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Risk pooling has been studied extensively in the operations management literature as the basic driver behind

strategies such as transshipment, manufacturing flexibility, component commonality, and drop-shipping.

This paper explores the benefit of risk pooling in the context of inventory management using the canonical

model first studied in Eppen (1979). Specifically, we consider a single-period multi-location newsvendor

model, where n different locations face independent and identically distributed demands and linear holding

and backorder costs. We show that Eppen’s celebrated result, i.e., that the expected cost savings from

centralized inventory management scale with the square root of the number of locations, depends critically

on the “light-tailed” nature of the demand uncertainty. In particular, we establish that the benefit from

pooling relative to the decentralized case, in terms of both expected cost and safety stock, is equal to n
α−1
α

for a class of heavy-tailed demand distributions (stable distributions), whose power-law asymptotic decay

rate is determined by the parameter α ∈ (1,2). Thus, the benefit from pooling under heavy-tailed demand

uncertainty can be significantly lower than
√
n, which is predicted for normally distributed demands. We

discuss the implications of this result on the performance of periodic-review policies in multi-period inventory

management, as well as for the profits associated with drop-shipping fulfilment strategies. Corroborated by

an extensive simulation analysis with heavy-tailed distributions that arise frequently in practice, such as

power-law and log-normal, our findings highlight the importance of taking into account the shape of the tail

of demand uncertainty when considering a risk pooling initiative.
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1. Introduction

One of the primary goals of an inventory management system is to protect the firm against demand

uncertainty. Inventory pooling, i.e., the practice of serving multiple markets from a single stock of

inventory, has received a lot of attention both among academics and practitioners. By and large,

existing literature highlights the benefit from pooling, arising from statistical economies of scale,

when the underlying demand distribution is light-tailed. A central feature of the present paper,

and the main point of departure from previous literature, is that we consider heavy-tailed demand

distributions. Our results quantify the relation between the benefit from pooling and how heavy
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the tail of the demand distribution is, pointing to the fact that the value of pooling, in terms of

savings in both expected cost and safety stock, decreases as the tail of the underlying demand

distribution becomes heavier, i.e., the probability of “extreme events” becomes higher.

The operational benefits from inventory pooling are well-known and fairly intuitive: serving inde-

pendent demand streams from a single stock of inventory allows a firm to reduce the risk associated

with demand uncertainty, as the stochastic fluctuations of different demands cancel out to some

extent. Indeed, Eppen (1979) established that pooling n independent and identically distributed

demand streams is
√
n times less costly than serving each stream independently. However, this

important insight relies on two assumptions: (i) there is no additional cost in serving local demands

from a central location; and (ii) the demands are normally distributed, i.e., the underlying demand

distribution is light-tailed.

In certain settings these assumptions may not be justified. Although detecting and accurately

estimating the parameters of heavy-tailed distributions is quite challenging due to the infrequency

of “extreme events” that characterize them, several recent studies provide strong evidence of heavy-

tailed phenomena in industries of interest. Additionally, we provide empirical evidence of heavy-

tailed demand for movies at Netflix and for shoes at a major North American retailer. It should

be noted that, typically, inventory pooling studies ignore additional costs associated with serving

multiple locations from a central one. When the benefits from a pooling initiative are not as large

as expected, e.g.,
√
n, then, of course, these costs become even more relevant.

The discussion above provides solid motivation to reexamine the benefit from inventory pooling

in relation to the shape of the tail of the underlying demand distributions. This is precisely what

we set out to do in the present paper by studying a model that follows closely the one analyzed by

Eppen (1979) and subsequent literature. In particular, we consider a single-period multi-location

newsvendor, with independent and identically distributed stochastic demands and linear holding

and backorder costs. Our main point of departure from earlier work is that we assume that the

underlying demand distribution is heavy-tailed, i.e., its tail decays at a subexponential rate. Prime

examples of heavy-tailed distributions are power-laws for which the tail distribution satisfies:

F (x)∼ 1

xα
, α > 0.

For distributions in this class, the probability of extreme events decays at a polynomial rate, and

the exponent α captures the level of uncertainty: lower values for the exponent imply a higher

probability of large demand realizations. Another example of heavy-tailed distributions are log-

normals, whose tails decay faster than those of power-laws, but still at a subexponential rate.

The main contribution of our work is to provide simple closed-form expressions that determine

the benefit from pooling, in terms of both the expected cost and the safety stock, as a function of
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the number of locations and the distribution’s tail exponent. In particular, we show that as the tail

exponent decreases, i.e., the probability of extreme events becomes larger, the benefit from pooling

decreases. Thus, our findings highlight the importance of properly accounting for the tail of the

underlying demand distribution when deciding on how to manage a firm’s inventory, or generally

on adopting a risk-pooling initiative. 1

Moreover, we discuss the implications of our findings on the performance of periodic-review

policies in multi-period inventory management. In particular, we consider a single-location multi-

period newsvendor where inventory is replenished according to a periodic-review policy, i.e., the

firm is constrained to make orders every ` time periods. We view such a policy as “pooling in time”:

the firm satisfies demands received over multiple time periods from a single order. In this setting,

frequent inventory replenishment reduces the newsvendor part of the cost as the firm is better able

to match supply with demand, whereas infrequent replenishment reduces fixed ordering costs. We

provide an upper and a lower bound on the optimal review period that highlight its dependence

on the (heavy-tailed) distribution’s tail exponent. Specifically, both bounds are monotonically

increasing in the tail exponent, suggesting that a demand distribution with a heavier tail leads to

a shorter optimal review period. This fact provides an additional illustration of our main insight:

pooling, whether “in space” or “in time,” is less appealing in the presence of heavy-tailed demand.

There is a sizable literature on inventory pooling. As mentioned above, Eppen’s seminal paper

(Eppen (1979)) establishes that if n individual markets are pooled together and their demands are

normally distributed and uncorrelated, then the benefit from inventory pooling is
√
n. The same

paper shows that this benefit decreases if the (normally distributed) demands are positively corre-

lated, and vanishes in the extreme case of perfect correlation. Federgruen and Zipkin (1984) consider

a centralized depot that serves multiple markets, and provide a systematic way to approximate this

model by a much simpler single-location inventory system. In the process, they demonstrate the

benefit from pooling for different classes of distributions, most notably exponential and Gamma.

Corbett and Rajaram (2006) and Mak and Shen (2014) extend Eppen’s result regarding the benefit

from pooling under correlated demands to more general distributions. Benjaafar et al. (2005) study

the benefit from pooling in production-inventory systems, and establish that it decreases as the

system’s utilization increases due to an increase in the correlation among lead-time demands.

Closer in spirit to our work, Gerchak and Mossman (1992) and Gerchak and He (2003) study the

impact of “demand randomness ” on the optimal inventory levels and newsvendor cost through a

simple mean-preserving transformation, and provide examples where pooling might neither reduce

1 As an additional example of the applicability of our results, in Appendix B we consider the practice of drop-shipping
in online retailing (see Netessine and Rudi (2006) and Randall et al. (2006)), where a wholesaler stocks all inventory
and ships products directly to customers at the retailers’ request.
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inventories nor move them closer to the mean or median demand. Berman et al. (2011) report

simulation results for a number of distributions and argue that the normal distribution does not

always provide accurate estimates with regards to the benefit from pooling as a function of the

variance of the distribution. They conclude that more theoretical analysis is needed to explore the

relation between demand uncertainty and the benefits from pooling. Aydın et al. (2012) use results

from Jang and Jho (2007) to establish that in an inventory system with two regularly varying

demand streams and tail exponent α, pooling leads to an increase in safety stock when α < 1.

