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ON THE NONPARAMETRIC IDENTIFICATION OF NONLINEAR
SIMULTANEOUS EQUATIONS MODELS: COMMENT ON

BROWN (1983) AND ROEHRIG (1988)

BY C. LANIER BENKARD AND STEVEN BERRY1

This note revisits the identification theorems of Brown (1983) and Roehrig (1988).
We describe an error in the proofs of the main identification theorems in these papers,
and provide an important counterexample to the theorems on the identification of the
reduced form. Specifically, the reduced form of a nonseparable simultaneous equations
model is not identified even under the assumptions of these papers. We provide con-
ditions under which the reduced form is identified and is recoverable using the distri-
bution of the endogenous variables conditional on the exogenous variables. However,
these conditions place substantial limitations on the structural model. We conclude the
note with a conjecture that it may be possible to use classical exclusion restrictions to
recover some of the key implications of the theorems in more general settings.

KEYWORDS: Econometric theory, simultaneity, structural model, reduced form, tri-
angular systems.

1. INTRODUCTION

IN THIS NOTE, we reconsider the nonparametric identification of nonlinear si-
multaneous equations models as in Brown (1983) and Roehrig (1988). In re-
visiting this literature we have discovered that a key condition (Brown (1983,
pp. 180–181), cited by Roehrig (1988, p. 438)) used in the proofs of the pri-
mary theorems of both Brown and Roehrig is false. This finding is substantive.
An important implication of this condition, that the model’s reduced form is
identified under assumptions much weaker than the structural model, can be
shown to be false: see Section 4.1 for a counterexample.

The counterexample also contradicts the main theorems in both Brown and
Roehrig. We have as yet been unable to correct the theorems ourselves. How-
ever, we remain optimistic that some essential features of the theorems may
still be true and that the theorems may be able to be corrected with some
modifications to the assumptions. Indeed, Matzkin (2005) makes considerable
progress in this direction. We view these theorems as having important im-
plications for empirical work in economics and we therefore hope that future
research will recover many of their implications.

Note that Brown (1983) and Roehrig (1988) are widely cited in the literature
on nonparametric identification (some recent examples include Newey, Powell,
and Vella (1999), Angrist, Graddy, and Imbens (2000), Guerre, Perrigne, and
Vuong (2000), Athey and Haile (2002), Imbens and Newey (2003), Chesher
(2003), Matzkin (2003), and Newey and Powell (2003)). Their identification

1We have had helpful conversations with Pat Bayer, Don Brown, Yossi Feinberg, Guido Imbens,
Yuliy Sannikov, Andy Skrzypacz, and Chris Timmons. We also thank the co-editor and four
anonymous referees for their useful comments. Any remaining errors are our own.
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theorems also play a key role in a few important papers in this literature, in-
cluding Brown and Wegkamp (2002) and Brown and Matzkin (1998).

We begin the note with an outline of the model and a statement of the pri-
mary assumptions of Brown (1983). We continue with a statement of the false
derivative condition, as well as some intuition behind its failure. Next we out-
line the role of the derivative condition in identification and present an im-
portant counterexample to the identification theorems regarding identification
of the model’s reduced form. We then outline a substantial set of restrictions
under which the reduced form is identified and is recoverable using the dis-
tribution of the endogenous variables conditional on the exogenous shifters.
We conclude with a discussion of why we believe that the main identification
theorems of Brown and Roehrig may still hold more generally with some mod-
ifications to the assumptions, and we suggest directions for future research.

2. MODEL AND ASSUMPTIONS

The model is characterized by a set of exogenous variables (X�U) and a set
of endogenous variables Y . The random vector X ∈ R

K denotes the observed
exogenous variables, while U ∈ R

L are not observed. We assume that (X�U)
is generated according to a continuous distribution function Φ with positive
density everywhere on its support. The endogenous variables Y ∈ R

G are ob-
served and are subsequently defined. Realizations of the random variables are
denoted using lowercase letters, e.g., (x� y�u).

