and otherwise uses much weaker assumptions overall.
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Our Results

I allow demand to depend on consumer observables

I are nonparametric

I do not require a “special regressor,” or exclusive assignment
of some z ’s to the utility of a particular produce,

I do not require a full support assumption

I do not restrict the way that product characteristics or prices
shift demand,

I works for discrete choice demand as well as continuous
demand or mixed discrete/continuous

I Allow for “Waldfogel” instruments (market level distribution
of z that shifts prices) and do not require BLP instruments.
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Our Results
however

I require an index in z and invertibility assumptions,

I in lieu of full support, require a “common choice probability”
that is found in all markets (for different z ’s in different
markets),

I still require J instruments for prices,

I require J elements of z (to get fully flexible demand)

The requirements of J price IVs and J elements of z can be
relaxed under stronger assumptions.
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Questions?

Next: Model, Normalizations, Example
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Setup

We consider multinomial choice among J goods (or “products”)
and an outside option, j = 0, by consumers i in “markets” t. A
market is defined formally by:

I a vector Xt of observable characteristics of the market and
products;

I a price vector Pt = (P1t , . . . ,PJt);

I a vector Ξt = (Ξ1t , . . . ,ΞJt) of product-market unobservables
(Ξ is capital ξ, sorry);

I a distribution FZ (·; t) of consumer-specific observables
Zit = (Zi1t , . . . ,ZiJt), with support Z (Xt).

Uppercase denotes a random variable.
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Notes

I We need at least J elements of Zit ,

I additional elements could be included in the Xt , and so we
assume Zit ∈ RJ , but

I we don’t necessarily assign Zijt to the “utility of product j .”

I We assume J elements of Ξt (one for each product).

I We don’t assume independence between Zit and Ξit

I We don’t assume independence between Xt and Ξt , although
this might be required to answer some counterfactuals.
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Choice

The choice environment of consumer i is

Cit = (Zit ,Xt ,Pt ,Ξt)

The choice of consumer i is

Qit = (Qi1t , . . . ,QiJt)

In the discrete choice setting, the joint distribution of decision rules
is given by the choice probabilities:

σ (Cit) = (σ1(Cit), . . . , σJ(Cit)) = E [Qit |Cit ] .
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Core Assumptions

Assumption (Index)

σ (Cit) = σ(γ(Zit ,Xt ,Ξt)︸ ︷︷ ︸
index

,Xt ,Pt)

with the index γ (Zit ,Xt ,Ξt) ∈ RJ .

Assumption (Invertible Demand)

σ (·,Xt ,Pt) is injective on supp γ(Zit ,Xt ,Ξt)|(Xt ,Pt) for all
Xt ,Pt .

Assumption (Injective Index)

γ (·,Xt ,Ξt) is injective on Z (Xt) for all Xt ,Ξt .
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Additional Assumptions

Index is linear in Ξjt but not in Zit .

Assumption (Separable Index)

For all j ,
γj (Zit ,Ξt) = gj (Zit) + Ξjt .

Assumption (Regularity)

(i) Z is open and connected; (ii) g(z) is continuously differentiable
on Z; (iii) σ (γ, ξ) is continuously differentiable with respect to γ
for all (γ, ξ) ∈ supp (γ (Zit ,Ξt) ,Ξt); (iv) ∂g(z)/∂z and
∂σ(γ, p)/∂γ are nonsingular almost surely on Z and
supp (γ(Zit ,Ξt),Pt), respectively.
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Transformations of the Index

A linear transformation of our additively separable index can be
reversed by a modification of the choice probability function σ. For
example, for a J-vector A and a nonsingular J × J matrix B,
define

γ̃ (Zit ,Ξt) = A + Bγ (Zit ,Ξt) .

and also define

σ̃ (γ̃,Pt) = σ
(
B−1 (γ̃ − A) ,Pt

)
.

Then (σ, γ) and (σ̃, γ̃) are two representations of the same decision
rules, the latter satisfying our assumptions whenever the former
does.
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Discussion of the Linear Transformation

This illustrates an inherent ambiguity. For example, in terms of
behavior, there is no difference between a change in Zijt that
makes good j more desirable and a change in Zijt that makes all
other goods (including the outside good) less desirable.

In the nonparametric discrete choice identification literature, this
ambiguity is often resolved with a priori exclusion
assumptions—e.g., an assumption that Zijt affects only the utility
obtained from good j .

Similarly, a fully parametric discrete choice models will (often) not
retain the same parametric structure under the transformation and
so the issue will not arise.
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Transformation Normalization

We set E [Ξt ] = 0 and for some z0 we set[
∂g(z0)

∂z

]
= I .