Their result provides no information regarding the impact of pooling on expected cost, but rather

it provides a threshold for the tail exponent below which pooling leads to a higher safety stock. In

contrast, our results provide easy-to-interpret expressions that quantify the benefit from pooling,

in terms of both the safety stock and the expected cost, as a function of the tail exponent α. In

fact, one can obtain the result in Aydın et al. (2012) as a corollary of our Theorem 1 for the class

of stable distributions. As a final remark, distributions with α< 1 that are featured in Aydın et al.

(2012) are “extremely heavy-tailed,” i.e., they have infinite mean. Our empirical evidence as well

as much of the prior literature provide support for heavy-tailed distributions, but typically with a

finite mean (1<α< 2).

Additionally, Song (1994) and Ridder et al. (1998) study the effect of demand uncertainty in

a single-period single-location newsvendor model, albeit for light-tailed distributions, and provide

examples where increasing variability may increase or decrease costs. Finally, the literature on

periodic-review policies is vast, e.g., see Atkins and Iyogun (1988), Eynan and Kropp (1998), Graves

(1996), Rao (2003), Shang and Zhou (2010), but there does not seem to exist any result that

explores the relation between the tail of the demand distribution and the optimal review period.

Related to inventory pooling are also the strands of literature that explore the benefit from invest-

ing in flexible manufacturing capacity or resources, e.g., Fine and Freund (1990), Van Mieghem

(1998), Netessine et al. (2002), Van Mieghem (2003), Bassamboo et al. (2010); component common-

ality, e.g., Bernstein et al. (2007), Van Mieghem (2004), Bernstein et al. (2011); and delayed product

differentiation, e.g., Lee and Tang (1997), Feitzinger and Lee (1997), Anand and Girotra (2007).

Anupindi and Bassok (1999) explore the interplay of inventory pooling and consumer behavior in

an environment that consumers may search for available inventory in other locations in the case

of a stock-out. On another note, Swinney (2012) considers pooling strategies in the presence of

forward-looking consumers that may delay the time of a purchase anticipating a markdown.

The rest of the paper is organized as follows. First, to motivate the subsequent analysis we provide

empirical evidence of heavy-tailed demand uncertainty in Section 2. We present the single-period

multi-location newsvendor model and provide our main results regarding the benefit from inventory

pooling in Section 3. Section 4 discusses the implications of our findings on the performance of
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periodic-review policies in multi-period inventory management. Section 5 concludes the paper. All

proofs are relegated to Appendix A. A brief discussion on the practice of drop-shipping and the

implications of our results in that context can be found in Appendix B.

2. Empirical Evidence of Heavy-Tailed Demand Uncertainty

Heavy-tailed distributions are used to model uncertainty when extreme events, i.e., very large

or very small outcomes, are relatively likely, e.g., much more likely compared to what a normal

distribution would have predicted. Arguably, markets for fashion, technology (e.g., tablets and

smartphones) and creative goods (e.g., movies and books), where there is significant uncertainty

with respect to the number of sales of a new product, fall into this category. Chevalier and Goolsbee

(2003) estimate that the empirical distribution of book demand at Amazon has a power-law tail

with exponent α= 1.2, whereas Gaffeo et al. (2008) report that the tail exponents for book sales

in Italy lie in the interval α∈ (1,1.4), and conclude that “... the values of α are always significantly

different from 2 and, therefore, the estimated degree of uncertainty in the book publishing market

is too high to be compatible with a Gaussian distribution.”

Furthermore, we analyzed data on movie ratings in Netflix.2 Since, presumably, one has to watch

a movie (and thus “consume” the DVD) before rating it, it can be argued that this dataset provides

a good approximation for the demand of a movie at Netflix. We estimate that the number of movies

per number of distinct ratings follows a power-law distribution with tail exponent α= 1.04.

Finally, following the methodology described in Clauset et al. (2009), we perform a test to

determine whether a heavy-tailed or a light-tailed distribution provides a better fit for the demand

of similar retail products. We use data that we obtained from a major North American retailer

on the number of sales throughout one year for 626 similar products (sneaker shoes). We compare

the respective fit of the empirical distribution of the number of products per number of sales to

the exponential, the normal, and the power-law distribution, respectively. Our approach can be

summarized as follows:

(i) First, we fit the empirical data to the three candidate models to obtain the best fit within the

model. We do so by deriving Maximum Likelihood Estimators for the parameters of each model.

(ii) Then, we use a goodness-of-fit test to determine whether any of the hypothesized models

explains the empirical data. The test is based on calculating the Kolmogrov-Smirnov statistic that

corresponds to the empirical data and the hypothesized model, and comparing it with the KS

statistic for synthetic datasets generated by the same model.

2 We thank Professor Serguei Netessine for giving us access to this dataset. We focused on the 983 movies in the
dataset that received more than 500 ratings. The heavy-tailed nature of the dataset was even more pronounced when
we included the rest of the movies (corresponding α= 0.6).
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(iii) Finally, a measure of the goodness-of-fit is the p-value associated with this experiment,

which is defined as the fraction of times that the KS statistic corresponding to synthetic datasets is

larger than the one that corresponds to the empirical data. A low p-value (typically, less than 5%)

indicates a poor fit between the empirical data and the hypothesized model and, thus, provides

strong support against the postulated hypothesis.

In Table 1 we report the p-values associated with our hypotheses. Clearly, the exponential and

the normal distributions provide poor fits to the empirical distribution and can be rejected. On

the other hand, the power-law distribution seems to provide a reasonable description of the data.3

Fitted Distribution p-value Key Parameters

Exponential Less than 0.0001 λ̂= 0.1247
Normal Less than 0.0001 µ̂= 8.0176, σ̂= 12.0446

Power Law 0.5565 α̂= 1.3769

Table 1 Test of goodness-of-fit for the exponential, normal, and power-law distributions to the empirical

distribution of sales. Parameters λ̂, µ̂, σ̂, and α̂ provide the best fit within the class of exponential, normal, and

power-law distributions, respectively. The corresponding p-values indicate the goodness-of-fit of each of the

hypothesized models (based on 100,000 synthetic datasets). The results suggest that the exponential and normal

distributions are poor fits for the dataset, whereas a power law provides a reasonable description of the data.

We note that the empirical evidence provided above involves sales figures for different products

that belong to the same product category, of the form “possible demand realizations vs how many

times each demand is observed in the dataset.” When introducing a new product, in order to decide

the optimal inventory level/safety stock and then estimate the potential benefit from a pooling

initiative, one needs to have a prior assumption for the demand of the product. The empirical

distribution of past sales in the product category provides a natural starting point for forming such

a prior. The empirical evidence presented above indicates that heavy-tailed distributions would be

appropriate priors for the demand in several industries of interest.

