
Nonparametric Identification of Differentiated
Products Demand Using Micro Data∗

Steven T. Berry
Yale University

Philip A. Haile
Yale University

May 17, 2020

Abstract

We consider nonparametric identification of demand when one has “micro data”
linking the characteristics of individual consumers to their choices. A primary
challenge to identification of demand is the presence of unobserved product charac-
teristics (or other “demand shocks”) that vary across markets. Each of these latent
factors directly affects the quantity demanded of all related goods and typically af-
fects all prices as well. In the case of “market level data,” Berry and Haile (2014)
showed that the resulting simultaneity/endogenetiy challenges can be overcome
with instruments for all endogenous variables, i.e., for the prices and quantities of
all goods in the demand system. Here we show that micro data not only permits
richer demand specifications but also can substantially soften the reliance on instru-
mental variables, reducing both the number and types of instruments required. We
demonstrate identification of a nonparametric model of demand nesting common
empirical specifications and requiring neither the structure of a “special regressor”
nor a “full support” assumption on consumer-level observables. A key insight is
that heterogeneity in consumer characteristics creates variation in consumers’ deci-
sion problems within a single market, where the latent demand shocks are fixed. As
a result, observed differences across markets in the consumer observables required
to match certain demand vectors can reveal the latent vectors of demand shocks,
using instruments only for prices.

∗Early versions of this work were presented in the working paper “Nonparametric Identification
of Multinomial Choice Demand Models with Heterogeneous Consumers,” first circulated in 2007 and
superseded by the present paper. We thank Suk Joon Son for helpful comments.



1 Introduction

Empirical models of differentiated products demand are an important part of the applied
econometrics toolkit, underlying influential empirical work in many fields of economics.
Although practical considerations typically dictate reliance on parsimonious functional
forms for estimation of demand, an important question concerns the nonparametric foun-
dation for demand estimation. In this paper we consider the identification of nonparamet-
ric differentiated products demand models, focusing on the case in which one has access
to “micro data” matching attributes of individual consumers to their purchase decisions.
We show that the availability of micro data not only allows a more richly specified model,
but also can substantially relax the both the number and types of instrumental variables
relied upon for identification.

Micro data linking consumer characteristics to consumer choices are not always avail-
able in applications. In Berry and Haile (2014) we explored identification of demand
when, as in Bresnahan (1981) or Berry, Levinsohn, and Pakes (1995), one observes only
market-level data on product prices, product/market characteristics, market shares, and
the distribution of consumer characteristics. However many applications do offer mi-
cro data. A classic example is McFadden’s (McFadden, Talvitie, and Associates (1977))
study of transportation demand, where each consumer’s preferences over different modes
of transport are altered by the distance from her location to each mode. This example
illustrates the defining characteristic of the type of micro data considered here: consumer-
specific observables that alter the relative attractiveness of different options. Consumers’
distances to different options have been used in a number of other applications as well,
including those involving demand for hospitals, retail outlets, residential locations, or
schools, as in the examples of Capps, Dranove, and Satterthwaite (2003), Burda, Harding,
and Hausman (2015), Bayer, Keohane, and Timmins (2009), and Neilson (2019). More
broadly, observable consumer-level attributes that shift tastes for products might include
a household’s income or other demographics. Family size has been modeled as shift-
ing preferences for cars (Goldberg (1995)), and for neighborhoods (Bayer, Ferreira, and
McMillan (2007)). Other examples include product-specific advertising exposure (Acker-
berg (2003)), consumer-newspaper ideological match (Gentzkow and Shapiro (2010)), the
match between household demographics and those of a school or neighborhood (Bayer,
Ferreira, and McMillan (2007), Hom (2018)), and the match between voter demographics
and candidate characteristics (Kawai, Toyama, and Watanabe (2020)).1

It is unsurprising that micro data can allow a richer specification of the empirical
demand model. Our main insight, however, is that such data can also substantially re-
duce the reliance on instrumental variables for identification. A fundamental challenge
to identification of demand arises from the elementary observation that the quantity
demanded of any one good depends on all characteristics of that good and all related
goods (complements or substitutes). Such characteristics include not only the prices of

1Here we cite only a small representative handful of papers out of a selection that spans many topics
and many years.
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each good in the relevant market but also unobserved characteristics (or, more generally,
latent “demand shocks”) that vary across markets. Likewise, the equilibrium price of any
one good typically depends on the all other characteristics (observed and unobserved) of
that good and all related goods.2 Thus, in a market with J goods, equilibrium prices
and quantities are determined in system of 2J fully simultaneous equations. In such sys-
tems, identification generally cannot be obtained using strategies (e.g., control function)
familiar from triangular models (see Blundell and Matzkin (2014) and Berry and Haile
(2016)). In Berry and Haile (2014), however, we show that nonparametric identification
of demand can be obtained from standard IV conditions, given instruments for all prices
and quantities. The need to instrument for quantities—indeed, to consider a system of
equations for both supply and demand to identify demand alone—may be surprising. But
this need is tightly connected to identification results for other simultaneous models (see,
e.g., Matzkin (2015), Berry and Haile (2014) and Berry and Haile (2018)) and is easily
recognized in the IV requirements of parametric models used for estimation in practice.3

At an intuitive level, to measure any own- or cross-price elasticity one needs to isolate
the change in quantity demanded that results from shifting one price while holding fixed
J − 1 other prices and J latent demand shocks; 2J excluded instruments can provide the
independent variation needed to isolate this response. One important finding in Berry
and Haile (2014) is the essential role of competing goods’ exogenous characteristics—
sometimes called “BLP instruments”—in providing instruments for quantities.

In this paper, we develop conditions under which the availability of micro data cuts
the number of required instruments in half. In particular, variation in micro data can
eliminate the need to instrument for quantities and, therefore, the necessary reliance
on BLP instruments. The use of micro data also makes it possible to specify a more
flexible demand model and makes new kinds of instruments available. The reduction in
IV requirements is obtained because micro data provides a form of observable variation
in the choice problem faced by different consumers within the same market. This creates
a panel structure, where we can exploit both “within market” and “between market”
variation. Critically, within a given market the latent market-level demand shocks are
fixed; thus the observed responses to variation in choice problems within a given market
cannot be confounded by variation in these shocks. Of course, prices are also fixed
within a market. But “clean” within-market variation can allow us to pin down the
latent demand shocks by instrumenting only for prices in the cross-section of markets.
Once the latent demand shocks are known, identification of demand becomes trivial.

