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Abstract

Over the last decade, machine learning techniques have revolutionized a variety of disci-

plines including medicine, natural language processing, computer vision, and finance. With

this central role that machine learning has in our lives, there exists a vital need to fully

investigate the applicability of these techniques, especially in human-centered domains. In-

deed, many assumptions behind the theoretical analysis of machine learning algorithms are

not satisfied in practice, which can lead to harmful consequences in sensitive applications.

One example is in medical decision-making, where the impact of wrong decisions may be

severe and irreversible. Furthermore, despite these huge advances in machine learning, the

traditional randomized controlled trials are still the gold standard for testing the efficacy of

various treatment and policy interventions. Although these trials are very robust and valid

with minimal (or no) assumptions, they are very expensive and difficult to run, especially in

medical applications. Thus, it is also important to carefully design and customize machine

learning techniques that under a mild set of assumptions can provide meaningful and valid

guarantees about the treatment effects using observational data. Observational data are

usually more accessible and have the advantage of bypassing the burden of running exper-

iments. It is worth noting that, however, the results from observational data should be

interpreted with caution and can potentially be used as a preliminary step for conducting

targeted trials. In particular, the decision-maker can decide to remove individuals who may

adversely be affected by the treatment from the trial or only consider those who benefit

from it.

This doctoral dissertation focuses on designing and analyzing data-driven methods with

limited experimentation, focusing on three different settings. First, we study the online

setting, where the decision-maker needs to personalize treatment decisions sequentially and

wishes to reduce the amount of experimentation (randomization). This part contributes to

the field of contextual bandit. In the rest of this dissertation, we consider the offline setting
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where the decision-maker has access to some observational data and wishes to estimate

and draw inference about treatment effects. Specifically, we consider panel data models

and discuss the treatment effect estimation using matrix completion methods. Moreover,

we analyze personalized (non-parametric) inference from observational data with high di-

mensional covariates and combine non-parametric estimators with sub-sampling techniques

to provide valid confidence intervals that are able to adapt to a priori unknown lower-

dimensional structure of data. These two parts use techniques from probability theory and

statistics, and contribute to the field of learning theory and causal inference.
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Chapter 1

Introduction

Data-driven decision-making has recently received a substantial interest from service providers

across a variety of domains, and has greatly improved operational efficiency for numerous

firms. A powerful and (increasingly) popular means for data-driven decision-making is run-

ning controlled experiments. In fact, companies such as Amazon, Facebook, Google, and

Microsoft conduct tens of thousands of experiments every year to improve their operations.

For instance, a randomized controlled experiment on Bing ad headlines in 2012 led to a

twelve percent increase in revenue (Kohavi and Thomke 2017).

However, a common issue in controlled experiments is that assignment of decisions (or

treatments) via randomization generates business opportunity costs and can even damage

customers’ trust (e.g., Facebook’s experiment on emotions, Luca 2014). These challenges

are inherent in domains such as healthcare, where experimentation can be unethical and is

only allowed in very expensive and highly controlled settings (Sibbald and Roland 1998).

In this dissertation, we tackle these challenges and design new algorithms, provide per-

formance guarantees, and also confirm these theoretical guarantees via simulations. We

focus specifically on two types of solutions in this dissertation: (1) reducing unnecessary

randomization in experiments by leveraging natural variations in the data or incentive

schemes (e.g., combining greedy algorithms and hypodissertation testing to develop an effi-

cient decision-making scheme that utilizes heterogeneity of the users to successfully reduce

the experimentation), and (2) bypassing experimentation in situations where experimen-

tation is not feasible and observational data is available (e.g., designing a new class of

statistical methods for treatment effect estimation, motivated by matrix completion litera-

ture, and also building techniques that allow inference in the non-parametric setting with
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high-dimensional covariates).

