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I explore the task of neural network connectivity (i.e. graph) inference from a set of temporal
measurements at each neuron (nodes). In this work, all experiments are based on numerically
simulated neuronal populations, with known ground-truth graph structures. I develop a statistically
principled framework for edge inference based on the concept of “false discovery rate” (FDR) as
outlined in Ref. [1], and apply the FDR framework for undirected (based on max cross-correlation
of temporal traces) and directed (pairwise Granger causality) edge inference. I then explore the
variation in inference performance as the temporal measurements are degraded with low-pass filters.
The filter models limitations in the currently available biological tools for neuronal readout.

I. INTRODUCTION

A. (Brief) Motivation

I am interested in inferring network connectivity from
the temporal dynamics of its nodes. Such a task is rele-
vant to my PhD research, in which I design and apply op-
tical neural recording devices that observe the functional
activity of hundreds (and soon, thousands) of neurons in
a living animal with single-cell resolution [2].

The basic premise of the optical neural recording is as
follows: fluorescent proteins whose fluorescence is mod-
ulated by neural activity [3] is introduced to the brain
of a laboratory animal under study (mice, in my case).
Portions of the skull (and possibly some brain tissue [4])
is surgically removed in order to provide optical access
to the fluorescent neurons. This patch of neural tissue
can subsequently be imaged over period of months us-
ing various imaging methodologies, that yield movies of
cellular populations whose brightness level as a function
of time encodes the neural activity. The video data can
be segmented to yield optically-derived “activity traces”
for each neuron [5]. The activity dataset is studied in
the context of the biological experiment. In the future, I
intend on performing network analysis (e.g. recognition
of network motifs, etc. [6]) on optical brain data at the
single neuron level.

For my CS 224w term project, I am interested in de-
veloping the computational framework for future analysis
of experimental data. In this work, my intent is to per-
form connectivity analysis (i.e. graph inference) on a
simulated dataset of neuron populations, to explore the
use of various coupling metrics on time series data for
network inference (e.g. linear cross-correlation, Granger
causality, etc.) and to use the computational framework
to explore basic questions relevant to the experimental
practice of optical neural recording.
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B. Statement of problem

Consider Fig. 1, which shows a graph of N nodes (solid
circles) that represent a single neuron in brain tissue, and
directed edges (solid arrows) that represent synaptic con-
nectivity between neurons. Each neuron can influence
the spiking activity of other nodes through the synap-
tic contacts. In this work, only excitatory connections
(those that tend the post-synaptic neuron to fire action
potentials) are considered. Note that the N observed
neurons may also be influenced by neurons that are not
in the observed set (dashed circles and dashed edges).
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FIG. 1. The problem of neural network structure inference
from its time series. We observe N neurons (solid circles)
whose synaptic connections are represented by solid arrows.
Note that the N observed neurons can be influenced by nodes
that are not in the observed set (dashed circles). The blue ar-
rows represent a single-neuron recording device (e.g. single-
cell voltage-measuring electrodes) that yield time-series data
xi[t] for each observed node. The basic task of “neural net-
work inference” is to reconstruct the synaptic connections by
computational analysis of the set of single-node measurements
{xi[t]}.
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In experimental neuroscience, there exist a variety of
techniques to record the “functional” activity of a popu-
lation of neurons. For example, one can insert electrodes
into a living cell, in order to measure the membrane volt-
age as a function of time, or use (as in my case) functional
fluorescent proteins to “read out” the cell optically. Such
single neuron-level recording devices are represented by
the blue arrows in Fig. 1. Regardless of the particular
experimental method, the general feature is that one can
obtain a set of time series data for each cell {xi[t]} that
may relay some information about the synaptic structure
of the observed neurons. The deduction of the synaptic
connectivity from a set of single-cell recordings is the task
of “neural network inference from its time series.”

II. GENERAL QUESTIONS THAT MOTIVATE
THE WORK

In this section, various questions relevant to the prac-
tice of optical neural recording are listed, that motivate
my computational study. The current paper addresses
Sections II A-II B, whereas the remaining sections out-
line future directions.

