
Strategic Release of Information in Platforms:

Entry, Competition, and Welfare

Kostas Bimpikis Giacomo Mantegazza ∗

Abstract

Two-sided platforms play an important role in reducing frictions and facilitating trade, and in

doing so they increasingly engage in collecting and processing data about supply and demand.

This paper establishes that platforms have an incentive to strategically disclose (coarse) infor-

mation about demand to the supply side as this can considerably boost their profits. However,

this practice may also adversely affect the welfare of consumers. By optimally designing its

information disclosure policy, a platform can influence the entry and pricing decisions of its

potential suppliers. In general, it is optimal for the platform to disclose its information only

partially to either “nudge” entry when it is a priori costly for suppliers to join or, conversely,

discourage it when suppliers do not have access to attractive outside options. On the other hand,

consumers may end up being worse off as they have access to fewer trading options and/or face

higher prices compared to when the platform refrains from sharing any demand information to

its potential suppliers.
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1 Introduction

Two-sided platforms are increasingly becoming ubiquitous in everyday life as they have already

transformed a number of industries ranging from short-term accommodation, e.g., Airbnb and Vrbo,

to transportation, e.g., Uber and Lyft, freelance service provision, e.g., Upwork, and e-commerce,

e.g., eBay and Etsy. Typically, the role of such platforms involves providing the infrastructure,

i.e., an online marketplace, and a number of decision support tools to facilitate the exchange of

goods or services between two sets of agents, the “buyers” and “sellers”, who would otherwise find

it challenging to transact.
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Although the market environments in which platforms have found success are diverse, they share

a number of key features. First, they are quite fragmented both in terms of the ownership of trade

assets, e.g., accommodation for Airbnb and Vrbo or labor for Upwork, and in terms of information,

i.e., market participants have only a limited view of market conditions. Second, they involve a

great deal of uncertainty both in terms of the underlying demand (as in traditional marketplaces)

but also in terms of the availability and willingness of the supply-side to participate, i.e., suppliers

can freely choose whether, when, and how long to remain active on the platform depending on the

terms and volume of trade they expect.

Thus, besides their primary function of providing a venue and the infrastructure for buyers

and sellers to transact, platforms increasingly use their size, resources, and analytical capabilities

to collect, process, and share information with market participants to best facilitate the match

between supply and demand. Such information sharing takes a number of forms depending on the

idiosyncratic features of the environment in which the platform operates. For example, Airbnb

recently introduced a price-suggesting tool for hosts, which can be seen as an (indirect) way of

providing them with information about local demand and supply conditions. Similarly, Guda and

Subramanian (2019) report that Uber frequently shares information with its drivers about places

where demand for rides may be high. Finally, Etsy, an online marketplace focused on handmade

items and craft supplies, frequently shares “marketplace insights” and “seasonal tips” that can be

viewed as demand forecasts for products sold on the platform.1

Despite their growing adoption in online marketplaces, the role of information provision tools on

profits for the platform and welfare for consumers is not yet resoundingly clear. Conventional wis-

dom would suggest that more information typically leads to better outcomes for everyone involved.

However, this is not necessarily as intuitive in the settings we focus on, given that information about

demand has first-order implications on suppliers’ entry and pricing decisions. This is precisely the

goal of the present paper: we aim to shed light on (i) whether and how profit-maximizing platforms

may choose to disclose information about the market environment, e.g., demand forecasts, and (ii)

what the implications are of optimally disclosing such forecasts for profits and consumer welfare.

Towards this end, we develop a model of a two-sided platform that facilitates transactions

between sellers and buyers of a homogeneous good. Besides acting as an intermediary between the

two sides, the platform commits to and announces an information disclosure policy, i.e., a mapping

from the information about demand it obtains, e.g., its demand forecast, to a set of messages that

it sends to sellers. After committing to its policy, the platform observes whether demand will be

“high” or “low” and sends a message to sellers, who, in turn, decide whether to join the platform

and forgo their outside option. Sellers active on the platform compete in prices for buyers who have

1For example, refer to https://www.etsy.com/seller-handbook/category/seasonal-tips.
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independent, private valuations for the good and arrive over two periods, i.e., a buyer arrives in

the first period whereas a second buyer may arrive in the second period if the demand is “high”. If

a seller completes a transaction, she exits the platform, i.e., sellers are endowed with a single unit

of the good. When setting their prices, sellers take into account both the likelihood that demand

is high in the second period and that they may face less competition in case there is a transaction

in the first one. Finally, the platform appropriates a fixed share of the value of each transaction

that takes place and designs its disclosure policy to maximize its profits.

Upon receiving a message from the platform, potential sellers update their belief about the

demand being high according to the platform’s information disclosure policy. All else equal, the

prices sellers set and subsequent profits are increasing in their beliefs about demand whereas,

conversely, their profits decrease as the number of competitors that join the platform increases.

Thus, in determining its disclosure policy, the platform takes into account the following two main

(competing) drivers that affect equilibrium outcomes.

(i) Modifying posterior beliefs to affect prices: Since the price a seller sets for her product is

increasing in her posterior belief, the platform has an incentive to induce high beliefs. On

the other hand though, high prices imply a low probability of transactions taking place as

consumers are price sensitive.

(ii) Modifying posterior beliefs to affect entry : Since, all else equal, the sellers’ profits increase in

their posterior beliefs, inducing higher beliefs makes joining the platform a more attractive

option for sellers. However, the implications of having more active sellers on the platform are

not obvious for the platform’s profits, given that the likelihood of transactions taking place

increases, but their respective prices decrease.

The interaction between information disclosure and the ensuing competition among sellers is

quite complex: we establish that, in general, the platform finds it optimal to “nudge” or discourage

entry depending on the prior and the value of the sellers’ outside option; it achieves this by dis-

closing a coarser version of the information it has at its disposal. Optimal information disclosure

considerably increases profits for the platform, but consumers may end up being significantly worse

off as a result, as they face higher prices relative to the case when the platform does not disclose any

information. For example, we establish that when potential sellers do not have access to attractive

outside options, the optimal information disclosure policy leads to higher profits for the platform

by disincentivizing entry; however, this comes at the expense of consumers who bear the brunt of

the change in the competitive environment. Thus, we conclude that information disclosure is a

powerful tool for a platform to increase its profitability, but its use may often be detrimental to

consumers.
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The rest of the paper is organized as follows. In Section 2 we present our benchmark model

whereas in Section 3 we derive the equilibrium prices posted by sellers. Then, in Section 4 we

provide a characterization of the optimal information disclosure policy and in Section 5 we discuss

its welfare implications. Finally, in Section 6 we report on a number of extensions that support our

main findings and we conclude in Section 7. All proofs can be found in the Electronic Companion.

1.1 Literature Review

The paper contributes to the emerging literature exploring applications of information design to

settings of operational interest.2 For example, Lingenbrink and Iyer (2019) determine the optimal

way to disclose information about queue length to customers deciding whether to join a service

system and Papanastasiou, Bimpikis, and Savva (2018) explore information provision by a service

provider aiming to induce exploration of available alternatives by short-lived agents. Furthermore,

Candogan and Drakopoulos (2020) extend the study of information design to social networks and

Anunrojwong, Iyer, and Manshadi (2020b) discuss how the framework can be applied to improve

the allocation of social services. Lingenbrink and Iyer (2020) and Drakopoulos, Jain, and Randhawa

(2021) show that selective disclosure of inventory availability may lead to higher profits for a mo-

nopolist selling a fixed inventory of goods. Kostami (2020) focuses on the comparison between static

and dynamic lead-time information provision in inventory systems whereas Hu, Wang, and Feng

(2020) explore information disclosure and pricing policies for network goods. Finally, Küçükgül,

Özer, and Wang (2019) show how to optimally design information disclosure in the context of

time-locked sales campaigns whereas Alizamir, de Véricourt, and Wang (2020) and de Véricourt,

Gurkan, and Wang (2020) explore the use of information design by public agencies on how to best

release information to the public to mitigate potential disasters.

Closer to our work is the recent contribution by Bimpikis, Papanastasiou, and Zhang (2020),

which explores information design in a two-sided service platform that connects quality-differentiated

sellers with customers who are heterogeneous in how they value the quality of service. They es-

tablish that the platform may find it optimal to understate the quality of its best providers as a

way to boost its volume of transactions and increase its profits. Our modeling framework differs

significantly from theirs: first, in our setting, information about the size of the demand is conveyed

to potential suppliers as opposed to information about sellers quality being provided to consumers

and, second, in our setting, sellers are informed before they join the platform, which in turn affects

their entry decisions, while in Bimpikis et al. (2020) they receive a quality label after entry. In the

2For the theory of information design, refer to contributions by Kamenica and Gentzkow (2011) and Rayo and
Segal (2010) and, more recently, Arieli and Babichenko (2019), Anunrojwong, Iyer, and Lingenbrink (2020a), and
Candogan and Strack (2021). Bimpikis and Papanastasiou (2019) and Candogan (2020) provide comprehensive
surveys of work related to applications of information design to operations.
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same spirit, Johari, Light, and Weintraub (2019) also consider a platform, which is better informed

about the quality of its sellers and decides how to optimally communicate this information to buy-

ers. They derive conditions under which barring a subset of sellers from joining and disclosing no

information about the remaining ones to buyers is revenue-optimal. As also mentioned above, a

key difference with our paper is that in Johari et al. (2019) the platform has information about the

quality of potential sellers as opposed to information about future demand as in our case. Conse-

quently, the mechanisms by which platforms increase their profits through information design are

quite different from the ones we identify. Finally, their setting is not tailored to pursue a welfare

analysis, which is instead a central piece of our work.

Finally, Gur, Macnamara, Morgenstern, and Saban (2022) study the problem of a platform that

is informed about buyers’ types and discloses such information to sellers. In their setting, only one

seller performs Bayesian updates, while its competitors follow a given pricing policy. Our setting

differs from theirs along multiple dimensions: in our case entry is a strategic decision and we focus

on how the platform can use information disclosure to affect the level of competition it induces,

while in Gur et al. (2022) the pool of sellers is given and the focus is on understanding the interplay

between information disclosure and promotion policies that “spotlight” only one of the sellers. By

and large, our work contributes in this line of work by highlighting how a platform can disclose its

information on customer demand to induce the optimal level of entry and affect the intensity of

competition among sellers. Importantly, besides illustrating that information design can lead to a

significant increase in platform profits, we explore the welfare implications of this practice and find

that, unlike the platform, consumers may be significantly worse off.

Our focus on consumer welfare also complements recent work that examines the value of informa-

tion sharing in the specific context of ride-hailing platforms. In particular, Guda and Subramanian

(2019) and Hu, Hu, and Zhu (2021) show that ride-hailing platforms can boost profits through

communicating information about demand and appropriately pricing their service as drivers are

incentivized to move to locations with excess demand. Besides mostly looking at platform profits,

the aforementioned work does not adopt an information design perspective, i.e., demand signals

are assumed to be fully disclosed.3

Finally, our paper also relates to the earlier and influential work on information sharing in the

context of supply chain management. In particular, a set of seminal contributions, e.g., Lee, Pad-

manabhan, and Whang (1997), Lee and Whang (2000), and Cachon and Fisher (2000), identify the

downsides of information distortion along the tiers of a supply chain and suggest how information

3We also contribute to the broader literature on the design and operations of two-sided platforms. Recent
examples of this literature include Manshadi and Rodilitz (2020), Kanoria and Saban (2020), and Birge, Candogan,
Chen, and Saban (2020), that study the optimal design of platforms with focus on efficient crowdsourcing of volunteer
labor, matching, and optimal commission and subscriptions fees, respectively.
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sharing, e.g., demand forecasts or sales data, may generate benefits resulting from lower inventory or

shortage costs. On the other hand, Lee and Whang (2000) argue that one of the biggest challenges

to supply chain wide information sharing may be confidentiality in the presence of competition.

Motivated by this, Li (2002) among others explores both the direct and indirect effects, e.g., due

to “leakage”, of information sharing in a vertical supply chain that features competition and shows

when downstream retailers may be discouraged from information transparency. Taken together,

this early work illustrates that the implications of information sharing within a supply chain are

nuanced and suggests that market participants may have the incentive to strategically determine

when and what information to disclose. This is precisely the view we adopt in our study: we focus

squarely on the disclosure of information as another strategic lever for a firm (a two-sided platform)

and use tools from information design to derive optimal disclosure policies.4

2 Model

We consider a market for a homogeneous good, which can be sold from a set of sellers to buyers

through an intermediary, the platform. The interaction between sellers, buyers, and the platform

is modeled as a dynamic game with four time periods, t ∈ {−1, 0, 1, 2}. In particular, first, the

platform commits to an information disclosure policy (at t = −1), which provides a mapping from

the platform’s information about demand (its signal) to a message to sellers.5 Importantly, the

platform determines and announces its information disclosure policy before it observes the demand

signal. Next, at t = 0, the platform observes its signal and sends a message to sellers according to

the disclosure policy. Subsequently, sellers decide whether they want to join and list their products

on the platform. If they join, they forgo an opportunity cost, e.g., associated with selling their

product through another channel, and they compete in prices. We assume that each seller can list

at most one unit of their product on the platform, i.e., sellers have limited inventory.

Buyers arrive sequentially to the platform and decide whether to make a purchase based on

the prices quoted by sellers. Each buyer wishes to acquire at most a single unit of the good. For

most of the paper, we restrict attention to an economy with two sellers and two potential buyers

arriving at period t = 1 and (possibly) at period t = 2. This setting allows for a tractable and

transparent analysis—we discuss a general framework with a continuum of buyers and multiple

sellers in Section 6.3, where we illustrate the robustness of our main qualitative insights.

Finally, the platform facilitates trade and generates its profits by appropriating a share α ∈ (0, 1)

4At a higher level, our finding that strategic information disclosure may prevent entry on online markets also
relates to the extensive literature in Industrial Organization that studies market concentration (e.g., Sutton (1991)).
Specifically, the increasing relevance of two-sided platforms has sparked further research on the potential for anti-
competitive effects in two-sided markets (e.g., Evans and Schmalensee (2005)).

5For example, the signal can be interpreted as a forecast about the size of the demand in future periods.
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Figure 1: Timeline of the game

of the price of each transaction that takes place. We assume α is fixed and given (we revisit this in

Section 6.2). This assumption is motivated by industry practice, where typically commission rates

are not dynamically adjusted at the same rate at which new information about demand/supply is

obtained.6 In the remainder of this section, we provide a more detailed description of the interaction

between sellers, buyers, and the platform, and formally introduce the equilibrium concept we adopt

in our analysis. Figure 1 provides a comprehensive illustration of the timeline of the game.

To further facilitate the formal definition of the dynamic game among sellers, buyers, and the

platform, we let H denote the set of all possible histories in the game and ht indicate a generic

history at time period t. For the first period, t = −1, we have h−1 = ∅. Furthermore, for every

other t, a history ht is a tuple containing the information disclosure policy, the message sent by the

platform to the sellers, and all actions taken by time t. Finally, we use the notation σSi and σBi to

denote the strategies of sellers and buyers, which are maps from the set of histories to the set of

(distributions over) available actions.

Buyers Much of the paper focuses on a setting with two sellers and two potential buyers. In

particular, demand for the good is initially unknown: although it is certain that a buyer will request

the good in period t = 1, a second buyer may arrive in t = 2 with some probability. We can formally

model this by introducing a set of states of the world Ω = {0, 1}, where state ω = 1 denotes that a

second buyer will arrive in period t = 2. We assume that there exists a commonly held prior belief

about the state of the world, i.e.,

P(ω = 1) = µ ∈ [0, 1].

The arrival of buyers is exogenous, i.e., buyers cannot strategically time their arrival.

Buyers wish to acquire a single unit of the good for which they have a private valuation v. A

6Furthermore, platforms operate in multiple markets that may differ considerably in their demand and supply
profiles. By and large, commissions/revenue shares are not tailored to each individual market.
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buyer’s valuation is independently drawn from a (known) distribution with cumulative distribution

function F and support on (a, b), with 0 ≤ a < b ≤ ∞. We make the following assumption.

Assumption 1. The cumulative distribution function F of the buyers’ valuation has a differentiable

density f and satisfies the increasing failure rate property, i.e., function h defined below is increasing

over the support of the distribution

h(x) =
f(x)

1− F (x)
.

We also introduce the notation F (x) = 1 − F (x), and let g(x) = xh(x) denote the generalized

failure rate introduced in Lariviere (2006).

Since the first buyer arrives at the platform at time t = 1 and the second may arrive at t = 2,

we can index buyers with the label of the time period they arrive at. Consider buyer t, and let St

and (pi,t)i∈St denote the set of active sellers in period t and their prices, respectively. The buyer’s

expected utility is given by the following expression,

UBt

(
σBt ;St, (pi,t)i∈St

)
= EBt∼σBt

∑
i∈St

1{Bt = i}(vt − pi,t)

 , (1)

where vt is the buyer’s private valuation. Here, Bt is associated with the purchase decision taken

by buyer t, i.e., Bt = i for some i ∈ St implies that the buyer engaged in a transaction with seller

i, whereas Bt = 0 denotes that buyer t decided not to purchase. Expectation is taken with respect

to the possible randomization in buyer t’s decision. Notice that not transacting with anyone gives

utility zero. We interpret this as the normalized value of the outside option available to buyers.

Thus, if the buyer does not purchase the good, she leaves the platform and takes her outside

option. Finally, note that we are also assuming that buyers cannot decide to delay their purchase:

in particular, either buyer 1 purchases in t = 1, or she does not purchase at all.

The optimal decision of a buyer can be summarized in a straightforward manner as follows: the

buyer engages in a transaction with the seller who quotes the lowest price, provided that it does not

exceed her valuation (she randomizes between sellers when they post the same price).7 Specifically,

B∗t =


0 if pi,t > vt for all i ∈ St,

arg max
i∈St

{vt − pi,t} if there exists i ∈ St such that pi,t ≤ vt and p1,t 6= p2,t.

i ∈ St with probability 1
2 if p1,t = p2,t ≤ vt

(2)

7The assumption that if vt = pi,t for some seller i, buyer t will make a purchase is without loss of generality,
because under Assumption 1 this event has measure zero, and is consistent with the Sender-preferred equilibrium
we consider in Definition 1. Note also that, as long as customer t buys from either seller with strictly positive
probability when posted prices are equal and less than her valuation, our results continue to hold. To keep the
analysis simple, we make the assumption that the buyer picks one of the sellers uniformly at random.
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Since buyers do not take any other decision in the course of the game, in what follows, we

abstract away from their decision making and we take it as given, i.e., we assume it is prescribed

by Expression (2). In turn, this simplifies the exposition considerably and allows us to streamline

the definition of the equilibrium.

Sellers Sellers are endowed with a single, indivisible good, which they can sell by joining the

platform. They also have access to an outside option valued at c > 0, which they forgo if they join.

When a seller transacts with a buyer, she exits the market. Otherwise, if a seller fails to make

a sale in period t = 1, she remains active on the platform in period t = 2, as well. They make

forward-looking pricing decisions, and cannot commit ex-ante to a sequence of prices. Finally, we

assume that a seller can observe whether her competitor decided to join the platform (which, in

turn, may affect her pricing strategy) and whether her competitor made a sale in time period t = 1

and, thus, exited the market.

As far as sellers’ payoffs are concerned, we define them using backwards induction. We assume

that sellers set their prices at time period t = 2 before they observe the realization of the period’s

demand, i.e., whether a second buyer arrived at the platform. In particular, seller i’s expected

continuation payoff is given by

ΠS
2,i

(
σSi ;h2

)
= (1− α)Eρ

[
Epi,2∼σSi , B∗

2
[pi,21{B∗2 = i}1{ω = 1} | ω]

]
, (3)

where we recall that α denotes the share of the transaction fee that the platform appropriates. In

principle, a seller can randomize its price although in equilibrium this is never the case. Here, the

event {ω = 1} denotes the state of the world where a second buyer arrives at t = 2 and ρ is the

seller’s belief about ω given her information set (we discuss this at greater length in what follows).

Next, consider a history h1 at time period t = 1. Seller i’s expected continuation payoff is given

by the following expression

ΠS
1,i

(
σSi ;h1

)
= Epi,1∼σSi , B∗

1

[
(1− α)pi,11{B∗1 = i}+ ΠS

2,i

(
σSi , 〈h1, B∗1〉

)
1{B∗1 6= i}

]
, (4)

given the arrival of a buyer in time period = 1. Finally, consider time period t = 0, when the seller

decides whether to join the platform based on the platform’s information disclosure policy. We can

state seller i’s ex-ante payoff as

ΠS
0,i

(
σSi ;h0

)
= EEi∼σSi

[
1{Ei = 1}ΠS

1,i

(
σSi , 〈h0, Ei = 1, Ej〉

)
+ 1{Ei = 0}c

]
, (5)

where Ei denotes the decision to join the platform. Note that we explicitly incorporated the
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opponent’s entry decision to determine the history at time period t = 1 for the sake of clarity. In

summary, a seller’s strategy is a function

σSi : ht ∈ H 7→ ∆ (SA(ht)) ,

where SA(·) is the map giving the action space available to sellers at history ht.