In this dissertation we make three main contributions. In Chapter 2, we consider the

online setting where the decision-maker has access to no past data about the treatments and

wishes to sequentially personalize the treatment decisions so as to maximize some reward

function of interest. Current literature on this topic focuses on algorithms that balance

an exploration-exploitation tradeoff, to ensure a sufficient rate of learning while optimizing

for reward. In particular, greedy algorithms that exploit current estimates without any

exploration may be sub-optimal in general. As mentioned above, however, exploration-free

greedy algorithms are desirable in practical settings where exploration may be costly or

unethical (e.g., clinical trials). Surprisingly, we find that a simple greedy algorithm can

be rate-optimal (achieves asymptotically optimal regret) if there is sufficient randomness

in the observed contexts (covariates). We prove that this is always the case for a two-

armed bandit under a general class of context distributions that satisfy a condition we

term covariate diversity. Furthermore, even absent this condition, we show that a greedy

algorithm can be rate optimal with positive probability. Thus, standard bandit algorithms

may unnecessarily explore. Motivated by these results, we introduce Greedy-First, a new

algorithm that uses only observed contexts and rewards to determine whether to follow

a greedy algorithm or to explore. We prove that this algorithm is rate-optimal without

any additional assumptions on the context distribution or the number of arms. Extensive

simulations demonstrate that Greedy-First successfully reduces exploration and outperforms

existing (exploration-based) contextual bandit algorithms such as Thompson sampling or

upper confidence bound (UCB). This chapter is based on Bastani et al. (2017).

In certain practical settings the decision-maker has access to some past observational

data on the treatment and outcomes. Ideally, in these settings, the decision-maker wishes to

bypass experimentation by estimating treatment effects from the existing data. One of the

fundamental challenges in analyzing observational data is the presence of confounders that

can affect both the treatment and outcome, leading to biased estimates for the treatment

effect (also known as the “omitted variable bias” or OVB). In Chapter 3, we investigate

settings where confounding factors might be unobserved, but we have access to treatment

decisions over time. In particular, we consider the panel data model (matrix), where a

subset of units (rows) are exposed to a single treatment during a subset of time periods

(columns), and the goal is estimating counterfactual (untreated) outcomes for the treated

unit/period combinations. Motivated by the literature on matrix completion (Candès and
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Recht 2009, Keshavan et al. 2010a,b), we develop a class of matrix completion estima-

tors that uses the observed elements of the matrix of control outcomes corresponding to

untreated unit/periods to predict the “missing” elements of the matrix, corresponding to

treated units/periods. This approach estimates a matrix that well-approximates the original

(incomplete) matrix, but has lower complexity according to the nuclear norm for matrices.

From a technical perspective, we generalize results from the matrix completion literature by

allowing the patterns of missing data to have a time series dependency structure. We also

present new insights concerning the connections between the interactive fixed effects models

and the literatures on program evaluation under unconfoundedness as well as on synthetic

control methods. If there are few time periods and many units, our method approximates

a regression approach where counterfactual outcomes are estimated through a regression

of current outcomes on lagged outcomes for the same unit. In contrast, if there are few

units and many periods, our proposed method approximates a synthetic control estimator

where counterfactual outcomes are estimated through a regression of the lagged outcomes

for the treated unit on lagged outcomes for the control units. The advantage of our pro-

posed method is that it moves seamlessly between these two different approaches, utilizing

both cross-sectional and within-unit patterns in the data. Simulations illustrate that our

proposed matrix completion method outperforms the existing benchmarks and successfully

reduces OVB in presence of confounding factors. This chapter is based on Athey et al.

(2018).

Finally, in many practical applications in social sciences, the decision-maker wishes to

develop methods that not only enable the treatment effect estimation using observational

data, but also allow for inference from such data. In these applications, it is plausible

that the effect of treatment varies among different individuals depending on potentially

high-dimensional attributes (covariates). A central task in such applications is to design

adequate estimators for the personalized treatment effect that enjoy strong asymptotic

properties that enable valid constructions of confidence intervals. The decision-maker can

use these personalized confidence intervals to identify and target a subset of units (pop-

ulation) that benefit the most from the treatment, leading to improved decisions for all

individuals. With this motivation, in Chapter 4, we consider non-parametric estimation

and inference of conditional moment models in high dimensions. Unfortunately, without

any further structural assumptions on the problem, the exponential in dimension rates of

approximately n1/D (see, e.g., Stone 1982) cannot be avoided (also known as the “Curse of
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Dimensionality”), where D is the dimension of conditioning variable. We show that even

when D is larger than the sample size n, estimation and inference is feasible as long as the

distribution of the conditioning variable has small intrinsic dimension d, as measured by

locally low doubling measures. Our work follows a long line of work in machine learning