Brown considers a parametric system of structural equations that is non-
linear in the observed variables (X�Y), but that can be written as linear
in an unknown parameter vector and an additively separable error term U .
Roehrig relaxes Brown’s framework to allow for a nonparametric system of
structural equations with a nonseparable error. Our results apply equally to
both frameworks. Indeed, they apply to any system of structural equations that
is sufficiently general as to generate a reduced form that is nonseparable in
the errors. Thus, because it makes the exposition cleaner, we will present our
results in the context of a nonseparable parametric structural model. In the
model, the endogenous variables Y are defined implicitly as the solution to a
set of structural equations

Y = m(X�Y�U;θ)�(2.1)

where m(·) is a known function and θ is an unknown parameter vector.2 We
emphasize that our results hold in a more general setting in which m(·) is un-
known (i.e., θ could be infinite dimensional).

2Note that because the function m(·) could contain the term Y , this specification is nonrestrictive.
We write the model in this form because it matches the form of many commonly used econometric
models.
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A leading example of such a system is the nonseparable supply and demand
model

Q =D(Z�P�εD;θD)�(2.2)

P = S(W �Q�εS;θS)�(2.3)

where, in the general notation, Y = (Q�P), X = (Z�W ), U = (εD�εS), θ =
(θD�θS), and the structural model is m= (D�S).

We maintain the assumption that the structural equations are continuously
differentiable. We assume for purposes of identification that the joint dis-
tribution of the endogenous variables and the observed exogenous shifters,
Ψ(X�Y), is known.

Following Roehrig (1988), we will call a structure S a pair (θ�Φ) that to-
gether define the data generating process. We denote the true data generating
process by the structure S0 ≡ (θ0�Φ0) ∈Ω, where the set Ω consists of all struc-
tures S that have the characteristics known a priori to apply to S0. These defi-
nitions will allow us to define identification formally. Again following Roehrig
(1988), we have the following definitions:

DEFINITION 2.1: Let Ψ and Ψ ′ be the distribution functions for (X�Y) im-
plied by the structures S and S′. Then S and S′ are observationally equivalent
if Ψ =Ψ ′.

DEFINITION 2.2: Structure S is identified in Ω if there is no other S′ ∈Ω that
is observationally equivalent to S.

We are also interested in cases where the structure S is not identified, but
some characteristics of the structure are identified. Let C(S) be a set of char-
acteristics of S. For example, C(S) may consist of functionals of the model
defined by θ.

DEFINITION 2.3: The characteristics C(S) are identified if all S′ ∈Ω that are
observationally equivalent to S have characteristics C(S).

2.1. The Three Basic Assumptions

We divide Brown and Roehrig’s assumptions into two groups. The first three
assumptions, which we call the basic assumptions, are those used by Brown to
prove the derivative condition in dispute. The remaining assumptions, which
we omit from this note, are rank conditions similar to those used to identify
the structural equations in a linear model.

ASSUMPTION 1—Reduced Form: The model generates a unique continuously
differentiable reduced form

Y = f (X�U;θ)�(2.4)
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Assumption 1 implies that the joint distribution of the observed variables,
Ψ(X�Y), is uniquely determined by any structure S = (θ�Φ). Note that Brown
and Roehrig assume that the structural model gives a unique reduced form,
but their proofs require only the assumption that the data are generated by a
differentiable function that maps X and U into Y . Such a generalization would
be important for models with multiple equilibria.3

ASSUMPTION 2 —Solution for U : There is a unique solution to the struc-
tural equations that gives the unobservables as a function of the observables.
That is, given a structure S = (θ�Φ), there exists a ρ(Y�X;θ) such that Y =
m(X�Y�ρ(Y�X;θ);θ). Furthermore, the function ρ(Y�X;θ) is continuously
differentiable.

Assumption 2 places strong restrictions on the way the unobservables enter
the model and on the relationship between the dimension of the error (L) and
the dimension of Y (G). In particular, it would typically require that L ≤ G.
Existence of a residual function ρ also implies that, although the error may
be nonseparable in the structural equations, there is a transformation of the
structural equations that is linear in the errors.

