
Documentation of the Oblivious Equilibrium Solver

Przemyslaw Jeziorski∗

Stanford University
Gabriel Y. Weintraub
Columbia University

C. Lanier Benkard
Stanford University

and NBER

Benjamin Van Roy
Stanford University

June 25, 2008

1 Introduction

This document covers compilation and customization of Oblivious Equilibrium Solver (OES). OES is a software
written in C++ that provides routines that compute: Oblivious Equilibrium (OE), Non-stationary OE (NOE) and
OE with aggregate shocks (AOE) that are developed in Weintraub, Benkard, and Van Roy (2008a), Weintraub,
Benkard, and Van Roy (2008b) and Benkard, Jeziorski, Van Roy, and Weintraub (2008). The solver also computes
approximation error bounds.

The software is distributed under GPL3 license as a source code and precompiled binary packages. In case of
using binary packages the only customization changes that are possible are changes in model parameters. General
model implemented in the solver is explained in Weintraub, Benkard, and Van Roy (2008a). Extra features not
documented in the article are explained in the configuration files. In order to meet various needs of potential users,
we offer binary versions of logit profit function, logit profit function with two types of consumers and Cournot profit
function. The logit profit funtion is essentially the same as in Weintraub, Benkard, and Van Roy (2008a). The
Cournot profit function is an equilibrium outcome of Cournot competition with linear demand. Specific parameters
are documented in the configuration files. Packages are available for x86 and x86 64 running on GNU/Linux/BSD
and Solaris running on Sparc. Microsoft Windows is not supported. More complicated changes have to made
using the source code distribution.

OES has two interfaces that enable access to the results: C++ interface and Matlab interface. Details about
configuration and usage instructions can be found in the remainder of this document.

OES can be used as a self-containing package but is also prepared to utilize Ipopt interior point solver and MUMPS
sparse solver. First package adds more robustness when computing the equilibria of one-shot logit models. Second
package enables user to implement transition matrices in general sparse form, it also greatly speeds up the com-
putation of AOE. We highly recommend configuring MUMPS when using AOE solver. Note that binary packages
have Ipopt and MUMPS hard compiled into the Matlab mex files. Therefore no action from the user is required to
utilize them.

∗Corresponding author, questions and comments: przemekj@stanford.edu

1



The document is organized as follows. In Section 2 reader can find details about using binary packages. Subsequent
sections explain how to install and use the solver using source code distribution. Sections 3-5 contain the information
relevant to all the solvers. Users interested in AOE solver should also read Section 6. Section 3 contains details
about downloading and compiling source code distribution. After compiling the software user can proceed to Section
4 that describes how to configure and use the solver. Advanced customization possibilities are the content of Section
5. For details about compilation and customization of the solver of AOE one should read Section 6.

2 Binary packages

Binary packages are the fastest way to get started with OES. Binary packages contain only Matlab interface. All
binary packages include solvers of OE, NOE and AOE.

Binary packages can be downloaded from Przemyslaw Jeziorski’s home page at

http://www.stanford.edu/~przemekj

After obtaining package that matches the architecture of your operating system and decompressing it to the chosen
folder, the user can run Matlab and try executing attached, sample m-files. m-files are well commented and self-
explanatory.

Files main logit1.m, main logit2.m and main cournot.m are examples of invoking OE and NOE solvers as well
as routines that compute the approximation bounds for both types of equilibria.

Files main aggr logit1.m, main aggr logit2.m and main aggr cournot.m are examples of invoking solver of OE
with aggregate shocks.

The binary code can be customized only by editing those files. In case any deeper changes are need please download
a full source code and proceed to the next section.

NOTE: Binary packages are statically linked to Ipopt and MUMPS, so no action from the user is required for the
software to utilize those packages.

3 Compilation

This section explains how to compile the OES using the source code. Source code can be downloaded from the
Przemyslaw Jeziorski’s web-site

http://www.stanford.edu/~przemekj

Following instructions are made for Unix platforms. At this point the solver does not support Microsoft Windows.
After downloading the software the next steps are:

1. Untar the solver on the Unix-type system using the command

2



$ tar -xjvf solver.tar.bz2

or

$ gtar -xjvf solver.tar.bz2

on Solaris or *BSD.