3. The Value of Inventory Pooling under Heavy-Tailed Demand

In this section we provide a description of the standard single-period multi-location newsvendor

model, in the context of which we then present our main result regarding the benefit from risk

pooling in the presence of heavy-tailed uncertainty.

A firm sells a product in n> 1 different locations for a single time period. The demand for the

product at location i is random, and denoted by Di. The random variables {Di; i= 1, . . . , n} are

independent and distributed identically to some continuous random variable D, with cumulative

distribution function F (·). At the beginning of the period the firm decides its inventory levels.

3 We note that the data could also be consistent with other distributions that we have not explicitly tested. See Clauset
et al. (2009) for an excellent discussion on the challenges in identifying and characterizing power-law distributions.
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Then, the random demands are realized, and at the end of the period the firm incurs holding cost

at rate h per unit and backorder cost at rate p per unit.

We compare the expected cost and safety stock of a fully decentralized scheme, where inventory

reserved for location i cannot serve demand in any other location j 6= i, to a fully centralized scheme,

where demand from all n locations are satisfied from a single inventory repository. Intuitively,

the latter approach should be preferable due to the so-called “statistical economies of scale”:

when independent demands are aggregated their stochastic fluctuations cancel out to some extent,

making the aggregate demand more predictable and, thus, allowing for a reduction in expected

cost. What is more interesting to analyze is the extent to which these fluctuations cancel out and,

correspondingly, to quantify how much this reduces the expected cost.

A central feature of our model is that we consider heavy-tailed demands, i.e., probability dis-

tributions whose tails decay at a subexponential rate. More specifically, we derive most of our

analytical results assuming that random variable D belongs to the class of stable distributions. In

general, stable distributions are characterized by four parameters: the stability parameter α∈ (0,2],

the skewness parameter β ∈ [−1,1], the scale parameter σ > 0, and the location parameter µ ∈R.

Henceforth, we denote by Sα(σ,β,µ) a stable distribution with stability α, skewness β, location µ,

and scale σ.4

The stability parameter α determines the shape of the tail of the distribution. In the special

case of α= 2 we retrieve the normal distribution. In contrast, for α< 2 the distribution has infinite

variance and features power-law asymptotics with tail exponent equal to α, i.e.,

P(D>x)∼ 1

xα
,

for large x. Note that smaller values of α correspond to heavier tails and, thus, higher probabilities

of extreme events. Henceforth, we focus on demands with stability parameter α> 1, so that their

expectations are finite and the corresponding newsvendor costs well-defined.

In this paper we derive analytical results regarding the benefits from inventory pooling for

stable distributions with α≤ 2, and complement those results with a simulation study focusing on

power-law and log-normal distributions. While power laws and stable distributions have the same

asymptotic behavior, i.e., their tails decay at roughly the same (polynomial) rate, comparing the

bodies of these distributions is a challenging task. This is because the probability density functions

of stable distributions do not admit explicit expressions (typically, stable distributions are defined

through their characteristic functions). That said, one of the main insights of the paper is that

it is precisely the tail of the demand distribution that plays a critical role in determining the

4 The location parameter µ is equivalent to the mean of the distribution if α> 1. The skewness parameter β determines
how skewed is the distribution and to which direction. Finally, the scale parameter is equivalent to the standard
deviation of the distribution, whenever this is finite, i.e., in the case of normal distributions.
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Figure 1 The Cauchy distribution (α = 1) has significantly heavier tails compared to the normal distribution

(α= 2) (figure taken from http://fukakai.blogspot.com).

benefits from pooling. So for our purposes, our findings regarding stable distributions provide a

reasonably good approximation for power-laws as well. Our analytical results hinge on the following

well-known property of stable distributions.

Lemma 1. Let the random variables Xi, i = 1, . . . , n, be mutually independent and distributed

identically to the stable distribution Sα(σ,β,µ), α∈ (1,2]. Then,
n∑
i=1

Xi
d
= n

1
αX1 +µ

(
n−n 1

α
)
.

Lemma 1, which captures the essence of stable distributions, states that if i.i.d. stably distributed

random variables are added, then (a linear transformation of) the sum is also stably distributed

with the same parameters; equivalently, that stable distributions are closed under convolution.5 The

proof of this result utilizes the definition of stable distributions via their characteristic functions,

and the fact that the characteristic function of the sum of independent random variables is equal

to the product of their characteristic functions. In the context of this paper, Lemma 1 enables us

to express in closed-form the distribution of the aggregate demand in the case of inventory pooling,

thus allowing for tractable analysis.6

3.1. Background: the Single-Location Newsvendor Model

We start by reviewing the single-period single-location newsvendor model, i.e., the case where

n= 1, which provides some necessary background for the subsequent analysis. The optimization

problem that the firm has to solve in the single-location case can be written as follows:

min
q

E
[
h
(
q−D

)+
+ p
(
D− q

)+]
,

5 For a more extended discussion of stable distributions and their properties, the reader is referred to Zolotarev (1986).

6 As a final remark regarding our modeling assumptions, stable distributions can take both positive and negative
values whereas the demand for a product is clearly nonnegative. An implicit assumption in the paper (which is a
“standard” assumption in related literature, and often the case in practice) is that the expectation of the distribution
is large. Then, the probability of the demand taking negative values is negligible, and its impact is insignificant.
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where the expectation is taken with respect to the distribution of D. It is well-known that for

distributions with continuous CDFs, the optimal inventory level q∗ satisfies:

F (q∗) =
p

p+h
. (1)

The quantity (q∗−µ) is often interpreted as the safety stock that the newsvendor needs to keep in

excess of the mean demand. The optimal expected cost for the single-location newsvendor is:

C(1)≡E
[
h
(
q∗−D

)+
+ p
(
D− q∗

)+]
. (2)

Finally, if X is a random variable and E is an event on the underlying probability space, we

denote by E[X; E] the expectation E[X · 1E], where 1E is the indicator variable of E. Using this

notation, we can rewrite Equation (2) as follows:

C(1) = hE[q∗−D; D≤ q∗] + pE[D− q∗; D> q∗]

(1)
= hq∗

p

p+h
−hE[D; D≤ q∗] + pµ− pE[D; D≤ q∗]− pq∗ h

p+h

= pµ− (h+ p)E[D; D≤ q∗]. (3)

3.2. The Value of Inventory Pooling under Stable Distributions

Coming back to the multi-location newsvendor problem, we first look into the decentralized inven-

tory management scheme. In this case, the firm solves the basic newsvendor problem of Section

3.1, independently at each location. We let Cd(n) denote the optimal expected cost associated with

n locations in the absence of pooling, i.e.,

Cd(n)≡
n∑
i=1

min
qi

E
[
h
(
qi−Di

)+
+ p
(
Di− qi

)+]
.

Since the random variables {Di; i = 1,...,n} are independent and distributed identically to D,

we have that the optimal inventory level for each of the individual newsvendors is q∗, given by

Equation (1). Therefore, the optimal aggregate inventory level in the decentralized case, which we

denote by qd(n), is equal to qd(n) = nq∗, and the optimal expected cost is Cd(n) = nC(1), where

C(1) is the optimal expected cost in the single-period single-location newsvendor problem.