A. Comparison of various coupling metrics

The task of network inference from a set of time se-
ries recordings typically begins by computing a “coupling
score” for all possible edges in a network. For example,
given two signals xi[t] and xj [t] of length n, a commonly
used coupling score is the cross-correlation Cij [τ ]:

Cij [l] =
1

σ̂iσ̂j(n− |l|)

n−l∑
t=1

(xi[t]− x̄i)(xj [t+ τ ]− x̄j) (1)

where x̄ and σ̂ represent the mean and the standard devi-
ation of the two signals, and the “lag” variable l accounts
for possible temporal delays in the interaction between
nodes i and j. Given the cross-correlation function, we
may define the coupling score between xi[t] and xj [t] to
be Cij = maxl |Cij [l]|. Once the cross-correlation score
has been computed between all potential pairs in the net-
work, the inference algorithm then decides whether to
assign an edge between the nodes based on {Cij}.

It is clear that the inference result will be highly depen-
dent on the coupling metric chosen to identify the interac-
tions. For instance, because the cross-correlation is sym-
metric with respect to the node ordering (Cij = Cji), it
can only infer undirected edges. Also, because the cross-
correlation metric is purely bivariate (it does not consider
the information provided by xk[t] where k 6= i, j), it is
ill-suited to the task of inferring dense neural networks
(more in Section II C).

In this work two different coupling metrics will be em-
ployed for the inference of the underlying neural network
from time series measurements.

B. Effect of temporal filtering on network
inferrability

Currently, a major limitation of the optical recording
method is that the fluorescent proteins involved in sig-
naling functional activity have a slow temporal response
– with time constants of 100s of ms [3] – compared to
the underlying voltage dynamics. (The duration of an
action potential is typically a few ms.) Today, the opti-
cal recording paradigm in effect yields a low-pass filtered
version of the underlying voltage dynamics.

How does the inferrability of the neural network vary
as the temporal data is degraded? How sensitive is the
inference performance to the time constant of the low-
pass filter? Is the temporal susceptibility comparable
between different coupling metrics or do certain mea-
sures perform better than others? Are there methods
(e.g. Section II D) that may help recover the underlying
network despite limitations in temporal resolution?

C. Inference of complex network topology

Ultimately I am interested in simulating complex net-
work topologies (rather than just random, isolated edges)
such as n1 → n2 → n3, and considering the performance
of network inference on such structures (e.g. how often
does the algorithm infer a false edge n1 → n3?). I sus-
pect that bivariate measures such as cross-correlation and
pairwise Granger causality (metrics that only consider
pairs of nodes) will be likely to falsely close the triad in
the above case, whereas more sophisticated multivariate
measures (e.g. the conditional Granger causality) would
be less likely to make such a mistake.

More generally, for a given coupling metric, are there
local graph structures that lead to errors (such as the
n1 → n2 → n3 example above)? By compiling a suite
of such difficult-to-infer structures it may be possible to
perform a more fine grained performance comparison of
the different coupling metrics.

D. Connection to cascades

The concept of inferring network edges based on tem-
poral data has conceptual similarities to information cas-
cades in graphs, as discussed in lecture. On the other
hand, to define a particular cascade instance, one has to
“identify the contagion (i.e. the idea, information, virus,
disease)” [7]. Unfortunately, when observing the spiking
activity of an ensemble of neurons, it is not obvious how
to decompose the overall activity into a superposition of
independent spike cascades.

In the field of experimental neuroscience, a comple-
mentary technique to optical recording is optogenetics,
where the electrical activity of neurons can be directly
modulated by the experimenter via light illumination
(the effect can be both excitatory or inhibitory) [8].
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FIG. 2. Overall workflow for the numerical experiments performed in this paper. [A] A neural population of N cells with
M excitatory connections is simulated. [B] Optional application of LPF on the neural time traces. [C1,C2] Computation of
coupling metric for every node pair. [D] The coupling value for each pair is converted into a p-value. [E] The list of p-values is
used by the FDR method to infer signifcant edges. [F] The inferred graph is scored against the ground truth.

What is the additional improvement in network infer-
ence if we are given the ability to drive the activity of a
particular subset of neurons deterministically? Is there
a method to identify “optogenetically-driven cascades”
even in the presence of endogeneous activity (e.g. by
patterning the drive input)? If so, can we adapt meth-
ods of cascade-based network inference for neural net-
work determination? How does the performance of such
a technique compare to typical “coupling-score”-based
paradigms (i.e. the methods implemented in this paper)?

