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Participants race towards completing an innovation project and learn about its feasibility from their own
efforts and their competitors’ gradual progress. Information about the status of competition can alleviate
some of the uncertainty inherent in the contest, but it can also adversely affect effort provision from the
laggards. This paper explores the problem of designing the award structure of a contest and its information
disclosure policy in a dynamic framework and provides a number of guidelines for maximizing the designer’s
expected payoff. In particular, we show that the probability of obtaining the innovation as well as the time
it takes to complete the project are largely affected by when and what information the designer chooses to
disclose. Furthermore, we establish that intermediate awards may be used by the designer to appropriately
disseminate information about the status of competition. Interestingly, our proposed design matches several

features observed in real-world innovation contests.
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1. Introduction

Innovation contests are a tool that firms and institutions use to outsource innovation to the crowd.
An open call is placed for an innovation project that participants compete to finish, and the
winners, if any, are awarded a prize.! Recent successful examples include The NetFlix Prize and
the Heritage Prize?, and a growing number of ventures like Innocentive, TopCoder, and Kaggle
provide online platforms to connect innovation seekers with potential innovators.

The objective of the contest designer is to maximize the probability of reaching the innovation
goal while minimizing the time it takes to complete the project. Obviously, the success of a contest
depends crucially on the pool of participants and the amount of effort they decide to provide, and a
growing literature considers the question of how to best design a contest. The present paper studies
a model with the following three key features. First, in our model, an agent’s progress towards the

goal is not a deterministic function of effort. As is typically the case in real-world settings, progress
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is positively but imperfectly correlated with effort. Second and quite importantly, it is possible
that the innovation in question is not attainable, either because the goal is actually infeasible or
because it requires too much effort and resources that it makes no economic sense to pursue. We
model such a scenario by means of an underlying state that captures whether the innovation is
attainable. These two features imply that an agent’s lack of progress may be attributed to either
an undesirable underlying state (the innovation is not attainable) or simply to the fact that the
agent was unlucky in how her effort was stochastically mapped to progress. Third, we consider
a dynamic framework to study how competition between agents evolves over time. Critically, we
incorporate the fact that they learn from each other’s partial progress about the feasibility of the
innovation project. In particular, our modeling setup includes well-defined intermediate milestones
that constitute partial progress towards the end goal. Such milestones are usually featured in
real-world innovation contests, including the ones we use as motivating examples.

The discussion above implies that news about a participant’s progress has the following inter-
esting dual role: it makes agents more optimistic about the state of the world, as the goal is more
likely to be attainable and thus agents have a higher incentive to exert costly effort. We call this
the encouragement effect.> At the same time, such news imply that one of the participants has a
lead, which might negatively affect effort provision from the remaining agents as the likelihood of
them beating the leader and winning the prize becomes slimmer. We refer to this as the competition
effect. These two effects interact with one another in subtle ways over the duration of the contest,
and understanding this interaction is of first-order importance for contest design.

The primary contribution of this paper is twofold. First, while some of the features described
above — uncertainty regarding the feasibility of the end goal, stochastic mapping between effort
and progress, and intermediate milestones — appear in previous literature, to the best of our
knowledge, this framework is the first that explicitly combines all three into a single model. This
allows us to focus on the information disclosure policy of the contest designer and show how this
policy depends on whether the competition or the encouragement effect dominates. In particular,
we consider the question of whether and when should the contest designer disclose information
regarding the competitors’ (partial) progress with the goal of maximizing her expected payoff.
Interestingly, we illustrate the benefits of non-trivial information disclosure policies, where the
designer withholds information from the agents and only releases it after a certain amount of time
has elapsed. Such designs highlight the active role that information may play in incentivizing agents
to participate in the contest. As we further elaborate in the literature review, much of the extensive
prior work on innovation contests studies static single-shot models that feature no uncertainty

regarding the goal (and thus no learning).
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Second, we identify the role of intermediate awards as a way for the designer to implement the
desired information disclosure policy — the policy that maximizes the effort provision of the agents
and consequently the chances of innovation taking place. Intermediate awards are very common in
innovation contests (the aforementioned NetFlix and Heritage prizes are examples of contests that
have employed intermediate awards), but the exact role they play as information revelation devices
has not yet been studied. We show how these awards may serve to both extract private information
(from those agents who have made some progress) as well as disseminate this information to the
rest of the competition through the public announcement (or not) of giving out an award.

A simple illustration of the main ideas in the paper is the following. Consider an innovation
contest that consists of well-defined milestones. For example, the goal of the Netflix prize was to
achieve an improvement of 10% over the company’s proprietary algorithm, with a first progress prize
set at 1% improvement. In this example, reaching the milestone of 1% improvement constitutes
partial progress towards the goal, and we assume that the agents and the designer are able to
verifiably communicate this. Assume for now that the innovation is attainable with certainty given
enough effort, and that agents are fully aware of that. The lack of progress towards the goal is
then solely a result of the stochastic return on effort. When no information is disclosed about the
agents’ progress, they become progressively more pessimistic about the prospect of them winning,
as they believe that someone must have made progress and that they are now lagging behind in
the race towards the end goal. This might lead them to abandon the contest, thus decreasing the
aggregate level of effort and consequently increasing the time to complete the innovation project.

In contrast, when there is uncertainty about the feasibility of the end goal, agents that have
made little or no progress towards the goal become pessimistic about whether it is even possible
to complete the contest. If this persists, an agent may drop out of the competition as she believes
that it is not worth putting the effort for what is likely an unattainable goal, reducing aggregate
experimentation in the process and decreasing the chances of reaching a possibly feasible innovation.

This discussion highlights the complex role that information about the agents’ progress play
in this environment. In the first scenario, the competition effect is dominant since there is no
uncertainty about the attainability of the end goal. Hence, disclosing that one of the participants
is ahead may deter future effort provision as it implies that the probability of winning is lower for
the laggards. In the second case, the encouragement effect dominates, and an agent’s progress can
be perceived as good news, since it reduces the uncertainty over the feasibility of the end goal.

The information disclosure policy is only one of the levers that the designer has at her disposal
to affect the agents’ effort provision decisions. Another is the compensation scheme that in an
innovation contest takes the form of an award structure. In a setting with potentially multiple

milestones, a design may involve compensating agents for reaching a milestone or having them
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compete for a single grand prize given out for completing the entire contest. Our analysis sheds light
on the interplay between information disclosure and the contest’s award structure by comparing
different mechanisms in terms of their expected payoff for the designer. This brings the information
disclosure policy to the forefront as we show that the probability of obtaining the innovation as
well as the time it takes to complete the project are largely affected by when and what information
the designer chooses to disclose.

Related Literature: A growing literature explores different aspects of innovation contests. For
example, Taylor (1995), in an influential early work, considers a tournament in which agents decide
whether to conduct (costly) research and obtain an innovation of value drawn from a known
distribution at each of T' time periods after which an award is given out to the agent with the
highest draw. Taylor (1995) finds that a policy of free and open entry may give rise to low levels of
effort at equilibrium; thus, it may be optimal for the sponsor to restrict participation by imposing
an entry fee. Relatedly, Moldovanu and Sela (2001) consider the case when the agents’ cost of effort
is their private information and show that when the cost is linear or concave in effort, allocating the
entire prize sum to the winner is optimal whereas when it is convex several prizes may be optimal.
Che and Gale (2003) find that for a set of procurement settings it is optimal to restrict the number
of competitors to two and, in the case that the two competitors are asymmetric, handicap the most
efficient one. Moldovanu and Sela (2006) explore the performance of contest architectures that
may involve splitting the participants among several sub-contests whose winners compete against
each other. Siegel (2009) provides a general framework to study such static all-pay contests that
allows for features such as different production technologies and attitudes toward risk. Terwiesch
and Xu (2008), Ales et al. (2016a), and Ales et al. (2016b) explore static contests in which there
is uncertainty regarding the value of an agent’s contribution and explore the effect of the award
structure and the number of competitors on performance. Finally, Boudreau et al. (2011) examine
related questions empirically using data from software contests.

Unlike the papers mentioned above, a central feature in our model is the fact that there is
uncertainty with respect to the attainability of the end goal. In addition, agents dynamically adjust
their effort provision levels over time responding to the information they receive regarding the
status of the competition and the state of the world, i.e., whether the contest can be completed.
Early papers that consider the dynamics of costly effort provision in the presence of uncertainty are
Choi (1991) and Malueg and Tsutsui (1997). These papers study R&D races and assume that firms
can observe each other’s experimentation outcomes, thus abstracting away from using information
about relative progress as an incentive mechanism.* In addition, the “award”, which in this case is

the value of the innovation in question, is fixed. In contrast, in our setting each agent’s progress,
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i.e., the outcomes of her experimentation process, is her private information and a third party, the
designer, determines the contest’s award structure and information disclosure policy.

There is also a stream of papers (Bolton and Harris (1999), Keller et al. (2005), Keller and
Rady (2010), Bonatti and Horner (2011), and Klein and Rady (2011)) that study the dynamics
of experimentation within a team of agents that work towards completing a project. Strategic
interactions are driven by the fact that experimentation outcomes are observable and information is
a public good and the focus is on how the agents’ incentives to free-ride affect the level of aggregate
experimentation. Bimpikis and Drakopoulos (2016) also consider experimentation incentives within
a team and show that having agents work independently and then combine their efforts increases
aggregate welfare. Although our model builds on the exponential bandits framework that was
introduced in Keller et al. (2005), the setup and focus are considerably different from the strategic
experimentation literature. In particular, agents compete with one another for a set of awards that
are set ex-ante by the designer. Furthermore, we allow for imperfect monitoring of the agents’
progress (experimentation outcomes). This, along with the fact that agents dynamically learn about
the attainability of the end goal and the status of competition, significantly complicate the analysis
as not only do agents form beliefs about whether they can complete the contest but also about their
progress relative to their competitors. The latter is not an issue in the strategic experimentation
literature since experimentation outcomes are typically assumed to be perfectly observable.

Our paper is also related to the literature on dynamic competition. For example, Harris and
Vickers (1987) show that in a one-dimensional model of a race between two competitors, the leader
provides more effort than the follower and her effort increases as the gap between the competitors
decreases. On the other hand, Hérner (2004) shows that firms invest most in effort provision when
they are far ahead in an effort to secure a durable leadership or when they are lagging sufficiently
behind to prevent their rival to outstrip them. Furthermore, Moscarini and Smith (2007) consider
a two-player dynamic contest with perfect monitoring where the focus is on the design of a scoring
function in which the leader is appropriately “taxed” whereas the laggard is “subsidized”.® Unlike
these papers we allow the contest designer to choose what information and when to disclose it,
thus putting more emphasis on how the designer can incentivize agents to take a certain set of
actions by controlling the information they have access to.

Another paper related to our work is that of Lang et al. (2014) who study a two-player continuous
time contest in which there is no uncertainty about the underlying environment but agents exert
costly effort to complete as many milestones as they can before a predetermined deadline. They
characterize equilibrium behavior and, because of the lack of uncertainty and dynamic learning,
they are able to establish a close relation with the outcomes of (static) all-pay auctions thus linking

their framework with prior work on static contests (e.g., Siegel (2009)).
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Finally, the contemporaneous work of Halac et al. (2016) studies contests that end after the
occurrence of a single breakthrough. They do not incorporate the possibility of partial progress
and therefore they abstract away from the fact that agents may learn from the progress of others,
i.e., the encouragement effect is absent in their model. Our framework shares some features with
theirs, particularly the uncertainty regarding the attainability of the end goal, but our main focus
is on exploring the interplay between the contest’s award structure and the information disclosure
policy that it implies in relation to the encouragement and competition effects. This only becomes
relevant in the presence of partial progress towards the end goal and discounting, which are two
features that are unique to our model and that we believe capture realistic aspects of contests.
As Halac et al. (2016) consider a contest with no intermediate milestones and assume that there
is no discounting, the time it takes to complete the contest is immaterial for their analysis. In
addition, incorporating intermediate milestones enables us to study information disclosure policies
that involve a (stochastic) delay between (partial) progress and the designer’s announcements. On
the other hand, they consider multiple competitors and allow for strategies in which the designer
broadcasts a message at time t only if at least k& competitors have completed the project by that

time. We focus on two competitors and as a result we do not allow for such strategies.

