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Abstract Crowd-sourced content in the form of online product reviews or rec-
ommendations is an integral feature of most Internet-based service platforms
and marketplaces, including Yelp, TripAdvisor, Netflix, and Amazon. Customers
may find such information useful when deciding between potential alternatives;
at the same time, the process of generating such content is mainly driven by the
customers’ decisions themselves. In other words, the service platform or mar-
ketplace “explores” the set of available options through its customers’ decisions,
while they “exploit” the information they obtain from the platform about past ex-
periences to determine whether and what to purchase. Unlike the extensive work
on the trade-off between exploration and exploitation in the context of multi-
armed bandits, the canonical framework we discuss in this chapter involves a
principal that explores a set of options through the actions of self-interested
agents. In this framework, the incentives of the principal and the agents towards
exploration are misaligned, but the former can potentially incentivize the actions
of the latter by appropriately designing a payment scheme or an information pro-
vision policy.

1 Introduction

An important function of most Internet-based platforms that act as intermedi-
aries between customers and service providers is the provision of information
regarding the quality of the potential alternatives faced by the consumers. As the
service platform landscape continues to evolve, the dominant form of generat-
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ing such information is through crowdsourcing: after transacting with a service
provider, a customer may provide feedback on the provider’s performance; this
feedback is recorded by the platform and may become available to subsequent
customers and assist them with their decision-making.

While soliciting feedback from customers is both straightforward and cost-
effective, the crowdsourcing process through which information about the qual-
ity of the providers is generated is inherently inefficient from a system perspec-
tive, since it relies on the customers’ self-interested choices. For an illustration of
this inefficiency, consider the following example: a customer arrives at the plat-
form and is presented with a choice between two providers, A and B . Provider
A has eight “good” reviews and two “bad” reviews; Provider B has one of each.
Given the available information (we assume that the customer is risk-neutral),
provider A appears to be the better option; thus, the customer chooses A, and
subsequently provides feedback on her choice. In fact, as long as provider A
maintains a higher number of “good" reviews than “bad," he will always be pre-
ferred to provider B . However, this may not be the optimal outcome from a
system perspective, which here refers to the outcome that maximizes the ex-
pected utility of the entire population of customers, because the customers’ self-
interested choices do not generate sufficient information on provider B to deter-
mine that he is, in fact, the inferior option.

The above example describes a phenomenon known in the experimentation
literature as “under-exploration," as the self-interested individuals tend to take
actions that “over-exploit" the information available to them. This chapter takes
the perspective of a principal (e.g., the platform designer) who is interested in
the efficient generation of information in such a system, where efficiency entails
balancing exploration against exploitation with the goal of maximizing a long-
run objective. Because the principal cannot dictate to the agents which action to
take, she must find ways of incentivizing them to take system-optimal actions.
Although we discuss a number of ways of achieving this, our main focus is on
the active use of information disclosure, and in particular on the design of in-
formational mechanisms that incentivize exploration in decentralized learning
settings.

2 Related Literature

Studying the tradeoff between exploration and exploitation has a long research
tradition in the context of the multi-armed bandit problem. In its classic version,
a forward-looking decision maker makes a choice sequentially among a set of
alternative arms, each of which generates rewards according to an ex ante un-
known distribution. Every time an arm is chosen, the decision maker receives
a reward, which, apart from its intrinsic value, is used to learn about the arm’s
underlying reward distribution. When deciding which arm to play, the decision
maker faces the tradeoff between the arm that she currently believes to be supe-
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rior (exploitation) given the information she has at her disposal, or an alterna-
tive arm with the goal of acquiring knowledge that can be used to make better-
informed decisions in the future (exploration). Since its inception, the multi-
armed bandit framework has found numerous applications in various real-world
settings (e.g., Caro and Gallien (2007) study dynamic assortment of seasonal
goods in the presence of demand learning, while Bertsimas and Mersereau (2007)
consider learning in the context of developing marketing strategies).

In most existing applications of the multi-armed bandit framework, a single
decision maker dynamically decides on the actions to be taken while observing
the outcomes of her past actions. As such, the decision maker fully internalizes
the benefits of exploration when taking actions that may not be optimal as far as
maximizing her present payoff is concerned. In contrast, this chapter focuses on
settings that can be essentially cast as decentralized multi-armed bandits prob-
lems: there is a forward-looking principal (the designer) who seeks to maximize
a long-term objective, while actions are taken by a series of (short-lived) agents.
In particular, we discuss recent work along this direction that is mostly motivated
by the growing popularity of online recommendation platforms. In a nice contri-
bution, Kremer et al (2014) focus on eliciting experimentation in an environment
where outcomes are deterministic, while Papanastasiou et al (2017) consider a
stochastic environment, in which the designer is effectively tasked with manag-
ing a dynamic exploration-exploitation trade-off. Furthermore, Che and Horner
(2017) consider a single-product setting where a designer at any time optimally
“spams” a fraction of consumers to learn about the product’s quality. Frazier et al
(2014) aim to investigate how the principal can incentivize the agents to take her
desired actions by offering direct monetary payments, i.e., their focus is not on
the role of information disclosure policies (there is no ex ante or ex post asym-
metry of information between the designer and the agents). Finally, Hörner and
Skrzypacz (2016) also survey recent related work that combines ideas from ex-
perimentation, learning, and strategic interactions, with a particular emphasis
on understanding how information but also delegation can be employed to deal
with agents’ incentives.1

Given the emphasis on the role of information the principal shares with the
agents, the work we discuss here is related to, but quite distinct from, the well-
developed literature on “cheap talk” (e.g., Crawford and Sobel 1982, Allon et al
2011). In cheap-talk games, the principal privately observes the realization of
an informative signal, after which she (costlessly) communicates any message
she wants to the agent. In this work, there is emphasis on how the message re-
ceived by the agent is interpreted, and whether any information can be credibly
transmitted by the principal. In contrast, the principal in the settings we consider
commits ex ante to an information-provision policy, which maps realizations of
the informative signal to messages. Once this policy has been decided and im-
plemented, the principal cannot manipulate the information she discloses (e.g.,
by misrepresenting the signal realization). In this case, there is no issue of how

1 Kleinberg and Slivkins (2017) also presented recently a comprehensive tutorial related to these
issues.
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the agents will interpret the messages; rather, the focus is on how the principal
should structure credible messages in a manner that internalizes the misalign-
ment between her and the consumers’ objectives.