(Dasgupta and Freund 2008, Kpotufe 2011, Kpotufe and Garg 2013), which is founded on

the observation that in many practical applications, the coordinates of X are highly corre-

lated (e.g., an image), despite X being high-dimensional. The latter intuition is formally

captured by assuming that the distribution of X has a small doubling measure around the

target point x. These works, however, solely establish estimation guarantees and do not

characterize the asymptotic distribution of the estimates, so as to enable inference, hypoth-

esis testing and confidence interval construction. Moreover, they only address the regression

setting and not the general conditional moment problem, and consequently do not extend

to quantile regression, instrumental variable regression, or treatment effect estimation. We

generalize these results by providing estimation and asymptotic normality results for the

general conditional moment problem, where the estimation and the asymptotic normality

rates depend only on the intrinsic dimension, and are independent of the explicit dimension

of the conditioning variable. In particular, we show that if the intrinsic dimension of the

covariate distribution is equal to d, then the finite sample estimation error of our estima-

tor is of order n−1/(d+2) and our estimate is n1/(d+2)-asymptotically normal, irrespective of

D. Our estimation is based on a sub-sampled ensemble of the k-nearest neighbors (k-NN)

Z-estimator. The sub-sampling size required for achieving these results depends on the

unknown intrinsic dimension d. We propose an adaptive data-driven approach for choosing

this parameter and prove that it achieves the desired rates. Simulations confirm our theo-

retical findings and demonstrate that our adaptive sub-sampled k-NN estimator performs

well in practice. This chapter is based on Khosravi et al. (2019).
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Chapter 2

Reducing Experimentation in

Contextual Bandits

2.1 Motivation

Service providers across a variety of domains are increasingly interested in personalizing

decisions based on customer characteristics. For instance, a website may wish to tailor

content based on an Internet user’s web history (Li et al. 2010), or a medical decision-maker

may wish to choose treatments for patients based on their medical records (Kim et al. 2011).

In these examples, the costs and benefits of each decision depend on the individual customer

or patient, as well as their specific context (web history or medical records respectively).

Thus, in order to make optimal decisions, the decision-maker must learn a model predicting

individual-specific rewards for each decision based on the individual’s observed contextual

information. This problem is often formulated as a contextual bandit (Auer 2003, Langford

and Zhang 2008, Li et al. 2010), which generalizes the classical multi-armed bandit problem

(Thompson 1933, Lai and Robbins 1985).

In this setting, the decision-maker has access to K possible decisions (arms) with un-

certain rewards. Each arm i is associated with an unknown parameter βi ∈ Rd that is

predictive of its individual-specific rewards. At each time t, the decision-maker observes an

individual with an associated context vector Xt ∈ Rd. Upon choosing arm i, she realizes a

(linear) reward of

X>t βi + εi,t , (2.1.1)
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where εi,t are idiosyncratic shocks. One can also consider nonlinear rewards given by gen-

eralized linear models (e.g., logistic, probit, and Poisson regression); in this case, (2.1.1) is

replaced with

µ(X>t βi) + εi,t , (2.1.2)

where µ is a suitable inverse link function (Filippi et al. 2010, Li et al. 2017). The decision-

maker’s goal is to maximize the cumulative reward over T different individuals by gradually

learning the arm parameters. Devising an optimal policy for this setting is often com-

putationally intractable, and thus, the literature has focused on effective heuristics that

are asymptotically optimal, including UCB (Dani et al. 2008, Abbasi-Yadkori et al. 2011),

Thompson sampling (Agrawal and Goyal 2013, Russo and Van Roy 2014b), information-

directed sampling (Russo and Van Roy 2014a), and algorithms inspired by ε-greedy methods

(Goldenshluger and Zeevi 2013, Bastani and Bayati 2015).