2. Model

Our benchmark model is an innovation contest with two sequential stages, A and B, and two
competitors, 1 and 2. Innovation happens if an agent successfully completes Stage A and then Stage
B. Stage A is associated with a binary state 84 that describes whether that stage can be completed
(04 =1) or not (4 =0). If 4 =0, then Stage A is not feasible (and, consequently, innovation is
not possible). If 4 =1, then the breakthrough to complete Stage A is feasible and has an arrival
rate that is described by a Poisson process with parameter . Once Stage A is complete, there is
no residual uncertainty in the model and the arrival rate of the breakthrough to complete Stage
B is equal to p. We assume that agents have a common prior on 6, and we denote that prior by

pPa :P(HA = 1)

Stage A Stage B
Rate A when 6,=1 Rate p

Figure 1  An innovation contest with two stages, A and B.

Agents choose their effort levels continuously over time. Agent i € {1,2} chooses effort z; , € [0, 1]
at time ¢ and incurs an instantaneous cost of effort equal to cz;, for a constant ¢ > 0. An agent

in Stage A who puts effort x; at time t obtains a breakthrough, i.e., completes Stage A, with
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instantaneous probability 0, x;. We assume that an agent’s effort provision level is not observable
by her competitor or by the designer. Agent ¢ is endowed with an information set — described
later in this section — that summarizes her information about the contest at time t. Moreover, we
assume that although an agent’s effort level is her private information, progress, i.e., completing
Stages A or B, is observable by the agent and the designer (but not the agent’s competitor). We
relax this assumption towards the end of Section 4 and discuss how the designer may incentivize
agents to share their progress. Finally, progress can be verifiably communicated, i.e., we abstract
away from “cheap-talk” communication between the designer and the two competitors.”

The designer commits to the contest’s award structure and information disclosure policy. In
particular, R4 and Rp denote the awards for completing Stages A and B of the contest respectively.
Throughout the paper, we assume that the designer announces the completion of Stage B as soon
as it happens and gives out award Rp to the agent that completes it. Thus, agents have no incentive
to continue exerting effort after such an announcement and the game essentially ends.

Our main focus is on studying how different disclosure policies for the agents’ partial progress,
i.e., completing Stage A, may affect their effort provision and consequently the designer’s expected
payoff. Specifically, we consider a class of policies that — conditional on Stage A being completed at
time 7 — specify the cumulative probability that the designer publicly announces partial progress
by time ¢t > 7. In other words, the probability that the designer has disclosed the agents’ partial

progress by time t is given as follows as a function of the history up to t:
D, : {Tf}taT;}t} —10,1],

where Tsz‘t €[0,t]U{0} denotes the time at which agent ¢ has completed Stage A if she has done so
by time ¢ (here, () denotes that the agent has not completed the stage before time ¢). We emphasize
that the designer’s announcements are public, i.e., we abstract away from asymmetric information
disclosure policies that may feature different messages being communicated to the two agents.

Our analysis proceeds by first considering the full and no information disclosure benchmarks in
Section 3 (corresponding to ®, =1 if Ti‘f‘t <t for some i and ®, =0, respectively), whereas Section 4
explores designs in which progress is disclosed with some delay. Finally, in terms of the award R4,
we assume that it is given out to the agent that first completes Stage A or split equally between
the two competitors if they both complete the stage before the designer discloses any information
about their respective progress.

Payoffs are discounted at a common rate r for both the designer and the agents. Throughout
the paper we assume that the expected budget allocated to the contests’ award(s) is kept fixed
and we compare different information disclosure policies in terms of the payoff they generate for

the designer (thus, focusing our analysis on information disclosure).®
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On the other hand, an agent’s strategy is a mapping from her information set at time ¢ to an
effort provision level z;, € [0,1]. Agent ¢’s information set at ¢ includes the calendar time, the
contest’s award structure and information disclosure policy, the agent’s effort levels up to time ¢,
i.e., {2+ }o<r<t, whether the agent has already completed Stage A, i.e., the indicator variable I;‘jt,
and, last, whether the designer has announced that she or her competitor have already completed
Stage A.

Finally, agents hold a set of beliefs {p;,¢;:} that evolve over time, where p;; denotes agent i’s
belief about the feasibility of Stage A and ¢, ; denotes her belief about whether her competitor has
already completed Stage A conditional on the stage being feasible, e.g., ¢;» = 1 implies that at time
t, agent ¢ believes with certainty that her competitor is in Stage B. Note that the agents’ beliefs
co-evolve through their interaction with the designer’s information disclosure policy, since the only

way to obtain information about a competitor’s progress is through the designer’s announcements.

3. Real-time Leaderboard and Grand Prize

We begin our exposition by considering two intuitive contest designs. The first, which we call real-
time leaderboard, features full information disclosure from the designer, i.e., the agents’ progress
is publicly disclosed on an online leaderboard by the designer as soon as it happens. The second,
which we call (single) grand prize, is such that the designer only discloses the completion of the
entire contest, i.e., Stage B, and thus an agent determines her effort provision levels over time
solely based on observing the outcomes of her own experimentation as well as the beliefs she forms
about her competitor’s effort levels and progress.

To allow for tractable analysis, we assume that conditional on the innovation being feasible, Stage
B takes more time to complete in expectation than Stage A (some of our results are actually stated
for the limit p — 0). This assumption together with the assumption that p4 < 1 provide a good
approximation of the dynamics at the early stages of a contest, when there is both a significant
amount of uncertainty as well as plenty of time before a competitor reaches the end goal.

Given that the designer discloses the completion of Stage B as soon as it happens in both designs,
the information disclosure policy centers around partial progress, i.e., the completion of Stage
A. Below, we describe the agents’ belief update process under the two extremes of information
disclosure corresponding to the real-time leaderboard and grand prize designs.

o Full disclosure: Let pf ., denote agent i’s belief about the feasibility of Stage A in the absence
of any progress up to time ¢t when agents observe each others’ outcomes (superscript F refers to
full disclosure). Then, Lemma 1 provides a characterization for the change in beliefs over period

[t, ¢+ dt).
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LEMMA 1. The change in agent i’s beliefs about the feasibility of Stage A in the absence of progress

over time period [t,t+ dt) is given as:
dpft = —pft(l _pft>(xi7t +x i) Adt, (1)

where x;; denotes the effort provision level by agent i at time t and x_;, denotes the effort level

that agent i believes her competitor is exerting at time t.

e No information disclosure: In the absence of partial progress (and assuming that her competi-

tor has not claimed the final award), the law of motion of agent i’s belief at ¢ is given by:
dply = —p (1= p) (M, + pall) dt, (2)

where qﬁi denotes the belief agent ¢ assigns to the event that her competitor has already completed
Stage A conditional on the stage being feasible (superscript A refers to no disclosure). Note that

the law of motion for qﬁg takes the following form:
Aty = (1= 5) (eeq — g¥p0) "

where as above z_;, denotes the effort level that agent ¢ believes her competitor is exerting at ¢ in
the absence of progress (Expressions (2) and (3) can be derived similar to Lemma 1).

Intuitively, full information disclosure allows for the fast dissemination of the good news of an
agent’s progress (completion of Stage A), since it resolves the uncertainty about the feasibility
of the end goal and therefore instantly affects the competitors’ future effort provision. On the
flip side, the absence of progress makes agents pessimistic at a faster rate than when information
is not public. Indeed, by comparing Expressions (1) and (2), one can easily deduce that agents’
beliefs move downward faster under full disclosure. This comparison clearly highlights one of the
designer’s main tradeoffs: on the one hand, sharing progress between competitors allows for the
timely dissemination of good news and induces agents to exert effort. On the other hand, the
absence of partial progress early in the process can make agents pessimistic about the feasibility
of the underlying project and adversely affect their effort provision.

Real-Time Leaderboard: The first contest design we study involves full information disclosure,
i.e., the designer continuously discloses information about the agents’ progress. In addition, the
awards for completing Stages A and B are given out to the agent that completes them first.

Consider the subgame that results when one of the agents, the leader, completes Stage A. The
leader’s optimal effort provision takes a very simple form for ¢ > 74, where 74 is the random time

at which Stage A was completed. In particular, if we index the leader by i, we have

X 1 if Rg>c/p

R N > Ty,
Ti {0 otherwise ’ for t > 74
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Thus, the designer should set Rp to be at least as high as ¢/u in order to ensure that the contest
is going to be completed (recall that Stage B can be completed with probability one, so as soon
as an agent breaks through to that stage, she will continue putting an effort until the contest is
complete assuming that the value of the award is high enough to cover her cost of effort).
Similarly, the laggard continues putting effort in the contest if her expected payoff is higher than
the instantaneous cost of effort. Note that since there is no residual uncertainty after the leader
has completed Stage A, the laggard would complete Stage A with probability Adt if she puts effort.

In turn, her payoff from that time onwards would be equal to

e o= PR
/0 He B 2+ B>

since each one of the agents would complete Stage B at rate p ( recall that r denotes the discount

rate). Thus, the laggard would find it optimal to continue putting effort if

2,u—|—'r>

)\MRB—C

2u+r

> ¢, or equivalently Rp > € (1 + y
1

In other words, upon completion of Stage A, both the leader and the laggard remain in the contest

and put full effort until one of them completes Stage B if the final award Rp is at least

; c 2u+r
Rp>Rp"=—|(1 . 4
p = (14250 (@

If, on the other hand, ﬁ < Rp < R%™ the laggard drops out of the contest while the leader continues
putting full effort until the end. We let II(k,¢, Rp) denote the expected payoff of agent i when
she is in Stage k, her competitor is in Stage ¢, and the final award is equal to Rp. Then, it is

straightforward to obtain the following:®

(A, B,Rp) = ﬁwﬁ}%g — %c if R > Ryin )
! otherwise
(B, A, Rp) <A+2«+T oner T ,\+Z+r> Rp — (Hiﬁ%c if Rp > Rumin .
JA,Rp) =
% otherwise

Furthermore, given that the designer would only have the incentive to organize the contest if her
ex-ante expected payoff was positive, Assumption 1 below states that the utility she obtains from

the innovation is sufficiently high, i.e., higher than the size of award Rj™.
ASSUMPTION 1. The utility the designer obtains from the innovation is strictly higher than R%™.

Following the discussion above, agent ¢’s optimization problem can be written as follows:

max / (2P A(RA+1L(B, A, Rp)) — ¢) + x;,,p;  AlL(A, B, Rp)] e_fOT(pfs)\(-'El,s"FJQ,s)+7-)dsd7_’
0

{zir}r>0
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where the first term between the brackets is equal to the agent’s (expected) instantaneous payoff
from exerting effort z; , at time 7. On the other hand, the second term captures the agent’s expected
payoff if her competitor completes Stage A at time 7 (which occurs with probability x; ,p/ AdT).

We are interested in characterizing the unique symmetric equilibrium in Markovian strategies
in this setting. Proposition 1 below states that agents follow a cutoff experimentation policy in
Stage A and the aggregate amount of experimentation increases with the size of the intermediate
award. The proposition considers awards for completing Stage B that can take one of two values,
i.e., Rg=c/p or Rp = R%™ since it is straightforward to establish that given a fixed budget it is

optimal for the designer to consider only these two values and allocate her remaining budget to

R, (for a formal argument refer to Lemma EC.1 in the electronic companion).