Next, we turn our attention to the centralized inventory management scheme. In this case, the

firm solves a single optimization problem that is equivalent to that of the single-location newsvendor

of Section 3.1, when the demand is replaced by the sum of the demands in the n locations. Let

Cc(n) denote the optimal expected cost associated with managing n locations in a centralized

manner, i.e.,

Cc(n)≡min
q

E
[
h
(
q−

n∑
i=1

Di

)+

+ p
( n∑
i=1

Di− q
)+]

,

where the expectation is taken with respect to
∑n

i=1Di. We denote the optimal inventory level in

this case by qc(n) and we have: Cc(n) =E
[
h
(
qc(n)−

∑n

i=1Di

)+

+ p
(∑n

i=1Di− qc(n)
)+]

.
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Theorem 1 provides a simple relation between the optimal expected cost in the centralized and

the decentralized system, as well as between the corresponding safety stocks, as a function of the

stability parameter and the number of locations.

Theorem 1. Consider the single-period multi-location newsvendor problem with mutually inde-

pendent demands that are distributed identically to the stable distribution Sα(σ,β,µ), α∈ (1,2]. The

relative benefit from inventory pooling in terms of expected cost is equal to

Cd(n)

Cc(n)
= n

α−1
α .

Moreover, the relative benefit in terms of safety stock is the same, i.e.,

qd(n)−nµ
qc(n)−nµ

= n
α−1
α .

Proof: See Appendix A.

Theorem 1 captures the relative benefit from pooling, i.e., the savings in both expected cost and

safety stock, relative to the benchmark of a fully decentralized system. Moreover, it illustrates the

main insight of the paper: the benefit from inventory pooling is inherently dependent on the tail of

the underlying demand; in particular, it decreases as the tail of the demand becomes heavier. It can

be easily verified that the latter part of the theorem holds also for α< 1. This implies that when

demands are “extremely heavy-tailed” pooling may lead to an increase in safety stock. A similar

result was proved in Aydın et al. (2012) for n= 2 and regularly varying demands.

We note that the scope of Theorem 1 is quite broad, since it holds for all feasible values of the

skewness, scale, and location parameters, which determine the “body” of the distribution. Let us

now look at the implications of Theorem 1 in two special cases:

(i) Normally distributed demands: When α= 2 the demand distribution is normal, and we obtain

that: Cd(n) =
√
nCc(n) and qd(n)−nµ=

√
n
(
qc(n)−nµ

)
, recovering the result of Eppen (1979);

(ii) Cauchy distributed demands: When α→ 1 the demand distribution is approximately Cauchy,

and Cd(n)≈Cc(n) and qd(n)≈ qc(n), i.e., there is essentially no benefit from pooling.

Finally, we provide some intuition on the findings of Theorem 1. Consider the single-period

single-location newsvendor model. It is clear that a more “predictable” demand can lead to lower

expected inventory costs. At the extreme of deterministic demand, the firm simply holds inventory

equal to the demand and incurs zero costs. This is also suggested by Equation (3), since a more

predictable demand would correspond to a distribution that has little probability mass in the tail.

The value of inventory pooling lies in the fact that when n i.i.d. demand streams are aggregated

their stochastic fluctuations cancel out to some extent, making the total demand more predictable

relative to the mean nµ. To quantify the pooling benefit, one needs to obtain a good understanding
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on the extent to which these fluctuations cancel out. In mathematical terms, the main determinant

of the benefit from pooling is the order of magnitude of the fluctuations of
∑n

i=1Di around nµ.

When the demand distribution is light-tailed, then the Central Limit Theorem implies that the

fluctuations are of order O
(√
n
)
. In turn, this implies that the expected holding and backorder

costs are of order O
(√
n
)
. In particular, when the demands are normally distributed, it can be

shown that the optimal expected cost in the centralized case is equal to
√
nC(1) (Eppen (1979)).

Thus, the relative benefit from pooling is in this case:

Cd(n)

Cc(n)
=

nC(1)√
nC(1)

=
√
n.

On the other hand, when the demand distribution is heavy-tailed, then the order of magnitude of

these fluctuations is greater: the Generalized Central Limit Theorem implies that the fluctuations

are of order O
(
n

1
α
)
, where α ∈ (0,2) is the tail exponent of the demand distribution. This implies

that aggregate demand is less predictable and, thus, the benefit from pooling should be smaller.

Specifically, when demands follow a stable distribution with α ∈ (1,2), we prove that the optimal

expected cost in the centralized case is equal to n
1
αC(1), which implies that

Cd(n)

Cc(n)
=

nC(1)

n
1
αC(1)

= n
α−1
α .

At this point, we should note that the stochastic variability of stable distributions depends not

only on the stability parameter α, but also on the scale parameter σ, which is equivalent to the

standard deviation in the case of normal distributions. As it is apparent from Theorem 1, the scale

parameter does not affect the relative benefit from pooling, i.e., Cd(n)/Cc(n). Another metric of

interest, though, is the absolute benefit from pooling, i.e., Cd(n)−Cc(n). The following corollary

expresses this absolute benefit as a function of the demand variability and the number locations.

Corollary 1. Consider the single-period multi-location newsvendor problem with mutually

independent demands that are distributed identically to the stable distribution Sα(σ,β,µ), α∈ (1,2].

The absolute benefit from inventory pooling in terms of expected cost is equal to

Cd(n)−Cc(n) =
(
n−n 1

α
)
C(1),

where C(1) is the optimal expected cost in the single-period single-location newsvendor problem.

Proof: This result follows directly from the proof of Theorem 1.

Clearly, the term
(
n−n 1

α
)

decreases as α decreases, namely as the tail of the demand distribution

becomes heavier. On the other hand, Equation (3) suggests that a decrease in α has the opposite

effect on C(1): the only way that the mean of a distribution stays the same while the positive tail

becomes heavier is when probability mass from the body of the distribution moves towards lower

values. Thus, the term E[D; D≤ q∗] is expected to decrease, which would imply that C(1) increases

as α decreases. That said, any potential increase in C(1), irrespective of whether it is attributed
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to the stability or to the scale parameter, does not scale with n. Hence, the net effect should be a

decrease in the absolute benefit from pooling when the number of demand streams that are pooled

together is large enough (which is actually the case of interest). This insight is corroborated by

simulation results towards the end of the section.

3.3. Simulations

Theorem 1 and Corollary 1 determine the benefit from pooling when the demand distribution has

a significantly heavy tail (power-law tail with exponent less than two) but provide no information

about heavy-tailed demands with a somewhat lighter tail, e.g., power laws with tail exponent

greater than or equal to two, or log-normal distributions. Obtaining analytical results for these

distributions turns out to be a challenging task because they are not closed under convolution.

Without this property the analysis of the centralized system becomes quite challenging, since

quantiles and expectations have to be computed with respect to a multidimensional convolution of

densities for which, to the best of our knowledge, there are no closed-form analytical expressions

that can lead to tractable analysis.7 One could estimate the relative benefit from pooling via a

CLT-type approximation to the sum of n i.i.d. random variables. Our investigation of this point

suggests that this approach performs well for distributions with a relatively light tail.8

On the positive side, in contrast to stable distributions, it is straightforward to simulate power-

law and log-normal distributions. The numerical experiments presented below for a variety of

distributions and parameter values, corroborate the main insight of Theorem 1 and Corollary 1,

i.e., that the benefit from pooling reduces as the tail of the demand distribution becomes heavier.