III. ANALYSIS FRAMEWORK

Fig. 2 outlines the overall workflow for the numerical
experiments performed in this paper. First, we simulate a
neural population of N cells with M excitatory connec-
tions among themselves (step A). This yields temporal
traces (voltage dynamics) for each neuron. We then op-
tionally apply a first-order LPF with time constant τ on
the temporal traces (B). Next, we compute the coupling
metric for all pairs. For undirected edge inference, we use
the cross correlation metric (C1; Eq. 1); for directed edge
inference, we use the pairwise Granger causality (C2; Sec-
tion III B). Note that we subsample the time series for di-
rected inference for computational reasons. The observed
coupling values are converted into p-values by compari-
son against a precomputed null distribution (D). The list
of p-values is then fed into the FDR-based method for
edge inference (E). Finally, we score the inferred graph
against the ground truth (F).

I implemented all steps of Fig. 2 in Matlab.

A. Numerical model of neuronal dynamics –
Izhikevich neuron model

We use the neural simulation model of Izhikevich [9],
which is a relatively popular model in computational neu-
roscience owing to its numerical simplicity [1]. In the
Izhikevich model, we define the ground truth network

with N neurons and M directed edges, and simulate the
voltage dynamics of the coupled neural network. The dy-
namical system is driven by the random inputs that rep-
resent the activity of unobserved neurons in the “back-
ground” (the dashed nodes in Fig. 1).

Fig. 3 shows a set of ten neural traces, as simulated
by the Izhikevich numerical model. Each neural trace
consists of spikes (action potentials) that indicate the
“firing” of the neuron.

For undirected inferences, I used networks of N = 100
neurons, which is comparable to the number of cells cap-
tured by typical optical recordings. Traces were 10 s
long. For directed inferences, I simulated much smaller
networks of N = 20 neurons for 5 s due to the higher
computational cost. In all cases, I selected M = N di-
rected edges at random.
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FIG. 3. Typical neural data as generated by the Izhikevich
numerical model. For clarity, ten traces are shown from a
simulation of N = 100 neurons.



4

B. Coupling metric for directed edge inference –
pairwise Granger causality

Granger causality is a model-based implementation of
the idea that a time series xi[t] can be said to “cause”
another xj [t], if knowing the past values of xi helps in pre-
dicting future values of xj . In the past decade, Granger
causality has emerged as a popular directed coupling
metric for neuroscience applications [10].

The pairwise Granger causality (“G-causal”) score
from node i to node j (i.e. i→ j) is computed as follows.
First, we fit an autoregressive model of order p (not to
be confused with the p-value) to the temporal trace xj [t]
(the target node). That is, we attempt to express xj as:

xj [t] =

p∑
k=1

ak · xj [t− k] + εj [t], (2)

where {ak} are fitted model parameters and εj is the
residual. If xj were a true autoregressive process, εj
would be a white noise process characterized by some
variance σj = Var(εj).

Next, we perform a bivariate autoregressive fit for xj
using also the past values of xi:

xj [t] =

p∑
k=1

a′k · xj [t− k] +

p∑
k=1

b′k · xi[t− k] + εj|i[t], (3)

where {a′k, b′k} are model parameters and εj|i is the resid-
ual with variance σj|i = Var(εj|i).

Finally, the G-causal score Gi→j is defined by:

Gi→j = log

(
σj
σj|i

)
. (4)

Note that the bivariate model (Eq. 4) is a strict superset
of the univariate model (Eq. 3). Thus, we expect (in the
absence of model fitting difficulties) σj|i ≤ σj and hence
Gi→j ≥ 0. A large value for Gi→j indicates that the past
information in xi is useful for predicting the future values
of xj under the autoregressive assumption, and i can be
said to “Granger cause” j.

Note: During my implementation of Granger causal-
ity analysis, I observed that the Izhikevich neural traces
(Fig. 3) are not adequately fitted by an autoregressive
model. In particular, I found that the residuals of the
fit are definitely non-white and show “spikes” that coin-
cide with the spiking in the neural trace. This implies
to me that Granger causality, despite their prevalence in
the literature, is not a particularly appropriate tool for
inferring functional connectivity in neural traces.