Platform and information disclosure As mentioned before, at t = −1 demand is unknown

and platform and sellers share a common prior µ about its state. It is assumed that the platform

is endowed with a signal about future demand, which is informative about state ω. This signal is

realized at time t = 0. After observing the realization of the signal, the platform sends a “message”

m to the sellers, which may be informative about the demand. The sellers observe the platform’s

message and decide whether to join and forgo their outside option.

Importantly, the platform’s message to sellers is generated according to an information disclosure

policy, which the platform commits to and communicates to the sellers before it observes the signal’s

realization. For simplicity, we assume that the signal is perfectly informative, i.e., that it equals

ω (we relax this in Section 6.1, further analyzed in Section EC 2 of the Electronic Companion).

Formally, then, the information disclosure policy is a mapping from the set of states of the world

to the set of (distributions over) potential messages,

D : Ω→ ∆(M),

i.e., we allow the platform to follow a randomized messaging strategy. The platform designs its

information disclosure policy in order to maximize its expected profits. Intuitively, communicating

information about demand can be seen as a tool to adjust to market conditions relatively quickly

compared, for example, to adjusting the platform’s commission structure. After observing the

platform’s message, sellers update their beliefs about demand and determine whether to enter

and how to price. Thus, when determining its policy, the platform has to take into account the

equilibrium responses it induces from sellers.

Formally, the platform’s strategy consists of a pair σP = (D,M). We pose no restrictions on the

mapping D or the message space. Recall that the platform generates revenues by appropriating a

share α of every transaction. Thus, its payoff can be written as

ΠP ((D,M);h−1) =
α

1− α
Eω∼µ

[
Em∼D(ω)

[
2∑
i=1

1{Ei = 1}ΠS
0,i

(
σSi ; 〈h−1, (D,M),m〉

)
| ω

]]
. (6)
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2.1 Equilibrium definition

Our choice of equilibrium concept is that of Perfect Bayesian Equilibrium (PBE). Following the lit-

erature on information design, we consider a refinement of PBE, i.e., a Sender-preferred PBE (refer

to Kamenica and Gentzkow (2011) for additional details). Intuitively, a Sender-preferred Perfect

Bayesian Equilibrium in our context is such that sellers always take the action that maximizes the

platform’s profits when they are indifferent between multiple actions.

Formally, a PBE consists of a collection of strategies and beliefs about the state of the world,

one for each of the players of the game; we refer to them as strategy-belief pairs.8 We introduce the

notation γk | h to indicate the posterior belief of agent k after history h, and we let γk = (γk | h)h∈H

denote the entire belief system of agent k. Recall that S denotes the set of sellers, and we let P

denote the platform. We focus on equilibria in pure strategies although the definition remains valid

for mixed strategies as well.

Definition 1 (Sender-preferred Perfect Bayesian Equilibrium). A collection of strategy-belief pairs

(σk, γk)k∈S∪{P} is a Sender-preferred PBE if the following conditions are satisfied:

(1) For every seller i ∈ S, every time period t ∈ {0, 1, 2}, and every history ht ∈ H, for any

feasible strategy σ′Si of seller i we have

ΠS
t,i

(
σSi ;ht

)
≥ ΠS

t,i

(
σ′Si ;ht

)
.

(2) For every agent k ∈ S ∪ {P}, γk | ∅ = µ, i.e., both sellers and the platform share a common

prior µ. Moreover,

(i) For i ∈ S, γi | h is determined by Bayes’ rule after history h ∈ H, whenever possible.

(ii) For the platform, γP | h = δ{ω} for all h 6= ∅, where ω is the realization of the state of

the world.

(3) For any fixed (D,M), whenever there exist multiple collections of strategy-belief pairs for the

sellers such that all of the previous conditions hold, then (σi, γi)i∈S yields the highest payoff

for the platform.

(4) Finally, (D,M) is the information disclosure policy that maximizes the platform’s profits

ΠP ((D,M);h−1) ≥ ΠP
(
(D,M)′;h−1

)
,

assuming that sellers follow the strategies prescribed by the equilibrium.

8These are commonly referred to as assessments in the literature.
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Let us briefly parse through Definition 1: points (1) and (2) require sequential rationality and

Bayes consistency of the strategy-belief pairs. In particular, sequential rationality demands that

agent i’s strategy σi is a best response to the strategies of the rest of the agents; point (3) selects the

collection of strategy-belief pairs that gives the highest profit to the platform among all collections

that are such that each strategy-belief pair is Bayes consistent and it is a best-response to the other

agents’ strategies. Thus, as defined, the equilibrium is “Sender-preferred” because sellers, when

indifferent, follow the strategies that maximizes the platform’s profits.

In the next section, we proceed by showing that an equilibrium exists. In principle, existence is

not straightforward since the agents’ payoff functions can be discontinuous. The proof is construc-

tive and proceeds by backwards induction.

3 Equilibrium Analysis

As a first step in our analysis, we consider any subgame that results after sellers observe the

platform’s message and update their beliefs about demand according to the platform’s information

disclosure policy. In particular, for the discussion that follows, we assume that sellers share a

common belief ρ ∈ [0, 1] regarding ω and describe their equilibrium actions (entry and pricing

decisions) as a function of ρ and the rest of the modeling primitives. In Section 4, we turn our

attention to the platform’s optimization problem, i.e., how to design the information disclosure

policy to induce the set of sellers’ beliefs that lead to the highest expected payoff for the platform.

3.1 Pricing games

Taking the entry decisions of sellers at time t = 0 as given, there are two cases to consider depending

on whether one or both sellers decided to join the platform (the case when neither seller joins is

straightforward as the platform does not generate any revenues).

Single entrant First, we consider the case that a single seller, i.e., seller i, decides to join

the platform when the induced belief is equal to ρ. The seller’s optimal pricing strategy can be

summarized in the following proposition.

Proposition 1 (Single Entrant). For every history where only seller i joins the platform, there exist

unique prices p̂M (ρ) and pM such that it is optimal to set pi,1 = p̂M (ρ) and pi,2 = pM . Moreover,

p̂M > pM if and only if ρ > 0.

Here, note that p̂M (ρ) is a function of the belief ρ while pM does not depend on ρ. This captures

the fact that the seller sets a higher price for her good at t = 1, given the opportunity cost of selling
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the good at t = 2 if a second buyer arrives at the platform. Using Proposition 1, the expected

optimal profit for a single entrant is given by

ΠS
0,i (Ei = 1, E−i = 0; ρ) = WM (ρ) = (1− α)

[
p̂M (ρ)F

(
p̂M (ρ)

)
+ ρπMF

(
p̂M (ρ)

)]
,

whereas the expected profits for the platform are equal to

V̂M (ρ) = α
[
p̂M (ρ)F

(
p̂M (ρ)

)
+ ρπMF

(
p̂M (ρ)

)]
,

where we introduced the notation πM = pMF
(
pM
)
; we refer to πM and pM as one-shot monopoly

profit and price, respectively. We conclude the discussion on a single entrant by noting that her

and the platform’s profits are increasing and convex in the induced belief ρ.

Corollary 1. The functions WM and V̂M are increasing and strictly convex in ρ. Furthermore,

p̂M is increasing in ρ.

Intuitively, a seller who is monopolist has an incentive to price higher in t = 1 than the one-shot

monopoly price pM : the reason is that the possibility of a second buyer in t = 2 decreases the

marginal cost of high prices in t = 1 by providing a “second chance” to sell the good. Similarly,

profits are convex in the belief since as the probability of a second buyer increases, both the price

at t = 1 and the likelihood that the good will be sold to the second customer increase.

Both sellers join Next, we consider the case when both sellers decide to enter the platform at

belief ρ. In turn, we distinguish between when there was a sale at t = 1 (thus, there is a single

seller at t = 2) or when there was no sale. In the latter case, taking seller j’s price pj,2 as given,

seller i’s continuation value at t = 2 is given by

ΠS
2,i(pi,2; ρ) =


0 if pi,2 > pj,2,

ρ(1− α)pi,2F (pi,2) if pi,2 < pj,2,

1

2
ρ(1− α)pi,2F (pi,2) if pi,2 = pj,2.

(7)

This is a standard Bertrand game where sellers have zero marginal costs. Thus, the only equilibrium

of this subgame is such that they both set price equal to zero and, thus, make zero profits (for

example, see Tirole (1988)). On the other hand, if seller j engaged in a transaction at t = 1, then

seller i sets its price at pM at t = 2, as described above.

Next, we consider the interaction between the two sellers at time t = 1. The expected payoff of

seller i as a function of j’s price is given as
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ΠS
1,i(p

1
i ; ρ) =


F (pj,1)

[
(1− α)ρπM

]
if pi,1 > pj,1,

(1− α)pi,1F (pi,1) if pi,1 < pj,1,

(1− α)

[
1

2
F (pi,1)pi,1 +

1

2
F (pj,1)ρπ

M

]
if pi,1 = pj,1.

(8)

If seller i is undercut, she expects to earn ρπM from period t = 2, provided her opponent succeeds

in selling, which happens with probability F (pj,1); if instead she undercuts the opponent, her

expected profit is pi,1F (pi,1). When they post the same price, the expected profit is an average of

the two. The proposition below summarizes equilibrium play when both sellers join the platform.

Proposition 2 (Both sellers join). At every history when both sellers join the platform, the unique

equilibrium prices are given as pi,1 = pj,1 = ρπM and

pi,2 =

pM if j makes a sale at t = 1,

0 otherwise.

To obtain some intuition, note that both sellers expect to be able make a profit of ρπM if they

are undercut by the opponent. This is equivalent to having an alternative valued at ρπM , i.e, a

positive marginal cost. It is then reasonable that price competition leads to equilibrium prices

equal to ρπM . Substituting equilibrium prices into (5), we get that the expected profit in this case

when the induced belief is ρ is given by

ΠS
0,i(Ei = 1, Ei = 1; ρ) = WD(ρ) = (1− α)ρπMF

(
ρπM

)
, (9)

while the value to the platform of inducing the entry of two sellers at belief ρ is

V̂ D(ρ) = 2αρπMF
(
ρπM

)
. (10)

Contrary to the case of a single entrant, sellers’ and the platform’s profits are concave in the

induced belief ρ.

Corollary 2. The functions WD and V̂ D as defined in (9) and (10) are increasing and concave

in belief ρ.

Intuitively, expected profits in duopoly are concave in the belief because, while a higher proba-

bility of a second customer increases the value of the alternative of each entrant if they are undercut,

higher prices in t = 1 make it more likely that the first customer will not buy, so that in t = 2 the

sellers will make zero profits. Thus, the greater profits due to higher prices in t = 1 are dampened
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by the prospect of competition in t = 2.

3.2 Entry decisions

Next, we turn our attention to the sellers’ decision whether to join the platform and forgo their

outside option. Naturally, this decision hinges upon their expectations about the competitive

environment they will face on the platform, which in turn are shaped by the platform’s information

disclosure policy. In particular, it is straightforward to obtain that

min
ρ
WM = WM (0) = πM > πMF

(
πM
)

= WD(1) = max
ρ
WD(ρ).

In other words, the lowest possible expected profits for a seller when she faces no competition on the

platform are strictly higher than the highest possible profits when both sellers join. We provide a

characterization of the sellers’ entry decisions under a condition, which we introduce in Assumption

2 below.

Assumption 2. The cumulative distribution F of the buyers’ valuation satisfies the following

F
(
πM
) (

1− g
(
πM
))
≥ F (pM )

2
and 2F

(
πM
)
≤ 1 + F (pM ). (11)

Formally, this assumption introduces an additional “wedge” between the profit functions WM (·)
and WD(·), which in turn makes it possible to compare the revenue of the platform in both compet-

itive regimes. Together with the properties of the profit functions WM and WD derived in Section

3.1, it constitutes an important ingredient of our theoretical analysis; for this reason, we further

discuss Assumption 2 at the end of this section to provide a justification for requiring it.

The next proposition highlights that there are essentially three regimes with regard to entry,

depending on the size of the sellers’ outside option and the belief about demand induced by the

platform.

Proposition 3 (Entry equilibrium). Let ρ denote the sellers’ common posterior belief about demand

after they obtain the platform’s message. Then, the following hold along the equilibrium path:

(i) Suppose that c > WM (0). Then, there exists ρM (c, α) such that if ρ ≥ ρM (c, α) a single seller

joins the platform and, otherwise, there is no entry. In addition, when c ≥ WM (1), we have

ρM (c, α) ≥ 1, i.e., entry is too costly for sellers irrespective of their beliefs about demand.

(ii) Suppose that WD(1) ≤ c ≤ WM (0). Then, a single seller joins irrespective of the platform’s

information disclosure policy.
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Figure 2: Equilibrium entry on the platform

(iii) Suppose that c < WD(1). Then, there exists ρD(c, α) such that if ρ > ρD(c, α) both sellers

join the platform and, otherwise, there is a single entrant.

Figure 2 illustrates the regimes described in Proposition 3 and completes our equilibrium char-

acterization. Essentially, since profits are increasing in the belief, for a fixed value of the outside

option there exists a threshold belief such that joining the platform is more profitable than taking

the outside option for all beliefs above the threshold. The thresholds ρM and ρD are defined as

those beliefs such that WM (ρM ) = c and WD(ρD) = c.

Discussion of Assumption 2 Under Assumption 2, the Sender-preferred equilibrium when-

ever sellers are indifferent between joining and not features entry by a single buyer, as detailed in

Proposition 3. Without the assumption, the pattern of entry in the Sender-preferred equilibrium

at ρD might change as the rest of the parameters of the model vary. Moreover, as we shall see,

Assumption 2 makes it possible to derive analytically the optimal disclosure policy for the plat-

form; outside its scope, we must either resort to numerical analysis, or introduce other types of

restrictions. In Appendix A we explore numerically the effect of relaxing Assumption 2 on the

results of Sections 4 and 5: while the nature of the Sender-preferred equilibrium and the disclosure

policies may be substantially different, the implications of information disclosure on the welfare of

market participants remain (qualitatively) similar. Concretely, Assumption 2 restricts the focus on

distributions of the willingness to pay that make buyers’ sensitivity to prices neither too high nor

too low. Distributions that satisfy the conditions include the exponential, uniform, and, in general,

Beta(a, b) and Gamma(a, b) with b� a. We refer the reader to Appendix A for a more exhaustive
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robustness analysis, as well as for a more detailed interpretation in economic terms.

4 Optimal Information Disclosure

Armed with the equilibrium characterization from Section 3, we turn our attention to the problem

of identifying the optimal information disclosure policy for the platform. Note that given an

information disclosure policy and a prior belief µ, a message m sent by the platform to its potential

sellers induces a posterior belief ρ on the demand being high. Furthermore, since the state of the

world is random, the induced posterior is itself random, with a distribution τ that depends on both

the message m and the information disclosure policy. Therefore, if ρ follows distribution τ , the

platform attaches value

ΠP ((D,M);h−1) = Eρ∼τ
[
V̂ (ρ)

]
to employing policy (D,M).9 Theorem 1 below establishes that the platform need only communi-

cate two messages and the optimal mapping between the platform’s information to its message to

sellers is in most cases stochastic, i.e., the platform finds it optimal to disclose its information only

partially.

Theorem 1 (Platform’s optimal policy). Suppose that Assumptions 1 and 2 hold. Then, there

exists an optimal policy (D∗,M∗) that involves sending one of two messages, i.e., M∗ = {Y,N}.
Moreover, if we let D∗(ω) denote the probability that message Y is sent when the state of the world

is ω under information disclosure policy (D∗, {Y,N}), an optimal policy for the platform takes the

following form:

(i) When c > WM (0), then

D∗(1) =

1 for µ < ρM (c, α)

qMu for µ ≥ ρM (c, α)
and D∗(0) =

qMl for µ < ρM (c, α)

0 for µ ≥ ρM (c, α)
,

where the disclosure probabilities are equal to

qMl =
µ(1− ρM (c, α))

ρM (c, α)(1− µ)
and qMu =

µ− ρM (c, α)

µ(1− ρM (c, α))
;

9Although there can be multiple policies that induce the same distribution over beliefs, the expected revenues
for the platform depend only on the posterior distribution τ . Thus, in what follows, we explicitly consider that
the platform aims to optimize the posterior τ induced by its information disclosure policy, following the example of
Kamenica and Gentzkow (2011).
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(ii) When WD(1) ≤ c ≤WM (0), full-disclosure is optimal, i.e.,

D∗(ω) = ω;

(iii) Finally, when c < WD(1),

D∗(1) =

1 for µ ≤ ρD(c, α)

qDu for µ > ρD(c, α)
and D∗(0) =

qDl for µ ≤ ρM (c, α)

0 for µ > ρD(c, α)
,

where the disclosure probabilities are equal to

qDl =
µ(1− ρD(c, α))

ρD(c, α)(1− µ)
and qDu =

µ− ρD(c, α)

µ(1− ρD(c, α))
.

There are a number of points to note regarding the optimal information disclosure policy de-

scribed in Theorem 1. First, although we did not restrict the space of possible messages, it turns

out that there exists an optimal policy that involves sending just one of two messages, i.e., Y or

N suggesting that the demand is high or low, respectively.10 Sellers translate the message they

receive using Bayes rule to a posterior belief about the demand being high according to mapping

D∗(ω). Interestingly, the platform finds it optimal to fully disclose its information only when the

sellers’ outside option takes intermediate values, i.e., when WD(1) ≤ c ≤ WM (0). Otherwise, i.e.,

in cases (i) and (iii), the mapping is stochastic and depending on the prior and the state of the

world ω, it may induce a posterior belief about the demand being high strictly in interval (0, 1).

Figure 3 represents the revenue function V̂ and the optimal value function V ∗ obtained as

the concave envelope of V̂ for the cases of Theorem 1 where full-disclosure is not optimal. The

threshold beliefs ρM and ρD correspond to posteriors that, when induced, affect the level of entry

in the platform (from zero to one seller in the left panel and from one to two in the right one).

On a higher level, the platform’s and the sellers’ incentives are misaligned, i.e., the platform

does not fully internalize the costs borne by sellers when they join and compete on the platform.

As such, the platform uses its information disclosure policy as a lever to mainly affect the seller’s

10On a technical level, Theorem 1 cannot be directly derived from Kamenica and Gentzkow (2011), because
our setting involves multiple receivers who are engaged in a dynamic game. Our approach, inspired by Arieli and
Babichenko (2019), involves defining an auxiliary game with a Sender and a single Receiver with three actions,
whose payoffs correspond to the profits of the entry and pricing games of Section 3. However, these functions
are non-linear in the belief about the state of the world, which prevents us from using revelation principle-type
arguments to reduce the size of message space. Instead, we use an intermediate lemma from Anunrojwong et al.
(2020a), which allows us to take as message space the interval [0, 1], and then retrieve the optimal value function
as the concavification of V̂ , as in Kamenica and Gentzkow (2011) and Aumann and Maschler (1995). In sum, the
finding that a binary message space suffices follows from the structure of the optimal policy and not directly from
Kamenica and Gentzkow (2011).
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(a) High outside option: c ≥WM (0) (b) Low outside option: c < WD(1)

Figure 3: Optimal value function V ∗ obtained as a concavification of V̂ .

entry decisions, i.e., nudge one of them to join when the prior would not justify entry, or preclude

both from joining and driving prices down when the prior is sufficiently high. It is through affecting

entry and the resulting competition among sellers that the platform increases its profits: if sellers

had no outside option and found it always optimal to both join the platform irrespective of their

beliefs on demand, information design would not result in any gains to the platform, i.e., it would

have been optimal to simply employ no-disclosure.

4.1 Platform gains to information disclosure

We conclude this section by comparing the profits obtained under optimal disclosure with other

benchmark policies the platform can employ. This comparison highlights that the benefits associ-

ated with strategically disclosing information can be substantial for platforms.

We compare the platform’s profits under the optimal policy with two benchmarks: (i) no infor-

mation, and (ii) full information disclosure. The former can be taken as representing a platform

that does not engage in data collection and forecasting, but rather only facilitates trade, while the

latter represents a platform that collects and discloses demand information, albeit not in a strate-

gic fashion. Thus, we can interpret the relative profit gains associated with optimal disclosure as

follows: profit gains relative to the no-disclosure benchmark represent the maximum return for the

platform from collecting and processing demand-side data. On the other hand, additional gains

relative to full-disclosure can be interpreted as the premium of optimizing information disclosure,

i.e., the gains associated with strategic behavior from the platform.