More specifically, in Tables 2a–3b we report the ratios of the optimal expected costs of decentralized

over centralized inventory management for n= 10, 20, 40, and 50 locations, where the demand is

modeled as a power-law distribution with exponents ranging from 1.1 to 15. We follow Clauset

et al. (2009) and assume that the demand has the following probability density function:

f(x) =
γ− 1

xmin

( x

xmin

)−γ
, x∈ [xmin,∞), (4)

where the tail exponent of the probability distribution function in this case is equal to (γ−1). We

use xmin = 1 and we normalize the mean to µ= 100 for the ratios reported in Tables 2a–3b.

In the tables we also report the relative benefit for log-normal, normal, and exponential demand

with the same variance. Log-normal distributions, unlike stable distributions with α< 2, have finite

variance but their tails are significantly heavier compared to those of exponential distributions.

7 Refer to Ramsay (2006) for an overview of what is known with respect to the convolution of power-law distributed
random variables.

8 We thank an anonymous reviewer for suggesting this approach. Although, for brevity, we do not report the latter
findings, they are available from the authors upon request.
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Tail Exponent Ratio Predicted Ratio
1.1 1.25 1.23
1.2 1.50 1.47
1.5 1.61 2.15
1.7 1.73 2.58
1.9 1.84 2.97
2.5 2.07
5 2.45
10 2.63
15 2.69

Log-normal 1.93
Normal 3.16

Exponential 2.78

(a) Number of locations: 10

Tail Exponent Ratio Predicted Ratio
1.1 1.35 1.31
1.2 1.71 1.65
1.5 1.94 2.71
1.7 2.14 3.43
1.9 2.32 4.13
2.5 2.72
5 3.37
10 3.66
15 3.75

Log-normal 2.53
Normal 4.47

Exponential 3.91

(b) Number of locations: 20

Table 2 Ratio of the costs of decentralized over centralized inventory management for power-laws,

log-normally, normally, and exponentially distributed demand, when the number of locations is 10 and 20. For the

power-laws we use xmin = 1 and we normalize the mean to µ= 100. The shape parameter for the log-normal

distribution is set to
√

2 and the rate for the exponential is set to λ= 1/
√

50 (the mean for all three is normalized

to 100 whereas the variance is equal to 50). The third column reports the ratio predicted from Theorem 1.

Tail Exponent Ratio Predicted Ratio
1.1 1.47 1.40
1.2 1.96 1.85
1.5 2.35 3.42
1.7 2.67 4.57
1.9 2.97 5.74
2.5 3.63
5 4.68
10 5.14
15 5.26

Log-normal 3.37
Normal 6.33

Exponential 5.52

(a) Number of locations: 40

Tail Exponent Ratio Predicted Ratio
1.1 1.51 1.43
1.2 2.04 1.92
1.5 2.51 3.68
1.7 2.88 5
1.9 3.22 6.38
2.5 3.99
5 5.21
10 5.73
15 5.88

Log-normal 3.72
Normal 7.07

Exponential 6.16

(b) Number of locations: 50

Table 3 Ratio of the costs of decentralized over centralized inventory management for power-laws,

log-normally, normally, and exponentially distributed demand, when the number of locations is 40 and 50. For the

power-laws we use xmin = 1 and we normalize the mean to µ= 100. The shape parameter for the log-normal

distribution is set to
√

2 and the rate for the exponential is set to λ= 1/
√

50 (the mean for all three is normalized

to 100 whereas the variance is equal to 50). The third column reports the ratio predicted from Theorem 1.

In all cases, the benefit from centralized inventory management decreases significantly as the

tail of the underlying demand distribution becomes heavier. As expected, simulation results do not

match exactly our theoretical findings, wherever the comparison is valid, since power-law distribu-

tions are not stable distributions (although they do have the same asymptotic behavior). However,
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we emphasize that for relatively small values of the exponents, i.e., for demand distributions with

sufficiently heavy tails, the predictions of Theorem 1 are close to the true values; at least much

closer compared to the standard square-root rule. Furthermore, note that although the log-normal

and the exponential distributions have the same variance in all tables, they lead to very different

results. This illustrates that the variance may not be the most suitable quantity to study when

estimating the relative benefit from pooling. Rather, the shape of the tail seems to be a more appro-

priate metric. Overall, our main qualitative insight continues to hold for non-stable distributions,

such as power laws and log-normals.

It is worthwhile to mention that although we are mostly interested in the relative benefit from

inventory pooling, and how the latter scales as a function of the number of locations, we verify

numerically that in the presence of heavy-tailed demand the absolute benefit from pooling is also

much more modest. More specifically, we compare the absolute benefit from pooling, Cd(n)−Cc(n),

in the following two cases: (i) when the demand has probability density function that is given by

Expression (4) with γ = 2.1, i.e., the tail exponent is 1.1, and mean equal to 10; (ii) when the demand

is exponentially distributed with rate λ= 0.1 (so that the average demand is again equal to 10).

When the holding and backorder costs are both equal to one, we obtain that Cd(50)−Cc(50) = 290

for exponentially distributed demand, as opposed to Cd(50)−Cc(50) = 107 for power-law demand.

Thus, if a manager assumed incorrectly that the demand is exponentially distributed, she would

overestimate the absolute benefit from pooling by a factor of 2.7.

As a final remark, the power-law distribution of Equation (4) is also convenient for gaining

additional insight on how the optimal order quantity depends on the tail of the demand distribution.

For simplicity, let us focus on the single-location case with xmin = 1. The optimal order quantity

satisfies:
∫∞
q∗ (γ− 1)x−γdx= h/(p+h). Therefore,

q∗ =

(
p+h

h

) 1
γ−1

, γ > 1,

i.e., the optimal order quantity q∗ for n= 1 is decreasing in γ.

3.4. Demands with Bounded Support

Datasets that support the heavy-tail hypothesis, such as the ones in Section 2, provide evidence of a

heavy tail for the empirical distribution up to a certain point, beyond which there is simply no data.

This raises the following issue regarding our modeling choices: stable and power-law distributions

have infinite variance while in practice datasets always have bounded support and, consequently,

finite sample moments. One may wonder whether the main insight of the above sections is an

artifact of infinite variance rather than a salient feature of heavy-tailed distributions.

Tables 2a–3b provide support against this claim by comparing the pooling benefits for log-

normally, normally, and exponentially distributed demands with the same (finite) variance. In this
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section we argue further that heavy tails are indeed the cause of the decreasing benefit from pooling,

irrespective of the support or the variance, by assuming that the underlying demand follows a

truncated stable distribution. More specifically, the demands at different locations
{
Dk
i ; i= 1,...,n

}
are independent random variables that are distributed identically to Dk =D · 1|D|<k, where D ∼

Sα(σ,β,µ), α∈ (1,2], and k ∈Z+ is the truncation point. We note that truncated distributions have

bounded support and, thus, finite variance. Again, our goal is to compare the optimal expected

cost of decentralized to centralized inventory management, which we denote by Cd
k(n) and Cc

k(n),

respectively. The following proposition summarizes our findings.