In addition to the foregoing assumptions about the model, a stochastic re-
striction on the errors is required:

ASSUMPTION 3—Independence: The observed exogenous shifters X are inde-
pendent of the unobserved errors U .

3. THE DERIVATIVE CONDITION

The following derivative condition, which we will show to be false, plays a key
role in the proofs of the main theorems in Brown (1983) and Roehrig (1988).

LEMMA 3.1—Derivative Condition (Brown (1983, pp. 180–181)): Let
X and U be independent random vectors and let Ũ = T(X�U), where T : RK ×
R

L → R
L is everywhere differentiable. Then Ũ is independent of X if and only if

∂T(x�u)/∂x = 0 everywhere.

The derivative condition seems intuitive at first and, as we will see subse-
quently, if it is true, it would be powerful. It is obviously true in one direction:
if the derivative of T with respect to x is everywhere zero, then the mapping
is not a function of x. Therefore, Ũ can be written as a function only of U .
Because U is independent of X , it must be that Ũ is as well.

3However, if Assumption 1 were relaxed in this way, then each structure may yield more than
one possible observed distribution Ψ . Thus, it would also be necessary to change our definition
of identification to account for this possibility.
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The problem with the derivative condition is in the other direction. Although
the condition is true if the errors are univariate (see subsequent text), in multi-
dimensional spaces it is easy to generate mappings T that have nonzero deriv-
atives with respect to x but that still generate independent errors. We now
provide a specific example of this with a clear graphical intuition. In the fol-
lowing section, we provide more substantive economic examples in the context
of the identification arguments.

3.1. Counterexample to the Derivative Condition

There is a simple graphical intuition as to why the derivative condition fails.
Suppose that U is two-dimensional and distributed N(0� I), independent of X .
Suppose that the T mapping is such that U is simply rotated about the origin
by an amount determined by X . This would generate a new set of errors Ũ
that are still N(0� I) for every outcome X = x and, therefore, are independent
of X . However, the mapping has nonzero derivatives with respect to X almost
everywhere.

More precisely, let Γ (x) denote an orthonormal matrix that is a smooth
function of x over the support of X .4 Let Ũ = T(X�U), where T(x�u) =
Γ (x)′u. Then Ũ is N(0� Γ (X)′Γ (X))=N(0� I), which does not depend on X .
However,

∂T(x�u)

∂x
= ∂Γ (x)′

∂x
u �= 0�

In a single dimension, such rotations are not possible, and it is easy to show
that the derivative condition holds in a single dimension.5 However, in multiple
dimensions, there are many transformations that can fold, reflect, or rotate the
errors in such a way as to conserve independence. If the transformation is a
function of the exogenous variables, then the derivative condition fails.

4. THE ROLE OF THE DERIVATIVE CONDITION IN IDENTIFICATION

In considering identification, an important insight of Brown (1983) was to
focus on the residual function ρ.6 For any candidate structure S = (θ�Φ) ∈ Ω

4One example is

Γ (x) =
(

cosx sinx
− sinx cosx

)
�

5Proving the univariate version of the derivative condition is analogous to showing identification
of a single equation model that is nonseparable in the errors. In that case, Assumptions 1–3 are
equivalent to the assumptions used in Matzkin (2003), which proves the result.
6Note that Matzkin (2005) has pursued a similar approach in deriving a corrected set of identifi-
cation conditions.
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that is observationally equivalent to S0 and satisfies the three basic assump-
tions, we can substitute the true reduced form into the residual function to
obtain a mapping from (x�u) into u,

ũ(x�u;θ�θ0)= ρ(f (x�u;θ0)�x;θ)�(4.1)

where ũ(x�u;θ�θ0) is the error implied by the model evaluated at θ (and
where ũ(x�u;θ0� θ0) = u).7 Brown (1983), followed by Roehrig (1988), uses
this relationship to provide conditions under which imposing independence on
the errors in the candidate structure Ũ ≡ ũ(X�U;θ�θ0) will identify certain
characteristics of the true structure S0.