C. FDR-based network inference from multivariate
time series

Whatever the coupling metric, given real and finite
measurements, one can expect to find a distribution of

nonzero coupling scores even in the case of truly inde-
pendent processes. As a result, a common practice in
experimental analysis is to introduce an arbitrary thresh-
old and declare connectivity between nodes if the mea-
sured coupling exceeds that threshold. However, I find
the thresholding approach to be unsatisfactory because:
(1) the conclusions drawn from the data analysis is de-
pendent on an arbitrary parameter, and (2) the approach
is mathematically unprincipled.

I am thus drawn to the work by Kramer, et. al. [1]
describing a rigorous method of edge inference based on
the concept of the “false discovery rate” (FDR) [11]. In
essence, the FDR-based inference method makes conser-
vative estimates regarding the presence of an edge, by
bounding the expected fraction of false edges in the in-
ferred set (such events are termed “false discoveries”) to
a specified “FDR level” q. Kramer’s work applies FDR
concepts to the problem of network inference.

In order to employ FDR-based edge inference, we begin
by computing the coupling score for all pairs of neurons
in the network (step C in Fig. 2). Next, we convert each
coupling score into a p-value (step D) by comparing the
observed value to the distribution of the coupling metric
under the null hypothesis (i.e. the distribution of the
coupling metric for independent neuron pairs). The p-
value represents the probability of obtaining a coupling
value at least as high as the one observed, assuming that
the neurons are independent (i.e. the “null hypothesis”).
Low p-values indicate significant coupling.

Then, FDR-based inference proceeds as follows (step
E in Fig. 2; originally by Benjamini and Hochberg [11],
adapted for network inference by Kramer, et. al. [1]).
Sort the list of p-values in order of decreasing significance,
i.e. p1 ≤ p2 ≤ · · · ≤ pm where m is the total number
of potential edges. Choose a desired FDR level q, which
represents an upper bound for the expected fraction of
false positives in the set of inferred edges. Compare each
pi to the value q · i/m and find the maximum i (call it
k) such that pk ≤ q · k/m. Declare (infer) edges for the
pairs corresponding to p1, p2, · · · , pk.

Fig. 4 illustrates a step-by-step walkthrough of the
above process where the coupling metric is the cross-
correlation (Eq. 1) and the ground truth network has
N = 10 neurons and M = 10 edges. In panel A, we com-
pute the cross-correlation between neurons 1 and 2, yield-
ing a coupling score of C12 ≈ 0.15. In panel B, the ob-
served C12 is compared against the null distribution, and
the corresponding p-value is obtained. (The p-value is the
CCDF of the null distribution evaluated at C12.) Panel C
shows the sorted p-values for all m = N · (N − 1)/2 = 45
potential undirected edges in the network. The red
dashed line indicates q ·i/m for q = 0.1. A total of k = 10
p-values are deemed significant by the FDR method. Fi-
nally, panel D shows the comparison of the inference re-
sult against the ground truth network. See figure text
for the detailed legend.

The FDR-based method can also make directed edge
inferences, by substituting a directed coupling met-
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FIG. 4. Individual steps in the FDR-based mechanism for undirected edge inference, shown here for a ground truth neural
network with N = 10 neurons and M = 10 directed edges. [A] For every pair of neurons in the network, compute the coupling
score. In this case, there is a notable coupling between neurons 1 and 2, as measured by the max cross-correlation C12 ≈ 0.15.
[B] Compare the measured cross-correlation against the “null distribution,” i.e. the distribution of Cij for neurons i, j that
are not connected. The comparison of C12 against the null distribution yields a significance value (a p-score) to be associated
with the observed score. Here, the measurement of C12 ≈ 0.15 is highly significant, given that the null distribution PDF has
most of its weight around 0.03 < Cij < 0.08. [C] Identify the neuron pairs with sufficiently significant p-values according to the
FDR-procedure of Benjamini and Hochberg (see text). The red dashed line is q · i/m for FDR level q = 0.1. [D] The results of
the particular inference instance. Filled green squares represent true positives (the algorithm inferred a true edge), filled red
squares represent false positives (the algorithm inferred an edge falsely), and the unfilled green square represent false negatives
(the algorithm failed to infer a true edge). Note that we plot all results in the upper right triangle of the adjacency matrix
(where multiple ground truth edges may overlap), since the cross-correlation can only infer undirected edges.

ric such as Granger causality in place of the cross-
correlation.