Corollary 3. The following hold true:

(i) The optimal information disclosure policy always yields strictly higher profits for the platform
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Figure 4: Percentage increase in the equilibrium profits for the platform from using the optimal
policy instead of the full- and no-disclosure benchmarks. In the left panel, the profits under no-
disclosure are zero for µ < ρM , and therefore the relative increase from employing the optimal
policy is infinite (hence, not shown). Results depicted were obtained with v ∼ U [0, 1] and α = 5%,
c = 0.1 for the left panel and c = 0.3 for the right panel.

than no-disclosure. In addition, it strictly outperforms full-disclosure too, unless WD(1) ≤
c ≤WM (0).

(ii) No-disclosure yields strictly higher profits than full-disclosure if (a) c > WM (0) and µ ≥ ρM ,

or (b) c < WD(1) and µ ≤ ρD.

Figure 4 illustrates the findings described in Corollary 3: the gains over both benchmarks can

be significant. For example, the left panel shows an increase of more than 60% in profits from

using optimal disclosure instead of full-disclosure, if the outside option for sellers is relatively high.

Similarly, the right panel displays a 50% increase in profits by switching to optimal disclosure from

no-disclosure, when the outside option is low. Thus, the simulation study reinforces the intuition

we built from our analytical results: optimal information disclosure benefits the platform mostly

by affecting the sellers’ entry decisions. Finally, when the optimal policy does not affect entry,

full-disclosure considerably lowers the platform’s profits even compared to no-disclosure.
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5 Welfare Effects

The platform’s optimal disclosure policy increases profits by affecting the competitive structure of

the market. As such, it also impacts the welfare of all market participants. In this section, we turn

our attention from platform’s profits to consumer surplus, sellers’ profits, and aggregate welfare

induced by the optimal policy. Before we proceed, we formally define expected consumer surplus

and social welfare in our setting.

Definition 2 (Single seller). When a single seller joins the platform and the prior on the demand

being high is µ, the expected social welfare is given by

SWM (µ) =

∫ ∞
p̂M (µ)

vdF + µF
(
p̂M (µ)

)︸ ︷︷ ︸
Probability a second buyer arrives

and product is available

∫ ∞
pM

vdF +c︸︷︷︸
Payoff of second seller not joining

and the consumer surplus is given by

CSM (µ) =

∫ ∞
p̂M (µ)

(
v − p̂M (µ)

)
dF + µF

(
p̂M (µ)

) ∫ ∞
pM

(v − pM )dF.

Similarly, we have

Definition 3 (Two sellers). When both sellers join the platform and the prior on the demand being

high is µ, the expected social welfare is

SWD(µ) =

∫ ∞
µπM

vdF + µ

(
F
(
µπM

) ∫ ∞
pM

wdF + F
(
µπM

) ∫ ∞
0

wdF

)
and the consumer surplus is given by

CSD(µ) =

∫ ∞
µπM

(
v − µπM

)
dF + µ

(
F
(
µπM

) ∫ ∞
pM

(
w − pM

)
dF + F

(
µπM

) ∫ ∞
0

wdF

)
.

Finally, when none of the sellers joins the platform, the aggregate welfare is equal to 2c, i.e.,

the sellers’ opportunity costs.11 The analytical results that follow compare the optimal policy with

an uninformative one (no-disclosure) as the benchmark. Optimal information disclosure affects the

welfare of market participants differently: the supply side of the market, i.e., sellers, are never worse-

off by the optimal policy; on the other hand, when communication by the platform discourages entry,

consumer surplus decreases, while, conversely, when the optimal policy encourages entry consumers

are better-off. Finally, changes in social welfare always align with those to consumer surplus. The

11For the sake of simplicity, we assume that buyers’ valuations are uniformly distributed on the unit interval.
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following results formalize these observations.

First, we consider the case when joining the platform is relatively attractive for sellers, because

the value of their outside option is low. Arguably, two-sided platforms are most successful in

settings where market participants do not have access to high-value alternatives, i.e., they thrive in

fragmented markets where there exist frictions to trade. As such, this represents the most natural

setting for our welfare analysis. Moreover, it is also when the platform can gain the most by

resorting to strategic information disclosure (as seen in Figure 4).

Theorem 2. Suppose that c < WD(1). Then, if µ ≤ ρD(c, α), social welfare, consumer surplus

and profits for the sellers increase under the optimal policy. On the other hand, if µ > ρD(c, α),

then profits for sellers increase; however, both consumer surplus and aggregate welfare decrease.

We distinguish between two cases depending on the prior that the demand is high. In particular,

when µ ≤ ρD a single seller would find it optimal to join irrespective of the platform’s message. In

this case, the effect of information disclosure is to induce the seller to set different prices without

affecting the competitive structure. Given that the expected profit of a monopolist seller is convex

in the posterior belief, the optimal policy increases sellers’ profits in expectation. We can show

that consumer surplus and social welfare are also convex in the posterior belief; thus, they both

increase under the optimal policy.12 Intuitively, this follows since as the belief increases, price p̂M (µ)

increases as well. Therefore, it is more likely that the product will not be sold in the first time

period (as the quoted price is high) and, thus, it will be available for a potential second customer.

The decrease in the first customer’s surplus due to the higher price is compensated by the higher

likelihood that the product will be sold at a lower price to the second customer.

The second case, when µ > ρD, illustrates the adverse effects of a platform strategically disclosing

the information at its disposal. In particular, the platform finds it optimal to “nudge” sellers against

entry as a way of reducing competition in the market, increasing scarcity and, thus, resulting in

higher prices. In particular, when the prior is relatively high, both sellers would join the platform

in the benchmark case of no-disclosure. That is no longer the case under the platform’s optimal

policy: there is positive probability, i.e., 1 − τDu , that only one of the sellers joins and consumers

are worse-off as a result due to higher prices.13 Moreover, even when the platform announces that

a second customer will arrive (thus, inducing both sellers to join), sellers post higher prices than

without any information disclosure. Hence in both cases consumers face higher prices as a result

of the platform’s strategic behavior.

12The convexity of the consumer surplus with respect to the belief holds under our assumption that the buy-
ers’ valuation for the product is uniform, but it also true for other commonly used distributions, e.g., Beta and
Exponential.

131− τDu = µ(1− qDu ) + (1− µ) is the probability that a posterior belief is induced which prevents entry of one of
the sellers.
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Figure 5 provides an illustration of the magnitude of the welfare decrease under the conditions

of Theorem 2. In particular, when the prior belief exceeds the ρD threshold, consumer surplus can

be as much as 70% lower under the platform’s optimal disclosure than under no-disclosure, and

social welfare as a whole decreases by more than 15%.14 At this point, it is worth emphasizing that

the conditions under which Theorem 2 holds are not particularly restrictive: they just describe an

environment where the presence of a two-sided platform facilitating trade would induce competition

among potential sellers. In fact, in Section 6.3, we revisit this finding in the context of a considerably

more involved environment with many potential sellers and buyers and confirm this intuition:

a platform may strategically design its policy of disclosing demand information so as to create

(artificial) scarcity of sellers and induce high prices to the detriment of consumers.

Figure 5: Percentage decrease in consumer surplus (left) and aggregate social welfare (right) due
to the platform employing the optimal disclosure policy instead of no-disclosure. Results depicted
were obtained with v ∼ U [0, 1], α = 5%, and c = 0.1 (which satisfy the assumptions of Theorem
2). Aggregate profits for sellers are higher under the optimal disclosure policy (thus, they mitigate
the losses in social welfare).

Next, we consider the case when the platform’s strategic disclosure of information leads to higher

social welfare.

Theorem 3. When c > WM (0), both social welfare and consumer surplus increase under the

optimal policy. In addition, when µ ≥ ρM (c, α), the profits for sellers increase, as well (otherwise,

they remain unchanged).

14The same set of simulations also shows that the profit of sellers can almost double under optimal disclosure.
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Theorem 3 concerns the case when joining the platform is relatively costly for sellers, in that

their outside option is sufficiently high. As before, we distinguish between two cases depending on

the prior: in particular, when µ ≥ ρM a single seller would find it optimal to join irrespective of

the platform’s message. In this case, we recover the same intuition as in Theorem 2 when µ ≤ ρD.

Instead, when µ < ρM , no seller would have entered the market in the absence of any information

from the platform. In this case, the role of information disclosure for the platform is to “nudge”

a seller to join. Therefore, the resulting surplus is higher in expectation, given that a market is

“created” for consumers. In sum, when joining the platform is relatively costly, the optimal policy

induces a Pareto improvement over no-disclosure.

In a similar vein, the following proposition, which follows directly from Theorem 3, establishes

that optimal information disclosure benefits all market participants when WD(1) ≤ c ≤ WM (0),

as well.

Proposition 4. When WD(1) ≤ c ≤ WM (0), social welfare, consumer surplus and profits for the

sellers increase under the optimal policy.

In summary, this section establishes that strategic information disclosure has nuanced effects

on the welfare of market participants. While sellers tend to benefit, in the setting of most interest,

i.e., when the value of the sellers’ outside option is low, consumers end up being worse off.

6 Extensions

In this section, we briefly discuss a number of extensions to our basic model. For the sake of

brevity, we summarize the main points for each extension, while we formalize the discussion in the

Electronic Companion.

6.1 Noisy Signals

One of the simplifying assumptions of Section 2 is that the platform obtains a perfectly informative

signal about the state of the demand. In the Electronic Companion, Section EC 2 we relax this

assumption and study a setting where the signal received is only accurate with probability a, with

a < 1.

The model we consider is identical to that of Section 2, with the difference that in this case the

platform’s information disclosure policy is conditional on the realization of the signal and not on the

realization of the demand. In particular, this implies that the platform cannot induce any posterior

belief using its policy, because its signal is accurate only with some probability. Formally, given a

prior µ the range of possible posterior beliefs lies in an interval (i.e., [µmin(µ, a), µmax(µ, a)] ⊂ [0, 1]).
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This introduces an additional constraint to the information design problem and makes it of a

“non-standard” form: we characterize its solution as a function of the concave envelope of V̂

that obtains when its domain is restricted to the range of admissible posteriors. At a high level,

this characterization implies that, whenever the threshold beliefs ρM and ρD of Section 3.2 lie

within the range of admissible posteriors, the optimal information disclosure policy either nudges

or discourages entry as suggested by Theorem 1; in all other cases information disclosure does not

affect entry.

Finally, we turn our attention on the marginal return for the platform of increasing the accuracy

of its signal a, e.g., by investing in its data processing capabilities. In general, increasing a, i.e.,

making the signal more precise, simply amounts to expanding the range of posterior beliefs that

the platform can induce. However, if by increasing a the range expands enough so that it includes

(a previously excluded) threshold belief, then profits for the platform jump upwards: this confirms

the intuition that the greatest benefit from information disclosure occurs exactly when platforms

can use this tool to affect the composition of the market.

6.2 Revenue Share

When laying out the assumptions of the basic model, we argued that the platform may find it

challenging to adjust its revenue share to quickly evolving market conditions or use different revenue

shares in different sub-markets, e.g., corresponding to different geographies. These considerations

provided justification behind our assumption that α is fixed and does not depend on other market

primitives, e.g., the prior belief µ. In addition, they motivated us to focus our attention solely

on how to design the platform’s information disclosure policy. Here, we consider the case when

the platform could also optimize over the revenue share (a more detailed discussion and analytical

details are presented in Section EC 3 of the Electronic Companion).

In particular, we study a variant of the model in Section 2, where the platform optimizes over

both the share of revenue it retains from each transaction and its information disclosure policy, with

the goal of maximizing its profits. We establish that in the equilibrium induced by the platform’s

optimal revenue share α∗, at most a single seller joins the platform. The intuition behind this is

that a single seller can generate higher aggregate revenues in expectation for the platform than

a duopoly. In other words, the higher prices that can be sustained by a single seller benefit the

platform more than the potential for more transactions in a duopoly. In addition, when the platform

sets the revenue share optimally, there is no loss by employing either full- or no-disclosure. To an

extent, strategically disclosing demand signals and optimizing over the revenue share are substitutes:

when the revenue share cannot be tailored to the prevailing and potentially rapidly evolving market

conditions, information disclosure can be employed to increase profits; if instead, the revenue share
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can be optimized for each set of primitives, optimal information disclosure takes a simpler form.

Finally, turning our attention to aggregate welfare, we establish that a platform optimizing its

revenue share (and using the corresponding information disclosure policy) results in lower consumer

surplus compared to a benchmark where the revenue share takes a fixed value.

6.3 Market with Many Sellers

Our basic model features two sellers and buyers. This allows us to characterize the optimal informa-

tion disclosure policy as function of the market primitives and establish that obfuscation generates

higher profits for the platform, but may lead to considerably lower surplus for consumers. In

Section EC 4 of the Electronic Companion, we consider a significantly richer environment, where

an arbitrary number of sellers can potentially join the platform. Furthermore, we allow product

differentiation among sellers and model price competition by assuming that the demand for seller i

is decreasing in the price it sets and increasing in the average price of the rest of the entrants, i.e.,

Qi = max {0, θ + (φ− 1)P − φpi} ,

where θ > 0, P =
1

|S|
∑

j∈S pj is the average price of all participating sellers, and φ > 1 denotes the

degree of substitutability among products. Uncertainty about demand is captured by θ, which is

assumed to be random. The platform observes the realization of θ (its signal about demand) and,

as before, sends a message to sellers. To maintain tractability, we assume that the market clears

in a single period, i.e., we do not consider a dynamic interaction among sellers.15

Although the complexity introduced by the fact that there exist multiple sellers precludes us

from providing an analytical characterization of the optimal information disclosure policy, we show

that there always exists a range of prior beliefs such that consumer surplus under the optimal policy

is lower than under no-disclosure. This result confirms the main of our previous conclusions, i.e.,

strategically disclosing information may induce a considerable loss in consumer welfare. We com-

plement this result with an example for which we derive the optimal disclosure policy numerically.

The policy, which involves information obfuscation, generates higher profits for the platform and

lower surplus for consumer by either inducing higher equilibrium prices (without altering the com-

petitive structure compared with no-disclosure) or by discouraging entry. This mechanism ensures

a profits growth of 30% for the platform, while incurring a loss of almost 50% of consumer surplus.

In summary, we show that the qualitative nature of our results holds in a significantly richer

environment (that does not allow for deriving the optimal information disclosure policy). In par-

15This demand system can arise from the interaction of a continuum of buyers and has been micro-founded in
Myatt and Wallace (2015).
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ticular, we illustrate that the strategic disclosure of demand information yields significant benefits

to a platform. Secondly, we highlight that the fact that consumers may be worse off under opti-

mal disclosure policies is indeed a structural feature of the interaction, i.e., the platform generates

higher profits in the expense of lower consumer surplus.

7 Concluding Remarks

This paper explores strategic information disclosure in an environment where a two-sided platform

that has private information of future demand interacts with sellers who decide whether to join

the platform and forgo their outside option. We demonstrate that the platform can increase its

profits by appropriately disclosing its information on demand, potentially though at the expense

of consumers. In particular, the platform uses its information strategically to change the sellers’

beliefs about demand and affect their entry decisions to either “nudge” entry, when it is a priori

costly for them to join, or discourage it, when sellers find it optimal to join the platform on the

basis of their priors.

We also discuss a richer environment, which features multiple potential sellers, and confirm that

our main results continue to hold qualitatively. In fact, we prove that consumers can be worse off

if the platform engages in optimal information disclosure. We recover in an extensive numerical

analysis that, when entry is relatively attractive for sellers, the platform may find it optimal to use

its demand information strategically as a means of discouraging sellers to join the platform and,

thus, induce higher prices. We also confirm that this intuition carries over to the case where the

platform has only an imperfect knowledge of the level of demand. Finally, we argue that revenue

shares/commissions and strategic information disclosure can be, to some extent, thought of as

substitutes and that also optimizing commissions goes to the detriment of consumers.

We view our paper as contributing to the emerging and growing literature on platform design

and, in particular, the recent line of work that focuses on the use of non-monetary levers to affect

market outcomes. Apart from extending our model by relaxing the assumptions we made to ensure

tractability, e.g., sellers are homogeneous and have the same outside option, we hope that our

model and results will motivate more work on exploring the role of (non-monetary) platform levers

on affecting the composition and size of both the demand- and the supply-side of the market, and

the implications on welfare of the employment of such tools.
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Appendices

A Discussion of Assumption 2

In Section 3.2 we introduced Assumption 2, that restricts the set of distributions of the buyers’

willingness to pay to which our results apply. In this appendix we clarify the need for the conditions

we assume to hold and provide some intuition into their meaning.

The definition of equilibrium given in Definition 1 requires that whenever sellers are indifferent

between equilibrium strategies, we concentrate on the profile that yields the highest payoff to

the platform. The pricing subgames have a unique equilibrium in pure strategies, and therefore no

selection criterion is necessary to pin down the equilibrium actions we consider. However, there exist

multiple equilibrium profiles of actions at the entry stage of the game, and we use the refinement

of Definition 1 to select the relevant equilibrium. In fact, notice that if either (i) WM (0) > c and

ρ = ρM or (ii) c < WD(1) and ρ = ρD, sellers are indifferent between joining or not. In the

former case, taking as given that the opponent will stay out, one of the sellers receives the same

expected payoff from joining and not; since the platform is strictly better off if she joins, we select

as equilibrium that for ρ = ρM one seller enters.

Suppose now that c < WD(1) and ρ = ρD: taking as given that the opponent will join,

the other seller is indifferent between joining or nor. According to Definition 1, she will join

if V̂ D(ρD) > V̂M (ρD), and not otherwise. Assumption 2 implies that V̂M (ρ) ≥ V̂ D(ρ) for all

ρ ∈ [0, 1], as given in the following lemma.

Lemma 1. Suppose F satisfies these conditions simultaneously:

F
(
πM
) (

1− g(πM )
)
≥ F (pM )

2
(A.1)

2F
(
πM
)
≤ 1 + F (pM ). (A.2)

Then

2ρDπMF
(
ρDπM

)
≤ p̂M

(
ρD
)
F
(
p̂M
(
ρD
))

+ ρDπMF
(
p̂M
(
ρD
))
. (A.3)

for all ρ ∈ [0, 1].

We can then conclude that at ρD only one seller join. Moreover, this makes sure that the pattern

of entry at ρD remains the same for every c < WD(1).16 The assumption is satisfied by Uniform

and Exponential(λ) distributions, while some numerical studies suggest that for Beta(a, b) and

16If V̂M and V̂ D were not globally ordered, depending on the value of the other parameters of the model there
might be entry of one or both sellers.

31



Gamma(a, b) it is verified when b ≥ r(a) for some increasing function r(·).

Interpretation Towards a more intuitive understanding of Assumption 2, let us recall that pM

is the price that a monopolist would set in a one-shot game, πM is the profit that it obtains and

F (pM ) is the demand, i.e., the probability that a random customer would accept to buy at price

pM . By definition, pM is the price at which the elasticity of demand to price equals 1, g(pM ) = 1:

for prices p < pM the elasticity is less than 1, i.e., demand is inelastic, and for prices p > pM the

elasticity is larger than 1, i.e., demand is elastic.17 Note that condition (A.2) implies F (pM ) ≤ 2
3 ;

in other words, if F (pM ) > 2
3 Assumption 2 is violated. Since we know that F (p) ∈ [0, 1] for every

p, F (pM ) measures the length of the elastic part of the demand schedule on a normalized scale: the

larger F (pM ), the longer this is, and so the more elastic demand is “on average”.18 Thus, condition

(A.2) rules out those distributions for which demand is too elastic on average. On the other hand,

condition (A.1) implies that F (pM ) cannot be too small, either. Hence, Assumption 2 effectively

restricts attention to those distributions that induce neither very elastic nor very inelastic demand

schedules. At a high level then, our model better fits those real-world settings where the sensitivity

of customers’ demand to prices lies on a middle ground.

Relaxing the assumption Outside the scope of Assumption 2, the optimal information dis-

closure policy can only be computed numerically. Therefore, we conduct a simulation study to

assess the effect on consumer surplus of optimally revealing information to sellers, when the dis-

tribution of the willingness to pay does not satisfy Assumption 2. We focus on the Beta(a, b)

distribution and consider a grid (a, b) ∈ [1, 10]× (0, 20] with steps of 0.2 for the parameters, and a

grid Γ = {0, 0.02, 0.04, . . . , 1} for the beliefs. For any pair (a, b), we consider all possible threshold

beliefs ρD ∈ Γ and, for fixed ρD, all possible priors µ ∈ Γ. First, we derive the optimal policy

in every one of these cases. Figure 6 shows the proportion of threshold beliefs such that for all

priors µ > ρD consumers’ welfare decreases under the optimal policy compared to no-disclosure.