Our model of demand is nonparametric and, although we focus on discrete choice
demand, our results generalize to continuous demand systems with representations satis-

2We emphasize prices as the leading case of endogenous product characteristics. However our results
generalize directly to cases with additional endogenous product characteristics, although additional
instruments will be required.

3This is easiest to see in the linear-in-parameters nested logit model of Berry (1994), but is also clear
in the nonlinear models of Berry, Levinsohn, and Pakes (1995) and Nevo (2001). See the discussion in
Berry and Haile (2016).
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fying the “connected substitutes” condition of Berry, Gandhi, and Haile (2013) or other
conditions ensuring “invertibility” of demand. We allow all consumer attributes to shift
preferences for all products, avoiding any a priori exclusivity assumptions on these ob-
servables.4 However, in addition to standard IV conditions, our results rely on three
important assumptions. First, we require a nonparametric index restriction—formally
a weak separability assumption—on the way the market-level demand shocks and some
observed consumer attributes enter the model.5 Second, we require injectivity of the
mappings that link consumer attributes to choice probabilities. Our injectivity assump-
tions generalize standard specifications, but include an important requirement that the
number of consumer attributes be as large as the number of products.

Finally, we require sufficient variation in the consumer observables to satisfy a “com-
mon choice probability” condition that we believe is new to the literature. Given the
number of products available, this condition requires that there be some point s∗ in the
probability simplex such that in every market one can obtain s∗ as the conditional choice
probability by conditioning on the “right” set of consumer observables for that market.
This requirement contrasts with a standard “full support” condition, which would imply
that every every point s within the simplex is a common choice probability. Our condi-
tion allows for a broad range of cases where choice probabilities are never close to one or
zero. It is also verifiable.

Our insights build on strategies used in the parametric applied literature by, e.g.,
Berry, Levinsohn, and Pakes (2004) and Bayer, Ferreira, and McMillan (2007), who
pointed out the potential for certain types of panel data to pin down “substitution pat-
terns” without instruments beyond those for prices. We also connect to a substantial
econometrics literature on the use of micro data to identify discrete choice models. In-
deed, the traditional individual-level discrete choice literature exploits micro data almost
by definition. However, our approach generalizes earlier work in several directions. As
in the empirical literature using market-level data following on Berry (1994) and Berry,
Levinsohn, and Pakes (1995), we emphasize the role of market-level unobserved product
characteristics that result in the econometric endogeneity of some product-level charac-
teristics, particularly price. Accounting for this endogeneity is key to the identification
of policy-relevant market demand elasticities. Our focus on market-level endogeneity dif-
ferentiates our work from much of the classic work on the identification of discrete choice
models. In addition, many existing nonparametric and semiparametric identification re-
sults for discrete choice models require a consumer attribute for each choice with at least

4This contrasts with the frequent reliance on exclusion restrictions in the nonparametric simultaneous
equations literature, as in Matzkin (2015) and Berry and Haile (2018).

5Despite some superficial similarity, both the form and role of this index restriction differ from those
in our earlier work (Berry and Haile (2014) and Berry and Haile (2018)). In each case the index
restriction helps to deal with the issue of a large vector of unobservables that nonlinearly affect the
demand for each product. But the indices in this paper are tied to consumer attributes rather than
product characteristics, and this index structure is employed in a different way to obtain identification.
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some features of a “special regressor.”6 Such a variable is typically specified as entering
the discrete choice utility function linearly and, in the multinomial context, with each
such attribute restricted to enter the (conditional indirect) utility of only one choice—i.e.,
excluded from the utilities of other choices. These functional form and exclusion restric-
tions are then combined with a “full support” assumption. We relax the functional form
restrictions of this approach, avoid the full support assumption, and remove the exclusion
restriction altogether.

Although we focus on demand for differentiated products, our results apply to other
choice settings as well. One example is a discrete choice model of voting in a two-party
election (e.g., Gordon and Hartmann (2013)) applied to data on that matches individual
votes to voter demographic information, along with data on candidate characteristics
and market-level (e.g., metro area level) variation in campaign advertising. There are no
prices, but advertising now plays the role of the endogenous choice characteristic.7 The
“market-level” unobservables capture the effects of unmeasured candidate characteristics
and local political preferences. Observed demographic characteristics, say education
and income, create variation in voter preferences for the two candidates within a given
market. We could think of the discrete choices as D, R and Not Voting. Our common
choice probability requirement then requires the existence of some fixed vote share (choice
probability) vector—say 0.4 for D and 0.4 for R—such that in each metro area there is
some level of education and income that generates that conditional vote share. The level
of education required to match the given vote share might be higher (and income lower)
in a conservative as opposed to a liberal area. Note that there is no exclusion restriction
here: both voter demographics will effect the vote share of both candidates.

Throughout the paper, we maintain an exclusive focus on identification. Nonpara-
metric identification results do not eliminate concerns about the impact of parametric
assumptions relied on in practice. But they address the important question of whether
such assumptions can be viewed properly as finite-sample approximations rather than
essential maintained hypotheses. Formal identification results can also clarify which
maintained assumptions may be most difficult to relax, can reveal the essential sources
of exogenous variation in the data, can offer assurance that robustness analysis is possi-
ble, and can pave the way to development of alternative (parametric or nonparametric)
estimation approaches.

In what follows section 2 sets up the model we consider. Section 3 connects our non-
parametric model to parametric examples from the existing empirical literature. Section
4 then establishes identification in two steps, reflecting the panel structure of the micro
data setting. We first demonstrate identification of the index function using within-
market variation in consumer attributes and consumer choice probabilities. Intuitively,

6See the review by Lewbel (2014) and references therein. Our earlier work, Berry and Haile (2010),
featured an example of this sort.