The key ingredient in designing these algorithms is addressing the exploration-exploitation

tradeoff. On one hand, the decision-maker must explore or sample each decision for random

individuals to improve her estimate of the unknown arm parameters {βi}Ki=1; this infor-

mation can be used to improve decisions for future individuals. Yet, on the other hand,

the decision-maker also wishes to exploit her current estimates {β̂i}Ki=1 to make the esti-

mated best decision for the current individual in order to maximize cumulative reward.

The decision-maker must therefore carefully balance both exploration and exploitation to

achieve good performance. In general, algorithms that fail to explore sufficiently may fail

to learn the true arm parameters, yielding poor performance.

However, exploration may be prohibitively costly or infeasible in a variety of practical

environments (Bird et al. 2016). In medical decision-making, choosing a treatment that is

not the estimated-best choice for a specific patient may be unethical; in marketing appli-

cations, testing out an inappropriate ad on a potential customer may result in the costly,

permanent loss of the customer. Such concerns may deter decision-makers from deploying

bandit algorithms in practice.

In this chapter, we analyze the performance of exploration-free greedy algorithms. Sur-

prisingly, we find that a simple greedy algorithm can achieve the same state-of-the-art

asymptotic performance guarantees as standard bandit algorithms if there is sufficient ran-

domness in the observed contexts (thereby creating natural exploration). In particular, we

prove that the greedy algorithm is near-optimal for a two-armed bandit when the context

distribution satisfies a condition we term covariate diversity ; this property requires that
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the covariance matrix of the observed contexts conditioned on any half space is positive

definite. We show that covariate diversity is satisfied by a natural class of continuous and

discrete context distributions. Furthermore, even absent covariate diversity, we show that

a greedy approach provably converges to the optimal policy with some probability that

depends on the problem parameters. Our results hold for arm rewards given by both linear

and generalized linear models. Thus, exploration may not be necessary at all in a general

class of problem instances, and is only sometimes be necessary in other problem instances.

Unfortunately, one may not know a priori when a greedy algorithm will converge, since

its convergence depends on unknown problem parameters. For instance, the decision-maker

may not know if the context distribution satisfies covariate diversity; if covariate diversity is

not satisfied, the greedy algorithm may be undesirable since it may achieve linear regret some

fraction of the time (i.e., it fails to converge to the optimal policy with positive probability).

To address this concern, we present Greedy-First, a new algorithm that seeks to reduce

exploration when possible by starting with a greedy approach, and incorporating exploration

only when it is confident that the greedy algorithm is failing with high probability. In

particular, we formulate a simple hypothesis test using observed contexts and rewards to

verify (with high probability) if the greedy arm parameter estimates are converging at the

asymptotically optimal rate. If not, our algorithm transitions to a standard exploration-

based contextual bandit algorithm.

Greedy-First satisfies the same asymptotic guarantees as standard contextual bandit

algorithms without our additional assumptions on covariate diversity or any restriction on

the number of arms. More importantly, Greedy-First does not perform any exploration (i.e.,

remains greedy) with high probability if the covariate diversity condition is met. Further-

more, even when covariate diversity is not met, Greedy-First provably reduces the expected

amount of forced exploration compared to standard bandit algorithms. This occurs be-

cause the vanilla greedy algorithm provably converges to the optimal policy with some

probability even for problem instances without covariate diversity; however, it achieves lin-

ear regret on average since it may fail a positive fraction of the time. Greedy-First leverages

this observation by following a purely greedy algorithm until it detects that this approach

has failed. Thus, in any bandit problem, the Greedy-First policy explores less on average

than standard algorithms that always explore. Simulations confirm our theoretical results,

and demonstrate that Greedy-First outperforms existing contextual bandit algorithms even

when covariate diversity is not met.
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Finally, Greedy-First provides decision-makers with a natural interpretation for explo-

ration. The hypothesis test for adopting exploration only triggers when an arm has not

received sufficiently diverse samples; at this point, the decision-maker can choose to explore

that arm by assigning it random individuals, or to discard it based on current estimates

and continue with a greedy approach. In this way, Greedy-First reduces the opaque nature

of experimentation, which we believe can be valuable for aiding the adoption of bandit

algorithms in practice.