Proposition 1. Consider the single-period multi-location newsvendor problem with mutually

independent demands that are distributed identically to the stable distribution Sα(σ,β,µ), α∈ (1,2],

truncated at k ∈Z+. For every ε > 0 there exists k0(ε), such that∣∣∣Cd
k(n)

Cc
k(n)

−n
α−1
α

∣∣∣≤ ε, ∀k≥ k0(ε).

Proof: See Appendix A.

Proposition 1 serves mainly as a proof of concept, to the fact that it is the heavy-tailed nature

of the demand distribution that leads to a decrease in the benefit from pooling, rather than the

boundedness of the support or the finiteness of the variance. 9 The simulation results that we

report in Table 4 provide additional evidence to this point, and empirically verify that truncation

points need not be very large for the main insight to hold.

Tail Exponent Ratio
Truncation at 150 Truncation at 200 Truncation at 500 No truncation

1.2 2.91 2.73 2.37 2.04
1.5 2.99 2.89 2.69 2.51
1.7 3.10 3.10 2.98 2.88
1.9 3.38 3.34 3.27 3.22

Ratio for the normal distribution 7.07

Table 4 Ratio of the costs of decentralized over centralized inventory management for truncated power-law

distributions as a function of the distribution’s tail exponent. The mean of the distribution is normalized to 100

and the number of locations is 50. We consider the following truncation points: 150, 200, and 500.

4. “Pooling in Time”: Replenishment under Heavy-Tailed Demand

In this section we consider a single-location multi-period newsvendor model, where inventory is

replenished according to a periodic-review (R,T ) policy, i.e., the firm reviews its inventory levels

every T periods and places an order so as to raise the inventory position up to R. We call this

9 We note that the truncation point k0(ε) depends also on α, a dependence that has been omitted in Proposition 1
in order to ease the notation. Typically, we would expect higher probability of tail events, i.e., lower α, to lead to a
higher truncation point.
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setting “pooling in time” as, essentially, the firm serves demand realized in multiple time periods

from a single inventory order. We show that the benefit of replenishing inventory periodically

instead of every single period decreases with the probability of extreme events, and we provide an

upper and a lower bound on the optimal review period that depend on the tail exponent α.

More concretely, we consider a firm that faces demand for a single product at time periods 1,...,t.

We denote by Dτ the demand at period τ and assume that the random variables {Dτ ; τ = 1,...,t}

are independent and distributed identically to the stable distribution Sα(σ,β,µ), α∈ (1,2]. The firm

incurs three types of cost: (i) inventory holding cost for excess inventory, at rate h per product

and per time period; (ii) backorder cost for inventory shortage, at rate p per product and per time

period; and (iii) fixed ordering cost, at rate f per order placed. We assume that there is no lead

time between placing and receiving an order.

Intuitively, a short review period implies low newsvendor cost, i.e., joint inventory holding and

backorder cost, since the firm can better match supply and demand. On the other hand, a long

review period implies infrequent placement of orders, so the fixed ordering cost is low. The goal

is to achieve the optimal tradeoff between these opposing forces, i.e., to determine the length of

the review period that minimizes the total expected cost. For the rest of the section we denote the

length of the review period by `. Moreover, to simplify the analysis, we make the (unrealistic but

not crucial) assumption that the length of the horizon t is an integer multiple of ` for all review

periods. Let q̄` be a solution to the optimization problem:

q̄` ≡ arg min
q>0

∑̀
i=1

E
[
h
(
q−

i∑
j=1

Dj

)+

+ p
( i∑
j=1

Dj − q
)+]

.

Since the demands at different periods are i.i.d. random variables, and there is no lead time between

placing and receiving an order, the optimal periodic-review policy with period ` is “order up to q̄`,

once every ` periods.” The total expected cost of this policy can be broken down into “newsvendor”

and “fixed ordering” part, i.e., Kpr(`) =Cpr(`) + f · t/`, with

Cpr(`) =

t/`∑
κ=1

∑̀
i=1

E
[
h
(
q̄`−

i∑
j=1

D(κ−1)`+j

)+

+ p
( i∑
j=1

D(κ−1)`+j − q̄`
)+]

,

=
t

`

∑̀
i=1

E
[
h
(
q̄`−

i∑
j=1

Dj

)+

+ p
( i∑
j=1

Dj − q̄`
)+]

.

Theorem 2. Consider the single-location multi-period newsvendor problem, with mutually inde-

pendent demands that are distributed identically to the stable distribution Sα(σ,β,µ), α∈ (1,2]. The

optimal review period for inventory replenishment, `∗, satisfies:⌊( αf

C(1)

) α
α+1
⌋
≤ `∗ ≤

⌈(αf + f

C(1)

) α
α+1
⌉
,

where C(1) is the optimal expected cost in the single-period single-location newsvendor problem.

Proof: See Appendix A.
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Note that the gap between the upper and lower bound on the optimal review period is of the

order of f/C(1), since their common exponent is less than one. Thus, when the newsvendor cost

C(1) is larger than f , which could very well be the case under heavy-tailed demand uncertainty,

Theorem 2 provides a relatively tight characterization of the optimal review period.

Furthermore, both the upper and the lower bound on the optimal review period are monotonically

increasing in α, since both the bases and the exponent are increasing in α. So, the heavier the

tails of the stochastic demands, the shorter the optimal review period. This should be interpreted

as follows: a long optimal review period implies that the additional newsvendor cost incurred due

to the discrepancy between supply and (stochastic) demand is small compared to the savings

from fixed ordering cost. In contrast, a short optimal review period indicates that this additional

newsvendor cost is large, and in the limit as ` goes to one so large that any pooling benefit

becomes insignificant. Therefore, our result shows that the benefit from “pooling in time” decreases

as the tail of the demand distribution becomes heavier. This may have implications on which

products the inventory manager decides to carry, since expected profits for products that feature

heavy-tailed demand are lower even when the mean demand is the same. Alternatively, it may be

optimal for an inventory manager to implement different replenishment strategies for the products

in her assortment, depending on the characteristics of their demand distributions. More specifically,

shorter review periods are preferable for products with heavy-tailed demand.10

5. Concluding Remarks

The goal of this paper was to illustrate the importance of accounting for the tail of the demand

distribution when considering investing in centralized inventory management, delayed product

differentiation, or flexible capacity. Although it is true, in general, that the above practices lead

to a decrease in the associated costs, we showed that the savings are crucially dependent on how

variable the demand is, in the sense of how likely extreme events are. Specifically, we provided

simple closed-form expressions that relate the savings from pooling (in terms of both expected cost

and safety stock) of a firm that faces stably distributed demands, as a function of the stability

parameter, which captures the shape of the tail. Our results indicate that the benefit from inventory

pooling decreases as the tail of the underlying demand becomes heavier. Therefore, pooling may not

be as operationally attractive when the underlying uncertainty is not light-tailed, e.g., normal or

exponential. This, in conjunction with empirical evidence supporting modeling the prior on demand

with a heavy-tailed distribution, point to the fact that the decision maker should carefully estimate

10 In order to provide clean expressions relating the tail exponent and the optimal review period, we had to make
certain simplifying assumptions, e.g., zero lead time, horizon being a multiple of the review period. If these assumptions
are relaxed, the expressions for the upper and lower bounds should be considerably more complicated. However, we
believe that the qualitative nature of our findings will remain intact.
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the relevant parameters before committing to an inventory management (or resource investment)

strategy. Ignoring the, potentially, heavy-tailed nature of the demands may overestimate the cost

savings of a pooling initiative and, thus, lead to suboptimal decisions.