7See, e.g., Gerber (1998) and Gordon and Hartmann (2013). Possible instruments include candidate
wealth, market-specific measures of advertising cost, and combinations of statewide characteristic and
features of the electoral college system that alter the returns to advertising in different metros.
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up to normalizations, the variation in within-market behavior reveals the effect of con-
sumer attributes on choices. It also reveals the vector of consumer characteristics for
each market that generates the common choice probability. Plugging this vector into the
index function, we obtain for each product and market an index that is a nonparametric
function of observable product characteristics (including prices) and a single additively
separable demand shock. These nonparametric functions are then identified following
standard results from nonparametric IV regression, where the only endogenous variables
are prices. Identification of these functions reveals the values of the demand shocks,
and identification of demand follows directly. We discuss implications and extensions in
section 5.

2 Multinomial Choice Model

2.1 Setup

We consider multinomial choice among J goods (or “products”) and an outside option
(“good 0”) by consumers i in “markets” t. A market is defined formally by:8

• a vector Xt of observable characteristics of the market and products;

• a price vector Pt = (P1t, . . . , PJt);

• a vector Ξt = (Ξ1t, . . . ,ΞJt) of unobservables at the product×market level;9 and

• a distribution FZ (·; t) of consumer-specific observables Zit = (Zi1t, . . . , ZiJt), with
support Z (Xt).

Although Xt will typically include observable product characteristics, it may also
include any number factors defining the market, including consumer observables. For
example, the population of consumers may be partitioned into “markets” based on a
combination of geography, time, and a vector of consumer demographics included in Xt.

In contrast, Zit is distinguished by the indexing of its elements by both i and j. Our
results will require that Zit have dimension at least J , and that changes in Zit alter the
relative attractiveness of different goods. Because all other consumer-level observables
may be absorbed by Xt, we henceforth assume Zit ∈ RJ . Although this permits the case
in which each component Zijt is a consumer-specific factor assumed to alter only the
attractiveness of good j, we will not require any such exclusion assumption. We also will
not require independence (or even conditional independence) of Zit and Ξt.

8More generally, the definition of a market could also include the number of goods available, Jt. We
condition on a fixed number of products J without loss.

9For clarity we write random variables in uppercase and their realizations lowercase. Note that Ξ is
the uppercase form of the standard notation ξ for product×market unobservables.
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The choice environment of consumer i is then represented by

Cit = (Zit, Xt, Pt,Ξt)

Let C denote the support of Cit. The most basic primitive characterizing consumer
behavior in such a setting is a distribution of decision rules for each cit ∈ C.10 As usual,
heterogeneity in decision rules (i.e., nondegeneracy of the distribution) within a given
choice environment may reflect latent preference heterogeneity, stochastic elements of
individual preferences, or stochastic elements of choice (e.g., optimization error).

The choice made by consumer i can be represented by Qit = (Qi1t, . . . , QiJt), where
Qijt denotes the quantity (here, 0 or 1) of good j purchased. A distribution of decision
rules is characterized by the conditional cumulative distribution functions FQ (q|Cit) =
E [1 {Qit ≤ q} |Cit]. In the case of discrete choice, this joint distribution of can be repre-
sented without loss by the multinomial choice probability function

σ (Cit) = (σ1(Cit), . . . , σJ(Cit)) = E [Qit|Cit] .

Given the total measure of consumers in each choice environment, the choice probability
function σ fully characterizes consumer demand.

Thus far we have implicitly made two significant assumptions: that the unobservables
Ξt have dimension J , and that, conditional on Xt, the support of Zit does not depend on
the realization of Ξt. Our results will also rely on the following key structure.

Assumption 1 (Index). σ (Cit) = σ (γ (Zit, Xt,Ξt) , Xt, Pt), with γ (Zit, Xt,Ξt) ∈ RJ .

Assumption 2 (Invertible Demand). σ (·, Xt, Pt) is injective on supp γ(Zit, Xt,Ξt)|(Xt, Pt)
for all Xt, Pt.

Assumption 3 (Injective Index). γ (·, Xt,Ξt) is injective on Z (Xt) for all Xt,Ξt.

Assumption 1 is a weak separability condition requiring that, given (Xt, Pt), Zit and
Ξt affect choices only through a vector of indices (γ1 (Zit, Xt,Ξt) , . . . , γJ (Zit, Xt,Ξt)).
This structure is satisfied by standard specifications used in practice. Assumption 2
further requires that the choice probability function be “invertible” with respect to the
index vector—that, holding (Xt, Pt) fixed, distinct index vectors map to distinct choice
probabilities. This is not without loss, and in general injectivity requires that σ map to
interior values, i.e., that σj(Cit) > 0 for all j. A sufficient condition is the “connected
substitutes” property introduced by Berry, Gandhi, and Haile (2013), who point out that
this property is natural in a discrete choice setting in which each γj (Zit, Xt,Ξt) can be
interpreted as quality index for good j. In that case, the connected substitutes condition
requires that there be no strict subset of goods that substitute only among themselves in

10As is well known, under additional conditions a distribution of decision rules can be represented
as the result of utility maximization. See, e.g., Mas-Colell, Whinston, and Green (1995), Block and
Marschak (1960), Falmagne (1978), and McFadden (2005). We do not require such conditions and will
not consider a utility-based representation of choice behavior.
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response to variation in the index vector γ(Zit, Xt,Ξt). Assumption 3 requires injectivity
of the index function γ with respect to the vector Zit. This generalizes common utility-
based specifications in which each Zijt is assumed to affect only the conditional indirect
utility of good j and to do so monotonically. For example, if each index were a linear
function of the J components of Zit, Assumption 3 would require the matrix of coefficients
to be full rank.

We henceforth condition on an arbitrary value of Xt and suppress it in the notation.
The remaining assumptions and results should be interpreted to hold conditional on
Xt.