As such, this chapter discusses work that is more in the spirit of the recent
stream of literature that examines how a principal can design/re-structure in-
formative signals in ways that render agents ex ante more likely to take desir-
able actions. Bimpikis and Drakopoulos (2016) find that in order to overcome
the adverse effects of free-riding, teams of agents working separately towards
the same goal should initially not be allowed to share their progress for some
pre-determined amount of time. Bimpikis et al (2017b) investigate innovation
contests and demonstrate how award structures should be designed so as to im-
plicitly enforce information-sharing mechanisms that incentivize participants to
remain active in the contest. Kamenica and Gentzkow (2011) and Rayo and Se-
gal (2010) illustrate an explicit technique for structuring informative signals—
referred to as “Bayesian persuasion”—in static (i.e., one-shot) settings.

Furthermore, the discussion here connects to the work on social learning. The
basic setup involves agents (e.g., consumers) that are initially endowed with pri-
vate information regarding some unobservable state of the world (e.g., product
quality). When actions (e.g., purchase decisions) are taken sequentially and are
commonly observable, the seminal papers by Banerjee (1992) and Bikhchandani
et al (1992) demonstrate that herds may be triggered, whereby agents rationally
disregard their private information and simply mimic the action of their prede-
cessor. This classic paradigm has since been extended in multiple directions (e.g.,
representative references along this direction include Acemoglu et al 2011, Ace-
moglu et al (2014), Lobel and Sadler 2015, and Besbes and Scarsini (2017)).

While the above papers focus on studying features of the learning process it-
self, another stream of literature investigates how firms can use their operational
levers to steer the social-learning process to their advantage. Bose et al (2006) and
Crapis et al (2017) investigate dynamic pricing in the presence of social learning
that occurs on the basis of actions (i.e., purchase decisions) and outcomes (i.e.,
product reviews), respectively. Veeraraghavan and Debo (2009) and Debo et al
(2012) consider how customers’ queue-joining behavior depends on observable
queue-length, and how service-rate decisions may be used to influence this be-
havior. Papanastasiou and Savva (2017) and Feldman et al (2016) highlight how
pricing and product-design policies are affected by the interaction between prod-
uct reviews and strategic consumer behavior (see also Swinney (2011) for addi-
tional related work), while Allon and Zhang (2017) explore service-level differ-
entiation for service organizations whose customers engage in communication
through their social networks. Complementing this literature, the present chap-
ter explores how the firm (platform) can influence consumer decisions and learn-
ing through its information-provision policy, a lever, which may also be used in
conjunction with other operational levers (e.g., pricing, inventory).

Finally, the chapter is also broadly related to a recent line of work that studies
operational decisions in the context of Internet-enabled business models. Among
others, Marinesi et al (2017) and Hu et al (2013) study group-buying platforms;
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Balseiro et al (2014) and Balseiro et al (2015) consider the design and operations
of ad-exchanges; Kanoria and Saban (2017) address search in two-sided plat-
forms; and Taylor (2016), Cachon et al (2017), and Bimpikis et al (2017a) explore
optimal pricing and compensation policies in on-demand service platforms.2

3 Illustrative Example

The following example, which is taken from Kremer et al (2014), provides a nice
illustration of the setting and the questions we explore in this chapter.

Example 1. Agents choose sequentially between products A and B. Agent i makes
her decision based on her prior on the quality of the two products and the infor-
mation she obtains from the principal. In turn, the principal observes the choices
and resulting payoffs of agents 1, · · · , i −1, and makes a recommendation to agent
i , i.e., whether to purchase product A or B . The principal commits ex ante to the
mechanism that generates the recommendation for agent i , i.e., the function that
maps the actions and payoffs of agents 1, · · · , i −1 to a binary recommendation.
Furthermore, agents know the mechanism set by the principal for generating rec-
ommendations and take it into account when they form their (posterior) beliefs
about the quality of the two products.

Assume that the agents’ common prior is that the quality of product A is uni-
formly distributed in [−1,5] whereas the quality of product B is uniformly dis-
tributed in [−5,5]. Also, assume that when an agent buys a product, her (realized)
payoff is equal to the quality of the product, i.e., one purchase is enough to reveal
a product’s (true) quality. Finally, suppose that the principal aims to explore both
alternatives as soon as possible (so that she recommends the best one to future
agents).

If information about past choices and outcomes were observable by the agents,
the second agent would choose to take action B only if the payoff of the first
agent (that would optimally take action A) was negative. Otherwise, i.e., if prod-
uct A has positive payoff, the second agent (and subsequently all future agents)
would choose product A and no agent would find it optimal to explore product B
(which, nevertheless, could have been the optimal choice).

On the other hand, if agents do not directly observe prior choices and out-
comes, the principal could induce more exploration by recommending action B
to the second agent whenever the payoff associated with product A is less than
one. In other words, the principal could send a binary message to the second
agent: choose A if the first agent’s payoff was higher than one and choose B ,
otherwise. Similarly, the principal can employ the following policy for the third
agent: recommend choosing product B if (i) the second agent was recommended
to choose product B and it turned out that B ’s payoff is higher than A’s; or (ii)

2 There is also recent empirical work exploring operational issues on online marketplaces, e.g.,
Moon et al (2017), Li and Netessine (2017), and Bimpikis et al (2017c).
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both the first and the second agent chose product A but its payoff is between 1
and 3.23. It is straightforward to show that following this policy guarantees that
agents would have explored both options by the third time period unless the pay-
off for product A is higher than 3.23 (one can similarly extend the policy for the
fourth agent to ensure that by the fourth time period both options are explored
with certainty).

In sum, agents find it optimal to follow the principal’s recommendations,
which, in turn, leads to more exploration and better outcomes on aggregate (as-
suming that the population of agents is large enough). The simple takeaway mes-
sage that one can draw from this example is that by coarsening the information
that the principal shares with the agents, she is able to mitigate their misalign-
ment of interests.