As we expect, consumers are worse off under the optimal policy when Assumption 2 holds (the

yellow-shaded area in Figure 6, color online); however, consumers’ welfare decreases also when the

assumption does not hold, and in particular when the platform finds it optimal to fully reveal its

information. Figure 6 clarifies that, on average, consumers would be worse off at least 50% of the

time under the optimal information disclosure policy relative to no information disclosure if the

prior belief was randomly sampled from [0, 1].

In summary, Assumption 2 is a technical condition that simplifies the analysis and allows for a

17As remarked in Lariviere (2006), the generalized failure rate of a distribution, denoted by g(·) in the paper, is
the (absolute value of the) elasticity of demand. By the IFR assumption, g(πM ) < 1.

18In fact, demand at pM is large if and only if the price is low.
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Figure 6: Proportion of threshold beliefs ρD such that for all µ > ρD the welfare of consumers
decreases under the optimal policy as compared to no-disclosure.

transparent exposition. However, even when the assumption does not hold, the main qualitative

insight of our work still holds, i.e., that a platform by appropriately disclosing the information it

has at its disposal often leads to lower consumer welfare relative to no information disclosure.
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Electronic Companion

Strategic Release of Information in Platforms:

Entry, Competition, and Welfare

Kostas Bimpikis Giacomo Mantegazza ∗

EC 1 Proofs of results from the main text

Proposition 1 For every history where only seller i joins the platform, there exist unique prices

p̂M (ρ) and pM such that it is optimal to set pi,1 = p̂M (ρ) and pi,2 = pM . Moreover, p̂M > pM if

and only if ρ > 0.

Proof. The proof proceeds backwards. At period t = 2, it is optimal to set price pi,2 such that

max
pi,2

ρ(1− α)pi,2F (pi,2) + (1− ρ)× 0. (EC.1)

Notice that the maximand reproduces equation (3), since Eρ[1{ω = 1}] = ρ and E[{1{B∗2 = i}] =

F (pi,2). This is a one-shot monopoly pricing problem, as analyzed in Lariviere (2006). Recalling

our notation, g(p) is the generalized failure rate of F and is h(p) the failure rate, for which we have

g(p) = ph(p) = p
f(p)

1− F (p)
.

The First Order Condition (FOC) for (EC.1) is

F (p)[1− g(p)] = 0, (EC.2)

and since we assume IFR, 1 a solution to (EC.2) exists, is unique and is interior; we denote it by

pM and write πM = pMF
(
pM
)
.

∗Graduate School of Business, Stanford University. Email: {kostasb,giacomom}@stanford.edu
1Implicitly we assume limp→a g(p) < 1 and limp→b g(p) > 1, which rule out distributions such that it would

always be optimal to set pM = a or pM = b. We write IFR for the increasing failure rate property and IGFR for
the increasing generalized failure rate property.
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Using this result and plugging back into equation (4) for period t = 1, seller i’s optimal price in

this period must solve

max
pi,1

(1− α)
[
pi,1F (pi,1) + F (pi,1) ρπM

]
. (EC.3)

The first summand, pi,1F (pi,1), represent the gross expected profit from selling the good to the

first customer; with probability F (pi,1) the first buyer has too low a valuation for the good, and

the sale does not happen, so that the unitary good of seller i is still available for purchase, should

the second customer arrive.

The FOC associated to (EC.3) can be written as

F (p)
[
1− g(p) + ρπMh(p)

]
= 0. (EC.4)

Notice that h(p) > 0 for all p ∈ (a, b), so that

lim
p→a

[
1− g(p) + ρπMh(p)

]
= 1− lim

p→a
g(p) + ρπM lim

p→a
h(p) > 0,

because limp→a g(p) < 1. Also

lim
p→b

[
1− g(p) + ρπMh(p)

]
= 1 + lim

p→b

[(
ρπM

p
− 1

)
g(p)

]
.

If b = ∞ the limit becomes 1 − limp→∞ g(p), which is negative by assumption. If b is finite, then

notice that
ρπM

b
= ρF

(
pM
)︸ ︷︷ ︸

<1

pM

b︸︷︷︸
<1

< 1.

Together with limp→b g(p) > 1, this implies

lim
p→b

[
1− g(p) + ρπMh(p)

]
< 0,

which shows that a solution to (EC.4) exists and is in the interior. To show uniqueness of the

maximizer, consider the second derivative of the objective function, which is well-defined since f is

assumed to be differentiable, given by

−2f(p) + f ′(p)(ρπM − p).

EC – 2



Using (EC.4), we can rewrite it as

−2f(p∗)− f ′(p∗)F (p∗)

f(p∗)
,

where p∗ denotes that it is evaluated at the stationary point. Then the Second Order Condition is

−2f(p∗)− f ′(p∗)F (p∗)

f(p∗)
< 0⇐⇒ 2f(p∗) + f ′(p∗)

F (p∗)

f(p∗)
> 0

⇐⇒ f(p)2 + F (p)2h′(p) > 0.

This condition is satisfied at every stationary point because the distribution is IFR, i.e. h′(p) ≥ 0.

We showed that the objective function in (EC.3) is strictly concave at any stationary point, which

we are assured to exist. Since it is a continuously differentiable function (because F necessarily has

continuous density), this implies that it cannot have more than one stationary point, which is also

the unique global maximizer; denote it by p̂M .

Finally, plugging pM in (EC.4) and using (EC.2), we have

F
(
pM
) [

1− g
(
pM
)

+ ρπMh
(
pM
)]

= F
(
pM
)
ρπMh

(
pM
)
≥ 0,

with equality if and only if ρ = 0; therefore p̂M ≥ pM . �

Corollary 1 The functions WM and V̂M are increasing and strictly convex in ρ. Furthermore,

p̂M is increasing in ρ.

Proof. Setting aside α, which does not affect monotonicity and curvature, we consider the function

VM (ρ) = p̂M (ρ)F
(
p̂M (ρ)

)
+ ρπMF

(
p̂M (ρ)

)
,

where we highlight that p̂M is a function of ρ, too. The derivative with respect to ρ is

∂VM

∂ρ
=
∂p̂M

∂ρ

[
F
(
p̂M
)
− p̂Mf

(
p̂M
)

+ ρπMf
(
p̂M
)]

+ πMF
(
p̂M
)

=
∂p̂M

∂ρ
F
(
p̂M
) [

1− g
(
p̂M
)

+ ρπMh
(
p̂M
)]

+ πMF
(
p̂M
)

= πMF
(
p̂M
)
> 0,

where the last equality holds because p̂M must satisfy (EC.4) (equivalently, by the envelope theo-
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rem). For the second derivative,

∂2VM

∂ρ2
=

∂

∂ρ

[
πMF

(
p̂M
)]

= πMf
(
p̂M
) ∂p̂M
∂ρ

> 0,

since, as we will show, p̂M is strictly increasing in ρ.

Applying the Implicit Function Theorem to (EC.4), one obtains

∂p̂M

∂ρ
=

−πMh
(
p̂M
)

ρπMh′ (p̂M )− g′ (p̂M )
. (EC.5)

While the numerator is negative, we can rewrite the denominator as

ρπMh′
(
p̂M
)
− g′

(
p̂M
)

=
(
ρπM − p̂M

)
h′
(
p̂M
)
− h

(
p̂M
)

= −
F
(
p̂M
)

f (p̂M )
h′
(
p̂M
)
− h

(
p̂M
)
< 0,

because h(p) > 0 on all the support. Comparing this with the numerator in (EC.5) we get

∂p̂M/∂ρ > 0, which justifies the above claim about VM . �

Proposition 2 At every history when both sellers join the platform, the unique equilibrium prices

are given as pi,1 = pj,1 = ρπM and

pi,2 =

pM if j makes a sale at t = 1,

0 otherwise.

Proof. Recalling the payoff function for seller i from equation (8), notice that when p1
j > pM , then

also p1
j > ρπM for every ρ ∈ [0, 1]. This means that

ρπMF
(
p1
j

)
< p1

jF
(
p1
j

)
< πM ,

so that the optimal price is p1
i = pM if p1

j > pM . On the other hand, when p1
j ≤ pM , ΠS

1,i(p
1
i ; ρ)

is strictly increasing for p1
i < p1

j and constant thereafter; therefore, the optimal action is some

p1
i > p1

j whenever ρπM > p1
j and some p1

i ≥ p1
j when ρπM = p1

j . Finally, when ρπM < p1
j , there is

no well-defined best reply: for every p1
i < p1

j there exists ε > 0 such that

(p1
i + ε)F

(
p1
i + ε

)
> p1

iF
(
p1
i

)
,
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and p1
i + ε < p1

j , while

ΠS
1,i

(
p1
i = p1

j ; ρ
)
< lim

p↑p1j
pF (P ).

Therefore the best-response correspondence for seller i is

BRi(p
1
j ) =



(
p1
j ,∞

)
, p1

j < ρπM[
p1
j ,∞

)
, p1

j = ρπM

∅, ρπM < p1
j ≤ pM

pM , p1
j > pM

Now, it is easy to see that the only pair (p1
i , p

1
j ) for which the equilibrium condition

{p1
i } ⊆ BRi(p1

j )

{p1
j} ⊆ BRj(p1

i )

is satisfied is exactly (ρπM , ρπM ). �

Corollary 2 The functions WD and V̂ D as defined in (9) and (10) are increasing and concave

in belief ρ.

Proof. Let us consider only the function V D(ρ) = ρπMF
(
ρπM

)
. Then we have

∂V D

∂ρ
= πM

[
F
(
ρπM

)
− ρπMf

(
ρπM

)]
≥ 0

⇐⇒ F
(
ρπM

)
≥ ρπMf

(
ρπM

)
⇐⇒ 1 ≥ g

(
ρπM

)
.

But remember ρπM = ρpMF (pM ) < pM and by IGFR property it must be 1 = g(pM ) ≥ g
(
ρπM

)
;

therefore V D is increasing in ρ.

Moreover, it can be checked that

∂2V D

∂ρ2
= −

(
πM
)2 [

f
(
ρπM

) (
1− g

(
ρπM

))
+ F

(
ρπM

)
g′
(
ρπM

)]
≤ 0,

again by IGFR and what we proved above. �

Proposition 3 Let ρ denote the sellers’ common posterior belief about demand after they obtain

the platform’s message. Then, the following hold along the equilibrium path:
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(i) Suppose that c > WM (0). Then, there exists ρM (c, α) such that if ρ ≥ ρM (c, α) a single seller

joins the platform and, otherwise, there is no entry. In addition, when c ≥ WM (1), we have

ρM (c, α) ≥ 1, i.e., entry is too costly for sellers irrespective of their beliefs about demand.

(ii) Suppose that WD(1) ≤ c ≤ WM (0). Then, a single seller joins irrespective of the platform’s

information disclosure policy.

(iii) Suppose that c < WD(1). Then, there exists ρD(c, α) such that if ρ > ρD(c, α) both sellers

join the platform and, otherwise, there is a single entrant.

Proof. As further discussed in Appendix A, under Assumption 2 the platform’s expected profits

are always strictly larger with just one entrant than when both sellers join. This is formalized in

the following lemma.

Lemma 1 Suppose F satisfies these conditions simultaneously:

F
(
πM
) (

1− g(πM )
)
≥ F (pM )

2

2F
(
πM
)
≤ 1 + F (pM ),

Then

2ρDπMF
(
ρDπM

)
≤ p̂M

(
ρD
)
F
(
p̂M
(
ρD
))

+ ρDπMF
(
p̂M
(
ρD
))
.

for all ρ ∈ [0, 1]

For c > WM (1), since WM (1) is the maximal amount seller i can expect to earn under any

market condition, there will be no entrance; this is equivalent to ρM (c, α) > 1, with ρM defined as

below.

For WM (0) < c ≤ WM (1), since the function WM is strictly increasing in the belief, there

exists a unique solution in [0, 1] to the equation WM (ρ) = c; denote it with ρM (c, α). When

ρ < ρM , then WD(ρ) < WM (ρ) < c; hence, no seller has incentive to enter. If instead ρ > ρM ,

then WM (ρ) > c > WD(ρ). Suppose seller i decides to enter: it follows that seller j is better

off by staying out. Vice versa, if j joins, then i should stay out to maximize profits. Therefore,

at equilibrium only one seller joins, and the other stays out. Finally, suppose ρ = ρM , so that

WM (ρ) = c > WD(ρ): if seller j stays out, seller i is indifferent between joining and not joining.

Since the platform’s expected payoff is higher when i enters than when she does not, the Sender-

preferred equilibrium requires that i enters at belief ρM .

Take now WD(1) ≤ c ≤ WM (0). For every ρ ∈ (0, 1), WM (ρ) > c > WD(ρ), and therefore the

same argument of before applies. For ρ = 0, if c < WM (0), once again we are in the same case
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as above; if c = WM (0), then at indifference the equilibrium definition requires one seller to join.

Finally, for ρ = 1, if c > WD(1), then entry is never profitable for both sellers, and hence just one

joins; if instead c = WD(1), if seller i joins, then seller j is indifferent between entering and not.

Since the platform is better off with one seller, our equilibrium requires that j decides to stay out.

When c < WD(1), then since WD is strictly increasing there exists a unique solution in [0, 1] to

the equation WD(ρ) = c; denote this solution by ρD(c, α). Whenever ρ < ρD, then WM (ρ) > c >

WD(ρ) and thus only one joins in equilibrium. If ρ > ρD, then WD(ρ) > c; thus, if seller i joins,

also seller j is better off by joining, and notice that seller i does not have incentive to change its

behaviour, because by opting out she would earn less than WD(ρ). Hence, it is equilibrium that

both enter. Finally, for ρ = ρD, if seller i enters then j is indifferent between joining and not; again

by the Sender-preferred equilibrium definition, it must be that she stays out. Hence, at belief ρD

only one seller enters. This concludes the proof. �

Lemma 1 Suppose F satisfies these conditions simultaneously:

F
(
πM
) (

1− g(πM )
)
≥ F (pM )

2

2F
(
πM
)
≤ 1 + F (pM ),

Then

2ρDπMF
(
ρDπM

)
≤ p̂M

(
ρD
)
F
(
p̂M
(
ρD
))

+ ρDπMF
(
p̂M
(
ρD
))
.

for all ρ ∈ [0, 1]

Proof. In Corollary 1 we proved that V̂M (ρ) is strictly convex. Therefore, (A.3) is implied by

2ρπMF
(
ρπM

)
≤ πM + ρπMF (pM ), (EC.6)

where the RHS is the first order approximation of p̂M (ρ)F
(
p̂M (ρ)

)
+ ρπMF

(
p̂M (ρ)

)
at ρ = 0.

Notice that (EC.6) is trivially satisfied as a strict inequality at ρ = 0. To prove that inequalities

(A.1)-(A.2) imply (EC.6), we show that under Assumption 2 the function l, defined by

l(ρ) = 1 + ρF (pM )− 2ρF
(
ρπM

)
,

is decreasing in ρ and satisfies l(1) ≥ 0. Indeed

l(1) = 1 + F (pM )− 2F
(
πM
)
≥ 0
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is precisely condition (A.2). We can also notice that, as proved in Corollary 2, 2ρF
(
ρπM

)
is

concave, so that l(ρ) is convex. Hence, to show that it is decreasing it is sufficient (and necessary)

that
∂l(ρ)

∂ρ

∣∣∣
ρ=1
≤ 0. Therefore, since

∂l(ρ)

∂ρ
= F (pM )− 2F

(
ρπM

) (
1− g

(
ρπM

))
the condition (A.1) in Lemma 1 implies that also

∂l(ρ)

∂ρ

∣∣∣
ρ=1
≤ 0 is satisfied. �

Theorem 1 Suppose that Assumptions 1 and 2 hold. Then, there exists an optimal policy

(D∗,M∗) that involves sending one of two messages, i.e., M∗ = {Y,N}. Moreover, if we let D∗(ω)

denote the probability that message Y is sent when the state of the world is ω under information

disclosure policy (D∗, {Y,N}), an optimal policy for the platform takes the following form:

(i) When c > WM (0), then

D∗(1) =

1 for µ < ρM (c, α)

qMu for µ ≥ ρM (c, α)
and D∗(0) =

qMl for µ < ρM (c, α)

0 for µ ≥ ρM (c, α)
,

where the disclosure probabilities are equal to

qMl =
µ(1− ρM (c, α))

ρM (c, α)(1− µ)
and qMu =

µ− ρM (c, α)

µ(1− ρM (c, α))
;

(ii) When WD(1) ≤ c ≤WM (0), full-disclosure is optimal, i.e.,

D∗(ω) = ω;

(iii) Finally, when c < WD(1),

D∗(1) =

1 for µ ≤ ρD(c, α)

qDu for µ > ρD(c, α)
and D∗(0) =

qDl for µ ≤ ρM (c, α)

0 for µ > ρD(c, α)
,

where the disclosure probabilities are equal to

qDl =
µ(1− ρD(c, α))

ρD(c, α)(1− µ)
and qDu =

µ− ρD(c, α)

µ(1− ρD(c, α))
.

Proof. We first show that the problem of the platform is equivalent to one with just one receiver.
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Consider the following game between two players: one, which we call P ′, is an alter ego of the

platform, while the other one, which we call S, represents the system of sellers. S’s action space

is the set {00, 01, 11}. P ′ and S engage in a two-stage game in which first P ′ observes the state of

the world and sends a message according to an information disclosure policy; subsequently S takes

an action, which affects its own and the payoff of P ′. The expected utility of S is given by the

following function,2

u(I, µ) =


c I = 00

WM (µ) I = 01

WD(µ)1{WD(µ) ≤ c}+
[
WM (µ) + ε

]
1{WD(µ) > c} I = 11

for some ε > 0. Let us interpret action 00 being No one joins, 01 being Only one joins and 11

being Both join. S’s optimal action given belief µ about the state of the world is the same as the

entry decision that realizes in our model. The expected utility of P ′ is instead

û(I, µ) =


0 I = 00

V̂M (µ) I = 01

V̂ D(µ) I = 11

The information design problem of P ′ is equivalent to that of the platform in the original model, in

the sense that every optimal solution for P ′ is optimal for the platform and vice-versa. This setting

satisfies the hypotheses of Anunrojwong, Iyer, and Lingenbrink (2020), so we can use one of their

preliminary results and take the message space to be M = ∆(Ω) = ∆({0, 1}) = [0, 1] without loss

of generality. The problem can then be stated as

max
τ∈∆([0,1])

Eρ∼τ [û(J, ρ)] s.t.

J ∈ arg max
I∈{00,01,11}

u(I, ρ) ∀ρ ∈ [0, 1]

Eτ [ρ] = µ

Let us define the function V̂ : [0, 1]→ R+, given by V̂ (ρ) = 0 for c > WM (1), and further as

V̂ (ρ) =

0 if ρ < ρM (c, α)

V̂M (ρ) if ρ ≥ ρM (c, α)

2Expectation is taken with respect to µ.
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for WM (0) < c ≤WM (1). As V̂ (ρ) = V̂M (ρ) for WD(1) ≤ c ≤WM (0). Finally, as

V̂ (ρ) =

V̂M (ρ) if ρ ≤ ρD(c, α)

V̂ D(ρ) if ρ > ρD(c, α)

for c < WD(1). Since V̂ (ρ) = û(J, ρ) if J ∈ arg maxI∈{00,01,11} u(I, ρ) ∀ρ ∈ [0, 1], the original

problem can be further restated as

max
τ∈∆([0,1])

Eρ∼τ
[
V̂ (ρ)

]
s.t.

Eτ [ρ] = µ

This is now a problem similar to those analyzed by, e.g., Kamenica and Gentzkow (2011) and

Aumann and Maschler (1995), and we identify the optimal value function for the platform with the

“concavification” of V̂ , i.e.

V ∗(µ) = sup
{
y : (y, µ) ∈ cov(V̂ )

}
,

where cov(V̂ ) denotes the convex hull of the graph of V̂ . In other terms, this is the concave closure

of V̂ . We now turn to characterizing V ∗ in each of the cases we have for V̂ . To avoid trivialities,

suppose c ≤WM (1).