According to the derivative condition above, the residuals from the candi-
date structure Ũ are independent of X if and only if the derivative of the map-
ping ũ(x�u;θ�θ0) with respect to x is everywhere zero, that is, if

Dxũ(x�u;θ�θ0)

=Dyρ(f (x�u;θ0)�x;θ)Dxf (x�u;θ0)+Dxρ(f (x�u;θ0)�x;θ)
= 0

for all (x�u) pairs in the support of (X�U). This set of equations implies a
set of restrictions to the candidate structure that help to identify important
characteristics of the true structure S0. For example, an important implication
of the derivative condition is that the reduced form is identified, in a sense that
we now make precise.

4.1. Counterexample to Identification of the Reduced Form

Consider any alternative structure S = (θ�Φ) ∈ Ω that is observationally
equivalent to S0 and satisfies the three basic assumptions, with reduced form

Y = f (X� Ũ;θ)�

where Ũ is independent of X . The derivative condition implies that this alter-
native reduced form must have the same partial derivatives with respect to x at
each point (x� y) as the true reduced form. The following corollary makes this
statement precise:

7For example, in a single equation linear model, y = xβ0 + u is the true functional relationship
and the errors from an alternative structure β are given by

ũ(x�u;β�β0)= y − xβ = x(β0 −β)+ u�
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COROLLARY 4.1: If the derivative condition were true, then under the three
basic assumptions, the characteristics

∂f (x�u;θ)
∂x

∣∣∣∣
x=x0�u=ρ(y0�x0;θ)

would be identified for every point (x0� y0) in the support of (X�Y).

PROOF: Consider any S = (θ�Φ) ∈Ω that is observationally equivalent to S0

and satisfies the three basic assumptions. By the definition of ũ, we have that
f (x� ũ(x�u;θ�θ0);θ) = f (x�u;θ0). By independence of X and Ũ , the deriv-
ative condition implies that ∂ũ(x�u;θ�θ0)/∂x = 0 everywhere. Therefore, the
chain rule gives

∂f (x�u;θ0)

∂x

= ∂f (x�u;θ)
∂x

∣∣∣∣
u=ũ(x�u;θ�θ0)

+∂f (x�u;θ)
∂u

∣∣∣∣
u=ũ(x�u;θ�θ0)

∂ũ(x�u;θ�θ0)

∂x

= ∂f (x�u;θ)
∂x

∣∣∣∣
u=ũ(x�u;θ�θ0)

�

Evaluating at x = x0 and u = ρ(y0�x0;θ0) gives the result, because ũ(x0�ρ(y0�
x0;θ0);θ�θ0) = ρ(y0�x0;θ). Q.E.D.

The corollary implies that if the derivative condition held, then we would au-
tomatically have the result that the reduced form derivatives with respect to x
are identified in any model that satisfies the three basic assumptions. However,
using the example from Section 3.1, it is easy to see that, in fact, the basic as-
sumptions (Assumption 1–3) are not sufficient for identification of the reduced
form derivatives. Suppose that Y and U have dimension 2, and the reduced
form is given by

Y = Γ (X)′U�

where, as in Section 3.1, Γ (x) is an orthonormal matrix that is a smooth func-
tion of x and U is distributed N(0� I). Then the basic assumptions are satisfied
for any Γ (x), but the reduced form derivative at the point (x0� y0) is given by

∂f (x�u;θ)
∂x

∣∣∣∣
x=x0�u=ρ(y0�x0;θ)

= ∂Γ (x0)

∂x
Γ (x0)

′y0�

which clearly depends on the function Γ . For example, if Γ (x) = I, then
the reduced form derivative with respect to x is always zero, but in general
∂Γ (x0)/∂x would not be zero.
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4.2. Recovering the Reduced Form Using the Triangular Construction

If the derivative condition and its corollary above were true, to recover the
reduced form, we would need only to find a model that was observationally
equivalent to S0, satisfied Assumptions 1 and 2, and generated errors that were
independent of X . One such model is the triangular construction. Consider
the supply and demand model in (2.2) and (2.3), and let Ψ(Q�P�Z�W ) be the
(known) joint distribution of the endogenous variables and exogenous shifters.
Suppose we let

Ũ1 =Ψ(Q|Z�W )�(4.2)

Ũ2 =Ψ(P|Z�W �Q)�

where the Ũ ’s are constructed such that they are independent of one another
as well as independent of (Z�W ), satisfying Assumption 3. The construction
itself satisfies Assumption 2, and it is easy to invert the system to retrieve a
reduced form that satisfies Assumption 1.