4 Benchmark Model

Building on the discussion above, we consider a setting, where a series of agents
interact with a principal who manages the disclosure of information regarding
the experiences of their predecessors. For concreteness and to be in line with
Section 3, we anchor our exposition in the example of an online platform which
is operated by a designer and is used by customers to assist with their choice
of a service provider. We assume that the marketplace features two providers, A
and B ; let S = {A,B}.3 Each provider i ∈ S is fully characterized by a probabil-
ity pi , which represents the provider’s service quality. Upon using provider i , a
customer receives reward equal to one with probability pi , and equal to zero oth-
erwise; that is, service outcomes constitute independent draws from a Bernoulli
distribution with success probability pi . Initially, pi is known to the designer and
the customers only to the extent of a common prior belief, which is expressed in
our model through a Beta random variable with shape parameters {si

1, f i
1 }, with

si
1, f i

1 ∈Z+.4,5

At the beginning of each time period t ∈ T , T = {1,2, ...}, a single customer
visits the platform, observes information pertaining to the experiences of past
customers, and chooses a provider. We assume that upon completion of service,
and before the end of period t , the customer reports to the platform whether her

3 Our analysis can be readily extended to the case of more than two providers.
4 The probability density function of a Bet a(s, f ) random variable is given by

g (x; s, f ) = xs−1(1−x) f −1

B(s, f )
, for x ∈ [0,1].

5 The platform and the customers hold the same prior belief, so that platform actions (e.g.,
the choice of an information-provision policy) do not convey any additional information on
provider quality to the customers (e.g., Bergemann and Välimäki 1997, Bose et al 2006, Papanas-
tasiou and Savva 2017).



Inducing Exploration in Service Platforms 7

experience was positive or negative (i.e., the realization of the Bernoulli random
variable associated with her service experience). At any time t , the knowledge
accumulated by the platform is summarized by the information state (henceforth
“state”) xt = {x A

t , xB
t }, where xi

t = {si
t , f i

t } and si
t ( f i

t ) is the accumulated number of
successful (failed) service outcomes for provider i up to period t (this includes the
initial successes and failures, si

1 and f i
1 , specified in the prior belief). When the

system state is xt , the Bayesian posterior belief over the quality pi is Bet a(si
t , f i

t ),
and the expected utility for the next customer if she uses i is r (xt , i ) = si

t /(si
t + f i

t ).
In general, the history of service outcomes (i.e., the system state xt ) is not di-

rectly observable to the customers. Instead, there is a platform designer who com-
mits upfront to a “messaging policy” that acts as an instrument of information-
provision to the customers.6 This policy specifies the message that is displayed on
the platform, given any underlying system state. In addition, the platform may
accompany messages with monetary payments to customers as a further incen-
tive to induce them to take certain actions (in fact, Frazier et al (2014) exclusively
explores the case where all generated information is observable to customers
and the platform has the discretion to incentivize their actions through mone-
tary transfers in the form of “coupons”).7 The designer’s objective in choosing
her messaging policy is to maximize the expected sum of customers’ discounted
rewards over an infinite horizon (i.e., customer surplus), applying a discount fac-
tor of δ ∈ [0,1).8 Customers are modeled as homogeneous, short-lived, rational
agents. In our main analysis, we assume that customers know the period of their
arrival (however, the qualitative insights we obtain are robust to relaxing this as-
sumption). Upon visiting the platform, each customer observes a message gen-
erated by the designer’s policy and chooses a service provider with the goal of
maximizing her individual expected reward.

The designer’s choice of messaging policy (and potential monetary transfers
to customers), along with the customers’ choices of service provider in response
to this policy, simultaneously govern the dynamics of both the learning process
and the customers’ reward stream.

6 Commitment is a reasonable assumption in the context of online platforms, where informa-
tion provision occurs on the basis of pre-decided algorithms and the large volume of prod-
ucts/services hosted renders ad-hoc adjustments of the automatically-generated content pro-
hibitively costly.
7 The generic term “message” refers to a specific configuration of information that is observed
by the customer; examples of messages include detailed outcome histories (i.e., distributions of
customer reviews), relative rankings of providers, or recommendations for a specific product.
8 More generally, our analysis is relevant for cases where the platform has a different (e.g.,
longer-run) objective than its users.
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5 Inducing Exploration

The section explores whether the designer can incentivize customers to take ac-
tions that contribute to her long-run objective of generating information about
the available service providers using mainly the platform’s messaging policy. At
the end of the section, we also report on work that has studied the use of mone-
tary transfers in a similar setting.

Equilibrium and Model Dynamics

We begin our analysis by formalizing the strategic interaction between the de-
signer and the customers. There are two main features of this interaction. First,
the designer’s messaging policy, which takes the platform state as an input and
generates a message to be displayed by the platform to the next incoming cus-
tomer. Second, the customers’ choice strategy, which takes the platform’s message
in any given period as an input and determines the customer’s action (choice of
provider).

Let X ⊆ Z4+ denote the set of possible states of the platform such that xt ∈ X
for all t ∈ T , and define the discrete set M of feasible messages that the platform
can display to an incoming customer in period t (see footnote 7).

A messaging policy g (·) is a (possibly stochastic) mapping from the set of states
X to the set of messages M ; that is, a messaging policy g associates with each
state xt ∈ X a probability P (g (xt ) = m) that message m ∈ M is displayed on the
platform. Let G be the set of possible messaging policies.

In each period t , a single customer enters the system, observes the platform’s
message and chooses a service provider from the set S. The period-t customer’s
choice strategy, denoted by ct (·), is a mapping from the set of messages M to the
set of service providers S. Let Ct be the set of possible choice strategies for the
period-t customer, and define c(·) := [c1(·),c2(·), ...].

The designer’s messaging policy g along with the customers’ choice strategy c
generate a controlled Markov chain characterized by the stochastic state-action
pairs {(xt , yt ); t ∈ T }, where the actions yt that accompany the states xt are de-
termined by the designer’s policy and the customers’ strategy via yt = ct (g (xt )).
When the state of the system is xt , the expected reward of a customer that uses

provider i is r (xt , i ) = si
t

si
t+ f i

t
. Transitions between system states occur as follows.

The initial state x1 is determined by the prior belief over the two providers; when
the state of the system is xt and action yt is chosen by the period-t customer, the
state in period t +1, xt+1 = {x A

t+1, xB
t+1}, is determined as follows:

xi
t+1 = xi

t for i 6= yt , xi
t+1 =

{
{si

t +1, f i
t } w.p. r (xt , i )

{si
t , f i

t +1} w.p. 1− r (xt , i )
for i = yt .
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The above transition probabilities reflect the learning dynamics of the system:
new information regarding the quality of provider i is generated in period t only
if the provider is chosen by the period-t customer.9

The sequence of events in our model is described in reverse chronological
order as follows. Each customer observes the designer’s messaging policy and
chooses a choice strategy ct to maximize her individual expected reward. In par-
ticular, the period-t customer’s response to message m, c∗t (m) maximizes:

Ext

[
r (xt ,ct ) | g (xt ) = m

]
.10

At the beginning of the time horizon, the designer (taking into account the cus-
tomers’ response to any messaging policy), commits to a policy that maximizes
the expected sum of customers’ discounted rewards. In particular, the designer’s
messaging policy g∗(xt ) maximizes

E

[∑
t∈T

δt−1r (xt , yt )

]
, for yt = c∗t (g (xt )).