When WM (0) < c ≤ WM (1), V̂ stays at zero for µ < ρM and then jumps to a positive convex

function. Notice that full-disclosure is not optimal, unless c = WM (0): in fact, the value function

corresponding to such policy is equal to V̂M (1)µ. However, it has

V̂M (µ) > V̂M (1) + αµπMF
(
p̂M (1)

)
(µ− 1)

≥ V̂M (1)µ,

where the first equality holds because the RHS is a linear approximation to V̂M at µ = 1 and the

second by algebra. Thus, the concavification of V̂ is the piecewise-linear function

V ∗(µ) =


1

ρM
αc

1− α
µ µ < ρM

µ− ρM

1− ρM

(
V̂M (1)− αc

1− α

)
+

αc

1− α
µ ≥ ρM

since V̂M (ρM ) = αc
1−α . Thus, we infer that the optimal strategy for the platform is to alternatively

induce beliefs 0 and ρM when µ < ρM , and beliefs ρM and 1 when µ ≥ ρM . To determine the
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optimal probability with which each belief is induced, we employ the constraint on τ given by

Eτ [ρ] = µ: in this case τ should put mass only on two points in [0, 1] and their mean must be µ.

Hence: for µ < ρM we need 0× (1− τ) + τ × ρM = µ so that τ = µ
ρM

. An information disclosure

policy that sends message ρM with probability qMl (and 0 with complementary probability) when

ω = 0, and with probability 1 when ω = 1, induces this distribution of posterior beliefs; for µ ≥ ρM ,

the constraint requires ρM×(1−τ)+1×τ = µ, which implies τ = µ−ρM
1−ρM . A policy sending message

ρM with probability qMu (and 0 with complementary probability) when ω = 1, and always message

0 when ω = 0, induces this distribution.

Suppose now WD(1) ≤ c ≤ WM (0): since V̂ (µ) = V̂M (µ) and the latter is strictly convex, the

concavification V ∗ is the straight line joining (0, πM ) and (1, V̂M (1)) in the (µ, v) plane. Conse-

quently, one easily reads that the platform optimal strategy is to fully reveal all the information it

has. This is achieved, for example, by the policy that sends message 0 when ω = 0 and message 1

when ω = 1.

Finally, assume c < WD(1). To find the optimal policy for this case we use Assumption

2. Full transparency is not optimal because the value function of this policy would be
∼
V (µ) =

α
[
πM + µπM

(
2F (πM )− 1

)]
, and we have for µ > 0

V̂M (µ) > α
[
πM + µπMF (pM )

]
≥ α

[
πM + µπM

(
2F (πM )− 1

)]
=
∼
V (µ),

where the first inequality follows because the RHS is the linear approximation of V̂M at µ = 0 and

the second reduces to the second condition in (11). In addition, and always thanks to conditions

(11), V̂ D always lies below a linear approximation to V̂M at µ = 0: this implies that for any

threshold ρD the straight line joining (ρD, V̂M (ρD)) with (1, 2πMF (πM )), which is the value of

a policy that induces beliefs ρD and 1, always dominates any other policy that induces different

beliefs when ρD < µ ≤ 1.3 Hence, also in this case the optimal value function is a piecewise-linear

function, given by

V ∗(µ) =


απM +

(
V̂M (ρD)− απM

) µ

ρD
µ ≤ ρD

V̂M (ρD) +
(
α2πMF (πM )− V̂M (ρD)

) µ− ρD
1− ρD

µ > ρD

As before, this value function tells that the optimal policy is to alternatively induce beliefs 0 and

ρD when µ ≤ ρD and beliefs ρD and 1 when µ > ρD. Following the same reasoning of the case

3In particular, the first condition in (11) ensures that it is not optimal to induce beliefs ρD and η < 1 for
ρD < µ ≤ η and do nothing for µ > η.
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above where WM (0) < c ≤ WM (1), one can check that an optimal policy is to send message ρD

with probability 1 when ω = 1 and with probability qDl (and 0 with complementary probability)

when ω = 0, if µ ≤ ρD; and to send message 1 with probability qDu (and ρD with complementary

probability) when ω = 1 and ρD with probability 1 when ω = 0, if µ > ρD.

Finally, let us observe that the policy we have described always sends one of two possible

messages for every combination of c and α. Therefore, the message space can be restricted to

{Y,N}, so that we recover the policy given in the statement of the proposition. �

Corollary 3 The following hold true:

(i) The optimal information disclosure policy always yields strictly higher profits for the platform

than no-disclosure. In addition, it strictly outperforms full-disclosure too, unless WD(1) ≤
c ≤WM (0).

(ii) No-disclosure yields strictly higher profits than full-disclosure if (a) c > WM (0) and µ ≥ ρM ,

or (b) c < WD(1) and µ ≤ ρD.

Proof. Since µ = 0 and µ = 1 are absorbing cases in which the disclosure problem is trivial (in

fact, the prior belief cannot be modified), without loss of generality assume µ 6= 0, 1.

Notice that the first part of the corollary follows directly from Theorem 1. For the second part,

suppose WM (0) < c ≤ WM (1) and µ < ρM : the no-disclosure policy gives 0 profit in this case,

while full-disclosure yields µV̂M (1) > 0, so full-disclosure strictly dominates no-disclosure.

If µ > ρM , then no-disclosure strictly dominates full-disclosure if and only if

µV̂M (1) < V̂M (µ)⇐⇒ V̂M (1)

1
<
V̂M (µ)

µ
.

V̂M (µ)
µ is a strictly decreasing function of µ, since

∂

∂µ

(
V̂M (µ)

µ

)
= α

µF
(
p̂M (µ)

)
πM − V̂M (µ)

µ2
< 0,

where the inequality follows by equation (3.1), and thus claim (a) holds.

When WD(1) ≤ c ≤ WM (0) full-disclosure yields larger profits, because V̂M is strictly convex.

So, assume c < WD(1): full-disclosure gives µV̂ D(1) + (1 − µ)V̂M (0). If µ ≤ ρD, no-disclosure

earns V̂M (µ). As in the proof of Theorem 1, conditions (11) imply that the linear approximation

of V̂M at µ = 0 is always strictly larger than the value of full-disclosure. Recalling the convexity

of V̂M yields the result. Finally, for µ > ρD, full-disclosure yields strictly larger profits if the linear

approximation to V̂ D at µ = 1 is always strictly smaller than the value of full-disclosure. Notice
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the two are equal at µ = 1 by construction, so it is enough (by concavity of V̂ D) to show that

∂V̂ D

∂µ
> V̂ D(1)− V̂M (0) at µ = 1. From Corollary 2, we have

∂V̂ D(1)

∂µ
= 2πM

[
F (πM )− πMf(πM )

]
> πM

[
2F (πM )− 1

]
⇐⇒ 1 > 2F

(
πM
)
g(πM ).

By the first inequality in (11) we have 2F
(
πM
)
−F

(
pM
)
≥ 2F

(
πM
)
g(πM ), and the LHS is smaller

than 1 by the second inequality in (11), so also (b) holds. �

Theorem 2 Suppose that c < WD(1). Then, if µ ≤ ρD(c, α), social welfare, consumer surplus

and profits for the sellers increase under the optimal policy. On the other hand, if µ > ρD(c, α),

then profits for sellers increase; however, both consumer surplus and aggregate welfare decrease.

Proof. Suppose first that µ ≤ ρD: under the optimal policy, if ω = 1 message Y is always sent,

which induces belief ρD; if ω = 0, message Y is sent with probability qDl , and message N with

complementary probability, so that after N belief 0 obtains . The variation in social welfare is then

∆SW = µ

[∫ ∞
p̂M (ρD)

vdF + F
(
p̂M (ρD)

) ∫ ∞
pM

vdF + c−
∫ ∞
p̂M (µ)

vdF − F
(
p̂M (µ)

) ∫ ∞
pM

vdF − c

]

+ (1− µ)

[
qDl

(∫ ∞
p̂M (ρD)

vdF + c

)
+
(
1− qDl

)(∫ ∞
p̂M (0)

vdF + c

)
−
∫ ∞
p̂M (µ)

vdF − c

]
= τDl SW

M (ρD) + (1− τDl )SWM (0)− SWM (µ),

recalling Definition 2 and that τMl = µ
ρD

from the proof of Theorem 1. Since we know that

µ = τDl ρ
D + (1− τDl )× 0, whether social welfare increases or not depends on whether the function

SWM (µ) is convex or concave. Moreover, it is easy to see that in this case CSM (µ) = SWM (µ)−
VM (µ)− c, where VM = V̂M +WM , and therefore

∆CS = τDl CS
M (ρD) +

(
1− τDl

)
CSM (0)− CSM (µ)

= τDl
[
SWM (ρD)− VM (ρD)− c

]
+ (1− τDl )

[
SWM (0)− VM (0)− c

]
− SWM (µ) + VM (µ) + c.

Since VM is convex, if CSM (µ) is convex also SWM (µ) is: under the uniform assumption one

obtains

CS(µ) =
1

2

(
1

2
+
µ

8

)2

+
µ

8

(
µ

8
− 1

2

)
,
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which is strictly convex. Hence both social welfare and consumer surplus increase by adopting

the optimal policy. Finally, since also WM is convex, the profit of the seller that decides to join

increases; since the expected profit of the other seller remains unchanged, information disclosure

also increases aggregate sellers’ profits in this case.

Consider now the case µ > ρD. We begin with sellers’ profits: after message Y both sellers join,

while after N , which induces ρD, only one enters; accordingly the variation in aggregate profits is

∆

2∑
i=1

ΠS
0,i =µ

[
qDu (1− α)2πMF (πM ) +

(
1− qDu

)
(1− α)

(
p̂M (ρD)F

(
p̂M (ρD)

)
+ F

(
p̂M (ρD)

)
πM + c

)
−(1− α)F

(
µπM

)
πM (1 + µ)

]
+ (1− µ)

[
(1− α)p̂M (ρD)F

(
p̂M (ρD)

)
+ c− (1− α)µπMF (µπM )

]
=(1− α)

[
τDu 2πMF (πM ) + (1− τDu )

(
p̂M (ρD)F

(
p̂M (ρD)

)
+ F

(
p̂M (ρD)

)
πM
)

− 2µπMF (µπM )
]

+ c(1− τDu )

=
1− α
α

[
τDu V̂

D(1) + (1− τDu )V̂M (ρD)− V̂ D(µ)
]

+ c(1− τDu )

=
1− α
α

[
V ∗(µ)− V̂ D(µ)

]
+ c(1− τDu ) ≥ 0,

where τDu = µ−ρD
1−ρD and the last inequality follows by definition of V ∗. The inequality is strict for

all µ 6= ρD, 1. Let us now consider consumer surplus, whose variation is

∆CS = τDu CS
D(1)− (1− τDu )CSM (ρD)− CSD(µ).

We cannot immediately deduce the sign of the change in consumer surplus, because with the

entry of a second seller the curvature changes. Using the uniformity hypothesis we have that

ρD = 2

(
1−

√
1− 4c

1− α

)
, WD(1) =

3

16
(1− α) so that

∆CS =
τDu
2

+ (1− τDu )

[
1

2

(
1

2
+
ρD

8

)2

+
ρD

8

(
ρD

8
− 1

2

)]
− µ2

8
+
µ

8
− 1

2
< 0,
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for all c <
3

16
(1− α), α ∈ [0, 1) and µ > ρD. Finally, the variation in social welfare is

∆SW =τDu SW
D(1)− (1− τDu )SWM (ρD)− SWD(µ)

=τDu

(
7

8

)
+ (1− τDu )

(
5

128
(ρD)2 +

ρD

8
+

3

8
+ c

)
− 3

8
µ− 1

2

=(1− µ)

[
27

128
+

c

1− ρD
− 5ρD

128
− 43

128(1− ρD)

]
.

Further algebra shows that ∆SW (µ) < 0 always. �

Theorem 3 When c > WM (0), both social welfare and consumer surplus increase under the

optimal policy. In addition, when µ ≥ ρM (c, α), the profits for sellers increase, as well (otherwise,

they remain unchanged).

Proof. Notice first that the claim for the case µ ≥ ρM follows the same argument based on convexity

of CSM (·) that we employed for the proof of Theorem 2.

Assume then that µ < ρM : when ω = 1 the platform sends message Y and belief ρM is induced,

whereby one seller joins the market; when ω = 0, with probability qMl message Y is sent and N

otherwise, so that after N the induced belief is 0 and no seller enters. Under this the variation in

social welfare can be written as

∆SW =µ

[∫ ∞
p̂M (ρM )

vdF + F
(
p̂M (ρM )

) ∫ ∞
pM

vdF + c− 2c

]

+ (1− µ)

[
qMl

(∫ ∞
p̂M (ρM )

vdF + c− 2c

)
+ (1− qMl )(2c− 2c)

]

=τMl

[∫ ∞
p̂M (ρM )

vdF + ρMF
(
p̂M (ρM )

) ∫ ∞
pM

vdF − c

]

=τMl


∫ ∞
p̂M (ρM )

(
v − p̂M (ρM )

)
dF + ρMF

(
p̂M (ρM )

) ∫ ∞
pM

(v − pM )dF︸ ︷︷ ︸
consumer surplus

+V̂M (ρM )

 ≥ 0,

where τMl = µ
ρM

from the proof of Theorem 1. Therefore, social welfare always increases.
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Let us now consider aggregate sellers’ profits: the variation is

∆

2∑
i=1

Π0,i =µ
[
(1− α)p̂M

(
ρM
)
F
(
p̂M (ρM )

)
+ (1− α)F

(
p̂M (ρM )

)
πM + c− 2c

]
+ (1− µ)

[
qMl
(
(1− α)p̂M

(
ρM
)
F
(
p̂M (ρM )

)
+ c− 2c

)
+
(
1− qMl

)
(2c− 2c)

]
=τMl

[
WM

(
ρM
)
− c
]

= 0,

where the last equality follows by definition of ρM . So aggregate sellers’ profits remain the same

for all prior beliefs. Finally, notice that without disclosure no seller would join, and therefore

consumer surplus would be zero; under the optimal policy one seller enters and, since p̂M (ρM ) is

smaller than the upper bound of the support of F , there is a non null probability that a sale will

realize in the first period, so that consumer surplus under optimal disclosure is positive. Hence,

the optimal policy always increases consumer surplus. We then conclude that the optimal policy

increases all our metrics of welfare; notice that this conclusion holds even without the uniformity

assumption. �
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EC 2 Noisy Signals

The setting we consider assumes that the platform is able to directly observe in advance the realized

state of the world, and then condition the messages it sends to sellers on this observation. Our

interpretation of this assumption is that the platform can generate a “perfectly” informative signal

about the state of the demand, i.e., one that is it always correct, and then condition its messaging

policy on it. In this appendix, we extend our model to allow for “noisy” signals and explore also

how the accuracy of the platform’s signal affects the policy it chooses to implement.

EC 2.1 Model

We consider a model akin to that of Section 2, but more general as far as the platform’s signal

is concerned: as before, there are two sellers who evaluate joining the platform to sell the single

unit of a homogeneous good they are endowed with, and an uncertain number of buyers that have

random valuations for the good. All assumptions set forth in Sections 2 and 3 are taken to hold

also in the current setting, and the sequence of play after the platform’s message is the same as

well.

Let there be a set of states of the world Ω = {0, 1}, with ω = 1 denoting that the demand is

high, i.e., that a second customer will look for the good on the platform in t = 2. The commonly

shared prior probability on Ω is that P (ω = 1) = µ. The platform cannot directly observe the

realized ω; rather, it observes a partially accurate signal ϕ ∈ F about the state of the world and

conditions its messaging policy on it. Formally, define the random variable ϕ taking values in {0, 1}
and such that

ϕ | ω =

ω with probability a

1− ω with probability 1− a

In words, conditional on the realization of the state of the world, ϕ is equal to the state of the

world only with probability a (i.e., the signal is “accurate” only with some probability, which is

taken to be an exogenous parameter and reflects the platform’s ability to forecast its demand).

Throughout this section we assume that a ≥ 1
2 , with a = 1

2 denoting a situation in which signals

are not informative at all about the true state of the world, and a = 1 describing perfect ones;

thus, this enriched model encompasses the one described in Section 2. Importantly, the accuracy

level is common knowledge among the players of the game. The main difference we introduce is

in the definition of information disclosure policies available to the platform, which can now only

be conditioned on the signal. Formally, we denote an information disclosure policy as the mapping
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between the space of ϕ and the space of distributions over messages,

D : ϕ 7→ q(m | ϕ) ∈ ∆(M).

The platform commits to a disclosure policy before observing the realization of the signal, and

sellers are assumed to know that the messages are sent conditional on the signal and not the true

demand.

Equilibrium The payoff functions of the agents participating in the game and the sequence

of play are the same as in Section 2, and therefore we can apply the same equilibrium given in

Definition 1, with one minor modification. In fact, for any history ht with t ≥ 0, the platform’s

belief is the posterior belief determined by Bayes’ rule after observing the realization of the signal,

while for sellers it is the posterior obtained by Bayes’ rule after observing the message sent by the

platform, but not the signal. In other words, ϕ is the platform’s private information.

Similarly to before, the message sent by the platform to sellers induces the sellers to hold a new

belief about the state of the demand, based on which they decide whether to join the platform.

Hence, all results from Section 3 apply also in this context, and in particular those relating to the

shape of the function V̂ (ρ) that gives the expected profit of the platform at belief ρ. Therefore, we

only need to characterize the optimal disclosure policy of the platform to be able to compare this

setting with the one analyzed before.

EC 2.2 Optimal Information Disclosure

Suppose the platform adopts some information disclosure policy with message space M . Since

the sellers know that each message m ∈ M is sent to them according to the signal obtained by

the platform, which is inaccurate in general, when they form their posterior belief they take into

account this additional layer of uncertainty. As a result, not all beliefs in [0, 1] can be induced, as

the following lemma shows.

Lemma 1. Take any information disclosure policy (D,M) and suppose the prior belief of demand

being high is µ. Then the maximal posterior belief that can be induced is

µmax(µ, a) =
aµ

1− µ+ a (2µ− 1)
, (EC.7)

and the minimal is

µmin(µ, a) =
µ(1− a)

a (1− 2µ) + µ
. (EC.8)

When a = 1
2 , i.e., the signal is not informative about the state of the world, Lemma 1 clarifies
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that the platform can never induce a posterior belief different from the prior, because the sellers

know that any message based on uninformative signals cannot provide more information about the

state of the world than what they already have; symmetrically, when a = 1 and foresight is perfect,

µmax = 1 and µmin = 0, so that any belief can be reached as a posterior; finally, for information that

is partially accurate, µmin > 0 and µmax < 1. Thus, Lemma 1 restricts the range of distributions

over posteriors that the platform can induce, and their support: in particular, for any given prior

µ the support of any distribution τ over posteriors must be a subset of the interval [µmin, µmax],

that depends on the value of the prior.

The restriction on the range of posterior beliefs brought by imperfect signals makes the analysis

of the optimal disclosure policy more challenging, because the standard theory of information

design does not allow for the possibility of imperfect observation.4 Nevertheless, we can prove a

characterization of the optimal disclosure policy similar to that of Kamenica and Gentzkow (2011),

but specific to our setting.

Theorem 1 (Optimal policy characterization). Let there be given a prior µ and accuracy level a.

The platform’s optimal profit V ∗(µ) can always be achieved with |M | = 2. Moreover,

V ∗(µ) = sup
{
z : (µ, z) ∈ covltd

(
V̂ ;µ

)}
,

where covltd

(
V̂ ;µ

)
= cov

{
(ρ, v) ∈ Γ

(
V̂
)

: ρ ∈ [µmin(µ, a), µmax(µ, a)]
}

; cov denotes the convex

hull of a set and Γ(·) is the graph of a function.

More intuitively, Theorem 1 first makes clear that a binary message space is sufficient to achieve

the optimal value, even in this more complicated setting; secondly, it characterizes the optimal

profit of the platform in terms of what we call sliding concavification of V̂ . Essentially, the sliding

concavification of V̂ assigns to µ the value that one would obtain by computing the concavification

of V̂ at µ, with domain restricted to [µmin(µ, a), µmax(µ, a)]. Further applying this machinery, we

obtain the following corollary that details the optimal information disclosure policy.