PRroOPOSITION 1. Consider a contest design in which progress is publicly observable and the awards
for completing Stages A and B are equal to Ry and Rp respectively. Then, there exists a unique
symmetric equilibrium in which agents experiment as follows:

(i) Agents follow a cutoff experimentation policy in Stage A, i.e., in the absence of progress they

quit the contest at time tx given below

1 fort<t Eﬁ“%%-%)
Ty =

)

0 otherwise

The cutoff belief pr is given as follows

‘ if Ry ==
A (R A+ 7‘”*{?;;0) 1
Pr= . C ) . (7)
A 2utAtr if Rp = Rp"
A (RA + ()\+M+r z;ﬁw + ,\+l;L+r) Rp — m@

(ii) If Stage A has been completed, experimentation continues as follows
(a) If Ry = R2™: Both agents experiment with rate one until the end of the contest.
(b) If ¢/u < Rp < RB™: The laggard drops out of the contest whereas the leader experiments

with rate one until the end.

Before concluding the discussion on full information disclosure, note that Proposition 1 clearly
illustrates the tradeoff the designer faces when she decides how to split her budget between awards
R, and Rp. In particular, setting Rp equal to RS™ provides an incentive for the laggard to stay
active in the contest until it is over. In contrast, setting Rp equal to ¢/ implies that the leader
is the only agent that puts effort in Stage B (the laggard quits the contest) and thus it may take
longer to reach the end goal. On the other hand, a higher fraction of the designer’s budget is
allocated to R4 when Rp = ¢/ as opposed to when Rp = R%™. As the cutoff belief pr is decreasing
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in R4, this implies that the aggregate amount of experimentation in Stage A — and the probability
that the contest is going to be completed eventually — is maximized by setting Rz = ¢/u.*° Thus,
when setting the sizes of the two awards the designer trades off a higher probability of obtaining
the innovation (by setting Rp = c¢/u) with getting it sooner (by setting Ry = R%™).

Grand Prize without Feedback: At the other extreme of information disclosure, we have con-
tests that feature a single final award R for completing the entire contest, i.e., Stage B, and no
information disclosure in the interim. Agent i’s optimization problem can be then expressed as:

f?zaﬁ /OOO i (/\pﬁ\,[f (QQ/TH(Ba B,R)+ (1— qﬁ)Vi,T(B,A)) _ c) e J;T:o[zﬂﬁ\,/s(r;({f/s;umzi,s)+r]dsdT7
where V; (B, A) denotes the continuation value for agent ¢ when she has completed Stage A whereas
her competitor has not. Agent ¢ cannot observe agent j’s partial progress, and so she forms beliefs
about whether her competitor has completed Stage A. Specifically, q{-YT denotes agent i’s belief that
her competitor has advanced to Stage B by time 7.

As we show in Proposition 2, equilibrium behavior takes the form of a cutoff experimentation
policy as in the case of full information disclosure. However, in this case the time threshold ¢, after
which an agent stops experimenting in the absence of partial progress depends on her own effort
provision as well as her belief about her competitor’s progress over time. Like before, as soon as
the agent completes Stage A, it is optimal for her to put effort until the contest is over. The proof

of the proposition is omitted as it uses similar arguments as those in the proof of Proposition 7.

PROPOSITION 2. Consider a contest design with a single final award in which no information about
partial progress is ever disclosed. Then, there exists a unique symmetric equilibrium in which agents
experiment as follows:

(i) Agents follow a cutoff experimentation policy in Stage A, i.e.,

R 1 fort<ty
“t ) 0 otherwise’

where the cutoff time ty is given as the unique solution to the following equation

N N MR—c Y ;LR—C)_C
pi,tN(Qi,tN 2#4'7“ +( QZ,tN) ,UJ+T

Here, the posterior beliefs pfft and q{?ﬁ are given by the following expressions:
e~ Pt o= At
pae M (—A u/\_z )

paeN (%ﬁe*“) +(1—pa)

—pt —At
and oV — Ae Ae
q%t Ae—mt — Me—/\t '

N _
Pir =

)

(i1) If an agent completes Stage A, she experiments with rate one until the end of the contest.
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The juxtaposition of Propositions 1 and 2 illustrates the main tradeoff that the designer faces. In
particular, equilibrium experimentation takes the form of a cutoff policy under both full and no
information disclosure with different time cutoffs ¢t and ¢, respectively. As we establish below,
assuming that both designs consume the same budget in expectation and Rz = RE™ in the real-
time leaderboard design (so that conditional on an agent completing Stage A, both agents compete
until Stage B is complete), t5r > t 7, i.e., the probability that Stage B is going to be completed (and
the designer will obtain the innovation) is higher when no information about partial progress is
ever disclosed and the entire budget is allocated to a single final award for completing the project.

On the other hand though, there is a positive probability that in the case when information about
partial progress is not disclosed, one of the agents drops out even though the other has completed
Stage A. The latter case never occurs under full information disclosure (when Rz = R%™). Thus,
conditional on one agent completing Stage A, the contest is completed earlier in expectation when
experimentation outcomes are publicly observable. For additional intuition, note that in the case
when p — 0 and conditional on an agent completing Stage A under both designs, the ratio of the
expected times the innovation will be obtained under the two designs is equal to 1+ e~V (this is
precisely due the fact that although under full disclosure both agents will compete until the end

of the contest, under no disclosure the laggard will drop out with probability e=*").11

PROPOSITION 3. Consider a design that features full information disclosure with Rp = RE™ and
a design that features no information disclosure and has a single final award. Assume that the two
designs consume the same budget in expectation. Then, the probability that an agent will complete
the entire contest, i.e., Stage B, is higher for the design that features no information disclosure. On
the other hand, conditional on the contest being completed, it takes less time to reach the innovation

under full information disclosure.

We plot the ratio of expected payoffs for the designer under the two designs as a function of
the discount rate in Figure 2. When the agents and the designer are sufficiently patient, i.e., the
discount rate takes small values, disclosing no information about partial progress outperforms a
design where progress is publicly observable.

This tradeoff motivates the search for alternative information disclosure policies that combine
the benefits of these two extremes. In the next section, we establish that appropriately timing
the designer’s announcements about the status of competition between the agents leads to strictly

better outcomes for the designer.

4. Delaying the Disclosure of Information

We have established that full disclosure allows for the fast dissemination of good news, but may

also adversely affect effort provision as agents become pessimistic about the feasibility of Stage
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Figure 2  The ratio of the designer’s payoffs for the designs that induce full information disclosure and no infor-
mation disclosure respectively as a function of the discount rate for A=2,4=0.04 and A =2, =0.02
(the prior belief and the budget allocated to awards are pa = 0.2 and B =5 respectively).
A in the absence of partial progress. The fact that “no news is bad news” motivates exploring
alternative designs that may feature silent periods — time intervals in which the designer does
not disclose any information regarding the competitors’ progress (obviously, a special case is the
design that features no information disclosure). In particular, we consider designs parameterized
by T, R4, and Rpg in which the designer’s information disclosure policy takes the following form: if
any of the agents completes Stage B, then the designer discloses this information and the contest
is over. For partial progress, the designer follows a policy that features a silent period: she does not
disclose any information until time 7. At 7 she discloses any partial progress that has occurred

before then. Finally, after 7 she discloses any progress as it happens. In other words,

0 ift<T
©t: .
1 iftZTandT;f‘tStforsomei

On the other hand, the contest’s award scheme is such that Rp is given out to the first agent
that completes Stage B whereas R, is awarded only if Stage A has been completed by time 7. If
both agents complete it before T, then they both get R4 /2 (at the time they complete the stage).'?

Note that the silent period design described above combines elements from both designs we
studied in the previous section. In particular, before time 7 no information is disclosed and agents
become pessimistic at a relatively slow rate in the absence of any partial progress. On the other
hand, partial progress is disclosed at time T and thus it is still likely that both agents will continue
competing until the contest is complete. Interestingly, as we establish below, when 7T is chosen
appropriately, a design with a silent period of length T outperforms both the real-time leaderboard
and the grand prize designs. For the remainder of this section, we assume that Rp = R'%™ which
ensures that the laggard finds it optimal to compete with the leader until the contest is complete.
Apart from simplifying the analysis, this is in line with our focus on the early stages of a contest

when there is significant uncertainty and plenty of time until the contest is over.
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First, we establish that agents follow a cutoff experimentation policy when information about

partial progress is disclosed after an appropriately chosen time t¢s.

PROPOSITION 4. Consider a design with awards Ry and Rp = RS™ that has a silent period of
length ts such that:

Pits (qz«is (Ra/2+10(B, B, RE™)) + (1 - a5, ) (Ra+TU(B, A, R‘.é““))) = (8)

c
Xa
where the posterior beliefs are such that

At )\e—utiue—)\t
bace ( Y e 1t — \e At

and qf =~
pAe_)‘t (/\e—u;t\:ﬁe—)\t> + (1 _pA) T Nemmt — /,Le*)\t
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Piy =

Then, there exists a unique symmetric equilibrium in which agents set their effort levels to one
until time ts and quit if the designer does not disclose any partial progress. Otherwise, i.e., if the

designer discloses that Stage A has been completed, both agents compete until Stage B is complete.

Proposition 4 allows us to compare silent period designs with full and no information disclosure.
First, Proposition 5 states that having a silent period always leads to a higher expected payoff for

the designer than full information disclosure.

PROPOSITION 5. Consider a design that features a silent period of length T =ts defined as in
Expression (8). Then, this design outperforms one that features full information disclosure when

the budgets allocated to awards for the two designs are equal in expectation and Rp = RE™ for both.

The main difference between the two designs is the rate at which beliefs drift downward in the
absence of progress: under full information disclosure, agents become pessimistic at a faster rate
as they can observe the experimentation outcomes of their competitors. The proof of Proposition
5 relies on this observation and establishes that when the budget allocated to awards in the two
designs is kept fixed agents stop experimenting earlier under full information disclosure than in a
design with a silent period of length ts.

Furthermore, as we show below, the latter design also outperforms no information disclosure
(assuming that Stage B takes relatively longer to complete than Stage A conditional on the inno-
vation being feasible). Note that comparing the two designs is not straightforward as they have
different award structures: in the case of a single grand prize, the designer’s budget is allocated
entirely to the award for completing the contest. On the other hand, silent period designs involve
intermediate awards that may be split between the two competitors. As Proposition 6 states, when
1 — 0, having a silent period of length ¢s and offering an intermediate award to the agent(s) that

complete Stage A by ts yields a higher expected payoff for the designer.
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Figure 3 The ratio of payoffs for the designer corresponding to the designs that feature a silent period and no
information disclosure or full information disclosure respectively as a function of y. Here, A = 2 and
r =1 (the prior belief and the budget allocated to awards are pa = 0.2 and B =5 respectively).
PROPOSITION 6. Assume i — 0 and consider a design that features a silent period of length T =ts
defined as in Exzpression (8) and awards R and Rp = RB™. Then, there exists D, such that for
pa <Dy the silent period design outperforms a design with a single grand prize when the budget

allocated to awards is the same in expectation for the two designs.

The benefit of a silent period design compared to no information disclosure is that it induces a
higher probability of both agents competing until the end of the contest. In addition, this benefit
is more pronounced when Stage A is a relatively short part of the contest. Figure 3 illustrates that
the silent period design dominates full and no disclosure for a wide range of values for pu.

Probabilistic Delay in Announcing Progress: So far, we have established that disclosing no infor-
mation about the status of competition until some pre-determined time leads to a higher expected
payoff for the designer than both full and no information disclosure. Next, we generalize this find-
ing by showing that the silent period design we discussed above outperforms any design in which
information about partial progress is disclosed at some (constant) rate ¢ (as opposed to being
disclosed at a pre-determined time). In particular, we consider a design that features the following
information disclosure policy:

q)t:{O o ifothft:@ ' '

1—e?'=7) otherwise, where 7= min;{7/}}
In other words, conditional on at least one agent having completed Stage A by time ¢, the designer
announces that partial progress has been made with rate ¢, i.e., probability ¢dt in time interval

[t,t+dt) (working directly with rate ¢ is more convenient for our analysis) . In addition, the design
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also features an intermediate award R, for the agent(s) that complete Stage A as well as an award
Rp given out to the first agent that completes Stage B. We assume that award R, is given out
to the first agent that completes Stage A unless both complete it before the designer discloses any
information in which case they split it equally. As before, we first establish that when information

is disclosed at rate ¢, agents follow a cutoff experimentation policy.