Incentive-Compatible Recommendation Policies

In general, multiple equilibria exist that result in the same payoff for the designer
and the customers, and the same dynamics in the learning process, not least be-
cause the same information can be conveyed from the designer to the customers
through a multitude of interchangeable messages contained in M . We follow Al-
lon et al (2011) in referring to such equilibria as being “dynamics-and-outcome
equivalent”. In our analysis, we will employ the result of Lemma 1 below to sim-
plify the exposition and focus attention on the informational content of equilib-
ria, rather than on the alternative ways in which these equilibria can be imple-
mented. Before stating the lemma, we define a subclass of messaging policies,
which we refer to as “incentive-compatible recommendation policies.”

Definition 1 (ICRP: Incentive-Compatible Recommendation Policy). A recom-
mendation policy is a messaging policy defined as

g (xt ) =
{

A w.p. qxt

B w.p. 1−qxt ,
(1)

9 Note that for the case of a Bernoulli reward process the current probability of success (i.e., the
Bayesian probability of the next trial being a success given the current state of the system) is
equal to the immediate expected reward, r (xt , i ) (e.g., Gittins et al 2011).
10 This expectation can be computed by the period-t customer, since the ex ante probability
that the state in period t is xt (i.e., unconditional on the message g (xt )) is known to the cus-
tomer through her knowledge of the designer’s policy in previous periods and the preceding
customers’ best response to this policy.
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where qxt ∈ [0,1] for all xt ∈ X . A recommendation policy is said to be incentive-
compatible if for all xt ∈ X , t ∈ T , we have c∗t (g (xt )) = g (xt ).

Put simply, under an ICRP the platform recommends either provider A or provider
B to the period-t customer, and the customer finds it Bayes-rational to follow
this recommendation. We may now state the following result, which is analogous
to the revelation principle in the mechanism-design literature, and suggests that
any feasible platform payoff can be achieved through some ICRP.

Lemma 1. For any arbitrary messaging policy g , there exists an ICRP g ′ which in-
duces a dynamics-and-outcome equivalent equilibrium in the game between the
designer and the customers.

A proof for Lemma 1 can be found in Papanastasiou et al (2017).

First Best

As a primer to our main analysis, we consider how the designer would direct in-
dividual customers to the two providers, had the customers’ actions been under
her full control. The solution to the designer’s full-control problem is due to Git-
tins and Jones (1974) and consists of directing customers in each period to the
provider with the highest Gittins Index. The Gittins index for service i when in
state zi is denoted by Gi (zi ) and given by:

Gi (zi ) = sup
τ>0

E
[∑τ−1

t=0 δ
t r (xi

t , i ) | xi
0 = zi

]
E

[∑τ−1
t=0 δ

t | xi
0 = zi

] , (2)

where τ is a past-measurable stopping time (i.e., measurable with respect to the
information obtained up to time τ) and r (xi

t , i ) is the instantaneous expected re-
ward of provider i in state xi

t .
In the decentralized system, the designer’s ability to direct customers to her

desired provider will be limited by the customers’ self-interested behavior. Each
customer knows (i) the prior belief summarized by the initial state, x1; (ii) the time
period, t ; and (iii) the designer’s messaging policy, g . Upon visiting the platform,
the customer observes a message m, updates her belief over the current system
state, xt , and selects the provider which maximizes her individual expected re-
ward. As a consequence, the designer will be able to achieve first-best only if she
can design a messaging policy which induces customers to make Gittins-optimal
decisions in all periods and in all system states—a sufficient condition for at least
one such messaging policy to exist is the existence of an ICRP which always rec-
ommends the provider of highest Gittins index.

Throughout the following analysis we will refer to provider choices that are
desirable from the platform’s perspective as being “system-optimal.”
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5.1 Strategic Information Disclosure

Typically, the provider will not be able to achieve the first best given that that
Gittins-based recommendations (system optimal provider choice) are not incen-
tive compatible in general. This section provides a characterization of the de-
signer’s optimal policy in the presence of incentive constraints resulting from the
customers’ decision making.

By Lemma 1, the designer in our model seeks to find the best possible ICRP,
that is, to choose optimally the probabilities qxt that define the recommenda-
tions received by the period-t customer in each possible system state:

g (xt ) =
{

A w.p. qxt

B w.p. 1−qxt ,

while at the same time ensuring that any recommendation received by the period-
t customer is incentive compatible. The designer’s general problem may be framed
as the following Constrained Markov Decision Process (CMDP; see Altman (1999)),

max
g (xt )

E

[∑
t∈T

δt−1r (xt , g (xt ))

]
s.t. Ext [r (xt , A) | g (xt ) = A] ≥ Ext [r (xt ,B) | g (xt ) = A], ∀t ∈ T,

Ext [r (xt ,B) | g (xt ) = B ] ≥ Ext [r (xt , A) | g (xt ) = B ], ∀t ∈ T, (3)

where the constraints state that any recommendation that is generated by policy
g in period t is found to be incentive compatible (and is therefore followed) by
the period-t customer.

The presence of the IC constraints introduces both direct and indirect compli-
cations. The direct complication is that recommendations generated by the de-
signer’s policy in all states that could occur in period t must now be viewed jointly,
since such recommendations are coupled by the need to satisfy the period-t cus-
tomer’s IC constraints. The indirect complication is that the designer’s choice of
policy up to period t affects the beliefs of customers that visit the platform in
periods t +1 onwards, and therefore (through the IC constraints) also affects the
feasible region of recommendations in future periods.