2. Enter to the main folder

$ cd projekt-distr

3. Configure the system

./configure

You have a following choice of options:

• --enable-ipopt or --disable-ipopt
enables Ipopt solver. Ipopt is a software package for large-scale nonlinear optimization (disabled by
default). It may be used to find a solution to single period pricing game (if applicable to the chosen
model).
If you disable Ipopt the pricing game will be solved using build-in Global Newton Rhapson solver and
no additional libraries have to be provided.
If you decide to enable Ipopt you need to provide Ipopt libraries and headers in the ThirdParty/Ipopt
directory. Look in the Appendix A for Ipopt configuration and installation.
In case you enable Ipopt you can specify the following options:
(i) --enable-ipopt shared or --disable-ipopt shared

for advanced users only. Option switches between dynamic and static linking to Ipopt. On some
systems only one type of linking works.

(ii) --with-ipopt libs=PATH
overrides default path (ThirdParty/Ipopt/lib/ipopt) to Ipopt library to PATH

(iii) --with-ipopt headers=PATH
overrides default path (ThirdParty/Ipopt/include) to Ipopt headers to PATH

• --enable-mumps or --disable-mumps enables and MUMPS sparse solver. Sparse solver drastically
speeds up inverting of sparse matrices. This function is used in the aggregate shocks solver. It is
highly recommended to used sparse solve when computing OE with aggregate shocks. More details on
installation of MUMPS are provided in Appendix B.

• --enable-aggregate or --disable-aggregate enables and disables aggregate shocks solver. When
enabling aggregate shocks the configuration script automatically tries to search for MUMPS so no
--enable-mumps is needed.

Example of use

$ ./configure --enable-ipopt --with-ipopt libs=/home/me/ipopt/libs.

4. After configure finishes type

$ make

The current version of the software provides two ways to execute the solver.
You can use C++ or Matlab interface. The previous command compiles main solver library and C++ user
interface.

Note: If you want to change any of the configure options run configure script again with desired parameters,
clean the source by typing

$ make clean

and recompile with

$ make

3



3.1 Compilation of Matlab interface

To compile Matlab interface you have to finish all the steps from the previous section and additionally type

$ ./compile matlab

or

$ ./compile matlab 32bit

for 32-bit systems. In case the compilation process failed try

$ ./compile matlab2

it uses different compilation parameters that are suitable for some systems. Above commands require that Matlab
software is properly installed and mex utility is accessible.

4 Usage

This section explains how to use C++ and Matlab interfaces.

4.1 C++ interface

C++ interface is invoked using

$ src/projekt

When using C++ interface control variables and model parameters, except for profit function parameters, may be
set in

src/parameters.h

Additionally user can choose between three predefined profit functions:

• Logit model type 1 (default option) - execute (in the main project directory)

$ ./choose model logit

• Logit model type 2 with two types of consumers - execute (in the main project directory)

$ ./choose model logit2

• Cournot model - execute (in the main project directory)

$ ./choose model cournot

4



Note:
After changing the model the software needs to be recompiled with
$ make

Profit function parameters may be set by editing
src/parameters profit.h

Note:
After changing any of the parameters the software needs to be recompiled with
$ make

Note:
Each time you change a model
src/parameters profit.h is replaced by src/parameters profit.h.CHOSEN MODEL.
Remember to back up your profit function parameter file, otherwise it will be lost.

There are several actions that the solver may perform. Each time the solver is executed OE is computed with given
parameters. If one wants to compute:

• Bounds for Oblivious Equilibrium - it is necessary to uncomment

#define BOUNDS
in
src/parameters.h

• Nonstationary Equilibrium - it is necessary to uncomment

#define NONSTAT
in
src/parameters.h

• Bounds for Nonstationary Equilibrium - it is necessary to uncomment

#define BOUNDS NONSTAT
in
src/parameters.h

Note:
Software need to recompiled after those changes.

Note:
The output file is in the directory in which the solver was executed and is called output.

4.2 Matlab interface

Matlab can be invoked with the command $ matlab

Warning for advanced users: In the special case when both options --enable-ipopt --enable-ipopt shared are
set Matlab has to be invoked using the script provided in the main project directory $ ./run matlab If Ipopt is
enabled but no --enable-ipopt shared is specified one does not have to use $ ./run matlab.