11 Although not essential, we will focus on the case in which the indices γj (Zit,Ξt)
are additively separable in Ξt (Assumption 4).12 In Assumption 5 we assume sufficient
smoothness (as well as openness of Z) to permit our applications of calculus below.13

Part (iv) of Assumption 5 also strengthens the injectivity requirements of Assumptions 2
and 3 by requiring that the Jacobian matrices ∂g(z)/∂z and ∂σ(γ, p)/∂γ be nonsingular
almost surely.14.

Assumption 4 (Separable Index). For all j, γj (Zit,Ξt) = gj (Zit) + Ξjt.

Assumption 5 (Regularity). (i) Z is open and connected; (ii) g(z) is continuously
differentiable on Z; (iii) σ (γ, ξ) is continuously differentiable with respect to γ for all
(γ, ξ) ∈ supp (γ (Zit,Ξt) ,Ξt); (iv) ∂g(z)/∂z and ∂σ(γ, p)/∂γ ar nonsingular almost surely
on Z and supp (γ(Zit,Ξt), Pt), respectively.

2.2 Normalization

The model requires two types of normalizations for the identification question to be
properly posed. The first requirement reflects the fact that the unobservables have no
natural location; therefore, adding a constant vector to Ξt and subtracting the same

11We have not assumed that Xt and Ξt are independent. Indeed, we could have indexed Ξt by Xt

to emphasize that we can allow arbitrary dependence. Below we demonstrate identification of the index
function g and choice probability function σ conditional on each value of Xt. Identification of the effects
of Xt holding unobservables fixed could also be obtained under an additional assumption, such as the
typical Xt |= Ξt. Identification of many functionals (e.g., price elasticities) and counterfactuals of interest
will not require such an assumption.

12We can instead permit a fully nonlinear index under a strict monotonicity condition and reliance on
the completeness condition of Chernozhukov and Hansen (2005) instead of the standard completeness
condition.

13Given parts (i) and (ii) of Assumption 5, the injectivity of g required by Assumption 3 implies (by
invariance of domain) that the image g (Ω) of any open set Ω (e.g., Ω = Z) is open.

14Even without part (iv) there could be no open set Ω on which ∂g(z)/∂z was singular, as (see footnote
13) g(Ω) or would then be an open subset of RJ , contradicting Sard’s theorem. A similar observation
applies to ∂σ(γ, p)/∂γ. Thus, part (iv) rules out injective continuously differentiable functions g or σ
with (uncountably many) critical points on a set Ω containing no open subset of RJ but having positive
measure nonetheless—e.g., for J = 1, a fat Cantor set.
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vector from g yields the same distribution of consumer choice at every (zit, ξt, pt). Thus,
we take an arbitrary point z0 ∈ Z and set

g
(
z0
)

= 0, (1)

where the right-hand side is the zero J-vector.
The second normalization requirement arises from the fact that any injective trans-

formation of the index vector γ (Zit,Ξt) can be reversed by a modification of the function
σ. For example, let A be any J-vector of constants, let B be any nonsingular J × J
matrix, and define

γ̃ (Zit,Ξt) = A+Bγ (Zit,Ξt) . (2)

If we then define σ̃ by
σ̃ (γ̃, Pt) = σ

(
B−1 (γ̃ − A) , Pt

)
, (3)

then (σ, γ) and (σ̃, γ̃) are two representations of the same distribution of decision rules,
the latter satisfying our assumptions whenever the former does.15 We must choose a
single representation before exploring whether the observables allow identification. We
do this by taking the representation in which the index γ (z0,Ξt) = g (z0) + Ξt has
expectation zero, i.e.,

E [Ξt] = 0,

and is such that [
∂g(z0)

∂z

]
= I. (4)

For example, this representation is obtained from (2) and (3) by lettingB = [∂g(z0)/∂z]
−1

,
A = −BE [Ξt], and then dropping the tildes from the notation for the transformed model.

3 Parametric Examples from the Literature

The empirical literature in economics includes many examples of parametric specifications
that are special cases of our model. Discrete choice models are frequently formulated
using a random utility specification of the form

uijt = xjtβit − αitpjt + ξjt + εijt, (5)

where uijt represents individual i’s conditional indirect utility from choice j in market
t. As in our model, xjt, pjt and ξjt are, respectively, observed product characteristics,
prices, and latent demand shocks such as unobserved product characteristics.

15This illustrates an inherent ambiguity in the interpretation of how variation in a given component
of the vector Zit alters preferences. For example, in terms of behavior, there is no difference between
a change in Zijt that makes good j more desirable and a change in Zijt that makes all other goods
(including the outside good) less desirable. In practice, this ambiguity is often resolved with a priori
exclusion assumptions—e.g., an assumption that Zijt affects only the utility obtained from good j. Some
of the examples discussed below utilize this structure. Such assumptions could only aid identification,
and our choice of normalization remains valid in that case.
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The additive εijt is typically specified as a draw from a type-1 extreme value dis-
tribution or a normal distribution, yielding a mixed multinomial logit or probit model.
Components k of the random coefficient vector βit are often specified as

β
(k)
it = λ

(k)
0 +

L∑
`=1

λ
(k)
` zi`t + λ(k)

ν ν
(k)
it ,

where zi`t represents one of L observable characteristics of individual i, and each ν
(k)
it

is a random variable with a pre-specified distribution. Often, the coefficient on price is
specified as varying with some additional observed characteristics yit such as income. A
typical specification of αit takes the form

ln(αit) = λ
(0)
0 + λ

(0)
1 yit + λ(0)

ν νi0.

To connect this to our model, we simply condition on yit, treating it fully flexibly.
We can then rewrite (5) as

uijt = gj (zit) + ξjt + xjtλ0 − αitpjt + µijt, (6)

where µijt =
∑

k x
(k)
jt λ

(k)
ν ν

(k)
it + εit and

gj (zit) =
∑
k

x
(k)
jt

L∑
`=1

λ
(k)
` zi`t.

Observe that all effects of zit and ξt operate though indices

γj (zit, ξt) = gj (zit) + ξjt j = 1, . . . , J,

satisfying our Assumptions 1 and 4. It is easy to show that the resulting choice proba-
bilities satisfy Berry, Gandhi and Haile’s (2013) “connected substitutes” condition with
respect to the vector of indices γ (zit, ξt) = (γ1 (zit, ξt) , . . . , γJ (zit, ξt)); therefore, the
injectivity of demand required by Assumption 2 holds. We assume that (after condi-
tioning on yit) there are at least J non-trivial elements of the vector zit.