To facilitate exposition of the result that follows, we introduce the follow-
ing additional notation. Let X t be the set of states that are reachable from the
initial state x1 (under some policy) in period t , so that the total state space is
X = ⋃

t∈T X t . Denote by Pki z the transition probability from state k to state z
when provider i is used (note that these probabilities have been specified in §5),
and let ∆a denote the Dirac delta function concentrated at a.11

11 The result of Proposition 1 extends readily to the case of |S| = n providers (in this case, an
ICRP consists of n possible recommendations, and each recommendation must satisfy n − 1
IC constraints per period), as well as to alternative platform objective functions (by replacing
r (k, i ) with suitable reward functions).
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Proposition 1. The optimal ICRP is given by

q∗
k = ρ(k, A)∑

i∈S ρ(k, i )
,

where ρ(k, i ) solve

max
ρ

∑
k∈X

∑
i∈S

ρ(k, i )r (k, i )

s.t.
∑

k∈X t

ρ(k,B)[r (k,B)− r (k, A)] ≥ 0, ∀t ∈ T,∑
k∈X

∑
i∈S

ρ(k, i ) (∆z (k)−δPki z ) =∆x1 (z), ∀z ∈ X ,

ρ(k, i ) ≥ 0, ∀k ∈ X , i ∈ S. (4)

A few comments on the solution technique of Proposition 1 are warranted. To
solve the designer’s problem, the objective and constraints of the CMDP (3) are
first expressed as sums of the immediate expected reward in each state-action
pair, r (k, i ), multiplied by the time-discounted “occupancy” of the pair, ρ(k, i ).
Then, the LP (4) optimizes over the admissible set of occupancy measures, which
is described by the LP’s constraints. In particular, in the context of our problem,
any admissible occupancy measure must be consistent with (i) the customers’
incentives (this is captured by the period-specific inequality constraints, which
ensure that each period-t customer finds the recommendation she receives IC),
and (ii) the system’s dynamics (this is captured by the state-specific equality con-
straints, which ensure that the occupancy of each state is consistent with the sys-
tem’s state-transition probabilities).12 Finally, once the optimal occupancy mea-
sure has been identified, the probabilities q∗

k are chosen in a manner that induces
this measure.

To gain insight into the structure of optimal policies, it is instructive to con-
sider a finite-horizon version of the problem, consisting of TF time periods. In
this case, applying Theorem 3.8 of Altman (1999) reveals that the optimal ICRP
uses randomized recommendations in at most TF states. As the horizon length TF

increases, the state space grows exponentially, but the number of states in which
randomization occurs grows only linearly (for instance, the number of possible
states for TF = 20 is of the order 1012, but randomization occurs in at most 20
states). This suggests that optimal policies consist mainly of deterministic recom-
mendations, relying extensively on the merging different information states that
could correspond to different optimal actions for the customers to “persuade”
them to explore.

12 Note that the solution to LP (4) can also be used to retrieve the period-t customer’s belief
over the system state upon entry to the platform; specifically, this belief is given by P (xt = z) =∑

i∈S ρ(z,i )∑
k∈Xt

∑
i∈S ρ(k,i ) .
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5.2 The Value of Information Obfuscation

The “curse of dimensionality” renders the optimal solution to the designer’s gen-
eral problem computationally intractable. However, by combining the structural
insights yielded by our analysis (i.e., state-merging, limited randomizations, suf-
ficiency of two-message policies), it is possible to generate tractable and effective
heuristic solutions. In this section, we consider one such heuristic and use it to
establish that the value of information obfuscation is significant, even if this is
implemented in a simple and intuitive manner (we note that the payoff under any
heuristic serves as a lower bound on the payoff of the optimal policy described in
Proposition 1).

Consider the following Gittins-based heuristic, which combines our preceding
analysis with the centralized solution to the designer’s problem to deliver IC rec-
ommendations. Let pxt denote the probability that the state in period t is xt . The
heuristic is initialized by choosing the starting state x1 and proceeds by repeating
two steps. First, it solves the period-t linear program:

max
0≤qxt ≤1

∑
xt∈X

pxt qxt [G A(xt )−GB (xt )]

s.t.
∑

xt∈X
pxt (1−qxt )[r (xt ,B)− r (xt , A)] ≥ 0, (5)

and stores the solution qxt (this is the designer’s recommendation policy for pe-
riod t ); second, the period-t solution is used along with the probabilities pxt to
calculate the probabilities pxt+1 . The two steps are repeated until a pre-specified
period t = K is reached, after which a full-information policy is employed (or,
equivalently, an ICRP which always recommends the provider of highest ex-
pected reward). Essentially, in each of the first K periods of the horizon, the
heuristic employs state-merging to deliver recommendations that maximize the
expected Gittins index, subject to the recommendations being IC.

To evaluate the benefits of information obfuscation (in the sense of the Gittins-
based heuristic), we conduct the numerical experiments presented in Table ??.
The table focuses on the added “learning value” of obfuscation in comparison
to that of a FI policy. Specifically, we first calculate the difference (π∗ − πN I ),
i.e., the difference between the platform’s payoff when no social learning takes
place (πN I ) and when social learning takes place optimally (π∗). This difference
is an upper bound on the learning value that can be achieved by the designer in
the decentralized system through information-provision. We then calculate the
percentage of this value achieved under FI (∆πF I ) and under the Gittins-based
heuristic (∆π(ĝ )).

The upper half of the table pertains to initial states which are “unfavorable”
for the designer, in the sense that there is an ex ante misalignment between the
provider of highest expected reward and the provider of highest Gittins index; by
contrast, the lower part of the table pertains to “favorable” initial states. Across
all instances we consider, the heuristic performs significantly better than full in-
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formation. Furthermore, we observe that the benefit is highest when the initial
state is unfavorable: in such cases, under full information the customers tend to
stick with the ex ante preferable provider and only rarely engage in experimenta-
tion with the alternative option. Next, notice that in each of the four subgroups
of initial states, the ex ante expected reward of the two providers is maintained
constant, but the variance of one of the two changes; this allows us to capture
different environments in terms of the potential benefits of exploration. Here, in-
tuitively, we observe that the benefits of information obfuscation are especially
pronounced when the quality of the ex ante preferable provider is relatively cer-
tain while the quality of the alternative provider is relatively uncertain.

x1 = {(a A
1 ,b A

1 ), (aB
1 ,bB

1 )} r (x1, A) std(x1, A) r (x1,B) std(x1,B) ∆πF I ∆π(ĝ )

{(6,3), (1,1)} 0.67 0.15 0.5 0.29 47.2% 96.3%
{(12,6), (1,1)} 0.67 0.11 0.5 0.29 18.6% 85.0%
{(18,9), (1,1)} 0.67 0.09 0.5 0.29 6.0% 83.7%
{(15,6), (2,1)} 0.71 0.10 0.67 0.24 58.1% 97.8%
{(15,6), (4,2)} 0.71 0.10 0.67 0.18 66.0% 90.7%
{(15,6), (6,3)} 0.71 0.10 0.67 0.15 71.7% 93.0%