D. Validation of FDR-based edge inference

I performed explicit validation of the FDR-based in-
ference method, namely of the claim that the expected

number of false positives in the inferred set is bounded
by the FDR level q. In Fig. 5, I performed 50 inference
instances on a ground truth network of N = M = 100,
and measured the actual number of false positives in the
inferred result. It can be observed that the actual FDR is
indeed well-bounded by the specified FDR level. Overall,
I find the FDR-based method to be a significant improve-
ment over naive thresholding.
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FIG. 5. Explicit validation of the FDR method. For each
FDR level q, we simulate 50 instances of the inference run
on a graph with N = 100 and M = 100. We then measure
the actual FDR (the fraction of false positives in the inferred
set). The mean and standard deviation of the actual FDR is
presented, which shows the distribution of actual FDRs to be
well-bounded by the specified FDR level (dashed diagonal).

IV. THE EFFECT OF TEMPORAL FILTERING
ON EDGE INFERENCE

Having implemented the basic workflow for FDR-based
edge inference, we now consider the effect of temporal
lowpass filtering on overall inference performance. As
shown in Fig. 2 (step B), a first-order lowpass filter with
time constant τ is applied on the voltage traces from the
Izhikevich model, which are then fed into the remaining
inference pipeline. Note that the null distribution of the
coupling metric (used in step D) must be recomputed for
each value of τ .

A. Undirected inference

Fig. 6 shows the effect of applying a LPF to the neu-
ronal traces. In the top two panels, the original tempo-
ral signal (blue) is compared to the filtered output (red;
scaled to normalize for peak height). The LPF has two
notable effects: (1) the width of each spike is increased
from roughly 1 ms to the filter time constant τ ; and (2)
the signal-to-noise ratio is diminished in the filtered re-
sult, since a portion of the signal power is cut off by
the LPF. (The spike waveform has high frequency com-
ponents.) The bottom panel of Fig. 6 shows the effect
of temporal filtering on the cross-correlation of the two

1000 1500 2000 2500 3000
−0.5

0
0.5

1

Time [ms]

Si
gn

al
 [a

.u
.]

Filter time constant τ = 10 ms

 

 

Neuron 3

1000 1500 2000 2500 3000
−0.5

0
0.5

1

Time [ms]

Si
gn

al
 [a

.u
.]

 

 

Neuron 1

−500 0 500
−0.1

0

0.1

Lag [ms]Cr
os

s−
co

rr
el

at
io

n

FIG. 6. The effect of low pass filtering (here, τ = 10 ms) on
the neural traces and the cross-correlation. The two neurons
(1 and 3) share a synaptic connection in the ground truth
network. The unfiltered quantities are plotted in blue, and
the filtered results are shown in red.

signals. Compared to the original case, the filtered cross-
correlation exhibits notable oscillations that makes the
metric a less reliable indicator of the synaptic relation-
ship between the neuron pair.

Fig. 7 summarizes the effect of temporal filtering on
undirected edge inference. Firstly, the leftmost panel
shows that the FDR-based mechanism is still valid af-
ter filtering the temporal traces; that is, the actual pro-
portion of the false positives in the inferred set remains
bounded by the FDR level q even in the presence of tem-
poral filtering. Next, the center panel shows the effect of
temporal filtering on inference performance in a standard
ROC plot, where each data point represents an inference
instance at a particular value of q. Even with relatively
modest filtering (τ = 5, 10 ms), the ROC curve is appre-
ciably degraded from baseline performance.