2.1.1 Related Literature

There has been significant interest in operational methods for personalizing service decisions

as a function of observed user covariates (see, e.g., Ban and Rudin 2014, Bertsimas and

Kallus 2014a, Chen et al. 2015, Kallus 2016). We take a sequential decision-making approach

with bandit feedback, i.e., the decision-maker only observes feedback for her chosen decision

and does not observe counterfactual feedback from other decisions she could have made.

This obstacle inspires the exploration-exploitation tradeoff in multi-armed bandit problems.

Our work falls within the framework of contextual bandits (or a linear bandit with

changing action space), which has been extensively studied in the computer science, opera-

tions, and statistics literature (we refer the reader to Chapter 4 of Bubeck and Cesa-Bianchi

(2012) for an informative review). This setting was first introduced by Auer (2003) through

the LinRel algorithm and was subsequently improved through the OFUL algorithm by

Dani et al. (2008) and the LinUCB algorithm by Chu et al. (2011). More recently, Abbasi-

Yadkori et al. (2011) proved an upper bound of O(d
√
T ) regret after T time periods when

contexts are d-dimensional. (We note that they also prove a “problem-dependent” bound

of O(d log T/∆) if one assumes a constant gap ∆ between arm rewards; this bound does

not apply to the contextual bandit since there is no such gap between arm rewards.)

As mentioned earlier, this literature typically allows for arbitrary (adversarial) covariate

sequences. We consider the case where contexts are generated i.i.d., which is more suited

for certain applications (e.g., clinical trials on treatments for a non-infectious disease). In

this setting one can achieve exponentially better regret bounds in T . In particular, Gold-

enshluger and Zeevi (2013) present the OLS Bandit algorithm and prove a corresponding

upper bound of O(d3 log T ) on its cumulative regret. They also prove a lower bound of

O(log T ) regret for this problem (i.e., the contextual bandit with i.i.d. contexts and linear

payoffs).
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Greedy Algorithm. However, this substantial literature requires exploration. Greedy

policies are desirable in practical settings where exploration may be costly or unethical.

A related but distinct literature on greedy policies exists for discounted Bayesian multi-

armed bandit problems. The seminal paper by Gittins (1979) showed that greedily applying

an index policy is optimal for a classical multi-armed bandit in Bayesian regret (with a

known prior over the unknown parameters). Woodroofe (1979) and Sarkar (1991) extend

this result to a Bayesian one armed bandit with a single i.i.d. covariate when the discount

factor approaches 1, and Wang et al. (2005b,a) generalize this result with a single covariate

and two arms. Mersereau et al. (2009) further model known structure between arm rewards.

However, these policies are not greedy in the same sense as ours; in particular, the Gittins

index of an arm is not simply the arm parameter estimate, but includes an additional

factor that implicitly captures the value of exploration for under-sampled arms (i.e., the

variance of the estimate). In fact, recent work has shown a sharp equivalence between

the UCB policy (which notably incorporates exploration) and the Gittins index policy as

the discount factor approaches one (Russo 2019). In contrast, we consider a greedy policy

with respect to unbiased arm parameter estimates, i.e., without accounting for the value of

exploration (or the variance of our parameter estimates). It is surprising that such a policy

can be effective; in fact, we show that it is not rate optimal in general, but is rate optimal

for the linear contextual bandit if there is sufficient randomness in the context distribution.

It is also worth noting that, unlike the literature above, we consider undiscounted mini-

max regret with unknown and deterministic arm parameters. Gutin and Farias (2016) show

that the Gittins analysis does not succeed in minimizing Bayesian regret over all sufficiently

large horizons, and propose “optimistic” Gittins indices (which incorporate additional ex-

ploration) to solve the undiscounted Bayesian multi-armed bandit.

Since the first draft of our work appeared online, there have been two follow-up papers

that cite our work and provide additional theoretical and empirical validation for our results.