PROPOSITION 7. Consider a design with awards Ry and R = R5™ in which the designer discloses
partial progress at rate ¢. Then, there exists a unique symmetric equilibrium such that agents put

full effort until time t, given by:

= Xa (9)

in Rmin_i_ng B,A,Rmin —c
pf¢<qf¢(RA/2+H(B,B,RB ))+(1—qf¢)(RA+M = uﬂ5¢+r 5 ))
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where pf’t = and th =

In the absence of partial progress, an agent sets her effort level to zero after ts until the designer

discloses that Stage A has been completed.

Comparing expressions (8) and (9) illustrates the difference of having the designer disclose infor-
mation about partial progress at a pre-determined time ts as opposed to doing so at a rate ¢. In
the former case, at any time ¢ < ts and in the absence of any information about partial progress,
agents are relatively more optimistic about the feasibility of Stage A than in the latter case (as
when the designer discloses progress at rate ¢ no news is still relatively bad news). On the other
hand, in the former case, given that they have no information about their competitors, the prob-
ability they assign to the event that their competitor has already completed Stage A and thus
they would have to share award R, in the case of breaking through, is higher. As we establish
in Proposition 8 below, the first effect dominates the second and the designer finds it optimal to
disclose information about partial progress at a pre-determined (deterministic) time as opposed to

making announcements at stochastic times.!?

PROPOSITION 8. Assume that p— 0 and consider a design with awards Ra and Rp = R5™ that
has a silent period of length ts as given in Ezxpression (8). Then, the design with silent period of
length ts leads to a higher expected payoff for the designer than a design at which information
about partial progress is disclosed at rate ¢ >0 with awards Ry and Rp = REZ™ such that the budget

allocated to awards is the same in expectation for the two designs.
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Incentivizing Agents to Disclose their Progress: So far we have assumed that agents’ progress
is observable to the designer. But in many practical settings it may only be the agents’ private
information and the designer would have to incentivize them to disclose it. Expression (8) suggests
that, when agents’ progress is only privately observable, the design with a silent period of length ts
remains incentive compatible if the intermediate award given out for disclosing such information

is high enough. In particular, note that the relevant incentive constraint is given by:!*

R . R . (1 _ qS)’uRmin —c

S A min .S min > S min B
o (S5 +TUB.BLRE™) ) + (=) (Ra +TI(B, A, RE)) > *T1(B, B, R + o8,
(10)

e Hts — \e~ s

Ae—hts — pe=Ms’
petitor has completed Stage A by time ts. The right hand side of inequality (10) describes an

where ¢° = denotes the probability an agent assigns to the event that her com-
agent’s expected payoff assuming that she completes Stage A at time t5 and decides not to report
her progress to the designer. In that case, the agent does not claim award R4 but in the case
that her competitor has not already completed Stage A she can continue in the contest with no
competition. Inequality (10) implies that if R, satisfies the inequality below reporting her progress

is always optimal for an agent

S min
q /2 luRB —C min
> — — .
Rj> (1 1_q$/2) < II(B, A, Rg™) (11)

et

Belief ¢° is increasing in R4 and, in turn, the first term on the right hand side of the inequality is
decreasing in R 4. Thus, there exists R4 such that the design described in Proposition 4 with R, >
R, remains incentive compatible even when agents’ progress is their private information.'® Thus,
assuming that the budget allocated to awards is large enough, setting the contest’s intermediate
award R4 to a value higher than R, guarantees that agents disclose their progress to the designer
as soon as it happens.

Asymmetric Information Disclosure Policies: As noted in Section 2, we restrict attention to
information disclosure policies that involve public announcements from the contest designer, i.e.,
we abstract away from policies that could feature revealing information to only one of the two
agents. Apart from being more challenging to implement, such disclosure rules do not lead to better
outcomes for the designer. Below we provide a simple argument to illustrate this.

First, to facilitate the comparison with the designs we have discussed so far, we consider the
following variation of the silent period design: the designer offers an intermediate award R, if
an agent completes Stage A before some pre-determined time ¢. She also offers an award Rp for
completing the entire contest. If both agents complete Stage A before time ¢, they both receive
R, /2. Finally, the designer at time ¢ announces whether agent 1 has completed Stage A (but does
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not disclose any information about agent 2’s progress — payments are deferred to the end of the
contest and, thus, agent 1 cannot infer any information about how well agent 2 is doing). Then,
it is straightforward to see that such a design is either dominated by the silent period design we
discussed above (in which the designer discloses information about both agents’ progress) or by a
design that features no information disclosure.

In particular, assume for the sake of contradiction that the asymmetric design we describe here
led to a higher payoff for the designer than the silent period design. Comparing the two designs
implies that the first, i.e., asymmetric disclosure, will feature more experimentation from agent
2 (as her competitor might quit in the absence of progress) but lower probability of having both
agents compete until the end (since in the silent period design if one of the agents completes Stage
A both will compete until the end). Given our assumption that asymmetric disclosure benefits the
designer, we obtain that the additional experimentation from agent 2 outweighs the potential loss
from having agent 1 quit the contest although agent 2 has completed Stage A before time t.

Note though that not disclosing any information about agent 1 (in addition to not disclosing
information about agent 2) results in the same benefit/loss for the designer. Thus, if asymmetric
disclosure dominates the silent period design, then no information disclosure would dominate both.
A similar argument can be used to show that if a design with asymmetric information disclosure
dominates no information disclosure, then they would be both dominated by the silent period
design. In summary, designs that feature asymmetric information disclosure policies do not yield
any benefit in our environment and the focus to symmetric disclosure is without loss of generality.

We conclude the section by noting that the silent period design we describe here resembles
the structure of many real-world tournaments. As an example, apart from the final grand prize,
participants in the Netflix prize competed for intermediate awards that were given out at pre-
determined times. In particular, Netflix was offering an annual progress prize to the team that
showed the most improvement during the year, as long as this improvement was above a given
threshold. This mirrors the design with a silent period: the designer gives out an intermediate
award to the agent(s) that has completed Stage A, i.e., has progressed above a threshold, by some
pre-determined time. Interestingly, the Netflix design allowed participants to disclose their progress
as it happened in a public real-time leaderboard. However, since the awards were given out once
a year, i.e., at pre-determined times, most of the teams posted their progress in the proximity of

the deadline, effectively implementing a silent period until the intermediate award was given out.

5. When Competition is Dominant

Sections 3 and 4 consider contest design in the presence of uncertainty regarding the end goal.

In this section, we discuss a complementary case when, given enough time and effort, innovation
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occurs with probability one (pa =pp =1). We also assume that Stage B is shorter (in expectation)
than Stage A (u > \). These two assumptions can be thought of as providing an approximation
of the dynamics towards the end of the contest when uncertainty has been largely resolved and
competition between the agents intensifies. In that case, the contest designer is facing a different
tradeoff: when no information is disclosed about the agents’ progress, they become progressively
more pessimistic about the prospect of them winning, as they believe that someone must have
made progress already and that they are lagging behind. On the other hand, making information
about partial progress readily available may not benefit the designer either, as the agent who is
lagging behind may find it optimal to quit. As we argue in the remainder of the section, a design
with silent periods yields a higher expected payoff to the designer.

In particular, since innovation is certain, the interest of the contest designer is in achieving it
as quickly as possible. Having both agents actively participating in the contest, i.e., exerting effort
towards its completion, naturally expedites innovation compared to the case when only one of them
remains active in the race, and thus the focus of the designer is on providing the right informational
incentives for agents to continue experimenting and not drop out of the contest. These incentives
may involve signaling to the agents that, relative to the competition, they are not lagging behind.

In particular, assume that the designer’s budget and consequently the award structure is such
that if an agent observes her competitor completing Stage A she has no incentive to continue
putting effort in the contest (this is the most interesting case when ps = pg =1). Then, unlike the
case we study in Sections 3 and 4, no progress by her competitor is actually good news for an agent.
This fact leads to a different tradeoff for the designer: her objective is to delay announcing progress
by either of the agents as long as she can maximize the probability that both complete Stage A
(and thus compete until the end). Agents, on the other hand, form beliefs about the progress of
their competitors and, in the absence of any announcement from the designer, become pessimistic
about their prospects of winning as they find it more likely that they are lagging behind.

For the remainder of the section, we assume that the designer’s budget is entirely allocated to a
single award given out to the first agent that completes the entire contest and focus on the impact
of different disclosure policies on the agents’ incentives for an effort provision. As before, we first
compare the effort provision under full and no information disclosure of partial progress. When
agents can perfectly observe each other’s progress, they compete in Stage A by exerting full effort
until one of them advances to Stage B at which point the laggard finds it optimal to quit. On the
other hand, in the absence of any announcements, an agent’s belief that her competitor is already
in Stage B (which would imply that she should quit) increases. As a response, agents drop their
effort levels to strike a balance between quitting the competition early and persisting in an attempt

to win, without losing too much if it turns out they were lagging behind.
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Although the agents’ incentives for effort provision and the designer’s tradeoff are quite different
than in the case we covered in Sections 3 and 4, it turns out that a design that features silent
periods again outperforms both full and no information disclosure (under some assumptions on
the budget the designer allocates to awards). Instead of stating the results formally, we provide
some intuition of why this is the case by describing how equilibrium behavior evolves over time
depending on whether agents observe their competitors’ progress.

In particular, under full information disclosure, agents race towards completing Stage A by
exerting full effort. Upon the stage’s completion, the leader continues towards completing Stage B
whereas the laggard finds it optimal to quit. On the other hand, when agents cannot observe their
competitors’ partial progress, they form beliefs about whether they have already completed Stage
A. As before, if we let ¢; ; denote the probability that agent 1 assigns at time ¢ to the event that her
competitor is in Stage B, then we have dg; , = (1 — q1,¢) (%24 A — q1,4p0)dt. Here, x4, is the amount of
effort that agent 1 believes agent 2 would allocate if she is still in Stage A (she would allocate effort
equal to one if she is in Stage B). Interestingly, there exists a symmetric equilibrium in Markovian
strategies that takes a simple form: in the absence of progress, agents put full effort up to some
time 7, after which they drop their effort level to ¢; W /A, where ¢;  denotes an agent’s belief that
her competitor has completed Stage A by time 5. In other words, neither of the agents quits, but
instead they continue exerting effort until one of them completes the entire contest (albeit with a
rate lower than one after time ).

Finally, as we mention above, a design that features silent periods leads to a higher expected
payoff for the designer than both full and no information disclosure. In particular, consider the
designer announcing the status of competition every ts time periods for some ts. As in the case
when there is no disclosure, agents form beliefs regarding the likelihood that their competitors
have already advanced to Stage B before the designer’s announcement. Beliefs are reset at time
ts if no progress is announced and the game essentially restarts. The probability that both agents
progress to Stage B is positive (unlike the case when progress is publicly observable) and if the
silent period is sufficiently short, effort levels are higher than in the case of no information disclosure
(since beliefs are reset every ts). These two observations for the design with silent periods, i.e., the
probability that agents will compete until the end of the contest is positive and beliefs are reset
after each of the designer’s announcements, imply that it outperforms both full and no disclosure.

As a final comment, note that the proposed design could be implemented in a straightforward
way even when agents’ progress is only privately observed. In particular, agents have the incentive
to disclose their (partial) progress to the designer as soon as they complete a stage since such
information would induce their competitors to quit the contest. Thus, unlike Sections 3 and 4
implementing the design does not require an intermediate award of a sufficiently high value to

incentivize agents to disclose their progress.
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6. Concluding Remarks

This paper studies the role of information in innovation contests and how it is inextricably linked
to the encouragement and competition effects present in this setting. In particular, we examine
the role of intermediate awards as information revelation devices that can be used to improve the
performance of contests both in terms of the probability of reaching the end goal as well as the
time it takes to complete the project. Interestingly, the role of an intermediate award depends on
which of the two effects dominates: for the competition effect, an intermediate award that is not
handed out is good news for the agents and increases their willingness to put in effort, since they
believe they are still in the running to win the contest. When the encouragement effect dominates,
an award that is handed out makes agents more optimistic about the feasibility of the project and
provides an incentive for them to continue experimenting. This implies that the designer has to
balance the trade-off between a higher level of aggregate experimentation in the early stages of the
contest with a larger number of participants in later stages (i.e., faster completion of the contest)
when determining the sizes of the awards.