In our transformation example, start from the original model and
then let B =

[
∂g(z0)/∂z

]−1
and A = −B E [Ξt ]. We then drop

the tildes from the notation.

As a local normalization in the index, we also set g(z0) = 0.
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Random Coefficients Discrete Choice Example
A classic model is:

uijt = xjtβit − αitpjt + ξjt + εijt ,

β
(k)
it = λ

(k)
0 +

L∑
`=1

λ
(k)
` zi`t + λ(k)ν ν

(k)
it ,

ln(αit) = λ
(0)
0 + λ

(0)
1 yit + λ(0)ν νi0.

In our model, we could simply condition on income yit , treating it
fully flexibly. We can rewrite the model to illustrate our
index:

uijt = gj (zit) + ξjt + xjtλ0 − αitpjt + µijt ,

where µijt =
∑

k x
(k)
jt λ

(k)
ν ν

(k)
it + εit and

gj (zit) =
∑
k

x
(k)
jt

L∑
`=1

λ
(k)
` zi`t .
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Verifying Assumptions for the RCL Model

All effects of zit and ξt operate though indices

γj (zit , ξt) = gj (zit) + ξjt j = 1, . . . , J,

satisfying the index assumptions. It is easy to show that the
resulting discrete choice probabilities satisfy Berry, Gandhi and
Haile’s (2013) “connected substitutes” condition with respect to
the vector of indices and therefore satisfy the assumed injectivity of
demand.

We require at least J non-trivial elements of the vector zit and the
injectivity of g(z) depends on the invertibility of the implied matrix
of linear coefficients in the index.
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Example: Ho (2009)

How to get a “rich” set of z ’s? Ho builds them from an auxiliary
dataset.

Consumer i ’s demand for insurance depends on her preferences and
the likelihood of having of each diagnosis. Ho uses data on
hospital choice to derive the expected utility of each hospital
network:

zijt ≡ EU (njt , dit) .

where njt are measures of the insurer’s network and dit are
demographics. This then enters a classic logit:

uijt = λzijt + xjtβ − αpjt + ξjt + εijt .

Injectivity of the index requires only that λ 6= 0 and the other
assumptions are also easy to verify.
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Questions?

Next: Identification Results and Discussion (with questions and
examples)
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The Consumer with Choice Probability s

Our assumptions imply that for each s ∈ S (ξ, p) there must be a
unique z∗ ∈ Z such that

σ (g (z∗) + ξ, p) = s.

Here, z∗ is the vector of consumer characteristics whose associated
choice probability vector is s.

We can then write the inverted model as:

g (z∗ (s; ξ, p)) + ξ = σ−1 (s; p)

Note that for each s ∈ S(ξ, p), z∗(s; ξ, p) is observed even though
ξ is not observed.
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Identification of the Index Function

g (z∗ (s; ξt , p)) + ξt = σ−1 (s; p) .

Differentiating and setting z = z∗ (s; ξt , p),

∂g (z)

∂z

∂z∗ (s; ξt , p)

∂s
=
∂σ−1 (s; p)

∂s
.

Do the same in another market t ′ with the same p and the same
s ∈ S(ξt′ , p). Setting the two RHS equal,

∂g (z ′)

∂z
=

[
∂g (z)

∂z

]
∂z∗ (s; ξt , p)

∂s

[
∂z∗ (s; ξt′ , p)

∂s

]−1
︸ ︷︷ ︸

observed

.

with z ′ = z∗ (s; ξt′ , p).

We normalized ∂g(z0)/∂z = I and so we can start with z = z0

and then move through a series of markets with the same p and
“overlapping” S(ξ, p) to identify g(z) ∀z ∈ Z.
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A Common Choice Probability

We assume that is some choice probability vector s∗ that is
common to all markets.

Assumption (Common Choice Probability)

There exists a choice probability vector s∗ such that s∗ ∈ S (ξ, p)
for all (ξ, p) ∈ supp (Ξt ,Pt).

This requires that the intersection of the supports S (ξ, p) be
nonempty. The supports of s are driven by variation in Zit across
its support and so the assumption requires “sufficient” variation in
Zit .

The common choice probability assumption is verifiable in the
data.
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Contrast to Large Support

A large support assumption would imply that every interior choice
probability vector s is a common choice probability.

The common choice probability assumption requires sufficient
variation in Zit that for some s∗ we have s∗ ∈ S (ξt , pt) for all
realizations of (ξt , pt).