Kannan et al. (2018) consider the case where an adversary selects the observed contexts, but

these contexts are then perturbed by white noise; they find that the greedy algorithm can

be rate optimal in this setting even for small perturbations. Bietti et al. (2018) perform an

extensive empirical study of contextual bandit algorithms on 524 datasets that are publicly

available on the OpenML platform. These datasets arise from a variety of applications

including medicine, natural language, and sensors. Bietti et al. (2018) find that the greedy

algorithm outperforms a wide range of bandit algorithms in cumulative regret on more that

9
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400 datasets. This study provides strong empirical validation of our theoretical findings.

Covariate Diversity. The adaptive control theory literature has studied “persistent ex-

citation”: for linear models, this condition ensures that the minimum eigenvalue of the

covariance matrix grows at a suitable rate, so that the parameter estimates converge over

time (Narendra and Annaswamy 1987, Nguyen 2018). Thus, if persistent excitation holds for

each arm, we will eventually recover the true arm rewards. However, the problem remains

to derive policies that ensure that such a condition holds for each (optimal) arm; classical

bandit algorithms achieve this goal with high probability by incorporating exploration for

under-sampled arms. Importantly, a greedy policy that does not incorporate exploration

may not satisfy this condition, e.g., the greedy policy may “drop” an arm. The covariate

diversity assumption ensures that there is sufficient randomness in the observed contexts,

thereby exogenously ensuring that persistent excitation holds for each arm regardless of the

sample path taken by the bandit algorithm.

Conservative Bandits. Our approach is also related to recent literature on designing

conservative bandit algorithms (Wu et al. 2016, Kazerouni et al. 2016) that operate within

a safety margin, i.e., the regret is constrained to stay below a certain threshold that is

determined by a baseline policy. This literature proposes algorithms that restrict the amount

of exploration (similar to the present work) in order to satisfy a safety constraint. Wu et al.

(2016) studies the classical multi-armed bandit, and Kazerouni et al. (2016) generalizes

these results to the contextual linear bandit.

Dynamic Pricing. Finally, we note that there are technical parallels between our work

and the analysis of the greedy policy and its variants in the dynamic pricing literature

(Lattimore and Munos 2014, Broder and Rusmevichientong 2012). In particular, the most

commonly-studied dynamic pricing problem (without covariates) can be viewed as a linear

bandit problem without changing action space and with a modified reward function (den

Boer and Zwart 2013, Keskin and Zeevi 2014b). When there are no covariates, the greedy

algorithm has been shown to be undesirable since it provably converges to a suboptimal

price (a fixed point known as the “uninformative price”) with nonzero probability (den

Boer and Zwart 2013, Keskin and Zeevi 2014b, 2015). Thus, bandit-like algorithms have

been proposed, which always explore in order to guarantee convergence to the optimal price

(den Boer and Zwart 2013, Keskin and Zeevi 2014a,b, den Boer and Zwart 2015); these
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approaches have similarities to Greedy-First in that they only explore (i.e., deviate from a

greedy strategy) when it is necessary, to ensure that the information envelope or variance

grows at the optimal rate.

More recently, some have studied dynamic pricing with changing demand covariates

(Cohen et al. 2016, Qiang and Bayati 2016, Javanmard and Nazerzadeh 2019, Ban and

Keskin 2018) or a changing demand function (den Boer 2015, Keskin and Zeevi 2015). These

changes in the demand environment can help the greedy algorithm explore naturally and

achieve asymptotically optimal performance. Our work significantly differs from this line

of analysis since we need to learn multiple reward functions (for each arm) simultaneously.

Specifically, in dynamic pricing, the decision-maker always receives feedback from the true

demand function; in contrast, in the contextual bandit, we only receive feedback from a

decision if we choose it, thereby complicating the analysis.

2.1.2 Main Contributions and Organization of this Chapter

We begin by studying conditions under which the greedy algorithm performs well. In §2.2,

we introduce the covariate diversity condition (Assumption 3), and show that it holds for

a general class of continuous and discrete context distributions. In §2.3, we show that

when covariate diversity holds, the greedy policy is asymptotically optimal for a two-armed

contextual bandit with linear rewards (Theorem 1); this result is extended to rewards

given by generalized linear models in Proposition 1. For problem instances with more than

two arms or where covariate diversity does not hold, we prove that the greedy algorithm

is asymptotically optimal with some probability, and we provide a lower bound on this

probability (Theorem 2).