5



When using Matlab interface the parameters of the models are set by providing arguments to the functions. Files
src/parameters.h src/parameters profit.h do not have any effect.
Documented examples of use are:

• matlab/main logit.m for ’Logit model type 1’ model

• matlab/main logit2.m for ’Logit model type 2’ model

• matlab/main cournot.m for ’Cournot’ model

Important:
In case of using Matlab the software does not need to be recompiled when changing model parameters.

User can choose between three implemented models:

• Logit model type 1 (default option) - execute (in the main project directory)

$ ./choose model logit

• Logit model type 2 with two consumers - execute (in the main project directory)

$ ./choose model logit2

• Cournot model - execute (in the main project directory)

$ ./choose model cournot

Note:
After changing the model the software needs to be recompiled with
$ make
$ ./compile matlab or $ ./compile matlab2

4.3 Advanced parameters

To set advanced parameters of the solver like multi-threading options, or debugging options one needs to edit
src/compoe/setup.h and recompile the software. Some of those parameters are explained in the next section, others
are documented in the src/compoe/setup.h file. Advanced parameters affect both C++ and Matlab interfaces.

5 Customization

This section gives examples of advanced customization that can be done using source code distribution. It concerns
all the solvers. For additional configuration options of AOE solver also read section 6.

6



5.1 Profit Function

To implement your own profit function one needs to implement method eval in the file
src/compoe/functionprofit.cpp. Method eval takes a current state of the market and returns the value of profit
for the company in each state, as well as other statistics. Look in the file for detailed documentation. If your profit
function has closed form solution no other files than src/compoe/functionprofit.cpp
need to be implemented. However if you need to solve for Nash Equilibrium to get the value of the profit you
need to take further steps. To use different first order conditions than in the logit models you need to modify the
following files:

• src/compoe/profitFOC.cpp - first order condition of equilibrium of the single period game.

• src/compoe/profitJacobian.cpp - Jacobian of the FOC vector. Matrix is stored in an one-dimensional
vector, where each row is placed after another.

• src/compoe/profitHessian.cpp - Hessian of the Lagrangian for the Ipopt solver. This file needs to be
implemented only if Ipopt is enabled. Ipopt solves a following constrained optimization problem.

max 1

s.t.FOC(p) = 0

Solution to this problem is the same as solution to the FOC. The solver needs a Hessian of the Lagrangian of
this problem. One can also choose to enable NUMERICAL HESSIAN option in the src/compoe/setup.h file. In
this case user can disregard this file even when using Ipopt. It is however recommended to implement this file
if closed form solution for the third derivatives of the profit function is known. For details of implementation
look in the src/compoe/profitHessian.cpp

Note:
If you do not use Ipopt only the following files need to be implemented
src/compoe/functionprofit.cpp
src/compoe/profitFOC.cpp
src/compoe/profitJacobian.cpp
Hessian does not need to be provided.

Important:
Running ./change model scripts will replace all files mentioned in the section by appropriate files for the chosen
model. Remember to save your work before choosing one of the predefined models.

5.1.1 Marginal Cost

To change the marginal cost one has to edit the macro MACRO MARGINAL COST
in the file src/compoe/marginalcost.h

5.2 Transition Matrix

To implement the transition matrix one has three options depending on the characteristics of the transition process.

7



1. Dense Matrix - If your matrix is dense you
should implement src/compoe/compoe-tranprob dense.cpp file and set #define TRANSITION MATRIX 0 in
src/compoe/setup.h

2. Tri-diagonal matrix - If your matrix is tridiagonal you
should implement src/compoe/compoe-tranprob tridiag.cpp file and set #define TRANSITION MATRIX 1
in src/compoe/setup.h

3. General Sparse Matrix - In future release

Important: Do not forget to appropriately adjust src/compoe/compoe-optinv MATRIX-TYPE.cpp to incorporate
changes in the transition dynamics. For numerical solvers one can implement function class that provides Global
Newton-Rhapson routine.

5.3 Investment Cost

To change the investment cost one has to edit the macro MACRO MINVCOST
in the file src/compoe/investmentCost.h

6 Aggregate shocks

This section contains additional configuration options for AOE solver. Note that even if user is interested only in
AOE he should also read sections 3-5.

6.1 Compilation

Adding the options --enable-aggregate or --disable-aggregate to configure script enables and disables ag-
gregate shocks solver.