{(1,1), (3,6)} 0.5 0.29 0.33 0.15 87.6% 100%
{(1,1), (6,12)} 0.5 0.29 0.33 0.11 81.0% 95.9%
{(1,1), (9,18)} 0.5 0.29 0.33 0.09 80.0% 100%
{(1,1), (3,6)} 0.5 0.29 0.33 0.15 85.4% 94.6%
{(3,3), (3,6)} 0.5 0.19 0.33 0.15 85.9% 94.6%
{(6,6), (3,6)} 0.5 0.14 0.33 0.15 51.1% 96.2%

Table 1 Proportion of first-best learning value captured in the decentralized system by F I , de-

fined as ∆πF I = πF I −πN I

π∗−πN I , and by the Gittins-based heuristic ĝ with K = 50, defined as ∆π(ĝ ) =
π(ĝ )−πN I

π∗−πN I (where π∗, πF I , πN I and π(ĝ ) denote expected platform payoff under first best, F I ,
N I and the Gittins-based heuristic, respectively). r (x1, i ) and std(x1, i ) denote, respectively, the
expectation and standard deviation of the reward of provider i ∈ {A,B} at the initial state x1.
Parameter values: δ= 0.99.

5.3 Minimizing Regret

In the setting we have considered so far, the designer’s objective was to maximize
the expected discounted sum of the customers’ rewards over an infinite horizon.
A related objective that has been studied in the literature is that of minimizing the
designer’s long-run regret. Typically, focusing on regret as the designer’s objective
simplifies the analysis (at least to some extent) and, thus, allows for a different set
of results that mainly provide reasonable guarantees of performance for relatively
simple strategies.

The discussion in this section follows Kremer et al (2014) and Mansour et al
(2015). In the context of minimizing regret, the performance of a suggested policy
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is compared to the case that the designer knows the stochastic process generating
the rewards for its customers, i.e., knows pi for i ∈ {A,B}, and, thus, would always
direct them towards the better of the two service providers.

Kremer et al (2014) consider a horizon of T time periods (thus, T incoming
customers) and propose the following policy for generating messages (recom-
mendations) to them:

(1)Customers are partitioned into dT /me blocks of m customers each. Customers
belonging to the same block receive the same recommendation (and, thus,
end up using the same service provider at the induced equilibrium). Cus-
tomers in the first block are recommended to visit the provider that is ex ante
more likely to generate higher expected rewards (based on the common prior),
say provider A.

(2)The designer observes the realizations of the rewards for the first m agents
and computes the average empirical mean reward, µ̂A , for provider A, i.e., the
provider that is ex ante more likely to be a better choice for the customers.

(3)Keeping µ̂A fixed throughout the horizon, the designer recommends provider
B to the i -th block of customers, if µ̂A ∈ (θi−1,θi ], where {θi }dT /me

i=1 is a set
of thresholds that the designer determines so that the recommendations she
makes to customers are incentive compatible (essentially θi is such that cus-
tomers would be indifferent between following the designer’s recommenda-
tion and choosing the provider that is ex ante more likely to generate higher
rewards, i.e., provider A, if µ̂A was exactly equal to the threshold.13 The first
time customers are recommended to use provider B (and, as a result, end up
using B), the designer computes µ̂B based on their realized rewards.

(4)After the designer recommends provider B for the first time and computes µ̂B ,
the messaging policy takes the following form:

– If µ̂A ≤ θi−1, the designer recommends the provider that corresponds to the
highest empirical mean, i.e., she recommends provider A if µ̂A ≥ µ̂B , and
provider B otherwise.

– µ̂A > θi , the designer recommends provider A.

Kremer et al (2014) provide the following theorem for the performance of the
messaging policy described above:

Theorem 1. Setting the size of each block to T 2/3 lnT , i.e., m = T 2/3 lnT , guar-
antees that the average regret per customer, i.e., the expected difference between
taking the best possible action and following the designer’s recommendation, is
bounded above by:

C
lnT

T 1/3
,

where C is a constant that depends only on the priors.

In other words, the theorem above implies that as the horizon gets longer (equiv-
alently, the population of customers getting recommendations from the platform

13 This is a natural generalization of the computation in the example of Section 3.
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increases), the average regret per customer becomes negligible. Thus, this simple
policy that appropriately partitions customers into different blocks, achieves a
reasonably good asymptotic performance compared to always choosing the best
available service provider.

Mansour et al (2015) extend Kremer et al (2014) by considering a setting where
in each of T time periods n new customers interact with the platform and simul-
taneously take an action (out of k ≥ 2 potential alternatives). The payoff of each
customer is determined by an underlying state (that captures the quality of each
of the alternatives) and the actions of the rest of the customers in her cohort. As
in Kremer et al (2014), Mansour et al (2015) present results on (simple) policies
that are near-optimal (in a regret minimization sense) compared to the best-in-
hindsight policy.14

5.4 Incentivizing Customers using Payments

Although we mainly focus on the role of the designer’s information disclosure
policy to induce system-optimal actions, it is reasonable to consider a setting
where the designer may use monetary transfers as a way to promote exploration
among the platform’s customers. In particular, a very interesting direction for fu-
ture work would be to extend the modeling framework in Section 4 to a setting
where the designer can combine her messaging policy with monetary transfers
with the objective of maximizing the discounted sum of the customers’ expected
rewards minus the corresponding transfers.

Relatedly, Frazier et al (2014) explore the use of monetary transfers as a way to
incentivize exploration when the information generated by the customers’ past
interactions with the service providers is available to both the designer but also
to future customers, i.e., there is no ex post information asymmetry between the
designer and the customers. For example, two extreme policies that one could
consider (and Frazier et al (2014) discuss briefly) would be the following:

(1)The designer never compensates customers for taking an action. Then, each
customers chooses the action that maximizes her one time period payoff
based on the information generated by past actions. In other words, customers
never “explore” and always “exploit” (based on the history of actions and pay-
offs that they observe). Such myopic behavior is typically suboptimal given
that the rate of exploration is inefficient from the designer’s perspective.