Our intention was to study the interplay between heavy-tailed demand and pooling benefit in

the simplest possible setting, so that our findings can be easily interpreted and directly compared

to standard results in the literature. As a next step, several extensions to our benchmark model are

worthwhile exploring. For example, consider an environment where demands in different locations

are independent but differ in the distribution tail, and serving them from a centralized location

involves an additional transportation cost. What is the optimal inventory management structure

then? Which of the demand streams should be pooled together?

Similar issues arise when considering the optimal level of investment in flexible capacity or

resources, e.g., see Van Mieghem (1998), Netessine et al. (2002). We believe that the analysis

in those papers can be appropriately generalized for the class of stable distributions and, thus,

results that relate the tail of the underlying distribution to the optimal investment strategy can

be obtained. More generally, accounting for heavy-tailed uncertainty in operations management

contexts, even outside resource pooling, is a first-order concern and we hope that the methodology

employed in the present paper will be useful in future works.
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Appendix A: Proofs

Proof of Theorem 1

Using Lemma 1, we can rewrite qc(n) as follows:

qc(n) = inf
{
q≥ 0 : P

(
n

1
αD+µ

(
n−n 1

α

)
≤ q
)
≥ p

p+h

}
= inf

{
n

1
αx+µ

(
n−n 1

α

)
≥ 0 : P(D≤ x)≥ p

p+h

}
= n

1
α · inf

{
x≥ 0 : P(D≤ x)≥ p

p+h

}
+µ
(
n−n 1

α

)
= n

1
α q∗+µ

(
n−n 1

α

)
, (5)

where the second equality follows from setting x = n−
1
α

(
q − µ

(
n− n 1

α

))
. Equation (5), and the fact that

qd(n) = nq∗, imply directly the second part of Theorem 1.

Coming to the first part, by definition, the optimal expected cost in the centralized case, Cc(n), is equal

to

Cc(n) = E
[
h
(
qc(n)−

n∑
i=1

Di

)+
+ p
( n∑
i=1

Di− qc(n)
)+]

.

Working similarly to Equation (3), we can rewrite the above cost as follows:

Cc(n) = npµ− (h+ p)E
[ n∑
i=1

Di ;

n∑
i=1

Di ≤ qc(n)
]
.

Lemma 1 and Equation (5) imply that

Cc(n) = npµ− (h+ p)E
[
n

1
αD+µ

(
n−n 1

α

)
; D≤ q∗

]
(1)
= npµ−n 1

α (h+ p)E[D; D≤ q∗]−npµ+n
1
α pµ

(3)
= n

1
αC(1). (6)

Theorem 1 follows directly from Equation (6) and the fact that Cd(n) = nC(1).

Proof of Proposition 1

In light of Theorem 1, it suffices to show that Cd
k(n)→Cd(n) and Cc

k(n)→Cc(n), as k becomes large. We

first prove that the sequence
{
Cd
k(n); k ∈Z+

}
converges to Cd(n). Let

q∗k = inf
{
q≥ 0 : P

(
Dk ≤ q

)
≥ p

p+h

}
.

As k→∞ the sequence
{
q∗k; k ∈ Z+

}
converges to q∗ <∞, because Dk d→D and D is a proper random

variable. Moreover, let

Xk = h
(
q∗k −Dk

)+
+ p
(
Dk− q∗k)+,

and

X = h
(
q∗−D

)+
+ p
(
D− q∗)+.

Since Dk d→D and q∗k→ q∗, we have that

Xk d→X.
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Also, note that the sequence
{
q∗k; k ∈Z+

}
is monotonically nondecreasing. Thus,

Xk ≤ hq∗+ pD, ∀k ∈Z+,

and

E[hq∗+ pD]<∞,

since q∗ <∞ and E[D]<∞ (the latter is true because α> 1).

Then, the Dominated Convergence Theorem implies that E
[
Xk
]
→E[X]. In turn, this implies the desired

result because Cd
k(n) = nE

[
Xk
]

and Cd(n) = nE[X].

The convergence of the sequence
{
Cc
k(n); k ∈Z+

}
can be proved in a similar way.

Proof of Theorem 2

First, let us derive a lower bound on Cpr(`), which, in turn, will provide us with an upper bound on `∗. We

have that

Cpr(`) =
t

`

`∑
i=1

E
[
h
(
q̄`−

i∑
j=1

Dj

)+
+ p
( i∑
j=1

Dj − q̄`
)+]

≥ t

`

`∑
i=1

i
1
αC(1)

≥ t

`

α

α+ 1
`1+

1
αC(1)

=
αtC(1)

α+ 1
`

1
α .

The first inequality follows from the proof of Theorem 1. The second inequality is implied by the following

simple lemma: for every `∈N and α∈ (0,∞) we have that

`∑
i=1

i
1
α ≥ α

α+ 1
`1+

1
α .

This result follows from the fact that function x
1
α is monotonically increasing. More specifically, we have

that

i
1
α =

∫ i

i−1
i

1
α dx≥

∫ i

i−1
x

1
α dx,

which implies that
`∑
i=1

i
1
α ≥

∫ `

0

x
1
α dx=

α

α+ 1
`1+

1
α .

Coming back to the proof of Theorem 2, the total expected cost of the periodic-review policy is bounded

from below as follows:

Kpr(`)≥ αtC(1)

α+ 1
`

1
α +

tf

`

4
= gl(`).

Let us momentarily relax the integrality constraint. The minimum of gl(·) can be obtained from the first

order optimality condition:

∂gl
∂`

= 0 ⇐⇒ tC(1)

α+ 1
`

1
α
−1− tf

`2
= 0 ⇐⇒ `=

(αf + f

C(1)

) α
α+1

.
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It can be easily verified that gl(·) is monotonically decreasing if ` <
(
αf+f
C(1)

) α
α+1

, and monotonically increasing

if ` >
(
αf+f
C(1)

) α
α+1

. Thus, the expression above provides the unique global minimum.

Now, the fact that both Cpr(`) and its lower bound are monotonically increasing functions of ` implies

that the unique minimizer of gl(·) is an upper bound on the optimal review period. Taking into account the

integrality constraint, we have that

`∗ ≤
⌈(αf + f

C(1)

) α
α+1
⌉
.

Let us now derive an upper bound on Cpr(`), which, in turn, will provide us with a lower bound on `∗.