Because solving for OE with aggregate shocks involves inverting big sparse matrices it is highly recommended to
install MUMPS solver in the ThirdParty/MUMPS directory. Installation of MUMPS involves downloading the source
code from http://graal.ens-lyon.fr/MUMPS, unpacking into ThirdParty/MUMPS and following the README file.

configure script will check if MUMPS is installed properly and print out the message on the screen.

6.2 C++ interface

Computation of OE with aggregate shocks might be turned on of by uncommenting the option #define AGGR OE
in src/parameters.h file. Uncommenting #define BOUNDS AGGR OE additionally computes bounds.

8



6.2.1 Customization

All the customization procedures for stationary OE apply to aggregate shocks equilibrium (AOE) solver. AOE solve
uses the same configuration files. Additional customization options:

• Shock transition matrix is specified directly in src/project.cpp file

• The way how shocks affect the parameters of the model is specified in
src/compoe/compoe aggr-setShock.cpp.

Any of the above changes requires recompilation of the whole project using make in the top project directory.

6.3 Matlab interface

compile matlab script automatically compiles Matlab interface for aggregate shocks if --enable-aggregate switch
was specified when invoking configure script. No additional switches for compile matlab are necessary.

Documented example of use can be found in matlab/main aggr logit.m.

6.3.1 Customization

All the customization procedures for stationary OE apply to aggregate shocks equilibrium (AOE) solver. AOE
solver uses the same configuration files. Additional customization options:

• Shock transition matrix is supplied in the form of sparse matrix as argument of the function
compoe aggregate matlab. Example of usage can be found in matlab/main aggr logit.m.

• The way how shocks affect the parameters of the model is specified in
src/compoe/compoe aggr-setShock.cpp. Recompilation of the whole project using make in the top project
directory is necessary. Additionally we need to recompile Matlab interface using compile matlab script.

A Installation of Ipopt

1. Download ipopt and follow the Ipopt documentation how to install sparse solver.

2. Go to main Ipopt directory

3. Run
$ CXXFLAGS="-fPIC" CFLAGS="-fPIC" ./configure --prefix=PATH TO THE COMPOE/Thirdparty/Ipopt/ --enable-static

Replacing PATH TO THE COMPOE with the path to the downloaded Oblivious Equilibrium Solver source code.

4. Compile
$ make

9



5. Install
$ make install

B Installation of MUMPS

1. Download MUMPS from http://mumps.enseeiht.fr

2. Unpack MUMPS source code into PATH TO THE COMPOE/Thirdparty/MUMPS/ directory

3. Follow MUMPS readme file and choose appropriate Makefile.inc (explained in readme file)

4. Compile MUMPS with make

5. Done.

References

Amestoy, P. R., I. S. Duff, J. Koster, and J.-Y. L’Excellent (2001): “A Fully Asynchronous Multifrontal
Solver Using Distributed Dynamic Scheduling,” SIAM Journal on Matrix Analysis and Applications, 23(1), 15–41.

Amestoy, P. R., I. S. Duff, and J.-Y. L’Excellent (2000): “Multifrontal parallel distributed symmetricand
unsymmetric solvers,” Comput. Methods Appl. Mech. Eng., 184, 501–520.

Amestoy, P. R., A. Guermouche, J.-Y. L’Excellent, and S. Pralet (2006): “Hybrid scheduling for the
parallel solution of linear systems,” Parallel Computing, 32(2), 136–156.

Benkard, C. L., P. Jeziorski, B. Van Roy, and G. Y. Weintraub (2008): “Nonstationary Oblivious Equi-
librium,” Working Paper, Stanford University.

Wächter, A., and L. T. Biegler (2006): “On the implementation of an interior-point filter line-search algorithm
for large-scale nonlinear programming,” Math. Program., 106(1), 25–57.

Weintraub, G. Y., C. L. Benkard, and B. Van Roy (2008a): “Computational Methods for Oblivious Equi-
librium,” Working Paper, Stanford University.

(2008b): “Markov Perfect Industry Dynamics with Many Firms,” Forthcoming, Econometrica.

10


	Introduction
	Binary packages
	Compilation
	Compilation of Matlab interface

	Usage
	C++ interface
	Matlab interface
	Advanced parameters

	Customization
	Profit Function
	Marginal Cost

	Transition Matrix
	Investment Cost

	Aggregate shocks
	Compilation
	C++ interface
	Customization

	Matlab interface
	Customization


	Installation of Ipopt
	Installation of MUMPS