If Brown and Roehrig’s theorems were true, then this system should retrieve
the true reduced form. However, it is easy to see that this cannot be the case in
general. Consider the reduced form derivative of Q with respect to Z implied
by the triangular system (obtained via the implicit function theorem)

∂Q

∂Z
= − 1

∂Ψ(Q|Z�W )/∂Q

∂Ψ(Q|Z�W )

∂Z
�

This expression is a function only of (Q�Z�W ), but is not a function of P .
This implies a restriction to the reduced form that need not hold in general.
Specifically, the triangular construction implies that the reduced form takes
the form

Q = f (Z�W � Ũ1)�

whereas in the general model the reduced form takes the form

Q = f (Z�W �εD�εS)�

The distinction here is that, in general, the two structural error terms enter the
reduced form nonseparably. Note that this distinction is important because
it is easy to come up with examples where this would be the case. The form
implied by the triangular system suggests that the two errors enter only as a
single index. In the general model, it would be possible to hold (Z�W ) fixed
and move (εD�εS) together in such a way as to hold Q fixed (but changing P),
changing the reduced form derivatives with respect to (Z�W ). The triangular
system does not allow for this possibility and, therefore, it cannot retrieve the
true reduced form in general.
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The triangular construction fails to retrieve the true reduced form for exactly
the same reason that the derivative condition fails to hold. The errors in the
triangular construction Ũ are independent of the exogenous variables (Z�W ),
but could have been transformed from the original errors in a way that depends
on (Z�W ). For example, they could have been rotated, as in the example from
Section 3.1. Such transformations change the implicit functional relationship
between Q and (Z�W ), leading to incorrect reduced form derivatives.

An important but negative implication of these results is that, in general,
without further assumptions, a projection of the endogenous variables on the
exogenous variables (given by the conditional distribution Ψ(Y |X)) does not
recover the true reduced form derivatives, even under the relatively strict As-
sumptions 1–3. The intuition for this failure is as follows: in a nonseparable sys-
tem, for given values of Y1 and X , there may be different derivatives of Y1 with
respect to X that depend on the values of the error terms in the other structural
equations. A projection of Y1 onto X that ignores the values of Y2� � � � �YG (or
alternatively, U2� � � � �UG) recovers not the true reduced form, but something
akin to the average reduced form derivative weighted over the distribution of
the left out variables. As the example in Section 3.1 shows, this problem can
even be so severe that the effect of X on Y disappears completely.

5. USING THE CONDITIONAL DISTRIBUTION TO RECOVER THE TRUE
REDUCED FORM DERIVATIVES

We have shown that the triangular system does not necessarily recover the
true reduced form of a nonseparable system and that, therefore, the condi-
tional distribution Ψ(Y |X) does not necessarily recover the true reduced form
derivatives. Here we present restrictions under which the conditional distribu-
tion does recover the true reduced form derivatives.

Suppose that in the true reduced form the errors enter each equation as a
single index,

Y1 = f1(X�g1(U);θ0)�(5.1)

Y2 = f2(X�g2(U);θ0)�

���

YG = fG(X�gG(U);θ0)�

where each function gi : RL → R and where each function fi is increasing in
its last argument. Under these assumptions, the reduced form functions fi
are identified and their derivatives with respect to x can be recovered using
the conditional distribution Ψ(Y |X) (the proof is an application of Matzkin
(2003)).