Corollary 1 (Platform’s optimal policy). There exists an optimal policy (D∗,M∗) with M∗ =

{Y,N}. Assume that a > 1
2 and let q(m | ϕ) denote the probability that message m is sent after

signal ϕ (we suppress the dependence on µ for readability). Then an optimal policy for the platform

takes the following form:

4There is little work that has analyzed the case of a privately informed sender, e.g. Hedlund (2017), whose
framework does not apply to our setting.
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(i) When c > WM (0), then

(q(Y | 1), q(Y | 0)) =



(1, 0) for µ s.t. µmax ≤ ρM (c, α)(
q1
µmin,ρM

, q0
µmin,ρM

)
for µ < ρM (c, α) s.t. µmin < ρM < µmax

(1, 1) for µ = ρM (c, α)(
q1
ρM ,µmax

, q0
ρM ,µmax

)
for µ > ρM (c, α) s.t. µmin < ρM < µmax

(1, 0) for µ s.t. µmin ≥ ρM (c, α)

(ii) When WD(1) ≤ c ≤WM (0), then

(q(Y | 1), q(Y | 0)) =
(
q1
µmin,µmax

, q0
µmin,µmax

)
(iii) Finally, when c < WD(1)

(q(Y | 1), q(Y | 0)) =



(1, 0) for µ s.t. µmax ≤ ρD(c, α)(
q1
µmin,ρD

, q0
µmin,ρD

)
for µ < ρD(c, α) s.t. µmin < ρD < µmax

(1, 1) for µ = ρD(c, α)(
q1
ρD ,µmax

, q0
ρM ,µmax

)
for µ > ρD(c, α) s.t. µmin ≤ ρD < µmax

(1, 1) for µ s.t. µmin > ρD(c, α)

In the above,
(
q1
x,y, q

0
x,y

)
for x < µ < y are the unique solutions to the system



[
q1
x,ya+ q0

x,y(1− a)
]
µ[

q1
x,ya+ q0

x,y(1− a)
]
µ+

[
q1
x,y(1− a) + q0

x,ya
]

(1− µ)
= y

[(
1− q1

x,y

)
a+

(
1− q0

x,y

)
(1− a)

]
µ[(

1− q1
x,y

)
a+

(
1− q0

x,y

)
(1− a)

]
µ+

[(
1− q1

x,y

)
(1− a) +

(
1− q0

x,y

)
a
]

(1− µ)
= x

It is worthwhile to compare the policy of Corollary 1 with that of Theorem 1 in Section 4.

With direct observability of the state of demand the platform is able to induce the competitive

scenario it prefers, by discouraging or enticing entry. In the current setting this is no longer

possible, because not all posterior beliefs can be obtained; as a result, taking as given the accuracy

of the signals, there only exists a restricted range of prior beliefs for which the platform can alter

the level competition compared to what would result without information disclosure. In greater

detail, this occurs when the outside option is large (c > WM (0)) and the prior belief is such that
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µmin < µ < ρM < µmax; and when the cost of entry is low (c < WD(1)) and the prior belief is such

that µmin < ρD < µ < µmax. Intuitively, these are the cases where the range of feasible posterior

beliefs includes the entry threshold ρM or ρD. However, in all these cases the platform’s optimal

information disclosure induces the type of competition that results from optimal disclosure in the

case of perfectly informative signals: one of the sellers is nudged to join when none of them would

not, and is discouraged from entry when both would join. Conveniently, in the limit where a→ 1,

we recover exactly the policy from Theorem 1. Finally, notice that when the value of the outside

option is low and the prior is such that µmin > ρD, the platform’s optimal policy is to send an

uninformative message, which is never optimal under perfect foresight of the state of demand.

Platform’s value for more accurate signals The discussion above stressed that the level of

accuracy of the platform’s signals is an important driver in its ability to induce a wider range of

posterior beliefs, and thereby achieve higher profits. While it is clear that producing uninformative

signals (a = 1
2) is equivalent to not engaging in information disclosure at all, and that perfect

foresight (a = 1) makes it possible to achieve the first-best of Section 4, it is also interesting to

assess the marginal return from improving accuracy. In fact, this is the relevant metric for platforms

to ascertain the return on investments in analytic capabilities able to generate the signals. Figure

1 depicts by how much would the platform’s profits increase if it had a-precise signals instead of

uninformative ones (or, equivalently, if it received no signal at all) , and we consider three values of

accuracy ranging from a = 0.6 to a = 0.9. We concentrate on the case of low outside option because

of its greater relevance for applications. We make a number of observations from the figure, which

we can reconcile with the theory from Section 4.

First, for those prior beliefs for which information disclosure does not modify the number of

entrants, we see quite a small gain from increasing the precision of the signal: this again points

to the relevance of information disclosure first, and foremost, as a tool to modify the degree of

competition on the markets. This intuition is further reinforced if one considers those prior beliefs

for which information disclosure actually prevents entry of one of the sellers, at which the increase

in profits that occurs can be as high as 50%.

Second, we observe that, contrary to Figure 4, the increase in profits presents discontinuities in

the beliefs, and that these discontinuities occur at different beliefs for different accuracy levels. The

jumps happen at those beliefs for which µmin = ρD: intuitively, for all those priors for which the

minimum attainable posterior is larger than the threshold ρD, the platform can no longer prevent

entry using information disclosure, and therefore needs to settle for its second-best (which is not to

disclose anything). This provides a new insight: increasing the precision of signals is particularly

profitable for platforms that would otherwise be unable to persuade some of the sellers not to join.
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Figure 1: Percentage increase in platform’s optimal profits from having a-precise signals instead of
completely uninformative ones (a = .5). Results obtained with v ∼ U [0, 1], α = 5% and c = 0.1.

Finally, if we consider those prior beliefs for which increasing the precision of signals does not

fundamentally alter the disclosure policy, we note that there are decreasing marginal returns from

accuracy. This last intuition is made formal in the following lemma (for which we assume that the

buyers’ willingness to pay is uniformly distributed, for the sake of simplicity).

Lemma 2. Suppose c < WD(1) and fix: a prior µ, and accuracy level a such that there exists

ε > 0 for which µmin(µ, a) < ρD < µ < µmax holds for every a ∈ (a− ε, a+ ε). Let V ∗(a;µ) denote

the optimal platform’s profit at prior µ when the accuracy level is a. Then

∂2

∂a2
V ∗ (a;µ) < 0,

i.e., the optimal profit is (locally) concave in the accuracy of the signals.

EC 2.3 Proofs EC 2

Lemma 1

Proof. Take a disclosure policy (D,M) with some arbitrary message space M , and without loss of
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generality assume |M | ≥ 2; if not, it is clear that the only posterior consistent with Bayes’ rule

is the prior µ. Denote by R(D,M) the range of posterior beliefs that can be achieved with this

policy.

Take m ∈ M and write q(m | ϕ) for the probability that message m is sent conditional on

the realized signal being ϕ; also without loss of generality, assume q(m | ϕ) > 0 for at least one

realization of the signal, since otherwise the message has probability zero of being sent and the

posterior belief cannot be determined. The sellers’ posterior belief that {ω = 1} is then5

P (ω = 1 | m)

=
[q(m | ϕ = 1)a+ q(m | ϕ = 0)(1− a)]µ

[q(m | ϕ = 1)a+ q(m | ϕ = 0)(1− a)]µ+ [q(m | ϕ = 1)(1− a) + q(m | ϕ = 0)a] (1− µ)
.

The posterior probability as a function of (q(m | ϕ))ϕ=0,1 is both quasi-convex and quasi-concave,

because sub-(super-)level sets are half-spaces. In particular, it can be verified that it is maximized

at q(m | ϕ = 0) = 0 and q(m | ϕ = 1) ∈ (0, 1], and it achieves a value of

aµ

1− µ+ a (2µ− 1)
.

Similarly, the minimum is
µ(1− a)

a (1− 2µ) + µ
,

and is achieved at q(m | ϕ = 0) ∈ (0, 1] and q(m | ϕ = 1) = 0. Finally, since P(ω = 1 | m) is a

continuous function, every posterior in [µmin, µmax] can be achieved. This shows that R(D,M) ⊆
[µmin, µmax] for any disclosure policy.

Take now a policy with |M | = 2, M = {m1,m2}. One immediately verifies that P(ω = 1 | m2)

is minimized for q(m1 | ϕ = 1) = 1 and q(m1 | ϕ = 0) ∈ [0, 1), and that the minimum is exactly

µmin. Likewise, P(ω = 1 | m1) attains its maximum of µmax at q(m1 | ϕ = 1) ∈ (0, 1] and

q(m1 | ϕ = 0) = 0. It follows that at q(m1 | ϕ = 1) = 1 and q(m1 | ϕ = 0) = 0 the posterior

after m1 is maximized and that after m2 is minimized. Hence, for any policy with |M | = 2,

R(D,M) = [µmin, µmax], which also proves that for any policy with arbitrary message space the

range of feasible beliefs must equal the interval [µmin, µmax]. �

Theorem 1

Proof. Let µ | m be shorthand for P(ω = 1 | m). The platform’s optimization problem can be

5Implicitly assuming that µ 6= 0, 1. These prior beliefs cannot be modified by any form of persuasion.
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stated as:

max
M, (q(m|ϕ=1), q(m|ϕ=0))m∈M

µ

[
a
∑
m∈M

q(m | ϕ = 1)V̂ (µ | m) + (1− a)
∑
m∈M

q(m | ϕ = 0)V̂ (µ | m)

]

+ (1− µ)

[
a
∑
m∈M

q(m | ϕ = 0)V̂ (µ | m) + (1− a)
∑
m∈M

q(m | ϕ = 1)V̂ (µ | m)

]

s.t.
∑
m∈M

q(m | ϕ = i) = 1 ∀i = 0, 1

q(m | ϕ = i) ≥ 0 ∀m ∈M, ∀i = 0, 1

Since the objective is upper semi-continuous, there exists an optimal value V ∗(µ) which is attained

in the feasible region. Then there exist M∗ and (q∗(m | ϕ = i))i∈{0,1},m∈M such that

V ∗(µ) = µ

[
a
∑
m∈M

q∗(m | ϕ = 1)V̂ (µ | m) + (1− a)
∑
m∈M

q∗(m | ϕ = 0)V̂ (µ | m)

]

+ (1− µ)

[
a
∑
m∈M

q∗(m | ϕ = 0)V̂ (µ | m) + (1− a)
∑
m∈M

q∗(m | ϕ = 1)V̂ (µ | m)

]
.

Denote by τ∗ the distribution over posteriors induced by this policy. This distribution is Bayes

plausible and such that V ∗(µ) = Eρ∼τ∗
[
V̂ (ρ)

]
. Moreover, by Lemma 1, V ∗(µ) ∈ covV̂ ([µmin, µmax]),

the convex hull of the image of [µmin, µmax] through V̂ . Hence, (µ, V ∗(µ)) ∈ cov
(
hyp

(
V̂
)
|[µmin,µmax]

)
,

the convex hull of the hypograph of V̂ restricted to the interval of feasible posteriors. This is a

connected subset of R2, and therefore by the Fenchel-Bunt theorem there exists τ that satisfies the

following: (i) (µ, V ∗(µ)) = Eρ∼τ [(ρ, z(ρ))], with (ρ, z(ρ)) ∈ cov
(
hyp

(
V̂
)
|[µmin,µmax]

)
so that τ is

Bayes plausible too; (ii) supp(τ) ∈ [µmin, µmax] and |supp(τ)| ≤ 2. We now state a Lemma from

the appendix of a working version of Kamenica and Gentzkow (2011), specialized to our setting,

whose proof we also report for ease of reference.6

Lemma 3 (Kamenica and Gentzkow (2009)). Given µ and S ⊂ hyp(V̂ |[µmin,µmax]), if (µ, V ∗(µ)) is

in the convex hull of S, it is also in the convex hull of the intersection of S and graph of V̂ restricted

to the feasible set of posteriors.

Proof. We restrict to the case where S = {(ρ1, z1), (ρ2, z2)} and suppose (µ, V ∗(µ)) = γ(ρ1, z1) +

(1 − γ)(ρ2, z2) for some γ ∈ [0, 1]. Towards a contradiction, assume z1 < V̂ (ρ1). Then we have

6This paper is available at https://www.wallis.rochester.edu/assets/pdf/wallisseminarseries/

bayesianPersuasion.pdf
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V ∗(µ) = γz1 +(1−γ)z2 < γV̂ (ρ1)+(1−γ)z2. But then V ∗(µ) cannot be the optimal value because,

as we will prove shortly, any Bayes plausible distribution with binary support in [µmin, µmax] can

be obtained by a disclosure policy. This is a contradiction and therefore zi = V̂ (ρi) for i = 1, 2. �

It then follows that V ∗(µ) = Eρ∼τ
[
V̂ (ρ)

]
, which proves that a distribution over posteriors with

at most binary support is sufficient to achieve the optimum.

We now show that any Bayes plausible distribution τ with supp(τ) ∈ [µmin, µmax] and |supp(τ)| ≤
2 can be obtained from some disclosure policy with |M | = 2. First, notice that in the case

supp(τ) = {µ} the claim is trivially true. Suppose then supp(τ) = {ρ1, ρ2}, and without loss of

generality ρ1 < µ < ρ2 (since otherwise τ cannot be Bayes plausible). Let M = {m1,m2}. The

linear system of equations

q(m1 | ϕ = 1)a+ q(m1 | ϕ = 0)(1− a)

=
ρ1

µ
{[q(m1 | ϕ = 1)a+ q(m1 | ϕ = 0)(1− a)]µ+ [q(m1 | ϕ = 0)a+ q(m1 | ϕ = 1)(1− a)] (1− µ)}

q(m2 | ϕ = 1)a+ q(m2 | ϕ = 0)(1− a)

=
ρ1

µ
{[q(m2 | ϕ = 1)a+ q(m2 | ϕ = 0)(1− a)]µ+ [q(m2 | ϕ = 0)a+ q(m2 | ϕ = 1)(1− a)] (1− µ)}

q(m1 | ϕ = i) + q(m2 | ϕ = i) = 1 ∀i = 0, 1

q(m | ϕ = i) ≥ 0 ∀m ∈M, ∀i = 0, 1

in the unknowns q(m | ϕ = i) always has a solution, and therefore defines a Bayes plausible

distribution with support {ρ1, ρ2}. However, there exists only one such distribution, so it must be

that τ equals the distribution over posterior induced by the solutions to the system. In conclusion

then, every Bayes plausible distribution over posteriors with binary support included in [µmin, µmax]

can be obtained by some disclosure policy with binary message space.

Given the equivalence between Bayes plausible distributions and disclosure policy we proved before,

we can restate the platform’s optimization problem as

max
τ∈∆([0,1])

Eρ∼τ
[
V̂ (ρ)

]
s.t. Eτ [ρ] = µ

supp(τ) = {µ1, µ2} ⊂ [µmin, µmax]
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Define now the convex hull of the graph of V̂ restricted to the domain [µmin, µmax] at µ as

covltd

(
V̂ ;µ

)
= cov

{
(ρ, v) ∈ Γ

(
V̂
)

: ρ ∈ [µmin(µ, a), µmax(µ, a)]
}

and notice that from all the previous parts of the proofs it follows that

V ∗(µ) = sup
{
z : (µ, z) ∈ covltd

(
V̂ ;µ

)}
which finally proves the last claim and concludes the proof. �

Corollary 1

Proof. The proof of the statement follows the same logic of the proof of Theorem 1 in Section 4,

and entails verifying that the proposed policy gives the same value as the sliding concavification.

As before, assume c ≤WM (1), since otherwise the platform’s profit is always zero.

Suppose first that c > WM (0). When the prior is such that µmax < ρM , any policy is optimal

because irrespective of persuasion no seller join. If instead µmax = ρM , it is optimal that the largest

of the posteriors induced be ρM , since otherwise there would be no entry; let µ2 be the smallest

posterior belief induced: the value of such policy is

µ− µ2

µmax − µ2
V̂ (ρM ),

which is decreasing in µ2, and therefore it is optimal to induce µmin as smallest posterior beliefs.

One then verifies that the policy proposed induces exactly these two posteriors. When µ < ρM but

µmin < ρM < µmax, notice that for any posteriors µ1 and µ2 it must be µ2 < µ and µ1 > ρM > µ

(since otherwise the profits would be zero). Thus the value of this policy is

µ− µ2

µ1 − µ2
V̂ (µ1),

which is decreasing in µ2, so that it is optimal to induce µmin; moreover, this value is decreasing in

µ1 as long as µ1 ≥ ρM , because

(µmin − µ1)
∂V̂ (µ1)

∂µ1
+ V̂ (µ1) < 0,

and therefore it is optimal to set µ1 = ρM . When µ = ρM , it cannot be optimal to set the lowest

posterior strictly below ρM , because otherwise (by the same reasoning as before) the optimum

would be to set the largest posterior equal to ρM , which does not satisfy Bayes plausibility; hence,

it is optimal to leave the prior unchanged, which is achieved by a policy that sends the same
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message with probability one irrespective of the signal realized. Finally, for µ > ρM the platform

maximizes its profits by inducing the beliefs µ1 and µ2 such that |µ1 − µ2| is maximal and there

is entry at both: this follows from convexity of V̂ . Notice that the same reasoning carries out for

WD(1) ≤ c ≤WM (0).

Suppose now that c < WD(1). As long as the prior is such that µmax ≤ ρD, convexity of V̂

gives that the policy is the same as for WD(1) ≤ c ≤ WM (0). For µ < ρD but µmin < ρD < µmax,

it cannot be optimal to induce a posterior larger than ρD: this follows from Assumption 2 as in

the proof of Theorem 1, where we ruled out full disclosure policies (which necessarily dominate any

policy that induces posterior belief larger than ρD in this case). By convexity then, it is optimal to

induce beliefs µmin and ρD. Always owing to Assumption 2, for µ = ρD it is optimal to leave the

posterior unchanged. When µ > ρD but µmin ≤ ρD, it is clearly never optimal to induce a posterior

less than ρD, which implies that the lower posterior belief must equal ρD; then Assumption 2 implies

that the optimal upper posterior must be equal to µmax. Finally, when µmin > ρD, concavity of V̂

yields that it is optimal to leave the prior belief unchanged. �

Lemma 2

Proof. Under the hypotheses of the Lemma, the optimal disclosure policy is to induce belief µmax

with probability µ−ρD
µmax−ρD

and ρD with complementary probability. Therefore,

V ∗ (a;µ) =
µ− ρD

µmax − ρD
V̂ (µmax) +

µmax − µ
µmax − ρD

V̂ (ρD).

Recall that when the customers’ willingness to pay is uniformly distributed it has

ρD = 2

(
1−

√
1− 4c

1− α

)

and

V̂ (ρD) = α

(
1

2
+
ρD

8

)2

V̂ (µmax) = α
µmax

8
(4− µmax)

Moreover, it is assumed that there exists ε > 0 for which µmin(µ, a) < ρD < µ < µmax holds

for every a ∈ (a − ε, a + ε), which implies that the function V ∗(a;µ) is twice differentiable in a
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neighbourhood of a. But then it is a matter of algebra to show that

∂2V ∗(a;µ)

∂a2
= α

∂2

∂a2

[
µ− ρD

µmax − ρD
µmax

8
(4− µmax) +

µmax − µ
µmax − ρD

(
1

2
+
ρD

8

)2
]
< 0

�
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EC 3 Revenue Share

In the description of our model we argued that the platform may find it impossible to tailor the

revenue share it retains to different market conditions because of practical constraints; this justified

taking α exogenous. In this appendix we explore the outcomes that would obtain if the platform

could optimize also this quantity. In fact, a potential threat to our main results is, that leaving the

platform the ability to choose α could lead to a “balancing” between the negative effects of optimal

information disclosure and the positive effect of a low enough revenue share.

Suppose that the same model of Section 2 holds,7 with the only difference that the platform

chooses both the share of revenue it wants to retain and the information disclosure policy; sellers

have the same action space as before. For the sake of tractability, we also assume that the buyers’

willingness to pay is uniformly distributed on the unit interval. Formally, since for fixed α and

(D,M) the game is the same as before and the sellers’ optimal strategies do not change, we can

write the platform’s problem as

max
α∈[0,1], (D,M)

Eρ∼τ
[
V̂ (ρ)

]
,

where V̂ (·) is the function giving the expected profit of the platform when the induced belief is ρ;

the expectation is taken with respect to the distribution τ over beliefs induced by the mechanism

(D,M).8 Notice that the optimal information disclosure policy derived in Section 4 is parametrized

by α ∈ [0, 1], and so for each α we can identify the optimal (D,M); thus, we can write

max
α∈[0,1], (D,M)

E
[
V̂ (ρ)

]
= max

α∈[0,1]
max
(D,M)

E
[
V̂ (ρ)

]
= max

α∈[0,1]
V ∗(µ),

where V ∗ is the concavification of V̂ , i.e. the optimal expected value of the policy to the platform

given c and α. Without loss of generality we will assume c ≤ WM (1); if it were larger, no one

would ever join and the problem would be vacuous.

Notice that the platform faces a basic trade-off in this optimization problem. Since α concurs to

determine how many sellers will join the market in equilibrium, as the opportunity cost decreases

the platform should be able to retain an always larger revenue share, for fixed number of entrants.

At the same time, we established that it is always more profitable to have a single seller on the

market rather than two. The choice of the revenue share must then trade-off the incentive to

appropriate a larger share of each transaction and the effects on competition and volumes of a

larger α. The following proposition shows how this tension is resolved.