16 Injectivity
of g(zit) = (g1(zit), . . . , gJ(zit)) might then be assumed as a primitive condition of the
model or else derived from other conditions, as in the example we discuss below.

Of course, our model does not rely on the linear structure of this example, nor on
any parametric distributional assumptions. But this example connects our model to a
large number of applications and shows one way that the observables zit can interact with
product characteristics to generate preference heterogeneity across individuals facing the
same choice set (i.e., where all xjt and ξjt are fixed). Note also that the example lacks
features that are sometimes relied on in results showing identification of discrete choice

16This allows for individual characteristics that shift both the index and the distribution of the price
coefficient. However, there must be at least J elements of zit that vary after conditioning on yit.

9



models: in addition to the absence of individual characteristics that exclusively affect the
utility from one choice j, this model does not exhibit independence between the “error
term” µijt and any of the variables that appear on the right hand side of (6).17

To see another way that our index structure arises in practice, consider Ho’s (2009)
model of demand for health insurance. Each consumer i in market t considers J insurance
plans as well as the outside option of remaining uninsured. Each consumer has a vector
of observable characteristics dit.

18 Let njt denote the set of hospitals in plan j’s network,
along with their characteristics (e.g. location and the availability of speciality services
like cardiac care). Each insurance plan is associated with its network njt, an annual
premium pjt, additional observed plan characteristics xjt (e.g., the size of its physician
network), and an unobservable ξjt.

A consumer’s insurance plan demand depends on her particular likelihood of having
of each type of hospital need (diagnosis) as well as how her preferences over hospital
characteristics will vary with the type of need. This gives each consumer i an expected
utility EU (njt, dit) for the option to use plan j’s hospital network. Ho derives this ex-
pected utility from auxiliary data on hospital choice.19 which yields, from the perspective
of identification, a known functional form for the consumer/choice measures

zijt ≡ EU (njt, dit) .

Similar to (5), consumer i’s conditional indirect utility for plan j then takes the form20

uijt = λzijt + xjtβ − αpjt + ξjt + εijt. (7)

Ho assumes each εijt is an independent draw from a type-1 extreme value distribution,
yielding a multinomial logit model.

Observe that in this example Ho combines data on the characteristics of consumers
and choices with a model to derive a scalar zijt that exclusively affects only the utility
of choice j. In this case, the injectivity of the index vector γ (zit, ξt), as required by our
Assumption 3, holds under an assumption that λ 6= 0. Given this condition, Assumption
5 is also satisfied as long as the support of Zit is an open and connected subset of RJ .
Satisfaction of our remaining assumptions follows as in the previous example.

17In the traditional parametric model, the νit are assumed to be independent across i and t, but the
xjt variables enter the composite error µijt. The xjt are also typically correlated with pjt and, in our
framework, are allowed to be correlated with changes in the distribution of zit across markets.

18Ho’s data include measures of individual age, gender, income, home location, employment status,
and industry of employment.

19See also Ho (2006). Here dit affects both diagnosis probabilities and preferences over hospitals
condition on diagnosis. Ho and Lee (2016) extend the model to treat insurance choice at the household
level, with households anticipating diagnosis probabilities for each household member.

20Ho (2009) allows the premium coefficient to differ by income level. As discussed above, we can con-
dition on income to treat it fully flexibly. Ho (2009) uses excluded plan-level cost shifters as instruments
for premiums.
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4 Identification

We examine the identifiability of g and σ from observation of the choice decisions of the
population of consumers i in a population of markets t. In addition to the suppressed Xt,
the observables consist of Pt, Zit, Qit, and a vector of instruments Wt discussed further
below. Given any (ξ, p) ∈ supp (Ξt, Pt), let

S (ξ, p) = σ (g (Z) + ξ, p)

denote the support of choice probabilities in markets t for which Ξt = ξ, Pt = p. Because
Z is open, continuity and injectivity of σ with respect to the index and of the index with
respect to Zit imply (by invariance of domain) that S (ξ, p) is open.

A key observation for what follows is that, by Assumptions 2 and 3, for each s ∈
S (ξ, p) there must be a unique z∗ ∈ Z such that σ (g (z∗) + ξ, p) = s. Thus, for (ξ, p) ∈
supp (Ξt, Pt) and s ∈ S (ξ, p), we define the function z∗ (s; ξ, p) implicitly by

σ (g (z∗ (s; ξ, p)) + ξ, p) = s. (8)

We then have

g (z∗ (s; ξ, p)) + ξ = σ−1 (s; p) ∀ (ξ, p) ∈ supp (Ξt, Pt) , s ∈ S (ξ, p) . (9)

Note that in each market t, the set S(ξt, pt) and the values of z∗ (s; ξt, pt) for all s ∈
S (ξt, pt) are observed, even though the value of the argument ξt in each market t is
unknown.

4.1 Identification of the Index Function

Let || · || denote the Euclidean norm and let B (b,∆) denote an open ball in RJ of radius
∆ > 0, centered at b. We demonstrate identification of the index function g = (g1, . . . , gJ)
under the following condition.

Assumption 6 (Nondegeneracy). For some ∆ > 0 and p ∈ suppPt, supp Ξt|{Pt = p}
contains an open ball of radius ∆.

Assumption 6 requires continuously distributed Ξt but is otherwise mild. It can be
derived as an implication of standard models of supply in which cost shifters (which
need not be observed) allow the same equilibrium price vector p to arise under different
demand conditions (different ξt). The key implication, exploited in the following result,
is that there exist p ∈ suppPt and ∆ > 0 such that for any d ∈ RJ satisfying ||d|| < ∆,
supp Ξt|{Pt = p} contains points ξ and ξ′ satisfying ξ − ξ′ = d.