The strength of this assumption depends on the joint support of
(Ξt ,Pt) and the relative impacts of zit , ξt and pt on choice
behavior.
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An IV Equation to Identify Demand
Under the common choice probability assumption, we can write, in
every market,

gj (z∗ (s∗; ξt , pt)) = σ−1j (s∗; pt)− ξjt .

The LHS is known and we are using variation in z to keep the RHS
choice probabilities fixed at s∗. This leaves only the variation in p
and we can identify the function σ−1(s∗, p) given instruments, Wt ,
for prices. This identifies ξt , which in turn identifies demand.

The remaining necessary assumption is therefore a classic
nonparametric “completeness” condition

Assumption (Instruments for Prices)

(i) For all j = 1, . . . , J, E [Ξjt |Wt ] = 0 almost surely; (ii) In the
class of functions Ψ (Pt) with finite expectation,
E [Ψ (Pt) |Wt ] = 0 almost surely implies Ψ (Pt) = 0 almost
surely.
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Discussion

As compared to the market-level results, we replace IVs for
quantities with micro data z variables.

The “exogeneity” of the micro-data variation arises not from an
exclusion restriction in the cross-section of markets but from the
fact that within a single market the market-level demand shocks
simply do not vary. Thus, our results have some intuitive
connection to “within estimation” of slope parameters in panel
data models with fixed effects.

Next: discussion of particular questions.
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What Are Appropriate Instruments?

Depending on the application, IVs for price might include

I cost shifters excluded from the demand system, or proxies for
these.

I exogenous shifters of market structure

I Waldfogel IVs: market-level demographics such as the
distribution of income and ethnicity that alter equilibrium
markups (recall that we condition on consumer-level
demographics).

But not (without further restrictions) the BLP instruments,
because we have not even specified which elements of X are
associated with what product.
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What About Stronger Functional Forms?

For our nonparametric model, we need adequate exogenous
variation of dimension equal to the dimension of the endogenous
variables.

In practice, functional form assumptions enable interpolation,
extrapolation, and the bridging of gaps between the exogenous
variation in the sample and variation needed for nonparametric
identification.

We can also ask how imposing additional structure on the demand
model might allow relaxation of our identification requirements.
We consider three example directions.
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Strengthening the Index Structure
functional form example 1

Say that there are some elements X
(1)
t that we can assign to

specific products. Condition only on xt\x (1)t and assume

σ(zit , x
(1)
t , ξt , pt) = σ(γit , pt),

with
γijt = gj(zijt) + ξjt + hj

(
x
(1)
jt

)
.

We assume that zijt is exclusive to gj(·).

The IV regression equation becomes

gjt
(
z∗ijt (s∗; ξt , pt)

)
= σ−1j (s∗, pt)− hj

(
x
(1)
jt

)
+ ξjt .

The BLP instruments are now potentially available.
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A Special Regressor
functional form example 2

Following one approach of Berry and Haile (2010), consider

uijt = gj(zijt) + ξjt + µijt ,

with µijt a random scalar whose nonparametric distribution
depends on xjt and pjt . In this case, our results imply identification
of gj(·) up to units, turning gj(Zijt) into a known special regressor.
With a (restrictive) full support assumption on gj(Zj), a standard
argument then identifies

mjt ≡ E (µijt |xjt , pjt) + ξjt .

This defines a nonparametric IV regression equation for each
choice j in which the prices and characteristics of other choices are
excluded. Thus, one needs only one instrument for price, and the
BLP IVs are again available.
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A Semiparametric Model
functional form example 3

As one example, consider a semiparametric nested logit model,
conditional on Xt , where inverse demand is

gj(zt) + ξjt = ln(sjt(zt)/s0t(zt))− θ ln(sj/g ,t(zt)) + αpjt .

Take any market t and any z ∈ Z. Differentiating,

∂gj(z)

∂z1
=
∂ ln sjt(z)

∂z1
− ∂ ln s0t(z)

∂z1
− θ

∂ ln sj/gt(z)

∂z1
.

The only unknowns are ∂gj(z)/∂z1 and θ. Moving to another
market t ′, we get a second equation of the same form with an
identical LHS. Equating the right-hand sides allows us to solve for
θ. With θ known, we then identify (over-identify) all derivatives of
gj(z) and identification of α requires only a single excluded
instrument.
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What about Continuous Demand Systems?

There is nothing in our proofs that requires the consumer-level
quantities, Qijt to binary outcomes from a discrete choice
model.

Berry, Gandhi and Haile describe a broad class of continuous choice
models that can satisfy the key demand invertibility property.

As an example, the paper considers a “mixed CES” model where
consumers have random coefficients in a CES model of continuous
demand.
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