7We also revert to assuming that signals about demand are perfectly informative.
8A more formal definition can also be found in the proof of Theorem 1 in Appendix EC 1.
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Proposition 1. The optimal revenue share α∗ takes value in the set{
1− 64

25
c, 1− c(

1
2 + µ

8

)2 , 1− 4c, α

}
,

where α solves

4

√
c

1− α
(1− µ)(2− α) = 5(µ+ 4)(1− α).

The proof provides a more extensive description of the (rather involved) cases where each of

these values are optimal. Notice, however, that the case where α∗ = α is a “residual” one, in the

sense that if c and µ were randomly and independently chosen from their respective ranges, the

probability that this case would obtain is close to 0. Therefore, in what follows we will concentrate

on the other, more relevant, instances. We highlight two main facts that follow from Proposition

1: (i) if α∗ is chosen, there always occurs at most one entry; (ii) the optimal revenue share is

decreasing in the opportunity cost. Hence, our previous intuition about the relation between α∗

and the opportunity cost is confirmed.

The exact value of α∗ depends both on the value of the opportunity cost and on the prior

belief, and therefore requires the same precise knowledge of the market conditions of the optimal

information disclosure policy of Section 4. However, optimally choosing the revenue share makes

the disclosure policy straightforward to implement, because it degenerates to either full-disclosure

or no-disclosure; Table 1 details this. The intuition is that, once it is established that it is optimal

for the platform to have just one seller, the optimal α is the one that selects the best threshold belief

ρM (c, α). This is because in the optimal disclosure with just one entrant, ρM is one of the induced

beliefs. When the opportunity cost is large, it is better for the platform to retain a share that sets

ρM = 1, which lets one seller join only if two customers come, rather than trying to lower ρM so

much that there would always be entry: the intuition is that to have the latter the revenue share

would need to become too small. As the value of the outside option decreases, α is chosen (first)

for ρM to exactly match the prior, and then to have ρM = 0. In both cases one seller always joins,

and the information disclosure policy moves from no-disclosure to full-disclosure. The simplicity of

the ensuing information disclosure policy is a salient feature of this model, and points towards a

direction we have hinted at in Section 2: adjusting the revenue share can be (partially) substituted

with optimal information disclosure. When α is taken as given, the disclosure policy (i.e. the

probability with which the true state is revealed) is made contingent on the market primitives;

however, if the revenue share is allowed to be adjusted, then its optimal value subsumes also the

effects of strategic information disclosure, so that the latter becomes straightforward.

The consequences on welfare of giving the platform an additional profit lever depend on which

setting is taken as a benchmark. In fact, we briefly note that when α∗ is chosen, the hypotheses of
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Optimal α Induced policy Entry

1− 64

25
c Full disclosure ρM = 1⇒ One seller iff ω = 1

1− c(
1
2 + µ

8

)2 Uninformative ρM = µ⇒ One seller always in

1− 4c Full disclosure ρM = 0⇒ One seller always in

Table 1: Optimal information disclosure when α∗ is chosen.

Theorem 3 are satisfied; in turn, these imply that letting the platform apply the optimal information

disclosure weakly increases consumer surplus, compared to the case where nothing is disclosed, but

the same α∗ is employed.9 However, a more interesting benchmark is the setting in which the the

platform sets neither the revenue share nor information disclosure, i.e. takes some α as given and

reveals nothing. In this case, letting the platform use the additional lever makes buyers considerably

worse off.

Theorem 2. Let c, α and µ be given such that, with no-disclosure, at least one seller would join

the platform. If c > 1
36 , or c ≤ 1

36 and µ /∈
(

1− 36c

14c+ 1
, µ

)
, then consumer surplus decreases when

the platform optimally chooses both the revenue share and the disclosure policy.

The belief µ is defined in the proof of Proposition 1, and the the interval

(
1− 36c

14c+ 1
, µ

)
is the

range of values of the prior for which, if the opportunity cost is very small, the optimal revenue

share is α. Since no analytic results can be obtained for this case, one should interpret Theorem 2

as sufficient condition; indeed, numerical examples suggest that the claim also holds for most of the

cases where α∗ = α.10 The intuition behind the stark result is that when the platform is choosing

α optimally, it makes sure that just one seller joins the market (and so makes buyers worse off

compared to all cases where two would enter) and that she has all the information needed to set

the highest price possible. As an illustrative example, consider what happens when c >
1

4
: in this

case α∗ = 1− 64
25c and the policy is of full disclosure, with a seller joining only when two customers

are expected; under this, the first customer is either faced with the highest possible monopoly price

or does not find a seller at all.

Overall, this section improved our understanding of the platform’s market making abilities.

Firstly, we can conclude that relaxing the assumption that α is exogenous does not alter, but

strengthens, our insights from the previous sections: the platform can potentially severely harm the

9Notice that when α∗ induces a no-disclosure policy, there is actually no change in consumer surplus.
10In any case, as remarked before, the range of values for which the theorem does not apply is very small.
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buyers, and letting it choose the optimal revenue share only improves its ability to extract surplus

to increase its profits. The fundamental mechanism through which the platform achieves this is

its ability to modify the sellers’ incentives to join the market. By selecting the most profitable

competitive structure, the optimal revenue share basically incorporates all the gains that would

come from optimal information disclosure, which is the reason why the optimal policy is so simple

under α∗. In turn, this highlights that optimally choosing the revenue share and the information

disclosure are, in a sense, substitutes. This reinforces our intuition that, provided α cannot be

adapted to ever changing market conditions, information disclosure can be used in spite, thus

constituting a flexible tool for managing market thickness.

EC 3.1 Proofs EC 3

Proposition 1

Proof. Before proceeding, let us specify the functional form many quantities of interest take in the

uniform case. It has:

ρM (c, α) = 4

(
2

√
c

1− α
− 1

)
ρD(c, α) = 2

(
1−

√
1− 4c

1− α

)
.

One can also check that WM (1) = (1 − α)25
64 , WM (0) = (1 − α)1

4 and WD(1) = (1 − α) 3
16 .

Since α cannot be larger than 1, without loss of generality c ≤ 25
64 . Thus, we have the following

cases for V ∗: when α > 1− 64
25c, V

∗(µ) = 0 for all beliefs and we call it (for short) case (a); when

α ∈
(
1− 4c, 1− 64

25c
]
∩ [0, 1], then

V ∗(µ) =


αc

1− α
µ

ρM
if µ < ρM

µ− ρM

1− ρM

(
25

64
α− αc

1− α

)
+

αc

1− α
if µ ≥ ρM

and we denote it case (b); when α ∈
(
1− 16

3 c, 1− 4c
]
∩ [0, 1], it obtains

V ∗(µ) =
α

4
+

9

64
αµ,

termed case (c); finally, when α ∈
[
0, 1− 16

3 c
]
∩ [0, 1], we have

V ∗(µ) =


α

4
+ α

[(
1

2
+
ρD

8

)2

− 1

4

]
µ

ρD
if µ ≤ ρD

α

(
1

2
+
ρD

8

)2

+ α

[
3

8
−
(

1

2
+
ρD

8

)2
]
µ− ρD

1− ρD
if µ > ρD
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which is denoted as case (d). When any of the intersections above is empty, V ∗ is not defined on

that interval. Notice also that V ∗ as just defined is also a continuous function of α, so a maximum

in [0, 1] exists.

Note that not all of the cases are feasible for every c. Indeed, when 1
4 < c ≤ 25

64 , only case (b) is

(partially) feasible: since 1−4c < 0, α ranges between 0 and 1− 64
25c; consequently, the smallest ρM

that can be achieved is 8
√
c− 4 > 0. When 3

16 < c ≤ 1
4 case (b) is feasible, and case (c) is partially

feasible. Finally, for c ≤ 3
16 both (b) and (c) are entirely feasible and (d) is partially feasible (it

becomes entirely feasible only when c = 0).

Let us notice that when c = 25
64 then the only possible choice is α = 0 and therefore the problem

is trivial. Without loss of generality, assume then c < 25
64 . We first show that, if feasible, it is never

optimal for the platform to set α so low that case (d) would obtain. In fact, suppose c ≤ 3
16 and

denote by α(c) some α ∈
(
1− 16

3 c, 1− 4c
]

and by α(d) some α ∈
[
0, 1− 16

3 c
]
. For fixed c, α(d)

determines a threshold ρD. The expected profit for the platform without information disclosure

under case (c) is

V̂(c)(µ) = α(c)
[
p̂M (µ)F

(
p̂M (µ)

)
+ µπMF

(
p̂M (µ)

)]
,

and for case (d) with µ ≤ ρD it has

V̂(d)(µ) = α(d)
[
p̂M (µ)F

(
p̂M (µ)

)
+ µπMF

(
p̂M (µ)

)]
.

Since α(c) > α(d), V̂(c)(µ) > V̂(c)(µ) for µ ≤ ρD. Moreover, when µ > ρD so that two sellers join,

we know that the platform gets strictly higher payoff when just one enters; therefore:

α(d)
[
p̂M (µ)F

(
p̂M (µ)

)
+ µπMF

(
p̂M (µ)

)]
> α(d)2µπMF

(
µπM

)
= V̂(d)(µ),

and hence V̂(d)(µ) < V̂(c)(µ) for µ > ρD as well. Recalling the definition of V ∗, it follows V ∗(c) ≥ V
∗

(d)

for every α(c), α(d), c ≤ 3
16 and µ. Finally, with c > 3

16 case (d) is not feasible and therefore we

conclude that α ∈
[
0, 1− 16

3 c
]

can never be optimal. We will now analyze each remaining “piece”

of V ∗, and then derive the optimal α. This is accomplished by first looking for the local maximum

of each bit, and then using monotonicity to identify the global maximum.

Consider now the function

gbl : α 7−→ αc

1− α
µ

ρM
.

Since c < 25
64 , α 6= 1 always. Moreover, this is the value of the revenue share α when µ < ρM ; using
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the definition of ρM one obtains

µ < ρM ⇐⇒ α > 1− c(
1
2 + µ

8

)2 .
For all µ in the unit interval we have

1− 4c ≤ 1− c(
1
2 + µ

8

)2 ,
and therefore ρM 6= 0 always, so that the function is always well defined. It can be checked that

its first derivative is positive if and only if c > 1−α
(2−α)2

, where the RHS reaches a maximum of 1
4 at

α = 0. Hence for c > 1
4 the function is strictly increasing on all its domain and its maximum is

attained at α = 1− 64
25c. Moreover, for c ≤ 1

4 the function is convex for α > 1−4c, and consequently

the maximum is found at either extreme of the domain. It has

gbl

(
1− c(

1
2 + µ

8

)2
)
≤ gbl

(
1− 64

25
c

)
,

if and only if c ≤ 15
64 , or c > 15

64 and µ ≥ 16(1− 4c).

We now study the function

gbu : α 7−→ µ− ρM

1− ρM

(
25

64
α+

αc

1− α

)
+

αc

1− α
.

It can be checked that it is strictly concave for all µ 6= 1. Since this is the value of α when µ ≥ ρM ,

its domain is the interval (provided c is small enough)(
1− 4c, 1− c(

1
2 + µ

8

)2
]
.

The FOC for it to be maximized is

4

√
c

1− α
(1− µ)(2− α) = 5(µ+ 4)(1− α). (EC 3.1)

The first derivative evaluated at α = 1 − c

( 1
2+µ

8 )
2 is positive for all µ when c > 1

36 ; when c ≤ 1
36

there exists µ such that gb′u is positive if µ ≥ µ. Such µ is the unique root in [0, 1] of the polynomial

µ3 + 7µ2 + (8 + 64c)µ+ 576c− 16,
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with variable µ and parameter c. It follows that gb′u(1 − 4c) > 0 for c > 1
36 , and when c ≤ 1

36

we have gb′u(1 − 4c) > 0 if µ < 1−36c
14c+1 < µ. Therefore, we have three possible cases: (i) when

gb′u(1− 4c) ≤ 0 the maximum is achieved at α = 1− 4c; (ii) if gb′u(1− 4c) > 0 and

gb′u

(
1− c(

1
2 + µ

8

)2
)
< 0,

then the function is maximized at the solution of (EC 3.1); finally (iii), if

gb′u

(
1− c(

1
2 + µ

8

)2
)
≥ 0,

the maximum is found at α = 1− c

( 1
2+µ

8 )
2 .

Finally, let us consider

gc : α 7−→ α

(
1

4
+

9

64
µ

)
,

which is maximized at α = 1− 4c, since it is linear in α.

Recall that the objective function we want to maximize is continuous in α. Putting together all

previous observations, we arrive at the following cases.

1. 1
4 < c ≤ 25

64 : only case (b) is feasible, and therefore from our discussion it must be that the

platform wants ρM > µ, with α∗ = 1− 64

25
c.

2. 15
64 < c ≤ 1

4 : only case (b) is feasible, but compared to the previous point gbl is no longer

monotone, while gbu is increasing. Thus it has:

(i) µ > 16(1 − 4c): α∗ = 1 − 64

25
c, because gbL is convex and the maximum is attained at

the right end of the domain.

(ii) µ = 16(1 − 4c): α∗ ∈

{
1− 64

25
c, 1− c(

1
2 + µ

8

)2
}

, because gbl attains the same value at

both ends of the domain.

(iii) µ < 16(1− 4c): α∗ = 1− c(
1
2 + µ

8

)2 , because gbl is convex and the maximum is attained

at the left end of the domain.

3.
1

36
< c ≤ 15

64
: gbu is increasing and gbl is always smaller than gbu, so α∗ = 1− c(

1
2 + µ

8

)2 .

4. 0 < c ≤ 1

36
: where the maximum is attained depends on the monotonicity of gbu. From

before, it has:
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(i) µ ≥ µ: gbu is increasing, and thus α∗ = 1− c(
1
2 + µ

8

)2 .

(ii)
1− 36c

14c+ 1
< µ < µ: gbu admits an interior maximum, attained at the α∗ solving equation

(EC 3.1).

(iii) µ ≤ 1− 36c

14c+ 1
: gbu is decreasing and therefore α∗ = 1− 4c.

This concludes the proof. �

Theorem 2

Proof. We will start by recollecting from the previous proofs the value of expected consumer welfare

when no optimization takes place; denote by α an exogenously given revenue share. If no seller

joins, which happens for α > 1 − 64
25c, or 1 − 4c < α ≤ 1 − 64

25c and µ < ρM (c, α), the consumer

surplus is 0. When only one seller enters, which occurs if 1− 4c < α ≤ 1− 64
25c and µ ≥ ρM (c, α),

or 1− 16
3 c < c ≤ 1− 4c, or c ≤ 1− 16

3 c and µ ≥ ρD(c, α), the expected consumer surplus is

∫ 1

1
2+µ

8

(
v − 1

2
− µ

8

)
dv + µ

(
1

2
+
µ

8

)∫ 1

1
2

(
v − 1

2

)
dv =

1

2

(
1

2
+
µ

8

)2

+
µ

8

(
µ

8
− 1

2

)
.

Finally, both sellers join only when c ≤ 1− 16

3
c and µ > ρD(c, α); the consumer surplus is given by

∫ ∞
µ
4

(
v − µ

4

)
dv + µ

((
1− µ

4

)∫ ∞
1
2

(
v − 1

2

)
dv +

µ

4

∫ ∞
0

vdv

)
=
µ2

8
− µ

8
+

1

2
.

Let us first suppose that α∗ = 1 − 64
25c, so that the induced policy is full-disclosure and in

particular ρM (c, α∗) = 1; this implies that one seller will enter when ω = 1, and she is certain that

a second customer comes, while no one joins when ω = 0. Hence the expected consumer surplus

induced by this policy is

µ

[∫ 1

5
8

(
v − 5

8

)
dv +

5

8

∫ 1

1
2

(
v − 1

2

)
dv

]
+ (1− µ)× 0 =

19

128
µ.

Algebra shows that
19

128
µ− 1

2

(
1

2
+
µ

8

)2

− µ

8

(
µ

8
− 1

2

)
≤ 0,

and
19

128
µ− µ2

8
+
µ

8
− 1

2
≤ 0,

for all µ ∈ [0, 1].
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Suppose now α∗ = 1− c

( 1
2+µ

8 )
2 , which implies ρM (c, α∗) = µ and therefore no-disclosure. Under

this policy, one seller always enters, with a posterior belief equal to her prior. Thus consumer

surplus is equal to
1

2

(
1

2
+
µ

8

)2

+
µ

8

(
µ

8
− 1

2

)
≥ 0,

and once again one verifies that

1

2

(
1

2
+
µ

8

)2

+
µ

8

(
µ

8
− 1

2

)
− 1

2

(
1

2
+
µ

8

)2

− µ

8

(
µ

8
− 1

2

)
= 0,

and
1

2

(
1

2
+
µ

8

)2

+
µ

8

(
µ

8
− 1

2

)
− µ2

8
+
µ

8
− 1

2
≤ 0,

for all µ ∈ [0, 1].

Finally, assume α∗ = 1 − 4c, so that ρM (c, α∗) = 0 and the policy is again of full-disclosure.

One seller always joins, which implies that the consumer surplus is

µ

[∫ 1

5
8

(
v − 5

8

)
dv +

5

8

∫ 1

1
2

(
v − 1

2

)
dv

]
+ (1− µ)

∫ 1

1
2

(
v − 1

2

)
dv =

3

128
µ+

1

8
.

Further algebra gives that

3

128
µ+

1

8
− 1

2

(
1

2
+
µ

8

)2

− µ

8

(
µ

8
− 1

2

)
≤ 0,

and
3

128
µ+

1

8
− µ2

8
+
µ

8
− 1

2
≤ 0,

for all µ ∈ [0, 1], which proves the claim. �
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EC 4 Market with Many Sellers

The model employed until Section 5 is stylized, but thanks to its simplicity we could neatly identify

the essential aspects of our problem. We now seek to understand whether the insights developed

also hold in a richer setting. To this end, we develop a model that allows for an arbitrary number

of sellers and buyers to join the platform: our analysis will show that the previous intuitions carry

over. However, this comes at the cost of a more contrived model, which will require some additional

assumptions to be made tractable. We now describe its details, and postpone the discussion of the

differences with the basic model to the end of the section.

EC 4.1 Model and equilibrium

The game we consider is dynamic, with three time periods, t ∈ {−1, 0, 1}: in period t = −1 the

platform commits to the information disclosure policy; in t = 0, it observes the realization of the

state of demand and sends a message to a countably infinite pool S of potentially differentiated

sellers, who, in turn, make an entry decision. Finally, in t = 1, those of them who decided to join

compete on prices. If sellers do not join the platform, they have an outside option valued at c.

Analogously to the basic model, the platform generates its profits by retaining a fixed share of the

value of the sales made by each participating seller. As in Section 2, we denote by ht a generic

history of the game in period t, with the convention that h−1 = ∅.

Buyers As before, we abstract away the behaviour of buyers, and take as primitive the demand

function that arises from their (implicit) optimal decision. We use a demand system employed in

Bimpikis, Crapis, and Tahbaz-Salehi (2019), which is in turn micro-founded in Myatt and Wallace

(2015); this results from a continuum of buyer . When a subset S ⊂ S of sellers decide to join the

platform, and each posts price (pj)j∈S , seller i faces a demand Qi for her product given by

Qi = max {0, θ + (φ− 1)P − φpi} , (EC 4.1)

where θ > 0, P =
1

|S|
∑

j∈S pj is the average price posted by all participating sellers and φ > 1.

This demand system allows us to generally and economically model a market where many sellers

sell (possibly) differentiated products. The parameter φ captures the degree of substitutability

between goods supplied by different sellers: higher values of φ indicate more homogeneous markets.

To model the idea that, when the number of participants in the market increases, the level of

differentiation decreases11, we assume that φ depends on the number |S| = N of sellers that decide

11Instances of models where this phenomenon occurs are the classic Hotelling (linear city) or Salop (1979) com-
petition games.
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to join the market, so that φ = d(N) = N ε, ε ≥ 2.

As discussed later, we include uncertainty about demand by assuming that θ is a random

variable. A large realization of θ models an instance of “high” demand, while with a small realization

we instantiate low demand in the market.

Sellers There is a countably infinite set of potential entrants, denoted by S = {1, 2, . . .}. We

define the sellers’ actions and payoffs backwards as in Section 2, with pi the price posted by seller

i and Ei ∈ {0, 1} denoting her entry decision. Starting from t = 1, at any history h1 such that

subset S ⊂ S of seller decided to join the platform, for any i ∈ S the payoff is

ΠS
1,i

(
σSi ;h1

)
= (1− α)Eρ

[
Epi∼σSi [max {0, θ + (φ− 1)P − φpi} pi | θ]

]
,

where ρ is the posterior belief at h1. It is assumed that sellers get to observe how many of their

competitors joined the platform before deciding on prices. Moreover, we suppose that each seller

has an infinite inventory of her product, so that she can always entirely satisfy demand Qi. Based

on this continuation payoff, one defines also the utility of seller i ∈ S at time t = 0.