Building on these results, in §2.4, we introduce the Greedy-First algorithm that uses

observed contexts and rewards to determine whether the greedy algorithm is failing or not

via a hypothesis test. If the test detects that the greedy steps are not receiving sufficient

exploration, the algorithm switches to a standard exploration-based algorithm. We show

that Greedy-First achieves rate optimal regret bounds without our additional assumptions

on covariate diversity or number of arms. More importantly, we prove that Greedy-First

remains purely greedy (while achieving asymptotically optimal regret) for almost all problem

instances for which a pure greedy algorithm is sufficient (Theorem 3). Finally, for problem

instances with more than two arms or where covariate diversity does not hold, we prove

that Greedy-First remains exploration-free and rate optimal with some probability, and we
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provide a lower bound on this probability (Theorem 4). This result implies that Greedy-

First reduces exploration on average compared to standard bandit algorithms.

Finally, in §3.7, we run several simulations on synthetic and real datasets to verify

our theoretical results. We find that the greedy algorithm outperforms standard bandit

algorithms when covariate diversity holds, but can perform poorly when this assumption

does not hold. However, Greedy-First outperforms standard bandit algorithms even in the

absence of covariate diversity, while remaining competitive with the greedy algorithm in

the presence of covariate diversity. Thus, Greedy-First provides a desirable compromise

between avoiding exploration and learning the true policy.

2.2 Problem Formulation

We consider a K-armed contextual bandit for T time steps, where T is unknown. Each arm

i is associated with an unknown parameter βi ∈ Rd. For any integer n, let [n] denote the

set {1, ..., n}. At each time t, we observe a new individual with context vector Xt ∈ Rd. We

assume that {Xt}t≥0 is a sequence of i.i.d. samples from some unknown distribution that

admits probability density pX(x) with respect to the Lebesgue measure. If we pull arm

i ∈ [K], we observe a stochastic linear reward (in §2.3.4, we discuss how our results can be

extended to generalized linear models)

Yi,t = X>t βi + εi,t ,

where εi,t are independent σ-subgaussian random variables (see Definition 1 below).

Definition 1. A random variable Z is σ-subgaussian if for all τ > 0 we have E[eτ Z ] ≤
eτ

2σ2/2.

We seek to construct a sequential decision-making policy π that learns the arm param-

eters {βi}Ki=1 over time in order to maximize expected reward for each individual.

We measure the performance of π by its cumulative expected regret, which is the standard

metric in the analysis of bandit algorithms (Lai and Robbins 1985, Auer 2003). In particular,

we compare ourselves to an oracle policy π∗, which knows the arm parameters {βi}Ki=1 in

advance. Upon observing context Xt, the oracle will always choose the best expected arm

π∗t = maxj∈[K](X
>
t βj). Thus, if we choose an arm i ∈ [K] at time t, we incur instantaneous
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expected regret

rt ≡ EX∼pX

[
max
j∈[K]

(X>t βj)−X>t βi
]
,

which is simply the expected difference in reward between the oracle’s choice and our choice.

We seek to minimize the cumulative expected regret RT :=
∑T

t=1 rt. In other words, we

seek to mimic the oracle’s performance by gradually learning the arm parameters.

Additional Notation: Let Bd
R be the closed `2 ball of radius R around the origin in Rd

defined as Bd
R =

{
x ∈ Rd : ‖x‖2 ≤ R

}
, and let the volume of a set S ⊂ Rd be vol(S) ≡

∫
S dx.

2.2.1 Assumptions

We now describe the assumptions required for our regret analysis. Some assumptions will

be relaxed in later sections of this chapter as noted below.

Our first assumption is that the contexts as well as the arm parameters {βi}Ki=1 are

bounded. This ensures that the maximum regret at any time step t is bounded. This is a

standard assumption made in the bandit literature (see e.g., Dani et al. 2008).