Lemma 1. Let Assumptions 1–6 hold and take (p,∆) as defined by Assumption 6. Then
for every z and z′ in Z such that ||g (z′)− g (z)|| < ∆ there exist ξ and ξ′ in supp Ξt|{Pt =
p} such that, for some s, z = z∗ (s; ξ, p) and z′ = z∗ (s; ξ′, p).
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Proof. Take any z and z′ in Z such that ||g (z′)− g (z)|| < ∆. By Assumption 6 and the
choice of (p,∆), there exist ξ and ξ′ in supp Ξt|{Pt = p} such that ξ− ξ′ = g (z′)− g (z) ,
i.e., γ(z′, ξ′) = γ(z, ξ). Taking s = σ (γ(z′, ξ′), p) = σ (γ(z, ξ), p), the result follows from
the definition (8).

Lemma 2. Let Assumptions 1–6 hold. Then there exists ∆ > 0 such that for almost all

z, z′ ∈ Z satisfying ||g (z′)− g (z)|| < ∆ the matrix
[
∂g(z)
∂z

]−1 [
∂g(z′)
∂z

]
is identified.

Proof. Take p and ∆ as in Assumption 6. Consider markets t and t′ in which Pt = Pt′ = p
but, for some choice probability vector s,

z = z∗ (s; ξt, p) 6= z′ = z∗ (s; ξt′ , p) , (10)

revealing that ξt 6= ξt′ . Lemma 1 ensures that such t, t′, and s exist for all z, z′ ∈ Z
satisfying ||g (z′)− g (z)|| < ∆.21 And although ξt and ξt′ are latent, the identities of
markets t and t′ satisfying (10) is observed. Differentiating (9) with respect to the vector
s within these two markets, we obtain

∂g (z)

∂z

∂z∗ (s; ξt, p)

∂s
=
∂σ−1 (s; p)

∂s
(11)

and
∂g (z′)

∂z

∂z∗ (s; ξt′ , p)

∂s
=
∂σ−1 (s; p)

∂s
.

Thus, recalling Assumption 5, for almost all such z, z′ we have[
∂g (z′)

∂z

]−1
∂g (z)

∂z
=
∂z∗ (s; ξt′ , p)

∂s

[
∂z∗ (s; ξt, p)

∂s

]−1

.

Because the matrices on the right-hand side are observed, the result follows. �

Theorem 1. Under Assumptions 1–6, g is identified on Z.

Proof. Take ∆ > 0 as in Lemma 2. For each vector of integers τ ∈ ZJ , define the set

Bτ = g (Z) ∩ B
(
g
(
z0
)

+ ∆τ,∆
)
,

and let Iτ denote the pre-image of Bτ under g. By construction, all z and z′ in any given
set Iτ satisfy ||g (z′)− g (z)|| < ∆. So by Lemma 2, [∂g(z)/∂z]−1 [∂g(z′)/∂z] is known
for almost all z and z′ in any set Iτ . Because ∪τ∈ZJBτ forms an open cover of g (Z),
∪τ∈ZJIτ forms an open cover of Z. Thus, given any z ∈ Z there exists a simple chain of

21Absent Assumption 6 and Lemma 1, the argument here still demonstrates identification of
[∂g(z)/∂z]

−1
[∂g(z′)/∂z] for every pair (z, z′) such that for some p and s, we have z = z∗ (s; ξt, p) 6= z′ =

z∗ (s; ξt′ , p) . Existence of (p, s) satisfying this condition for a given pair (z, z′) is observable.
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open sets Iτ in Z linking the point z0 to z.22 Thus, [∂g(z0)/∂z]
−1

[∂g(z)/∂z] is known
for almost all z ∈ Z. With the normalization (4) (and the continuity of ∂g(z)/∂z), the
result then follows from the fundamental theorem of calculus for line integrals and the
boundary condition (1). �

Before moving to identification of the choice probability function, we pause to point
out that our constructive identification of g(·) used only a single price vector p—that
required by Assumption 6. In typical models of supply this condition would hold for
almost all price vectors in the support of Pt. In addition to providing falsifiable restric-
tions, this indicates a form of redundancy that would typically be exploited by estimators
used in practice. Similarly, our proof of Theorem 1 used, for each z ∈ Z, only one of
infinitely many paths between z0 and z; integrating along any such path must yield the
same function g(·).

4.2 Identification of the Choice Probability Function

We demonstrate identification of the choice probability function σ under the following
additional conditions.

Assumption 7 (Common Choice Probability). There exists a choice probability vector
s∗ such that s∗ ∈ S (ξ, p) for all (ξ, p) ∈ supp (Ξt, Pt).

Assumption 8 (Instruments for Prices). (i) For all j = 1, . . . , J , E [Ξjt|Wt] = 0 almost
surely; (ii) In the class of functions Ψ (Pt) with finite expectation, E [Ψ (Pt) |Wt] = 0
almost surely implies Ψ (Pt) = 0 almost surely.

Assumption 7 is a requirement that there exist some choice probability vector s∗ that
is common to all markets—that ∩(ξ,p)∈supp (Ξt,Pt)S (ξ, p) be nonempty. The nondegeneracy
of each set S (ξt, pt) reflects variation in Zit across its support. Assumption 7 requires
sufficient variation in Zit that for some s∗ we have s∗ ∈ S (ξt, pt) for all realizations of
(ξt, pt). The strength of this assumption depends on the joint support of (Ξt, Pt) and the
relative impacts of (Zit,Ξt, Pt) on choice behavior. Observe that Pjt and Ξjt typically
will have opposing impacts and will be positively correlated under equilibrium pricing
behavior; thus, large support for g (Zit) may not be required even if Ξt has large support.
Indeed, we can contrast our assumption of a single common choice probability vector
with a requirement of a special regressor with large support: the latter would imply that
every interior choice probability vector s is a common choice probability.23 Note also
that, because choice probabilities conditional on Zit are observable in all markets (i.e.,
for all realizations of (Ξt, Pt)), Assumption 7 is verifiable—i.e., its satisfaction or failure
is identified.24

22See, e.g., van Mill (2002, Lemma 1.5.21).

23Identification arguments exploiting special regressors also commonly rely on linearity, exclusion, and
independence conditions that we have not required.