We use a two-stage contest to provide an approximation of the dynamics in multi-stage contests.
Naturally, the more progress being made, the less uncertain agents become about the feasibility of
the end goal. Thus, a multi-stage contest can be thought of as having two distinct phases. First,
during the early stages, uncertainty regarding the attainability of the end goal is the main driving
force behind the competitors’ actions. Competition is of secondary importance as there is still
plenty of time for the laggards to catch up. We capture this situation as a two-stage contest in which
the feasibility of the discovery required to complete the first stage is uncertain, i.e., p4 < 1. On the
other hand, the second stage — which models the remainder of the contest — takes on average a
much longer time to complete, i.e., the arrival rate associated with stage B is much lower than that
of stage A. As the contest draws to an end, the dynamics become quite different. Agents are more
optimistic about the feasibility of the end goal, but the chances for the laggards to catch up with
the leader are slimmer. Thus, the agents’ behavior is mainly prescribed by the competition effect.
We capture this scenario by examining two successive stages that feature little or no uncertainty.

We show that a design that features silent periods — time intervals in which there is no infor-
mation disclosure about the status of competition — as well as appropriately sized and timed
intermediate awards for partial progress outperforms both the design when information about
progress is not shared among competitors (implemented as a single grand prize for reaching the
end goal) and the design that has a real-time leaderboard and gives out awards for partial progress
as it happens (in which case agents are certain about the status of competition at all times). Silent

periods have been been implemented explicitly and implicitly as parts of real-world innovation
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contests. For example, although the Netflix Prize had an online real-time leaderboard most of the
activity was recorded close to the deadline of the annual progress prizes (the intermediate awards
for partial progress), effectively imposing a silent period between two consecutive such deadlines.
Matlab programming contests organized by Mathworks explicitly feature a silent period early on in
the contest, the so-called “Darkness Segment,” after which participants are allowed to share their
progress with their competitors (in what are known as the “Twilight” and “Daylight” segments).

The modeling framework in the paper can be used as a foundation for subsequent work that
investigates the role of information disclosure in dynamic competition settings. More generally, our
work is applicable to settings that involve a designer or a social planner selectively provides feedback
to the agents involved. Finally, although we believe our setting captures the most important features
of a dynamic contest, it has a number of limitations. Exploring optimal dynamic policies in the
presence of both learning and competition is quite challenging and this is among very few recent
papers that incorporate both of these features. Below we provide a list of potentially interesting
directions for future research along with our thoughts on how they might affect our findings.

Uncertainty in Both Stages: The first part of the paper considers the early stages of an innovation
contest. For the sake of tractability, we assume that there is uncertainty only about the feasibility of
Stage A. Our analysis indicates that there is a trade-off between more experimentation in Stage A
(and, thus, a higher probability of having at least one agent move to Stage B) and the time it takes
to complete the contest. Even in the absence of discounting, a similar trade-off exists if there is
uncertainty regarding the feasibility of both stages in the contest. The designer may find it optimal
to incentivize agents to remain active in the contest even after a competitor completes Stage A in
order to increase the aggregate amount of experimentation in the Stage B. Thus, we expect that
our main qualitative insights regarding the optimality of designs that feature silent periods will
continue to hold. The analysis becomes quite challenging however, with the main difficulty being
that in addition to the agents’ beliefs about the feasibility of Stage A and the status of competition,
the agents also have to form beliefs about the feasibility of Stage B, which in turn depend not only
on whether a competitor has completed Stage A but also on when exactly this happened.

Skill Heterogeneity: We assume that agents are symmetric with respect to their skills as captured
by rates A and u. An interesting direction for future research would be to relax this assumption
and instead consider a setting in which agents are privately informed about their skills. In that
case, giving out an intermediate award introduces an additional trade-off. The completion or not
of Stage A by a competitor provides a signal regarding her skills and may further affect effort
provision. The choice of the timing and size of awards becomes even more involved as the designer

has to take this additional signal into account.
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Contests with Many Stages: A typical contest may involve several milestones. As we have already
argued, our analysis aims to capture the dynamics near the beginning and towards the end of the
contest, where the encouragement and the competition effects, respectively, dominate. A contest
consisting of a large number of stages may involve multiple intermediate awards. We conjecture that
the interval between two consecutive awards increases at the beginning of the contest, thus reflecting
the fact that uncertainty is gradually resolved. On the other hand, when the competition effect
is dominant, agents become pessimistic about their relative progress; thus, the optimal interval
between consecutive announcements by the designer decreases. At any given stage one of the two
effects will be dominant and so our analysis would still apply. However, figuring out the optimal

timing for the designer’s announcements is quite challenging.

Appendix

Preliminaries: In the appendix we use II(k,¢, Rg) to denote the expected payoff that agent i
obtains when she is in Stage k, her competitor is in Stage ¢, and the final award is Rg. We have:

e The expected payoff for an agent when both have completed Stage A (but not B) is given by

[ (uRp—0)/u+7) if Rp>c/p
(B, B, Rp) = { 0 otherwise ° (12)
e The expected payoff for agent i when she is in Stage A and j is in Stage B is given by
_ [ (NI(B,B,Rp) —c)/(A+p+r) if Rp >Ry,
(4, B, Rp) = { 0 otherwise ° (13)
e The expected payoff for agent i when she is in Stage B and j is in Stage A is given by
AI(B,B,Rg)—c rRp : B
+ if RB > RZ.
II(B,A,Rp) = Atptr Atptr o 14
( ) b B) { [L];E;C lf i SRB <RI§1H ( )

Notation: In the proofs that follow we use expressions for an agent’s beliefs that Stage A is
feasible and that her competitor has already completed Stage A denoted by p and ¢ respectively.
The superscripts in the beliefs refer to the respective contest designs. In particular, we have:

e Real-time leaderboard: Along the equilibrium path agents have a common belief about the
feasibility of Stage A which in the absence of progress can be expressed as:

pae Sioo Moy rtmg 2)dr

pl, = , (superscript F refers to full information disclosure).
¢ pae” Ji_o Mz, +ag,r)dr + (1 _ pA)

e Grand prize without feedback: Assuming that both agents experiment with rate one up to

time ¢, agent ¢’s belief about the feasibility of Stage A can be expressed as:
—pt_ o= At
pae~ (‘/\e H,\—ﬁ >

pae (AEEE) 4 (1 py)

N
Piy =

)
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Here, superscript A refers to no information disclosure. Also, when agents cannot directly observe

their competitor’s progress, they form beliefs about Whgther they have already completed Stage
e HE— Nem M

Ae—Ht — pe=At’
e Silent periods: The expressions for beliefs pft and qft before the time at which the designer

A. For the grand prize design we have ¢;", =

makes her first announcement about the status of competition take the same form as those for the
grand prize design (superscript S refers to silent period).
e Announcing progress at rate ¢: Assuming that both agents experiment with rate one up to
time t, agent i’s belief about the feasibility of Stage A can be expressed as:
—(ut+eé)t_ =
pAe—kt<>\€ B (p+p)e t)

p¢ . A—p—¢
it T B Ne— (uto)t_ —Xt :
pae /\t< /\_H(jﬁ;u)e ) + (1 _pA)

Here, superscript ¢ refers to the rate at which the designer discloses partial progress. Also, agent

1’s belief about whether her competitor has already completed Stage A is equal to:
e~ (BHd)t _ Ne—At
4+ = Ae—(+e)t — (1 + d))ef)\t'

Proof of Proposition 1
Assume that agent 2 is using strategy {xs.}:>0. We establish that the best response for agent 1
takes the form of a cutoff, i.e., she sets her effort level to one up to some time and then quits the

contest if neither of the agents has completed Stage A. Consider agent 1’s optimization problem:

max / [:L“Lt(pft)\(RA +1I(B,A,Rp)) —¢) +x2’tpft)\H(A,B, RB)] e fot(pfr’\(mlfr"”?»f)”)det’
0

{z1,t}+>0
where the term e~ fr=oPl - A@Lr+e2,0)dT g equal to the probability that neither of the agents has
completed Stage A by time t.
Given that the final award for completing the contest is such that Rp < R2™ = m (1 + 2 +T) , it

)
is straightforward to see that II(A, B, R™) =0, i.e., the continuation value of agent 1 if she is the

laggard in the contest is equal to zero. Thus, we can rewrite the agent’s optimization problem as

max / (21, (pT A(Ra +TI(B, A, Rp)) — ¢)] e~ J§@T A (21,42, ) +r)dr gy (15)
0

{z1,t}t>0

The coefficient of z;; in the expression above is decreasing over time since in the absence of
progress pf , is non-increasing in ¢. This implies that agent 1’s best response to any strategy from
agent 2 is to set her effort level to one up to some time and then quit in the absence of progress.

Finally, to complete the claim we show that putting effort up to time ¢, where ¢t is given as
in the statement of the proposition, constitutes a symmetric equilibrium. To see this assume that
agent 2 puts full effort up to time ¢. Then according to the first part of the proof the best response
strategy for agent 1 takes the form of a time cutoff. Optimization problem (15) implies that the
time at which agent 1 stops putting effort satisfies )\pf . <RA + H(B,A,RB)> = ¢, which together
with Expression (14) for II(B, A, Rg) completes the proof. Q.E.D.
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Proof of Proposition 6
First, we provide expressions for the expected payoffs for the designer in the two contest designs
we consider. Then, we establish that under the assumptions of the proposition the contest with a
silent period of length ts leads to a higher expected payoff for the designer than the contest that
features no information disclosure.

Consider a design that features a silent period of length t5 given by Expression (8). Then, the
expected payoff for the designer is given by

ts
Us=U- / 2\~ (BTN A L dt
0 Adp+r2u+r  A+p+r
21 - 2 2
_ AU A+ “+T(176—(2A+r)ts)’ (16)
A+r+uw)2u+r) 2X+r

where U denotes the instantaneous utility that the designer derives from obtaining the innovation.
Next, for the design with a single final award and no information disclosure we have
tAr tar—t 2/.L H
UN U / 6(2,\+r)t2/\</ o~ (A tutr)T ()\7 i ,U) dr -+ 67(/\+/L+T)(tj\/ft)7)dt
t=0 =0 2u+r ptr

22 -U
(w+r)AN+p+7m)2u+r)

A=ty _
(1 B 6,(2“7,)%,) (b+7)2A+2u+7) IV Ar <e 1) |
2247 A— U

(17)

Similarly, we obtain the following expressions for the (expected) budgets B° and BV:

E[BS]</tse—(2/\+r)t2)\<RA+( I + A 2p >Rmin>dt
~ Jico Ap+r Atp+r2ut+r/ P

2)\(1 o e—(2)\+r)ts>

7 A 21 ;
- R ( )R“““, 18
2A+7 ( SRS W7 W B) (18)

where the inequality is due to the fact that the intermediate award may be split between the two

agents (when they both complete the stage before time ¢s). Also, we have:

2A\uR

Ar (e<)‘7“)tN—1)
(1 _ 67(2,\+r)t,\/) (pr)@A+2utr) o —(20+r)tn
241 A—p

E[BV] =

(+r) A+ p+1)2p+r) (19)

Expressions (16), (17), (18), and (19) along with the fact that E[B%] = E[B"] yield the following
inequality for the ratio of the expected payoffs for the designer
£> A +2u+7r)p R
UN_()\+M+T)(2,LL+T)RA+( I S 7 )R%lin.