(2)On the other extreme, the designer compensates customers sufficiently to in-
duce customers to take the system-optimal action at every time period, i.e.,
the designer offers a payment to the customer taking action at time t , which

14 Che and Horner (2017) also consider the problem of optimally designing recommendation
policies in a setting where information about the quality of two potential alternatives arrives
continuously over time—their setting uses the exponential bandit framework of Keller et al
(2005) as a building block.
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is equal to the difference between the expected reward corresponding to the
service provider with the highest Gittins index at t and the service provider
that would be myopically optimal to choose given the available information.
Obviously, this policy generates the system-optimal rate of exploration, but it
may lead to large cumulative payments from the designer.

Frazier et al (2014) provide a characterization of the extent to which payments
from the designer to the customers can mitigate their incentive constraints and
recover the optimal reward on aggregate. In particular, letting OPT denote the
first best cumulative rewards, i.e., the discounted sum of the expected rewards
corresponding to always choosing the service provider with the highest Gittins
index, they call a point (α,β) ∈ [0,1]2 achievable at discount rate δ if there exists a
payment policy for the designer, i.e., a mapping from the history of observations
to payments to customers, that satisfies the following two conditions:

(1)The discounted sum of the expected rewards corresponding to the policy is at
least as high as α· OPT.

(2)The discounted sum of the expected payments corresponding to the policy is
at most as high as β· OPT.

The main result in Frazier et al (2014) is the following theorem that provides a
remarkably clean characterization of the set of points that can be achieved by the
designer.

Theorem 2. Let (α,β) be a point in [0,1]2. Then, (α,β) is achievable at discount
rate δ if and only if the following condition holds:√

β+p
1−α>

p
δ.

Theorem 2 provides some insight on what the designer can (and cannot) do
using payments (“coupons”) to incentivize the platform’s customers. A basic in-
gredient of the proof is a set of policies that involve mixing between the two ex-
tremes described above, i.e., the policy that involves no payments and the one
where payments are large enough to induce customers to take the action with
the highest Gittins index (thus, giving some idea on what type of policies may lead
to good performance for the designer). Note that this is a worst-case result, i.e., it
bounds the designer’s performance against any distribution of rewards. Thus, the
designer could potentially achieve a higher discounted sum of expected rewards
in environments where the uncertainty in payoffs takes a more specific form, like
the one specified in Section 4.15 Importantly though, Theorem 2 assumes that
customers can observe the entire history of actions and their corresponding re-
wards; thus, it does not offer any insight on how the designer might appropriately
disclose information to increase the set of achievable points.

15 However, the analysis may, in general, be quite challenging.
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6 Promising Directions

So far, we have mainly used the example of an online recommendation platform
to describe the main questions that motivate this chapter and illustrate a number
of key findings. However, the idea that a platform (principal) can appropriately
design the information flow to its users (agents) as a way to incentivize them to
take actions that may not be myopically optimal is more widely applicable and,
to a large extent, still unexplored. In this section, we briefly describe two other
application settings that may provide interesting starting points for future work
in the area.

6.1 Learning in Dynamic Contests

Innovation contests are gaining in popularity as a tool that firms and institutions
employ to outsource their R&D and innovation efforts to the crowd. An open call
is placed for a project that participants compete to finish and the winners, if any,
are awarded a prize. Recent successful examples include The NetFlix Prize and
the Heritage Prize,16 and a growing number of ventures like Innocentive, Top-
Coder, and Kaggle provide online platforms to connect innovation seekers with
potential innovators.

The objective of the contest designer is to maximize the probability of reaching
the innovation goal while minimizing the time it takes to complete the project.
Obviously, the success of a contest depends crucially on the pool of participants
and the amount of effort they decide to exert. Typically, innovation projects have
the following three key features. First, progress towards the end goal takes the
form of a series of breakthroughs interspersed between long intervals of seem-
ing stagnation. Second, and quite importantly, it is not clear at the onset whether
the end goal is attainable, even if it is clearly specified, or which of potentially
many alternative approaches would be the best one to use. Finally, a third fea-
ture that distinguishes innovation contests from other settings involving compe-
tition among agents, is that agents can learn from one another: an agent’s (par-
tial) progress towards the goal provides useful information to the rest about the
feasibility of the project and/or the best approach to follow.17

These three features imply that news about a participant’s progress has the
following interesting dual role: it makes agents more optimistic about the state of

16 The NetFlix Prize offered a million dollars to anyone who succeeded in improving the com-
pany’s recommendation algorithm by a certain margin and was concluded in 2009. The Her-
itage Prize was a multi-year contest whose goal was to provide an algorithm that predicts pa-
tient readmissions to hospitals. A successful breakthrough was obtained in 2013.
17 In addition to the work that we discuss here, which mainly focuses on the dynamics of learn-
ing and competition in contests, there is also an extensive body of work that explore a number of
questions in a static framework, e.g., Terwiesch and Xu (2008), Ales et al (2017), and Körpeoğlu
and Cho (2017).
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the world, as the goal is more likely to be attainable; thus, agents have a higher in-
centive to exert costly effort. We call this the encouragement effect.18 At the same
time, such information implies that one of the participants has a lead, which
might negatively affect effort provision from the remaining agents as the likeli-
hood of them beating the leader and winning the prize becomes slimmer. We
refer to this as the competition effect. These two effects interact with one other in
subtle ways over the duration of the contest, and understanding this interaction
is of first-order importance for contest design.

Thus, the contest’s information disclosure policy (e.g., through intermediate
milestone awards) may have a large effect on the agents’ participation and effort
provision and, consequently, on the likelihood that the contest will be successful.
In recent work, Bimpikis et al (2017b) consider the question of whether and when
should the contest designer disclose information regarding the competitors’ (par-
tial) progress with the goal of maximizing her expected payoff. Interestingly, they
illustrate the benefits of non-trivial information disclosure policies, where the de-
signer withholds information from the agents and only releases it after a certain
amount of time has elapsed. Such designs further highlight the active role that
information may play in incentivizing agents to participate in the contest.

Second, they identify the role of intermediate awards as a way for the designer
to implement the desired information disclosure policy—the policy that maxi-
mizes the effort provision of the agents and consequently the chances of innova-
tion taking place. Intermediate awards are very common in innovation contests
(the aforementioned NetFlix and Heritage prizes are examples of contests that
have employed intermediate awards) and the discussion here provides a poten-
tial reason for their ubiquity.