24See Berry and Haile (2018) for a formal definition of verifiability.
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Assumption 8 requires instruments for prices satisfying standard nonparametric IV
conditions. Part (i) is the exclusion restriction, ensuring that variation in Wt not alter
the mean of the unobservables Ξt. Part (ii) is a standard completeness condition—the
nonparametric analog of the classic rank condition for linear regression. For example,
Newey and Powell (2003) have shown that under mean independence, completeness is
necessary and sufficient for identification in separable nonparametric regression. The
following result demonstrates that, given knowledge of the index function g and existence
of a common choice probability vector s∗, the same instrumental variables conditions
suffice here.

Theorem 2. Under Assumptions 1–8, σ is identified.

Proof. Taking s = s∗ in equation (9) we have g (z∗ (s∗; ξt, pt)) = σ−1 (s∗; pt) − ξt for all
tl; i.e., for all t and each j = 1, . . . , J ,

gj (z∗ (s∗; ξt, pt)) = σ−1
j (s∗; pt)− ξjt. (12)

By Theorem 1 the left side of (12) is known (recall that the values of each z∗ (s∗; ξt, pt) are
observable). Thus, for each j this equation takes the form of a separable nonparametric
regression model. Identification of each function σ−1

j (s∗; ·) follows immediately from the
identification result of Newey and Powell (2003). This implies identification of each ξjt
as well. With Theorem 1, this implies that the value of each γ (zit, ξt) is identified for all
t and zit ∈ Z. Identification of σ is then immediate from the observability of the choice
vectors Qit, since

σ (γ (zit, ξt) , pt) = E [Qit|Zit = zit,Ξt = ξt, Pt = pt] .

�

5 Discussion

We have shown that availability of micro data not only permits demand specifications
that condition on consumer-level observables, but also can substantially reduce the re-
liance on instrumental variables to address the key challenge to identification of demand:
the presence of unobserved product characteristics or other latent demand shocks that
affect the prices and quantities of all goods in the demand system. This softening of
instrumental variables requirements is achieved because consumer-level observables cre-
ate within-market variation in choice problems. Such variation is similar to that which
can be created by instruments for quantities; however, the exogeneity of the micro-data
variation arises not from an exclusion restriction in the cross-section of markets but from
the fact that within a single market the market-level demand shocks simply do not vary.
Thus, our insights also have some connection to those underlying “within estimation” of
slope parameters in panel data models with fixed effects.

Our results lead to several natural questions, which we discuss in the remainder of
this concluding section.
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5.1 What Are Appropriate Instruments?

Candidate instruments for prices include those typically relied upon in the case of market-
level data (see, e.g., Berry and Haile (2016)). Classic instruments for prices are cost
shifters excluded from the demand system. When cost shifters are not observed, prox-
ies for these shifters may be available and excludable.25 Exogenous shifters of market
structure (e.g., firm ownership) that affect prices through equilibrium markups can also
serve as instruments. Micro data can also result in availability of a related category of
candidate instruments: market-level demographics such as the distribution of income and
ethnicity that alter equilibrium markups. Berry and Haile (2014, 2016) refer to these as
“Waldfogel” instruments, after Waldfogel (2003).26 When micro-data are available, we
can directly account for the impacts of individual-specific demographics, so it may be
reasonable to assume that market-level demographics are excluded from the conditional
demands we seek to identify. The requirement that these market-level measures be mean
independent of the market-level demand shocks is a significant assumption, ruling out
certain kinds of geographic sorting or peer effects. But in many applications such an
assumption may be natural.

5.2 What About Stronger Functional Forms?

In practice, estimation is almost always influenced by functional form assumptions—
e.g., the choice of parametric structure, kernel functions, or sieve basis. Such functional
forms enable interpolation, extrapolation, and bridging of gaps between the exogenous
variation present in the sample and that needed for nonparametric identification. A study
of nonparametric identification can reveal whether such functional form assumptions play
a larger role in one precise sense. One interpretation of our results is that only limited
nonparametric structure is essential: for our nonparametric model, the main requirement
for identification is adequate exogenous variation of dimension equal to the dimension of
the endogenous variables.

But one can also ask how imposing additional structure on the demand model might
allow relaxation of our identification requirements. Answers to this question may be of
direct interest and can also suggest the sensitivity of identification to particular condi-
tions. We may feel more comfortable when we know that relaxation of one condition
for identification can be offset by strengthening another. A full exploration of these po-
tential trade-offs describes an entire research agenda. But the examples below illustrate
three directions one can go to enlarge the set of potential instruments, further reduce
the number of required instruments, or reduce the required dimensionality of the micro
data.

25An example, plausibly excludable in some applications, are so-called “Hausman instruments”: prices
of the same good in other markets (e.g., Hausman, Leonard, and Zona (1994), Hausman (1996), or Nevo
(2000, 2001)).

26See also Gentzkow and Shapiro (2010) and Fan (2013).
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5.2.1 Strengthening the Index Structure

Our model made no assumption on the way the characteristics Xt enter demand. For
example, we have not assumed that there are certain elements Xjt of Xt that in some
sense only affect good j. With such a restriction, however, another class of instruments—
the exogenous characteristics of competing goods (i.e., BLP instruments) can become
available.27 One way to re-introduce the BLP instruments is to assume that for at least
some component X

(1)
t of Xt, choice probabilities can be written as (now conditioning out

and suppressing only xt\x(1)
t )

σ(zit, x
(1)
t , ξt, pt) = σ(γit, pt),

with
γijt = gj(zjt) + ξjt + hj

(
x

(1)
jt

)
.

Here we have strengthened our index structure by including X
(1)
jt in the index and as-

suming that Zjt is exclusive to the index for good j.28

In this case, the IV regression equation (12) becomes

gj
(
z∗j (s∗; ξt, pt)

)
= σ−1

j (s∗, pt)− hj
(
x

(1)
jt

)
+ ξjt.