Ap+r 2u+r

(20)

)
Ap+r
The rest of the proof establishes that the right hand size of (20) is strictly greater than one, i.e.,

R> A+ p+r)2u+r)
T @A 2u+r)p

Ry+ Ry™. (21)
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To establish (21), we turn our attention to the cutoff times ¢s and t. Note that if ts > ¢y, the
claim follows directly as then trivially the expected payoff for the designer is higher in the silent
period design. So, we consider the case when ts < ty, and equivalently pfs > p{‘j{r Then, by the

characterization of the cutoff times we obtain:

Ry, pRE™—c pREn R—c R—c
S B S B N M AN

—+t——)+1 Ry+—2— 1 )
qts( 9 2+ ) ( Qt5)< A Ntutr <qtN2 ; +( qt/\/’) "

Note that qfs < q{jvv when ts < t,r, thus, we can rewrite the inequality above as:

R R®min ¢ Rpin R—c R—c
@ <A+M>+(1qfs)<RA+M)<q5“ +(1-g¢ )t . (22)

ts\ 2 2u+r A+ pu+r LS4 b7
The definition of R™ implies that = W{%R?n. Thus, we can cancel out and rearrange

the terms involving ¢ and rewrite (22) as

R pRmin [ A 1 .
S A B S min
q%( 2 2u—|—r> ( Qts)< A ()\+u+r 2u+)\+ru+r> 5 )

s MR sy M pR
1- .
<Qt$2u+r+( qts)’u/_l_r<u+r

For the remainder of the proof, we assume that py <p, where p, is such that

AT
A+ 2u+7r)(p+r)

qfs<(

Note that both ts and qfs are decreasing in pa, thus such p, always exists. Inequality (23) along

with the upper bound on ¢;; yield

Ar >,u+r ,u+rR§in. (24)

R>(1- Ra+
< 22 +2u+r)(utr)) w0 2utr

Inequality (24) implies that the ratio given in (20) is strictly greater than one when

22X+ 2pu+7)2un+ A +71)

Ra> A2r(2u+7)

(25)

Finally, note that inequality (25) always holds when p— 0 as the right hand size also goes to zero
at the limit, which completes the proof of the claim. Q.E.D.

Proof of Proposition 8

The proof consists of two steps. We first show that when the designer uses the same intermediate
award R, and final award RB™ in both information disclosure policies, then agents exert more
cumulative effort under the silent period design than under the ¢-design, i.e., when partial progress
is disclosed at rate ¢. In the second step, we show that the result from the first step still holds

when the two designs use the same budget.
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Step 1: According to Proposition 7 when the designer discloses partial progress at rate ¢ and

min

the design has awards R4 and RE™, agents put full effort up to time t,, which is defined by:

MRmin+¢H B,A,Rmin —c
K uJEqurrB) ))—e=0. ()

R .
v, <q:; (5 +10(B, B.R5™) ) + (1—q2,) (Ra +

Next, consider a design featuring a silent period with length equal to ¢, defined above. The remain-
der of the proof establishes that when p — 0 both agents exert full effort under this disclosure
policy at least up to time t,, thus implying that the probability of completing the first stage (and
the contest) in that design is higher than that of the disclosure induced by rate ¢. Furthermore,
disclosing information at time t, ensures that the probability that both agents complete Stage A
and compete until the end is higher than in the equilibrium induced in the ¢-design.

Denote by pf¢ and qf(b the beliefs that agents have about the feasibility of Stage A and about
whether the competitor is in Stage B, respectively, under the silent period design with length ¢,.
Note that the claim follows if /\pfZS <qf¢ (RTA +H(B,B7R%1in)) +(1 _qi) (RA +II(B, A, Rrélin))) >,
or equivalently by (26) if

R . |
P <qf¢ (52 + 1B, B RE™)) + (1 - 5)(Ra +T1(B, 4, Rgm))) >

2
p+o+r

R .
P, (qf; (5 + 1B, B.R5™) )+ (1—g2,) (Ra +

We multiply both sides of (27) by (1— a, +pf¢ (a7, — qf;)) (1- qf;) and use (26) to rewrite (27) as:

1—g +pi, (¢ —qf) R | |
(I (5 ) 0 i ) )
ty )Pty
R min Rmin 4 #T1(B, A, Rmin) — ¢
(1Qi)<qf¢(;+H(B,B,RB ))+(1,qf¢)(RA+M B ( min)

p+o+r

)) + (g7, —af, e/
(28)
Note that Rp = R%™ implies that I1(B, B, R5™) = ¢/ and thus we can replace the last term in
the right hand side of the inequality above by (qf(zs —q? é)H(B , B, R®™). Also, note that we have:

i, (1—gf))

S
=p; . (29)
1—g —pi, (¢!, —a)

2%

Finally, using Equation (29) we can rewrite (28) as:

pRE™ 4 TI(B, A, Rp™) —
A+ o+

(a5, — Qf;)% —(1—g)(1- qf;)( ) - H(B,AR?“)) >0.  (30)

Note that the above inequality holds since when ¢ > 0 we always have q;i >q? ] and, in addition,

. . Rmin+¢n B>A;Rmin —C min
when g — 0 it holds that lim,, o <“ B u-l(-¢+r 5)7¢ _TI(B, A, R )) =0.
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Step 2: In step 1 we established that if both information disclosure policies use the same inter-
mediate and final awards then agents exert more effort under the design featuring a silent period of
appropriately determined length ts than in the ¢-design. This step completes the proof by showing
that the same holds even when the two designs consume the same budget in expectation.

To this end, assume that in the design with a silent period we decrease the intermediate award
from R4 to R4, such that the two designs consume the same budget. Then, there are two cases
to consider. First, note that if agents stop exerting effort in the absence of any news under the
¢-design earlier than under the design with a silent period, i.e., if £, <ts, the result follows directly.
Thus, for the remainder of the proof we show that the claim holds also when t, > ts. In that
case, note that since R/, < R4, the designer spends a higher fraction of her budget on intermediate
awards under the ¢-design than under a silent period design. This holds since the expected budget

allocated to the intermediate award in the ¢-design is lower bounded as follows:

td—’ t¢7t R R
/ 6(2)\+T)t2>\</ 67(/\+;4+¢+r)7' <(M + (b)er'rRA + )\(714 +e'T 7A>> 4 e()\+;L+¢+’r‘)(t¢t)er(t¢t)RA> dt
t=0 T

—0 2 2
t typ—t
Z / ¢ 6(2)\+'r)t2)\</ ¢ 67()\+y,+r)‘r (,LL@TTRA 4 )\(% +6TT%>> +€(A+T)(t¢t)€'r(t¢t)RA> dt
t=0 7=0
t ts—t
> / S€(2A+r)t2)\</ s ef(/\JrMJrr)T (Iuer‘r iq_i_)\(%_i_er‘r%lfl)) +e(/\+T)(tSt)er(tst)R;‘)dt’
t=0 7=0

where the first inequality holds, since for a fixed stopping time ¢4, the expression is decreasing in ¢
(and, thus, it is minimized for ¢ =0). The second inequality holds since we t; >ts and R4 > R/,.

Finally, note that the last expression is equal to the budget allocated to the intermediate award
for the silent period design in expectation. Thus, in order to have both designs use the same budget
in expectation, it must be the case that the designer allocates a higher fraction of her budget to the
final award R5™ in the silent period design. In turn, this implies that the designer’s utility from
obtaining the innovation is also higher under the silent period design since the latter is discounted

at the same rate as the final award R%™. Q.E.D.

Endnotes

1. We use the terms “participant”, “competitor”, and “agent” interchangeably throughout.

2. The NetFlix Prize offered a million dollars to anyone who succeeded in improving the company’s
recommendation algorithm by a certain margin and was concluded in 2009. The Heritage Prize was
a multi-year contest whose goal was to provide an algorithm that predicts patient readmissions to
hospitals. A successful breakthrough was obtained in 2013.

3. We note that the usage of the term “encouragement” is different from the literature on strate-
gic experimentation (e.g., Bolton and Harris (1999), Keller et al. (2005)), where an agent may find

it optimal to exert effort in order to “encourage” other agents to experiment in the future and,
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therefore, generate valuable information about the state (since experimentation outcomes are per-
fectly observable by all). In the present paper, an agent becomes encouraged to exert more effort
as she updates her belief about the state of the world because of progress made by others.

4. We remark that there is a conflation of the terms “contest” and “race” in our work. The two
agents compete in an innovation race towards a pre-determined goal whose feasibility is unknown.
We use the term contest to be in line with the literature, e.g., Halac et al. (2016).

5. Relatedly, Seel and Wasser (2014) consider the design of an optimal “head start” that is given
to a player whereas Seel (2014) analyzes all-pay auctions where one agent is uncertain about the
size of her competitor’s head start (Siegel (2009) refers to an agent’s effort as her score and allows
for head starts in his quite general framework for all-pay auctions).

6. Assuming that A is constant over time is essential for making the analysis tractable (and is
in line with the prior work on strategic experimentation referenced on Page 5). That said, an
important aspect of innovation contests is learning-by-doing, which could be incorporated in our
model through a breakthrough rate that is an increasing function of the effort an agent has allocated
to the contest. Although we conjecture that extending our model towards this direction would not
affect our qualitative insights, the corresponding analysis is significantly more involved.

7. We assume that the two competitors cannot communicate directly with one another. Com-
municating an agent’s own progress as soon as it occurs would not yield any benefit to the agent
unless the competition effect dominates (as in Section 5).

8. To optimize over the designer’s net payoff, i.e., the utility from obtaining the innovation minus
the budget allocated to the award structure, one could use our analysis (that studies how to
optimally use a fixed budget) and then optimize over the size of the budget. As it turns out, when
the value of obtaining the innovation is sufficiently high for the designer, our findings illustrate that
the optimal design takes qualitatively the same form irrespective of the exact size of the budget.

9. Choi (1991) provides similar expressions for the expected payoffs of the leader and the laggard
in a model where outcomes are publicly observable, effort levels are binary, quitting the race is
irreversible, and the value of winning an innovation race is fixed ex-ante. It is worthwhile to note
that although in principle our model allows for interior levels of effort and the decision to quit the
race is not irreversible, it turns out that under the information disclosure policies we study, agents’
effort levels are binary and quitting is irreversible at equilibrium (much like in Choi (1991)).

10. Lemma EC.2 establishes that setting Rp = ¢/ leads to more aggregate experimentation in
Stage A than Rz = R%™.

11. When g — 0 and conditional on the contest being completed under both designs, the time it
takes to complete it is approximately equal to the expected time it will take to complete Stage B

if one or both agents exert effort to complete the project respectively, weighted by the probability
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that an agent will quit the contest under no information disclosure. Given that the rate at which
each agent completes Stage B is the same, the expected time to complete it is twice as long when
only one agent exerts effort than when both do so.

12. As a remark, Equation (8) clarifies why it is optimal for the designer to split award R, to the
two agents if both complete Stage A before time T (as opposed to giving out a higher fraction
of the award to the agent that completed the stage first). As time goes by, the probability that a
given agent will be the first to complete Stage A conditional on both completing it decreases and
thus splitting R4 in half guarantees that the agents’ effort provision is maximized.

13. Although we state Proposition 8 for a constant rate ¢ > 0, we mainly use this fact to ensure
that agents put full effort up to some time at equilibrium after which they stop and wait for an
announcement from the designer. In other words, we strongly conjecture that the proposition holds
for any disclosure policy as long as agents follow a cutoff experimentation policy at equilibrium.
Although the latter is not generally true, i.e., there exist disclosure policies under which it is not
optimal for agents to experiment using a cutoff policy, we believe that such disclosure policies will
be suboptimal for the designer as they introduce delay to the agents’ experimentation. Obtaining
such a result seems quite challenging, since it requires a general mapping between any disclosure
policy to equilibrium effort. Therefore, we chose to restrict our attention to constant rates.

14. It is straightforward to see that when the size of the intermediate award is fixed over time the
binding incentive constraint is the one that corresponds to time ts.