ΠS
0,i

(
σSi ;h0

)
= EEi∼σSi

[
1{Ei = 1}ΠS

1,i

(
σSi ; 〈h0, Ei = 1, E−i〉

)
+ c1{Ei = 0}

]
.

The entry decision is taken after having observed the message sent by the platform, which affects

the expectation about θ and therefore influences ΠS
1,i.

Platform and information structure Demand is unknown at period t = −1, and this is

modeled by assuming that θ in equation (EC 4.1) is a random variable, taking values in Θ =

{θL, θH}, with θH > θL. We assume θL >
θH
2 , i.e. that the realizations of demand are sufficiently

similar; this is just to simplify exposition. The commonly shared prior probability that {θ = θH}
is denoted by µ as before. Consistently with Section 2, an information disclosure policy is a pair

(D,M) such that

D : Θ→ ∆(M).

Since the platform only moves at period t = −1, its payoff is12

ΠP ((D,M);h−1) =
α

1− α
Eθ∼µ

[
Em∼D(θ)

[∑
i∈S

1{Ei = 1}ΠS
0,i

(
σSi ; 〈h−1, (D,M),m〉

)
| θ

]]
.

12Similarly to before, we can interpret this as saying that the platform receives perfectly informative signals about
θ.
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Under the rules of the game described in the previous paragraphs, the series above converges for

all c > 0, since only finitely many of the sellers will join in equilibrium.

There are some important differences between this model and the one presented in Section 2.

Besides the number of agents taking part in the transactions, these concern the timing of the

game and the representation of demand; the two issues will be dealt together. Notice that simply

expanding the number of buyers and sellers in the basic model, while leaving unchanged its dynamic

pricing, gives rise to a much more difficult game, where existence and payoff equivalence of equilibria

cannot be assured.13 Therefore, in order to increase the number of market participants, and still

retain a tractable model, we need to compress the time dimension. This also necessarily implies

the different way in which we capture variability in demand.

EC 4.1.1 Equilibrium definition

The equilibrium concept we consider is completely analogous to that of the basic model: Sender-

preferred perfect Bayesian equilibrium in pure strategies. Hence, the formal definition is very

similar to that in Section 2.1.

Definition 1. A collection of strategy-belief pairs (σk, γk)k∈S∪{P} is a Sender-preferred PBE if the

following conditions are satisfied:

(1) For every seller i ∈ S, every time period t ∈ {0, 1}, and every history ht, we have

ΠS
t,i

(
σSi ;ht

)
≥ ΠS

t,i

(
σ′Si ;ht

)
,

where σ′Si denotes a feasible strategy for seller i. Moreover, σSi (h1) = σSj (h1) for all i, j such

that Ei = Ej = 1 at t = 0

(2) For every agent k, γk | ∅ = µ, i.e., both sellers and the platform share a common prior µ.

Moreover,

(i) For i ∈ S, γi | h is determined by Bayes’ rule after history h.

(ii) For the platform, γP | h = δ{θ} for all h 6= ∅, where θ is the realization of the state of

the world.

(3) For fixed (D,M), whenever there exist multiple assessments such that all of the previous

conditions hold, then (σi, γi)i∈S yields the highest payoff for the platform.

13E.g. Mart́ınez-De-Albéniz and Talluri (2011) conclude that with two sellers endowed with finite inventory, and
facing multiple customers, there exists no equilibrium whenever buyers have random willingness to pay.
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(4) Finally, (D,M) is the information disclosure policy that maximizes the platform’s profits

ΠP ((D,M);h−1) ≥ ΠP
(
(D,M)′;h−1

)
,

assuming that sellers follow the strategies prescribed by the equilibrium.

The only substantial difference with the equilibrium in Section 2.1 is that here we impose that

all entrants post the same price. This is required for simplicity reasons, and it allows to concentrate

on the effects that information disclosure has on competition, since it eliminates possible sources

of heterogeneity. Furthermore, it facilitates the comparison with the outcomes of the basic model.

EC 4.2 Equilibrium analysis

The identification of equilibrium decisions proceeds backwards, and therefore we begin with equi-

librium play at period t = 1.

Proposition 2 (Pricing game). At every history h1 when a subset S of sellers decide to join, and

the belief is ρ, the only symmetric equilibrium in pure strategies gives

p∗ =
Eρ[θ]N

N [d(N) + 1] + 1− d(N)
.

Each seller expects to earn

Wi(ρ,N, α) = (1− α) (Eρ[θ])2 N [d(N)(N − 1) + 1]

[d(N)(N − 1) +N + 1]2
,

and the platform’s expected profits are

V̂ (ρ,N, α) = α (Eρ[θ])2 N2 [d(N)(N − 1) + 1]

[d(N)(N − 1) +N + 1]2
,

where |S| = N .

Further manipulations show the following facts: (i) holding ρ and α fixed, seller i’s profits are

strictly decreasing in N , and so are equilibrium prices; instead, (ii) Wi(ρ,N, α) increases in the

belief for fixed N . We also note that V̂ is convex in the belief ρ.

As an ideal counterpart of Proposition 3, the following result describes equilibrium entry deci-

sions in this game.

Proposition 3 (Entry equilibrium). Given outside option value c and platform’s commission α,
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define Nmax(c, α) and Nmin(c, α) as

Nmax(c, α) = max {N : Wi(1, N, α) ≥ c},

Nmin(c, α) = max {N : Wi(0, N, α) ≥ c}.

For each k ∈ {Nmin(c, α) + 1, . . . , Nmax(c, α)} define the threshold beliefs ρk such that

Wi(ρk, k, α) = c.

Then at any history h0 such that the posterior belief is ρ:

(i) if ρ ≤ ρNmin+1, Nmin(c, α) sellers join;

(ii) if ρk < ρ ≤ ρk+1, k sellers join (with k ∈ {Nmin(c, α) + 1, . . . , Nmax(c, α)});

(iii) if ρ > ρNmax, Nmax(c, α) sellers join.

Proposition 3 shows that the pattern of entry at equilibrium in this model is not substantially

different from that of the setting of Section 2: for a fixed value for the outside option and fees, as the

belief about demand being high increases more sellers join. The main difference with Proposition

3 is that in this case there are infinitely many potential sellers, and therefore more than one of

them may enter as the belief increases. The result is that the unit interval is partitioned in sub-

intervals (ρk, ρk+1], and for posterior beliefs within each interval, k sellers join the market. Finally,

Nmin(c, α) and Nmax(c, α) describe the minimum and maximum number of entrants, respectively,

that the value of the outside option and α allow in the market.

EC 4.3 Information disclosure

The information design problem of the platform exhibits now many more degrees of freedom, and

the optimal information disclosure policy cannot be determined analytically for every combination

of the parameters. The reason for the increased difficulty of the problem resides with the more

complex nature of the entry pattern. In fact, in general it has Nmax(c, α)−Nmin(c, α) > 1, which

implies that in principle all possible combinations of threshold beliefs ρk as potential posteriors to

be induced should be evaluated. However, it is still possible to obtain a basic prediction of our basic

model: optimal disclosure harms consumers, when taking as benchmark a policy of no-disclosure.

Theorem 3. Suppose Nmin(c, α) < Nmax(c, α). There exists N such that if Nmin(c, α) ≥ N ≥ 2

and V̂ (1, Nmax(c, α)) < V̂
(
ρNmax , Nmax(c, α)− 1

)
, then consumer surplus decreases under the

optimal information disclosure policy for at least all µ ≥ ρNmax.

EC – 42



It should be noted that the reduction in the welfare of consumers is caused by the same mech-

anism at work in the basic model. For µ ≥ ρNmax the platform’s optimal policy will always be one

that induces beliefs 1 or ρNmax : when the latter obtains, the number of sellers in the market de-

creases compared to the benchmark, and this drives prices up and volumes down. Thus, we recover

another base prediction of our simpler model, that the platform alters the competitive structure to

increase its profits, and this damages consumers.

Theorem 3 provides a sufficient condition for buyers to be harmed by the disclosure from the

platform, but it is not necessary. As such, it gives a lower bound on the instances where consumer

surplus decreases. Indeed, it is not difficult to find examples where the reduction is consumer

surplus is much more widespread; however, this can only be ascertained by first determining the

optimal information disclosure policy, which in turn requires fixing some values for the parameters.

Next we explore a numerical example where consumer surplus decreases for almost all prior beliefs.

EC 4.3.1 Numerical example

The example described here is intended to show that the implications of employing optimal infor-

mation disclosure can be extended beyond the lower bound presented in Theorem 3. At the same

time, the choice of parameters instantiates a fairly “standard” setting, whose main takeaways can

be recovered also with other parameter values.

We fix the following values for the primitives: ε = 2, θH = 10, θL = 5, c = 2.9 and α = 5%.

These imply that Nmin = 2 and Nmax = 6. The optimal information disclosure that ensues takes

the following form.14

Optimal policy An optimal policy has message space M = {Y,N}. Write D(θ) for the proba-

bility that message Y is sent when the state of the world is θ. Then,

D(θH) =


1 for µ ≤ ρNmin+1

qHk for ρk < µ ≤ ρk+1, k ∈ {Nmin + 1, . . . , Nmax}
µ− ρNmax

µ (1− ρNmax)
for µ > ρNmax

14A formal justification of why the policy takes this form can be found at the end of the proofs section of this
appendix.
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and

D(θL) =


µ
(
1− ρNmin+1

)
ρNmin+1(1− µ)

for µ ≤ ρNmin+1

qLk for ρk < µ ≤ ρk+1, k ∈ {Nmin + 1, . . . , Nmax}

0 for µ > ρNmax

where qLk and qHk are the unique solutions to the systems
qHk µ

qHk µ+ qLk (1− µ)
= ρk+1(

1− qHk
)
µ(

1− qHk
)
µ+

(
1− qLk

)
(1− µ)

= ρk

for k ∈ {Nmin + 1, . . . , Nmax}.
A verbal description of the policy clarifies that the optimal behaviour for the platform is to

identify the threshold beliefs which are immediately larger and smaller than the prior µ, and to

obfuscate information to induce either of these two as posterior beliefs. Since at the lower belief

the incentives to entry are different, the outcome of the policy is to sometimes inducing one of

the sellers that would have joined to stay out of the market. When the prior belief is below the

threshold that would let Nmin+1 sellers join, the possible posterior beliefs are 0 and ρNmin+1, from

which follows that the number of participating sellers is not affected. Drawing a comparison with

the optimal policy in Section 4, the case of µ ≤ ρNmin+1 closely mirrors the case where the value

of the outside option is low, i.e., c < WD(1), with µ ≤ ρD. On the other hand, the outcomes of

the policy when µ > ρNmin+1 can be likened what occurs in our baseline model with low value of

outside option and the prior exceeds the threshold ρD.

Figure 2 represents the welfare effects of employing the optimal information disclosure policy.

From Figure 2a one observes that the optimal policy can lower consumer surplus by as much as

50%. At the same time, it is worth noting the similarity between Figure 2a and the left panel

of Figure 5, which strengthens our previous parallelism with the baseline model. The increase in

the platform’s profits is large as well, as shown in Figure 2b, which also includes a comparison

with the full-disclosure policy. The platform earns its additional profits at the expense of buyers:

it exploits the fact that it can inflate prices by alternatively increasing the belief held by sellers

or by restricting the number of entrants. The comparison with full-disclosure serves to confirm

our intuition from Section 4, that fully revealing information may yield even worse outcomes than

no-disclosure. Finally, we also obtain that social welfare is lower when the platform employs the

optimal information disclosure policy, as given in Figure 2d.

In general, the results of this numerical exercise showed that it possible to retrieve our predictions
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(a) Consumer surplus (b) Platform’s profits

(c) Aggregate profits for sellers (d) Social welfare

Figure 2: Percentage change due to the platform employing the optimal disclosure policy instead
of no-disclosure. Additionally, 2b illustrates the increase in profits with respect to full-disclosure
policy. Dashed lines are drawn at the threshold beliefs ρ3, ρ4, ρ5 and ρ6. Benchmark profits and
social welfare are derived with a total number of sellers equal to 10.
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also from a more realistic model, that allows for additional customers and sellers. Results of the

same type can be obtained by choosing different values for the parameters and selecting different

functional forms for φ = d(N).

EC 4.4 Proofs EC 4

Proposition 2

Proof. Suppose first N = 1, in which case the demand faced by the single entrant reduces to

Q = θ − pi, since P = pi. The seller wishes to maximize expected profit and therefore the

equilibrium price must solve

max
p

(1− α)Eρ[p(θ − p)].

Taking the FOC gives that p∗ =
Eρ[θ]

2 and, since we are assuming θL > θH
2 , the Seller faces

positive demand even when the realized intercept is θL. Hence the expected profit for Seller i is

πi(ρ, 1, α) =
(Eρ[θ])2

4 .

Suppose now N > 1, so that the optimization problem of seller i becomes

max
pi

(1− α)Eρ

pi
θ + (d(N)− 1)

1

N

N∑
j=1

pj − d(N)pi

 . (EC 4.2)

Taking the FOC gives

Eρ[θ]− 2pi
(N − 1)d(N) + 1

N
+
d(N)− 1

N

∑
j 6=i

pj = 0.

Imposing pj = pi for every i, j and solving the equation yields

p∗i =
Eρ[θ]N

N(d(N) + 1) + 1− d(N)
.

At this point, simple substitution of p∗i into (EC 4.2) gives the expected profit of a single seller.

Finally, we can obtain the platform’s profit by summing over the N expected profits of the sellers

multiplied by the revenue share of the platform. �

Proposition 3

Proof. Under our assumptions, Wi(ρ,N, α) → 0 for all ρ as N → ∞. Also recall that Wi is

increasing in ρ, which implies that the maximum possible profit for a seller obtains when ρ = 1

and N = 1, while the minimum is zero. Without loss of generality, assume Wi(1, 1, α) > c, since
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otherwise there is never entry. Then Nmax(c, α) and Nmin(c, α) are well-defined as

Nmax(c, α) = max {N : Wi(1, N, α) ≥ c},

Nmin(c, α) = max {N : Wi(0, N, α) ≥ c}.

For each k ∈ {Nmin(c, α) + 1, . . . , Nmax(c, α)} define beliefs ρk such that

Wi(ρk, k, α) = c.

Under our assumption, each of these equations has a unique solution: it represents the minimum

belief such that k sellers would join the platform. In fact, take posterior belief ρ such that ρk < ρ <

ρk+1: if k − 1 sellers joined, then one of the sellers that stays out would have incentive to deviate

and enter, because Wi(ρ, k, α) > c; similarly, if k + 1 joined then one of the seller in the market

would deviate and stay out, because Wi(ρ, k+1, α) < c. Hence, exactly k seller join at equilibrium.

To establish entry for ρ = ρk, we evaluate V̂ (ρk, k, α) and V̂ (ρk, k − 1, α). It has

V̂ (ρk, k − 1, α) ≥ V̂ (ρk, k, α⇐⇒
(k − 1)2 [d(k − 1)(k − 2) + 1]

[d(k)(k − 2) + k]2
≥ k2 [d(k)(k − 1) + 1]

[d(k)(k − 1) + k + 1]2
,

(EC 4.3)

where we remind that d(k) = kε for some ε ≥ 2. Additional algebra shows that (EC 4.3) is always

satisfied for every k > 2. Hence, we conclude that for k = 1, 2, exactly k sellers join at ρk, while

for k ≥ 3, k − 1 sellers join at ρk. �

Theorem 3

Proof. We start by noting that for any optimal policy, the only posterior beliefs that are induced

can be ρ = 0, ρ = 1, or the threshold beliefs ρk, for some k ∈
{
ρNmin+1, . . . , ρNmax

}
(and possibly

all of them). This is because the function V̂ is locally increasing and convex in the belief, which

by the usual concavification argument implies that it is always possible to improve over a policy

that induces posterior ρ 6= 0, 1, ρk. Observe now that at belief ρk exactly k − 1 sellers join by

the Sender-preferred condition of equilibrium. Therefore, at ρk the platform’s profits reach a local

maximum, and then jump downwards. We have

V̂ (ρk, k − 1, α) = αEρk [θ]2
k − 1

h(k − 1)
= c

α

1− α
(k − 1)

h(k)

h(k − 1)
,

where h(k) =
[d(k)(k − 1) + k + 1]2

k [d(k)(k − 1) + 1]
. It can be shown that (k− 1)

h(k)

h(k − 1)
is eventually increasing
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in the number of entrants; denote by N the number, which depends on ε only, such that for all

k ≥ N , (k − 1)
h(k)

h(k − 1)
is increasing. It follows that, under our hypotheses, there is a sequence

of increasing local maxima at ρk, with V̂
(
ρNmax , Nmax − 1, α

)
being also the global maximum of

V̂ in [0, 1]. Hence, it must be that at an optimal disclosure policy, for prior µ ∈
(
ρNmax , 1

]
, the

platform mixes between beliefs ρNmax and 1.

Consider now expected consumer surplus: since at equilibrium all sellers quote the same price,

the expected consumer surplus of the customers acquiring the product from one seller amounts to
1
2Eρ

[
(θ − p∗)2

]
. Hence, when there are k of them on the platform, the total expected consumer

surplus is

CS(ρ, k) =
k

2
Eρ

[(
θ − Eρ[θ]k

d(k)(k − 1) + k + 1

)2
]
.

All else equal, increasing the number of entrants increases consumer welfare, both because the

price paid decreases and because a larger demand can be satisfied. Furthermore, algebra proves

that CS(ρ, k) is concave in ρ for k fixed, and increasing. Hence, expected consumer surplus is an

increasing, piecewise concave function over [0, 1], with discontinuities at each threshold belief ρk.

In particular, it has

CS(ρNmax , Nmax − 1) < lim
ρ↓ρNmax

CS(ρ,Nmax) ≤ CS(1, Nmax).

Since at any optimal disclosure policy the platform mixes between beliefs ρNmax and 1, under

the optimal policy the expected consumer surplus is

τCS (1, Nmax) + (1− τ)CS
(
ρNmax , Nmax − 1

)
,

with τ determined by the optimal policy. Concavity of consumer surplus and the previous inequality

then yield that under the optimal policy consumer welfare must be lower than under the no-

disclosure benchmark. �

Derivation of the optimal policy in the numerical example As in the proof of Theorem 1,

we want to identify the concavification V ∗ of V̂ and then deduce the optimal policy from it. The

concavification of V̂ can also be defined as the smallest concave function that is everywhere weakly

larger than V̂ .

Notice that the beliefs {0, ρNmin+1, . . . , ρNmax , 1} partition the unit interval and, within each

cell of the partition, V̂ is a convex function of the prior belief µ. Thus, consider the set B given by

B =
{(
ρk, V̂ (ρk, k − 1, α)

)
: k ∈ {Nmin + 1, . . . , Nmax}

}
∪
{(

0, V̂ (0, Nmin, α
)}
∪
{(

1, V̂ (1, Nmax, α
)}
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and the piecewise affine function defined as

∼
V (µ) =



V̂ (ρNmin+1, Nmin, α)− V̂ (0, Nmin, α)

ρNmin+1
µ+ V̂ (0, Nmin, α) µ ≤ ρNmin+1

V̂ (ρk+1, k, α)− V̂ (ρk, k − 1, α)

ρk+1 − ρk
µ+ V̂ (ρk, k − 1, α) ρk < µ ≤ ρk+1

V̂ (1, Nmax, α)− V̂ (ρNmax , Nmax − 1, α)

1− ρNmax
µ+ V̂ (ρNmax , Nmax − 1, α) µ > ρNmax

k ∈ {Nmin + 1, . . . , Nmax}, whose graph passes through every point in B.
∼
V is concave because

under our choice of parameters the slope of each affine bit decreases as µ moves from 0 to 1; hence,

B is a subset of the set of extreme points of the convex hull of the graph of V̂ . As a consequence,

V ∗(µ) = V̂ (µ,N(µ), α) whenever
(
µ, V̂ (µ,N(µ), α)

)
∈ B, by definition of extreme point.15 Take

now any other function l satisfying this requirement and such that l(µ) <
∼
V (µ) for some µ. Clearly

µ /∈ {0, Nmin + 1, . . . , Nmax, 1}, but since
∼
V is affine, l must be non-concave in the cell of the

partition containing µ. Thus, we cannot find another concave function that is smaller than
∼
V

and that passes through all the points in B, which implies that
∼
V = V ∗. At this point, following

arguments identical to those employed in Theorem 1 it follows that the given policy delivers a value

equal to V ∗.

15Here N(µ) denotes the number of entrants when the belief is µ, determined according to our equilibrium rule.
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