Identification of σ−1
j (s∗, ·) and hj(·) then follows with instruments for Pt when X

(1)
jt is

mean independent of Ξjt. With the additional assumption that X
(1)
−jt is mean independent

of Ξjt, X
(1)
−jt are available as instruments for Pjt.

5.2.2 A Special Regressor

Following Berry and Haile (2010), a different approach is to assume that the demand
system of interest is generated by a random utility model with conditional indirect utilities
of the form

uijt = gj(zijt) + ξjt + µijt,

with µijt a scalar random term whose nonparametric distribution depends on xjt and pjt.
In this case, our Theorem 1 demonstrates identification of each function gj(·) up to a units
normalization on the utility associated with product j. This turns gj(Zijt) into a known
special regressor. With a (typically very restrictive) full support assumption on gj(Zj),
a standard argument demonstrates identification of the marginal distribution of each
µijt|(xjt, pjt). Berry and Haile (2010) show that one can use this marginal distribution to
define a nonparametric IV regression equation for each choice j. In each such equation,
the prices and characteristics of other choices are excluded. Thus, in this framework one
needs only one instrument for price, and exogenous characteristics of competing goods
(BLP instruments) are again available.

27In standard oligopoly models, each good’s markup is dependent on the characteristics of related
goods.

28Regarding the latter, recall the discussion in footnote 15.
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5.2.3 A Semiparametric Model

Another way to add structure is to consider semiparametric models. As one example,
consider semiparametric nested logit model where inverse demand, given zt, is29

gj(zt) + ξjt = ln(sjt(zt)/s0t(zt))− θ ln(sj/g,t(zt)) + αpjt. (13)

Here sj/g,t(zt) denotes the within-group share and θ denotes the usual “nesting parame-
ter.”

Take any market t and any z ∈ Z. Differentiating (13) with respect to one (possibly,
the only) element of zt—say z1t—at the point z yields

∂gj(z)

∂z1

=
∂ ln sjt(z)

∂z1

− ∂ ln s0t(z)

∂z1

− θ
∂ ln sj/gt(z)

∂z1

. (14)

In this equation,
∂gj(z)

∂z1
and θ are the only unknowns. Moving to another market t′, we

can obtain a second equation of the same form in which the LHS is identical to that in
(14). Equating the right-hand sides yields

∂ ln sjt(z)

∂z1

− ∂ ln s0t(z)

∂z1

− θ
∂ ln sj/gt(z)

∂z1

=
∂ ln sjt′(z)

∂z1

− ∂ ln s0t′(z)

∂z1

− θ
∂ ln sj/gt′(z)

∂z1

.

Thus, we can solve for θ as long as

∂ ln sj/gt(z)

∂z1

6=
∂ ln sj/gt′(z)

∂z1

,

a condition that will typically hold when ξt′ 6= ξt or pt′ 6= pt, and which is directly
observed. With θ known, we then identify (indeed, over-identify) all derivatives of gj(z)
from (14). Identification of the remaining parameter α can then be obtained from (13)
with a single excluded instrument—e.g., an excluded market-level cost shifter or markup
shifter that affects all prices.

Although this example involves a model that is more flexible than nested logit models
typically estimated in practice, it moves a considerable distance from our fully nonpara-
metric model. But this example makes clear that additional structure can further reduce
the dimension of the required exogenous variation. Indeed, here we can obtain identi-
fication with a single instrument (vs. the usual requirement of two instruments for the
fully parametric nested logit (see Berry (1994))) and a scalar individual level observable
zit. Other semiparametric models may offer more intermediate points in set of feasible
trade-offs between the flexibility of the model and the dimension of exogenous variation
needed for identification.

29Recall that we have conditioned on xt, permitting it to enter the model flexibly. For example,
conditional indirect utilities might take the form

uijt = h (xt, gj (zt, xt) + ξjt − α (xt) pjt + µijt (xt)) ,

where h is strictly increasing in its second argument, α (xt) is arbitrary, and µijt (xt) is a stochastic
component taking the standard composite nested-logit form at each xt.
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5.3 What about Continuous Demand Systems?

Although we have focused on the case in which the consumer-level quantities Qijt are
binary outcomes arising from a discrete choice model, there is nothing in our proofs
requiring this. Applying our results to continuous demand is therefore just a matter of
verifying the suitability of our assumptions.

As an example, consider a “mixed CES” model of continuous choice, similar to the
model in Adao et al. (2017), with J + 1 products. Each consumer i has utility over
consumption vectors q ∈ RJ+1

+ given by

u (q; zit, xt, pt, ξt) =

(
J∑
j=0

φijtq
ρ
j

)1/ρ

,

where ρ ∈ (0, 1) is a parameter and each φijt represents idiosyncratic preferences of
consumer i for the product characteristics x. We set φi0t = 0 and let

φijt = exp [(1− ρ) (gj (zit) + ξjt + xjtβit)] , j = 1, . . . , J,

where βit is a random vector with distribution F representing consumer-level preferences
for product characteristics. With p0t = 1 and consumer income of yit, familiar CES
algebra shows that Marshallian demands are

qijt =
yit exp (gj (zit) + ξjt + xjtβit − α ln(pjt))

1 +
[∑J

k=1 exp (gk (zit) + ξkt + xktβit − αρ ln(pkt))
] .

This equation resembles a choice probability for a random coefficients logit model, al-
though the quantities qit here take on continuous values and do not sum to one. Con-
ditioning on yit (formally, using income level as one factor defining markets), it is easy
to show that our Assumptions 1–4 are satisfied for the expected CES demand functions,
which take the form

σt(g(zit) + ξt, xt, pt) = E [Qit|zit, xt, pt, ξt] ,

where the jth component of E[Qijt|zit, xt, pt, ξt] is∫
yit exp (gj (zit) + ξjt + xjtβit − α ln(pjt))

1 +
[∑J

k=1 exp (gk (zit) + ξkt + xktβit − αρ ln(pkt))
] dF (βit).

Berry, Gandhi, and Haile (2013) also describe a broad class of continuous choice
models that can satisfy the key injectivity property of Assumption 2. These models can
include mixed continuous/discrete settings, where individual consumers may purchase
zero or any positive quantity of each good.
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