15. An upper bound for R4 is obtained by setting ¢° =0, i.e., R4 < <“Rr§in_c — H(B,A,R%““)).

pn+r
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Supporting Material

Proof of Lemma 1

In the absence of progress over time period [t,t+dt), agent ¢ updates her belief about the feasibility
of Stage A by applying Bayes’ rule as follows:

ol = pft(l — AM&ig+254)dt)
ittt pl (1= Niy +2_,)dt) + (1 —p],)

since the probability that either of the agents completes Stage A over [t,t + dt) when the stage
is feasible is given by \(z;; 4+ 2_;,)dt. Therefore, we have dp}, = —p/ (1 —p],,4) (is + 2_; 1) Adt,
which completes the proof of the lemma. Q.E.D.

For completeness, Figure EC.1 illustrates the evolution of the posterior beliefs in the absence of

progress under full and no information disclosure.

No Disclosure
o 0.8 AN — =— Full Disclosure
2 N\
IGD) 0.6 - \
S \
5 0.4 +
k%)
o
o 02r
O 1 1 - M | —
0 0.5 1 1.5 2

Time t

Figure EC.1 Posterior belief over time in the absence of progress (here A=3 and p=1).

LEMMA EC.1. Consider a contest design in which progress is publicly observable and the designer’s
expected budget for awards Ra and Rp is fized and sufficiently high. Then, it is optimal for the
designer to set Rp =c/u or Rp = Rg™.

Proof: Assume for the sake of contradiction that the designer’s expected utility under full infor-
mation disclosure is higher for some Rz > R%™ than when Rp = R%™. In particular, assume that

o " A 2u o
e Ttem Mol s Al dr (g + dt
/t_o SCRAC Puurrs e vy

tF A 2
> / e~ (r+20)tg ) Py B g, (EC.1)
‘0 Ap+r2u+r  Adp+r




ec2 e-companion to Bimpikis, Ehsani, and Mostagir: Designing Dynamic Contests

where {z7,},{z5,} denote the equilibrium effort levels of agents 1 and 2 respectively when Rp =
R.
Next, we compare the (expected) budget allocated to awards for the two designs described above.

Note that for the design for which Rz = Rz we have:

= —rt —)\ffzo(:c’fﬂ_+x§ﬁ)dr)\ * * R’ A 2p K R, |dt EC.2
/t_oe c (xlvﬁx?ﬂf)( S Py e e il R (EC.2)

whereas for the design for which Rp = R%™ we have

tr 2 .
/ e—(r+2/\)t2)\<RA +[ A I o }R;Em)dt. (EC.3)
t=0

Ap+r2u+r  A+p+r

Expressions (EC.1), (EC.2), and (EC.3) along with the fact that the budget allocated to awards
is the same in the two designs (i.e., Expressions (EC.2) and (EC.3) are equal) imply that

A 2p 1 ~ A 2u [ }
Ra+ + RE™ >R/, + + Ry. (EC4
4 [)\—i—,u—l—rlu—f—r )\—I-,u—i—J B A [A—i—u—f—r?u—i—r Ap+r| B ( )

The proof of the claim follows from showing that inequality (EC.4) implies that the belief at which
agents stop experimenting when Rp = R'™ is lower than the one that they stop experimenting when
Rp = R/, i.e., agents experiment more when Rp = RB™. In particular, agents stop experimenting
when their expected instantaneous payoff is equal to ¢ which, in turn, implies that the corresponding
cutoff beliefs at which agents stop experimenting are such that:

A I 1 2u+A+1r
"| Ry + + R, — =c, d EC.5
p( 4 <)\+u+r2u+r )\+/L+T> B ()\+u+r)(2u+r)c> ¢ an ( )

A 7 7 2u+A+r
Ra+ + Ry — =c. EC.6
p( 4 <)\+u+r2u+r )\—i—u—i—r) b ()\—i—,u—i-r)(2u+7“)c> ¢ (EC.6)

From Equations (EC.5) and (EC.6) we obtain that p <p’ if

, A f p , A 1 0 ] ;
+ + Ry <RA+ + RE™. EC.7
A [)\—F/L—I—TQ/L-FT’ /\—i—/H—r} B [A—HH—T’Q;L—H” Apu+r| P (BC.T)

Inequality (EC.7) follows from (EC.4) and the fact that Rj; > R%™ which, in turn, leads to a
contradiction. Using similar arguments we can also show that the designer’s expected utility is the

same for any ¢/ < Rp < RE™.

LEmMA EC.2. Consider a contest design in which progress is publicly observable and the designer’s
expected budget for awards Ra and Rpg is fived and sufficiently high. Then, setting Rp = c¢/u leads

to more aggregate experimentation in Stage A than setting Rp = R%™.
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Proof: Consider the following two contest designs in both of which progress is publicly observable:
the first features awards for completing Stages A and B that are equal to some R4 and Rp =c¢/pu
respectively. The second is such that the corresponding awards are R/, and Rz = R%™. Furthermore,
let ¢+ and ¢’ denote the times at which agents stop putting effort in the absence of progress under
the two designs. For the sake of contradiction, assume that agents exert more aggregate effort
in stage A under the design with final award R%™, i.e., t’> > tr and, in turn, the corresponding

stopping beliefs are such that p’s < pr. Recall that according to Expression (7), we have:

v (Ry+11(B, A, Rg™)) =5 and
(R . 1Ry —c) e (EC.8)
e = ) TN
The equalities above imply that: .
plp
R, +——=—>Ra. EC.9
AT X prr T (EC.9)
Since both designs have to use the same budget in expectation, we have:
tr t}: )\ 2 :
/ e_(2A+T)t2)\<RA+'uc)dt:/ e—(2)\+r)t2)\( /A+< H + H )Rgul)dt
=0 ptT =0 Adp+r Atpt+r2u+r
(EC.10)
According to our assumption that t’> > tr we obtain that R, + M’frrﬁ > Ry + (ﬁ;w +

5 +2 — Ziir)R‘gi“. Substituting the expression for RS yields

RA>RC4+

uRB™ ( A 20 2p4+A+r )E
A p+r Ap+r2u+r A w+r/p

which contradicts inequality (EC.9).

Proof of Proposition 3

First, it is straightforward to see that conditional on the contest being completed under both full
and no information disclosure, the time it would take to reach the end goal is shorter in expectation
under full disclosure. This is a direct consequence of the fact that the real-time leaderboard design
incentivizes both agents to compete by putting full effort until one completes the entire contest
(when Rp = R%™). This is not necessarily the case in the grand prize design since even conditional
on completing the contest there is a positive probability that the laggard quits.

In what follows we establish the first claim, i.e., tp» > t#. To this end, note that Proposition 2
states that in the design with a single grand prize of size R and no information disclosure about

partial progress, agents put effort with rate one up to time ¢, such that

R—c
AM%<%LHG%BJﬂ+(lqﬁ)ik+r)::a (EC.11)
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The proof consists of two steps. In the first step, we consider the full information disclosure design
that uses final award R'S™ and consumes the same budget in expectation as the no disclosure design.
If agents quit earlier than t, in the full disclosure design, then the statement of the proposition
follows. Otherwise, we assume by way of contradiction that tz >t and find an upper bound on

the value of the intermediate award R4. In the second step, we show that
oy, (Ra+T1(B, A, RE™) ) <. (EC.12)

which contradicts our assumption that under full information disclosure with final award R%™
agents put full effort up to time tz.

Step 1: Let BV and B” denote the total budgets allocated to awards in the designs that feature
no and full information disclosure respectively. In particular, note that the budget allocated to

final award R in the design with no information disclosure is equal to the following in expectation:

t ta—t
EBN] = / Nem”)m( / T ety (uRJrA 21 R> d¢+e<ﬂ+*”><wf>“3>dt
t=0 =0 2“ + r ,U, + r

—xntn (Ot
_ 2R (1 o) QD@ 2 ) (0 —1)

(w+r)N+p+r)2u+r) 2X+r A—pu
(EC.13

Next, we obtain an upper bound on R, by calculating the budget allocated to awards R4, R5™
under full disclosure when agents stop at t5-. This gives an upper bound on R4 under the assump-
tion that tz > tx — note that we impose that the budgets allocated to awards are equal under these
two disclosure schemes. We have

E[B}-] >/tN€(2)\+T)t2)\<RA+< >\ 2/’6 + 19 )Rmin>dt
=/, Apdr2ut+r ANtp+r) P

=0 92 ) 0 (EC.14)
= 1— —(2x+7)tp R M H Rmin ]
2)\—|—r( c )( At )\—}—,u+r2,u+r+)\—|—,u+r B )
Thus, since the two designs consume the same budget in expectation we obtain:
2\ _ A 2u I .
E[BY] > 1—e MW (R Ry, EC.15
[ ]_2)\+r( ¢ ) (Rt >\+,u+7“2,u+7’+)\+,u+r 5") ( )
Finally, using Equation (EC.13) yields the following upper bound on R 4:
(2A+2p+7)uR (2A+r)e” D) pR AT Oy
A S — (6 — 1)
A tptr)@u+r)  (1—em @) (utr) (A p+r)2u+r) A—p

_ min< A 2” 4 I >
P\ X+pt+r2p+r Aptr)
(EC.16)
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Step 2: In this step, we show that inequality (EC.12) holds and thus conclude that ¢z < tx. Note
that by using Equation (EC.11) we can replace the right hand side of inequality (EC.12) with

uR—c
ApY, (qtNH(B B,R)+(1-¢q) T )

Our goal then is to show that

min ,LLR —C
N
First, note that pf. %ZtTN) Thus, we can rewrite inequality (EC.12) as
e Tin

min /‘LR*C
(1_Q;:,>/\f)<RA+H(BaA7RB )) < (1—p?“quL)(qu(B B,R)+(1-¢q) o )

Using Equation (EC.11) once again, we can further simplify the right hand side and rewrite the

above inequality as follows:

(- (Ra+ (B A RE)) < (1B, B.B) + (1 - )" R) ~ 4§

ptr )Ty
Note that
4 A 20 I . A 21 ;
len _H B A len — len
B ()\+/L+r2,u+r+/\+,u+r> (B, A, RE") Apu+r2ut+r B
Also, recall that II(B, B, R) = giﬂf, and
AemHtn — e7AN) LcC 2u+r
N min __
Ty = T —— and R™ = M<1+ \ )

Substituting the upper bound for R4 from (EC.16), using the expressions above, and some straight-

forward algebra yields

Mur R Otptn)urr) | @QAr)e ORI ey
A+ p+r)2p+r)(p+r) r (1— e~ @iy P =Gy
c@utrtr) e~ e(Ar 412 4 3rp+2p°)

—(A=p)

2u+r) 1—e Q=i (p4+r) A +p+r)2u+r)

(EC.17)

Next, we show that the term in the parenthesis in the left hand side of (EC.17) is positive, i.e.,

A +p+r)(pt+r)  (2A+7r)e- @A o~ =)ty
T + (1— e~ ) - ()‘_“)— >0. (EC.18)

1 — e A=ty

Ignoring term “T” (since it is greater than one) and simplifying the above expression, we obtain

(2A+7) (1 —e=Omiv) — (XN = p) (1 — e~ M)

(1 — e—(2/\+7’)t/\/) (1 - e—()\—#)fj\f) >0
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The denominator is positive since we assume that A > p and thus it is enough to show that the
numerator is positive as well. The latter follows since for ¢, = 0 the numerator is equal to 0 and
its derivative with respect to ty  is positive.

Finally, note that R > R%™ and thus the left hand side of inequality (EC.17) is minimized when
R = R%™. Thus, the claim follows by establishing that (EC.17) holds when we substitute R%™ for
R. Straightforward algebra establishes this last step and concludes the proof. Q.E.D.

Proof of Proposition 4

First, we show that an agent’s best response takes the form of a cutoff experimentation policy
before time ¢s. In particular, assume that agent 2 follows some strategy {zs;}:>0 in the absence of
partial progress. Then, agent 1’s optimization problem takes the following form:

max /t: w10 (W (a0 (Ra/24+ TU(B, B, RE™)) + (1= a7 )Va,o(B, A) — ) e o Pl labotden i g =rtgy
+efﬁiOpf‘*(gf””Hz“)dT(1*Pftsqfts)/oo w10 (DS TI(B, A, RE™) — c)e ™ ot MWha(nrtez ittt gy
e (EC.19)
where for any t <ts, we have pft :pf{t and qft = q{\ft, whereas for ¢ > ts we have pft :pft.