A simple illustration of the main ideas in Bimpikis et al (2017b) is the follow-
ing. Consider an innovation contest that consists of well-defined milestones. For
example, the goal of the Netflix prize was to achieve an improvement of 10% over
the company’s proprietary algorithm, with a first progress prize set at 1% im-
provement. In this example, reaching the milestone of 1% improvement consti-
tutes partial progress towards the goal, and we assume that the agents and the
designer are able to verifiably communicate this. Assume for now that the inno-
vation is attainable with certainty given enough effort, and that agents are fully
aware of that. The lack of progress towards the goal is then solely a result of the
stochastic return on effort. When no information is disclosed about the agents’
progress, they become progressively more pessimistic about the prospect of them
winning, as they believe that someone must have made progress and that they
are now lagging behind in the race towards the end goal. This might lead them
to abandon the contest, thus decreasing the aggregate level of effort and conse-
quently increasing the time to complete the innovation project.

In contrast, when there is uncertainty about the feasibility of the end goal,
agents that have made little or no progress towards the goal become pessimistic
about whether it is even possible to complete the contest. If this persists, an agent

18 The term “encouragement” originates from the literature on strategic experimentation (e.g.,
Bolton and Harris (1999), Keller et al (2005))
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may drop out of the competition as she believes that it is not worth putting the
effort for what is likely an unattainable goal, reducing aggregate experimentation
in the process and decreasing the chances of reaching a feasible innovation.

This highlights the complex role that information about the agents’ progress
play in this environment. In the first scenario, when the competition effect is
dominant (since there is no uncertainty about the attainability of the end goal),
disclosing that one of the participants is ahead may deter future effort provision
as it implies that the probability of winning is lower for the laggards. In the sec-
ond case, when the encouragement effect dominates, an agent’s progress can be
perceived as good news, since it reduces the uncertainty regarding the feasibility
of the end goal.19

Several directions may be worth pursuing following the main ideas presented
in this section. Bimpikis et al (2017b) and Halac et al (2017) consider contests
with well-defined goals that may be unattainable. Alternatively, one could con-
sider a setting where the contest designer’s goal is to obtain the best solution or
implementation possible to a given project. There can exist multiple approaches
that one could employ and observing each other’s progress reveals information
about their relative merits.20 What is then the optimal way to disclose informa-
tion as way to balance the tradeoff between exploring the space of alternative
approaches and driving effort towards those that look most promising?

An agent’s progress provides information not only about the feasibility of the
innovation project or the quality of the approach she is employing but also her
skill level. Thus, in a setting where there is uncertainty about how good the com-
petition is, appropriately designing an information disclosure policy may play an
important role in keeping agents engaged and willing to exert effort.21

6.2 Dealing with Misinformation

The 2016 US presidential elections and the associated “fake news” phenomenon
highlighted the importance of incentivizing a new form of “exploration” in the
online space. Rather than exploration with the goal of identifying the quality of a
product, the term here refers to exploration with the goal of evaluating the qual-
ity of an information source; for instance, if the information source in question
is a news article circulating in a social media platform, exploration refers to the
process of “fact-checking” the article’s content to determine its validity.

19 Bimpikis and Drakopoulos (2016) and Halac et al (2017) also consider a strategic experimen-
tation framework to study the interplay between a principal and the agents’ incentives and how
appropriately designing information disclosure mechanisms may increase welfare.
20 Girotra et al (2010), Kornish and Ulrich (2011), Huang et al (2014), and Jiang et al (2016) are
recent empirical studies that consider the role of learning and feedback in crowdsourcing con-
tests and, more broadly, in the innovation process.
21 There are also a number of notable recent papers that consider different aspects of contest
design and its applications, e.g., Seel and Strack (2016), Hu and Wang (2017), and Strack (2016).
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With this context in mind, Papanastasiou (2017) develops a sequential model
of news propagation with endogenous fact-checking, and identifies pathological
outcomes whereby fabricated news articles fail to be detected and subsequently
spread throughout the society, manipulating the beliefs of the agents in the pro-
cess. In this setting, there is “under-exploration” from a system perspective in the
sense that individual agents do not internalize the impact of their fact-checking
decisions on the actions and beliefs of their downstream peers, which in turn
may result in inadequate levels of fact-checking. The study proceeds by analyz-
ing a first-order defense against the propagation of fake news involving a social
media platform that decides whether and when to intervene with the sharing of a
news article by conducting its own fact-check (an approach recently adopted by
Facebook).

An alternative to the platform conducting its own fact-checks is that of incen-
tivizing the agents to do so through direct monetary payments, in a manner anal-
ogous to the setup of Frazier et al (2014). Perhaps a more interesting avenue, how-
ever, is the design of appropriate information-disclosure mechanisms that may
be able to achieve the same effect in a cost-effective way. One insight from Pa-
panastasiou (2017) is that the fact-checking decisions of agents are influenced
to a large extent by the number of times the information in question has been
shared between their peers. Thus, one might expect that the concealment of such
information by the platform may increase the amount of scrutiny an article un-
dergoes, thereby reducing the propagation of fabricated information. At the same
time, too much fact-checking is also an inefficient outcome: every fact-check in-
curs a cost to the agents which may be unnecessary. It follows that, as in Papanas-
tasiou et al (2017), the optimal information policy must strike a balance between
allowing the agents to exploit the information generated by their peers, while also
motivating them to explore (fact-check) at a system-optimal level.

In a somewhat related direction, Candogan and Drakopoulos (2017) study the
tradeoff between user engagement and misinformation in the context of an on-
line social networking platform. The content available on the platform may con-
tain inaccuracies and false claims. The platform, which knows the quality of its
content, may use a signaling device, e.g., recommend whether agents engage or
not with the content, so as to induce a desired engagement behavior. A main em-
phasis in this line of work is the interplay between the platform’s (signaling) pol-
icy and the structure of the agents’ social network.

7 Concluding Remarks

This chapter showcases that choosing whether, when, and what information to
disclose to agents may have a first-order impact on the payoff of a principal. Most
of the exposition centers around the example of an online recommendation plat-
form (e.g., Yelp or Tripadvisor) but as we highlight in Section 6 these ideas may
apply to many more real-world settings. Our hope is that the discussion provided
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here makes clear that information disclosure policies may be effective opera-
tional levers especially in the context of online platforms that rely on their users
for ensuring a high quality of service. We believe that the role of information flows
in mitigating the potential misalignment of interests between a principal and an
agent/set of agents is quite important and relatively unexplored, and may thus
provide a fruitful avenue for future research.22 Although the scope of the ideas
presented here is quite broad, we expect that they will be particularly relevant in
the design and operations of online platforms and marketplaces.
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