The question remains as to what structural models would lead to this sin-
gle index property. We have found it difficult to characterize the entire class
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of models that have this property. Furthermore, there are likely to be special
cases where the errors enter the reduced form as a single index only for certain
parameter values. However, there is a simple class of models that always have
this property. Suppose that the structural model takes the form

A(θ)




h1(Y1�X;θ)
h2(Y2�X;θ)

���
hG(YG�X;θ)


 − r(U;θ) = 0�(5.2)

where θ is a parameter vector, θ = θ0 is the parameter vector that denotes the
true data generating process, A(θ) is a G×G matrix with |A(θ0)| �= 0, r(U;θ)
is a known G × 1 vector function, and the functions hi are known and strictly
monotonic in Yi at θ = θ0. The true reduced form (the data generating process)
of this system is

Y = h−1
(
X�A(θ0)

−1r(U;θ0);θ0

)
�

which satisfies the assumptions above.
This class of models includes linear systems as a special case. It also in-

cludes systems that are linear in logs, some polynomial systems (that maintain
the required equation-by-equation monotonicity in Y ), as well as many other
nonlinear models, and systems that consist of mixtures of all of these types.
However, the system represents a substantial restriction to the system consid-
ered by Brown (1983) because the system restricts the way that the endogenous
variables Yi can enter across different equations. Each variable Yi must enter
every equation in essentially the same way. For example, in the supply and de-
mand example, if the demand function specifies that the logarithm of Q is a
linear function of P , then the foregoing class requires that the supply function
has P as a linear function of the logarithm of Q. This is a relatively narrow class
of models compared with the general case in (2.1).

In all systems in this class, the conditional distribution recovers the true re-
duced form derivatives. However, recall that it is not necessary to assume that
the structural model has this form to be able to obtain identification of the
reduced form. It is only necessary to make the weaker assumption that the
reduced form has the single index property.

6. CONCLUSIONS AND AREAS FOR FUTURE RESEARCH

So far we have shown that the Brown/Roehrig identification theorems are
incorrect as stated. We have also shown that one consequence is that additional
assumptions beyond those listed in Section 2 are required to be able to obtain
identification of the reduced form.
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However, despite these results, we remain optimistic that some version of
the Brown/Roehrig theorems can be established, perhaps under stronger con-
ditions (see also Matzkin (2005)). The spirit of Brown’s and Roehrig’s rank
conditions is that exclusion restrictions can be used to obtain identification
of the system. We have been unable to contradict this notion. Brown’s and
Roehrig’s proofs utilize only the rank conditions assumptions to identify the
structure from the reduced form, but it is possible that similar exclusion re-
strictions may help to identify the reduced form as well. In particular, exclusion
restrictions provide restrictions across points. Brown’s and Roehrig’s proofs of
identification of the reduced form do not rely on any cross-point restrictions,
which is the primary reason that the theorems fail.

One set of exclusion restrictions that does identify the system is if the true
model is triangular. For the sake of brevity we provide only an outline of the
proof. Consider the triangular system shown in (4.2) and suppose that this sys-
tem represents the true form of the structural model, i.e., suppose that price
was excluded from the demand equation in the true model. Then the first equa-
tion can be shown to be identified using single equation methods. Similarly, the
second equation can be shown to be identified conditional on the first. This
logic also easily generalizes to higher-dimensional systems. Note that Imbens
and Newey (2003) consider a two-dimensional system of this kind, and Chesher
(2003) considers a similar multidimensional triangular system.

The triangular system uses exclusion restrictions only on the endogenous
variables. However, it is possible that traditional exclusion restrictions on the
exogenous variables or on groups of both endogenous and exogenous variables
might also yield identification of the system. It seems likely that such restric-
tions would rule out the kinds of transformations that cause the derivative con-
dition to fail. However, we have as yet been unable to verify or contradict this
conjecture ourselves, and its seems likely that a proof may require more com-
plex arguments than those used in the original papers.

A corrected set of identification theorems similar to those of Brown and
Roehrig would provide a simple yet powerful method for proving identification
for a large class of structural models. Thus, our hope is that these issues will be
sorted out in future research.
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