We have that

Cpr(`) =
t

`

`∑
i=1

E
[
h
(
q̄`−

i∑
j=1

Dj

)+
+ p
( i∑
j=1

Dj − q̄`
)+]

=
t

`
min
q

`∑
i=1

E
[
h
(
q−

i∑
j=1

Dj

)+
+ p
( i∑
j=1

Dj − q
)+]

≤ t

`
min
q

`∑
i=1

E
[
h
(
q−

`∑
j=1

Dj

)+
+ p
( `∑
j=1

Dj − q
)+]

=
t

`

`∑
i=1

E
[
h
(
qc(`)−

`∑
j=1

Dj

)+
+ p
( `∑
j=1

Dj − qc(`)
)+]

=
t

`

∑̀
i=1

`
1
αC(1)

= tC(1)`
1
α ,

where the inequality follows from the proof of Proposition 2 of Corbett and Rajaram (2006). This implies

that the total cost of the periodic-review policy is bounded from above as follows:

Kpr(`)≤ tC(1)`
1
α +

tf

`

4
= gu(`).

Similarly to the case of gl(·), if the integrality constraint is relaxed then the unique global minimum of

gu(·) can be obtained from the first order optimality condition:

∂gu
∂`

= 0 ⇐⇒ tC(1)

α
`

1
α
−1− tf

`2
= 0 ⇐⇒ `=

( αf

C(1)

) α
α+1

.

The unique minimizer of gu(·) is a lower bound on the optimal review period. Taking into account the

integrality constraint, we have that

`∗ ≥
⌊( αf

C(1)

) α
α+1
⌋
.

Appendix B: Profits in a Drop-Shipping Arrangement

The practice of drop-shipping is widely adopted in online retailing. In a nutshell, under a drop-shipping

arrangement a wholesaler stocks all the inventory and fulfills customer orders at the request of retailers.

The latter do not carry any inventory and focus on other functions of the buyer-seller relationship, e.g.,

marketing. Wholesalers that offer a drop-shipping arrangement trade off a higher wholesale price for the



Authors: Kostas Bimpikis & Mihalis G. Markakis
22

inventory risk that this practice entails. Hence, a drop-shipping arrangement would be preferable when it

leads to a significant increase in the aggregate profits, since then the wholesaler would capture a fraction

of the additional profits by increasing the wholesale price and, thus, be compensated for the up-front cost

of investing in fulfillment services, as well as the additional risk associated with this strategy. The reader is

referred to Netessine and Rudi (2006) and Randall et al. (2006) for a theoretical and an empirical treatment

of the drop-shipping practice, respectively.

Consider the following simple model of a market with one wholesaler and a single product. Retailer i sells

the product to its customers at a market price r (same for all retailers) and faces demand Di. The random

variables {Di; i= 1,...,n} are assumed to be independent and distributed identically to the stable distribution

Sα(σ,β,µ), α ∈ (1,2]. The marginal cost for the wholesaler is equal to c < r. Retailers buy the product from

the wholesaler at price wD in a drop-shipping arrangement, where the wholesaler fulfills customer orders

directly, and at price wT in a traditional arrangement, where retailers stock and own their inventory. Finally,

let RD(n) and RT (n) denote the optimal total expected profits, i.e., the sum of the profits of the wholesaler

and the retailers, of a market with n retailers under a drop-shipping arrangement and a traditional approach,

respectively.

We have that

R(1)≡ rE[min(D,q∗)]− cq∗ =RD(1) =RT (1),

where q∗ is the optimal newsvendor quantity, defined as

P(D≤ q∗) =
r− c
c

.

In the spirit of Theorem 1, we provide a simple expression for the difference between the total profits in a

drop-shipping and a traditional arrangement, as a function of both the stability parameter and the number

of retailers in the market.

Proposition 2. Assume that retailer demands are mutually independent and distributed identically to

the stable distribution Sα(σ,β,µ), α∈ (1,2]. The difference in optimal expected profits between a drop-shipping

and a traditional arrangement is equal to:

RD(n)−RT (n) = c
(
n−n 1

α

)(
E[D |D≥ q∗]−µ

)
=
(
n−n 1

α

)(
(r− c)µ−R(1)

)
.

Proof: The quantity R(1) can be expressed as follows:

R(1) = rE[D]− rE[(D− q∗)+]− cq∗

= rµ− rE[D;D≥ q∗] + rq∗P(D≥ q∗)− cq∗

= rµ− rE[D;D≥ q∗] + rq∗
c

r
− cq∗

= rµ− rE[D;D≥ q∗],
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where the third equality follows from the fact that q∗ is the optimal inventory level for a newsvendor with

price r and cost c.

Clearly, RT (n) = nR(1). Moreover, following a similar approach to the proof of Theorem 1 (cf. Equations

(5) and (6)) we have that

qD(n) = n
1
α q∗+µ

(
n−n 1

α

)
,

and

RD(n) = rE
[ n∑
i=1

Di

]
− rE

[( n∑
i=1

Di− qD(n)
)+]
− cqD(n)

= (r− c)µn+ cµn
1
α − rn 1

αE[D;D≥ q∗].

Therefore,

RD(n)−RT (n) =
(
n−n 1

α

)(
rE[D;D≥ q∗]− cµ

)
= c
(
n−n 1

α

)(
E[D |D≥ q∗]−µ

)
,

where the second equality comes from the fact that P(D≥ q∗) = c/r and

E[D;D≥ q∗] = P (D≥ q∗)E[D |D≥ q∗].

Finally, we can also use the fact that

rE[D;D≥ q∗]− cµ= (r− c)µ−R(1),

in order to relate the profits of a drop-shipping arrangement to the profits of a single-retailer market. �

Proposition 2 provides an expression for the increase in aggregate profits, as a function of the number of

retailers and the stability parameter of the demand distribution. This difference can be viewed as an upper

bound on the additional profits that the wholesaler can extract by raising the wholesale price when offering

drop-shipping to the retailers. Note that the difference depends on R(1), which is, presumably, known to the

wholesaler as she is already operating in the market. Also note that the prices wT and wD do not appear

in the expressions of Proposition 2 because we are interested in total profits of the market, whereas wT and

wD are only involved in money transfers between the wholesaler and the retailers.

Finally, we report on simulation results using the same parameters as in Netessine and Rudi (2006). In

particular, we assume that the market price is r = 20, the wholesale price in the traditional arrangement

is wT = 8, the marginal cost of the wholesaler is c = 3, and the number of locations is n = 10. Our goal

is to estimate an upper bound on the additional profits that a wholesaler can extract by offering a drop-

shipping arrangement. To this end, we compare the profits of a wholesaler under the traditional arrangement,

where retailers stock their own inventory which they order from the wholesaler at price wT , with the profits

of a wholesaler that offers a drop-shipping arrangement but guarantees that each retailer makes as much

profit as in the traditional arrangement (to ensure that the retailers would take up on drop-shipping).

Table 5 summarizes our results. Assuming a light-tailed demand distribution (normal with µ= 100,σ = 50)

overestimates the potential profits associated with drop-shipping by about an order of magnitude when the

true demand is heavy-tailed.
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Upper bound on drop-shipping profits
Power-law (µ= 100, α= 1.2) 227

Normal Demand (µ=100, σ= 50) 2490

Table 5 Additional profits for drop-shipping relative to a traditional arrangement as a function of the tail of the

demand distribution.
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