First, note that the instantaneous payoff for agent 1 is decreasing in time before ¢s (first integral
in Expression (EC.19)). Thus, it is optimal for agent 1 to employ a cutoff experimentation policy
before ts. As a result, for the remainder of the proof, we only focus on cutoff experimentation
policies for both agents 1 and 2. In other words, we assume that in the absence of any partial
progress agent 2 sets her effort level to one up to some point 75 <ts and then to zero until time

ts, i.e., we let
1 for 7 <T5

Lo r = 0 fOI'TQSTSts.
xo, forT>ts

To complete the proof, we show that agent 1’s best response to {xs,}+>o described above involves
setting z,, =1 for ¢ <ts. Note that the instantaneous payoft for agent 1 inside each integral is
decreasing in time. Thus, establishing that agent 1’s instantaneous payoff just before ts is higher
than her instantaneous payoff after ts implies that if it is optimal to put any effort after ¢s (in the
absence of any announcement about partial progress), it is also optimal to put full effort up to ¢s.
Assume that agent 1 sets x;, =1 for 7 <T; <ts. Then, her instantaneous payoff for putting effort

just before ts is given by:

NS g (0515 (Ra/24+ TI(B, B, RE™) + (1 - 45, T(B, A, Rg™) ) — c, (EC.20)
with
. e— T (AeA—_“;S I e_’\T2>pA . Aehts (1 — e~ (O-0T2)
Piig = and Qs =

L= pa+e T (2555 e py Aemrts (1—emCmmTo) o (A = p)e T
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On the other hand, her instantaneous payoff for putting effort just after ¢s is given by:

(L =7 1505ss) APy, £ TH(B, A, RE™) — c), (EC.21)

—MT1+T2)

Pac Ty Where Pyt denotes agent 1’s belief just after the designer switches

1-pa+pae
to full information disclosure at time ts . Moreover, note that II(B, B, R§™) = § and

where ;=
Pt

(1 _pf,ts(ﬁg,ts)pu;r :pf,ts(l - ths)'

Putting these together yields the desired result, i.e., that the instantaneous payoff for agent 1 is
higher before ts than after ts if the designer does not announce that Stage A has been completed.
Finally, note that ts is chosen so that the instantaneous payoff for agent 1 is non-negative for ¢t < tg
for any T, <ts. Thus, agent 1’s best response to agent 2’s strategy is to put full effort up to time
ts. The claim follows by noting that if both agents put full effort up to ts their instantaneous
payoff at ts is exactly equal to zero. Thus, in the absence of any announcement by the designer

they set their effort levels to zero after t5. Q.E.D.

Proof of Proposition 5

Consider a full information disclosure design and recall that ¢z denotes the time at which agents
stop putting effort in Stage A if none of them has completed it. Recall also that with intermediate

min

award R4 and final award R3™, tr is the solution of the following equation:

Al (Ra+ (B, A, Rg™) =, (EC.22)

pae” AF
pae MF+(1-py)
at time t. The proof follows by showing that ts given by Expression (8) is such that ts > t». This

where p{; = is the agents’ common posterior belief about the feasibility of Stage A

directly implies that the designer’s expected payoff is higher for the silent period design than under
full information disclosure (since Proposition 4 implies that both agents will experiment with rate

one until ts). In particular, the claim follows by showing that
Apl, (Ra+11(B, A, RE™)) < Api (a0, (Ra/2+11(B, B,RE™)) + (1 —¢;.) (Ra +IL(B, A, RE™))) .
First, recall that by definition ts satisfies:
Ay (g0 (Ra/2+T1(B, B,RE™)) + (1 —¢;,) (Ra+1I(B, A, RE™))) =c.

Also note that since A(R4/2+1I(B, B, RE™)) > c, by substituting it in the right hand side of the

above equation, and rearranging terms we obtain the following inequality:

Prsdis(1—qp,)
S

~ (Ra+IL(B,A,RE™)) < g, (Ra/2+1L(B,B,RE™)). (EC.23)
1 _ptsqts
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After some algebra we can rewrite inequality (EC.23) as:

pis(1—¢) (Ra+TI(B, A, RE™))

1 —pLars

<pps (@ (Ra/2+T(B,B,RE™)) + (1 —qp,) (Ra+1L(B, A, RE™))) .
(EC.24)

Finally, noting that
F_ Prs(1—dy)
1P

implies that inequality (EC.24) can be rewritten as

)

which completes the claim. Q.E.D.

Proof of Proposition 7

The proof relies on showing that the best response of agent 1 to any strategy {xs,};>0 from agent
2 is a cutoff experimentation policy. To this end, consider agent 1’s optimization problem:
{1'111,13?{20 /t_o ()\:L“LtpftVLt(B) +p(f7tqf7t¢H(A, B, R3™) — cml,t) Ve fi:opf»f’\“’dTe_”dt, (EC.25)
where (with some abuse of notation) V;,(B) denotes the continuation value of agent 1 at time ¢
when she has completed Stage A and the designer has not disclosed any information about agent 2’s
progress. Also, we let W, denote the probability that the designer has not disclosed any information

about agent 2’s progress, i.e., ¥, is given by the following expression

t ¢ ¢ t (R
U, =¢" Jr=o Py a1, AT ffzoplfqlf‘ﬁdq-. (EC'26)

Finally, note that since II(A, B, R5™) =0 we can ignore the second term in the parenthesis and
rewrite optimization problem (EC.25) as follows:

maX/ xl,t(Apr,t(B)—C>\Ilte‘ff:opffmﬁ”e*”dt. (EC.27)

{z1,t}¢>0 J1—0

Next, we show that the coefficient of 2, 4, i.e., expression ()\pftVLt(B) - c) U.e Jr=o pfvf’\“’TdTe_”dt,
is decreasing in t. This, in turn, implies that agent 1’s optimal strategy is to follow a cutoff
experimentation policy, i.e., put full effort up to some time and, in the absence of progress or positive
news from the designer, stop exerting effort altogether. Note that since e~ Jr=oP (f»f’\ml’TdTe_”dt is
decreasing in ¢, it is enough to show that (Apf}t‘ﬁ,t(B) — c)\Ilt is also decreasing in ¢. In addition,

V1.:(B) is given as follows:

Vio(B) =af,(Ra/2+T(B, B, RE™) ) + (1 4 )Viu(B, A), (EC.28)
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where the first term is the continuation value for agent 1 conditional on agent 2 having already
completed Stage B whereas the second term is the continuation value for agent 1 when agent 2 has
not completed Stage A up to t. For the rest of the analysis, it is helpful to further split V; (B, A)
into Vfg“ (B,A) and VftB (B, A) that denote the expected payoff for agent 1 from awards R4 and
Rp respectively (note that agents split award R, if they both complete Stage A before the designer

discloses the progress). Thus, the claim follows if the derivative below is negative

d )
= (Wt (a7 (Ra/2+ 1B, B, RE™) + (1= q7,) (VI (B, A) + VI (B, 4)) ) —¢) W, <0.
(EC.29)

First, we obtain expressions for the following derivatives q'f“ p‘{{t, 0, "/'1{1‘* (B,A), and Vl{{f (B, A).

In particular, we have

Pt =—pl(1—p7) (a0 +al p+ Az1 ), and (EC.30)

Gt =(1—af,) (\w2e —af 16— afs) - (EC.31)
Furthermore, from Expression (EC.26) we obtain
‘i’t = _\Iltpf,t(ﬁé,t (u+9). (EC'32>

Continuation values VIIEA(B,A) and fo (B, A) are differentiable and their derivatives can be

obtained by noting that

VA (B, A) = (u A2+ ¢>) Radt + (1 — pdt — \ay dt — ¢dt) V%4, (B, A),
and

V5 (B, A) = (MRgi“ + Azo, JI(B, B, R®) + ¢I1(B, A, R2») — c> dt
+ (1 — pdt — Awo  dt — ¢dt — rdt) V32 4, (B, A).

In particular, we have

VI (B, A) = (4 Away + @) Vi (B, A) — (pRa + Ao Ra/2+ 6RA), (EC.33)
and

VIP(B,A) = (ot Azay + 6+ 1) VIP (B, A) = (RE™ + Avo, J1(B, B, RE™) + ¢1L(B, A, RE™) — c).
(EC.34)
Using the expressions for th, p‘f}t, ¥, Vf“t“‘ (B,A), and VﬁB (B, A) from Equations (EC.30)-(EC.34)

we can rewrite inequality (EC.29) as:

2 <Ap§it ((1 —at0) (Moo — b0 — af o) (Ra/2+T(B, B, RE™) = V{7 (B, A) - Vi (B, 4))
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(1= af) (4 Ao + ) VI (B, A) = (Ra + Az R 2+ OR)

(4 Ao + 6+ 1)V (B, A) = (WRE™ + Ao, TI(B, B, RE™) + 0TI(B, A, Rg™) — c) )
(EC.35)

—pl (1 =p0 ) (gl b+ af i+ /\xl,t)AVu(B)>
—\I’tpcf,tQit (M + ¢) <)‘pf,t (Qf},t (RA/2 + H(B, B, Rgin)) + (1 - qib,t) (Vll,%A (B, A) =+ Vll,%tB (B7 A))) - C> <0.

We can further simplify Expression (EC.35) by canceling out all terms involving ;. Also, since

the coefficient of z,, is negative, it is sufficient to show the following inequality:
v, (Api’,t ((1 —a)af (~6— w)(Ra/2+ (B, B, Rg™) — V' (B, A) - V" (B, 4))
+(1—df)) ((u+¢)‘/ﬁf‘(3~4) — (uRa+ ¢Ra)
+(pt+d+r)ViP (B, A) — (uRp + oIL(B, A) C))> — (L= )al, (n+ o) Wl,t(B)>
~Wp 0t (it @) (Ap‘f,t (af o(Ra/2+11(B, B, Rg™)) + (1 = a2, (V3 (B, A) + V7 (B, 4)) ) - ) <0.
Next, replacing Vi 4(B) using (EC.28) and canceling out common terms yields

v, <)\p(1b,t ((1 - Qib,t)(_q;b,tﬁb - Qitﬂ) (RA/2 + H(B, B, RIBnin)) + (1 - q(f,t) ((,U + Cb) Vll,%tA (B7 A) - (MRA + d)RA)

+ (n+ 6+ T)VIP (B, A) = (uR5" + 6TU(B, A, Rg") —c))) = w4l (1 +0) (q‘f,t(Rm+H<B,B,R§m)))>

+ \I’tp(f,th,t (n+)c<0.

Finally, since the coefficients of VlliA(B ,A) and fo (B, A) are positive, we can replace them with
their respective upper bounds (obtained when agent 2 does not put effort towards completing Stage

A unless the designer announces that agent 1 has already completed it). In other words, we bound

V"A(B, A) and V;{? (B, A) by

VIiA(B, A) < Ry, and

Vi (B, A) < / e~ (uRER 4 9TI(B, A, RE™) — c)
=0
= rery WRE" LB A REY) —c). (EC.36)

Substituting the upper bounds obtained in (EC.36) and canceling out common terms we obtain:

v, <)‘p(1ﬁ,t (( - qit(ﬁ - ‘Iitﬂ) (H(Ba B, err;lin) + RA/Q))> + \Ptpft (qit'u + Qitﬁb)c <0,
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and since II(B, B, R%™") = £ (recall that R%™ =c/u(1+ (2u+1)/X))) we get:

Y
¢ b ¢
-, <p1,tQ1,t(¢+,u) ()‘ (X+RA/2) —c)) <0, (EC.37)
which holds and, thus, completes the proof.
As a final remark, note that Proposition 2 follows from the same line of arguments when setting

¢ = R4 =0 and allocating the entire budget to the award for completing Stage B. Q.E.D.
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