The rightmost panel of Fig. 7 quantifies the drop in in-
ference performance as a function of increasing τ in terms
of the true positive rate (TPR). The TPR is a better in-
dicator of the inference performance than the ROC plot,
since the ground truth graphs have low edge densities at
N = M . Here, we observe a dramatic degradation in per-
formance. Consider a fixed FDR level q = 0.1 (dashed
vertical line). When the inference is based on unfiltered
traces, the FDR-based output correctly identifies 70% of
the true synaptic connections on average. However, when
the traces are filtered by a LPF of τ = 5 ms, the TPR
decreases to 45%. At τ = 10 ms, the TPR is 20%. The
interpretation is as follows: as the quality of the tempo-
ral data is degraded, the FDR-based mechanism becomes
“more conservative,” in order to bound the number of
false positives in the inferred set. In the current exper-
iment, a LPF with τ = 10 ms is already able to render
the inference nearly useless.
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B. Directed inference

Similarly, Fig. 8 shows the variation in the performance
of directed edge inference as a function of LPF τ , using
the pairwise Granger causality as the coupling metric.
Note that the autoregressive model order p was set to
max(1, n) where n is the number of signal samples cor-
responding to a temporal window of 5 ms. (This means
that the autoregressive model considers past information
of at least 5 ms prior to the current time.)

Interestingly, the inference performance based on
Granger causality is robust up to τ = 10 ms, as measured
by the TPR as a function of q. In fact, the performance
with τ = 5 ms is even better than the unfiltered case,
which could be due to the reduced model order used in
the numerical analysis after the LPF has been applied.

On the other hand, there is a precipitous drop in per-
formance at τ = 15 ms. Admittedly, the τ = 15 ms result
is somewhat suspect, since the measured FDR greatly
exceeds the specified FDR level. However, taken at face
value, the experiment suggests that Granger causality-
based inferences also fail with modest lowpass filtering of
temporal data.

V. CONCLUSIONS AND FUTURE WORK

In this work, I developed a workflow for network infer-
ence based on FDR, i.e. bounding the expected number
of false positives in the inferred set. I then performed
both directed (based on cross-correlation) and directed
(pairwise Granger causality) edge inferences. Finally, I
examined the degradation in inference performance as
the voltage traces were preprocessed by first-order LPF

of modest time constants (τ ≤ 15 ms; roughly 10× the
duration of a typical action potential spike).

Based on the LPF experiments, I found that even slight
filtering of the temporal traces can have disastrous ef-
fects on inference performance. (I am confident about
the numerical accuracy of the cross-correlation results;
less so with Granger causality.) Given that current fluo-
rescent optical probes have time constants of order 1 s,
it is unlikely that one can perform functional network re-
construction by relying on optical readout alone. Thus,
there is a strong need to consider alternative techniques
– such as optogenetic perturbation of the neural circuit
under study (Section II D) – in order to extract connec-
tivity information in spite of poor temporal resolution.

The FDR-based inference method is compatible with
arbitrary coupling metrics, and in this paper I demon-
strated the use of cross-correlation and pairwise Granger
causality. These metrics will not be sufficient to infer
complex network topologies at higher edge densities than
the ones presented here, as they are purely bivariate
metrics (Section II C). Furthermore, I believe that the
Granger causality is not an appropriate metric for the
current application, because the underlying voltage dy-
namics is not adequately modeled by the vector autore-
gressive assumption underlying G-causality analysis. In
the future, I am interested in applying Granger-causality
models specifically adapted for spiking processes [12], and
model-free information-theoretic directed measures such
as the transfer entropy [13].

Finally, in order to apply more complex (e.g. multi-
variate) coupling metrics to longer simulated and exper-
imental data, I will need to improve the computational
performance of the inference mechanism. In particular, I
am interested in developing an FPGA-based coprocessor
for hardware-accelerated computation of coupling met-
rics from time series data.
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FIG. 7. Variation in the performance of undirected edge inference, when the neural signals are low-pass filtered prior to FDR-
based inference. Unfiltered results are shown in blue, results with τ = 5 ms LPF are shown in red, and results with τ = 10 ms
are shown in black. [Left] The FDR-based inference method remains valid even after low-pass filtering the time series; the
actual FDRs are bound by the FDR level q independently of filtering. [Center] The degradation in inference performance as
measured on a standard ROC plot. [Right] Significant loss in performance is shown due to filtering of the time traces. For a
fixed FDR level q, the algorithm makes significantly fewer inferences (in order to bound the false discovery rate) which results
in a lower overall true positive rate (TPR).
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FIG. 8. Variation in the performance of directed edge inference, when the neural signals are low-pass filtered prior to FDR-based
inference. (See the caption of Fig. 7 for details.)
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