Assumption 1 (Parameter Set). There exists a positive constant xmax such that the context

probability density pX has no support outside the ball of radius xmax, i.e., ‖Xt‖2 ≤ xmax for

all t. There also exists a constant bmax such that ‖βi‖2 ≤ bmax for all i ∈ [K].

Second, we assume that the context probability density pX satisfies a margin condition,

which comes from the classification literature (Tsybakov 2004). We do not require this

assumption to prove convergence of the greedy algorithm, but the rate of convergence

differs depending on whether it holds. In particular, Goldenshluger and Zeevi (2009) prove

matching upper and lower bounds demonstrating that all bandit algorithms achieveO(log T )

regret when the margin condition holds, but they can achieve up to O(
√
T ) regret when

this condition is violated. We can obtain analogous results for the simple greedy algorithm

as well (see Appendix A.5.2 for details). This is because the margin condition rules out

unusual context distributions that become unbounded near the decision boundary (which

has zero measure), thereby making learning difficult.

Assumption 2 (Margin Condition). There exists a constant C0 > 0 such that for each

κ > 0:

∀ i 6= j : PX
[
0 < |X>(βi − βj)| ≤ κ

]
≤ C0κ .
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Thus far, we have made generic assumptions that are standard in the bandit literature.

Our third assumption introduces the covariate diversity condition, which is essential for

proving that the greedy algorithm always converges to the optimal policy. This condition

guarantees that no matter what our arm parameter estimates are at time t, there is a diverse

set of possible contexts (supported by the context probability density pX) under which each

arm may be chosen.

Assumption 3 (Covariate Diversity). There exists a positive constant λ0 such that for

each vector u ∈ Rd the minimum eigenvalue of EX
[
XX>I{X>u ≥ 0}

]
is at least λ0, i.e.,

λmin

(
EX
[
XX>I{X>u ≥ 0}

] )
≥ λ0 .

Assumption 3 holds for a general class of distributions. For instance, if the context

probability density pX is bounded below by a nonzero constant in an open set around the

origin, then it would satisfy covariate diversity. This includes common distributions such as

the uniform or truncated gaussian distributions. Furthermore, discrete distributions such

as the classic Rademacher distribution on binary random variables also satisfy covariate

diversity.

Remark 2.2.1. As discussed in the related literature, the adaptive control theory literature

has studied “persistent excitation,” which is reminiscent of the covariate diversity condition

without the indicator function I{X>u ≥ 0}. If persistent excitation holds for each arm, then

the minimum eigenvalue of the corresponding covariance matrix grows at a suitable rate,

and the arm parameter estimate converges over time. However, a greedy policy that does

not incorporate exploration may not satisfy this condition, e.g., the greedy policy may drop

an arm. Assumption 3 ensures that there is sufficient randomness in the observed contexts,

thereby exogenously ensuring that persistent excitation holds for each arm (see Lemma 4),

regardless of the sample path taken by the bandit algorithm.

2.2.2 Examples of Distributions Satisfying Assumptions 1-3

While Assumptions 1-2 are generic, it is not straightforward to verify Assumption 3. The

following lemma provides sufficient conditions (that are easier to check) that guarantee

Assumption 3.
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Lemma 1. If there exists a set W ⊂ Rd that satisfies conditions (a), (b), and (c) given

below, then pX satisfies Assumption 3.

(a) W is symmetric around the origin; i.e., if x ∈W then −x ∈W .

(b) There exist positive constants a, b ∈ R such that for all x ∈W , a ·pX(−x) ≤ b ·pX(x).

(c) There exists a positive constant λ such that
∫
W xx>pX(x)dx � λ Id. For discrete

distributions, the integral is replaced with a sum.

We now use Lemma 1 to demonstrate that covariate diversity holds for a wide range of

continuous and discrete context distributions, and we explicitly provide the corresponding

constants. It is straightforward to verify that these examples also satisfy Assumptions 1

and 2.

1. Uniform Distribution. Consider the uniform distribution over an arbitrary bounded

set V that contains the origin. Then, there exists some R > 0 such that Bd
R ⊂ V .

Taking W = Bd
R, we note that conditions (a) and (b) of Lemma 1 follow immediately.

We now check condition (c) by first stating the following lemma (see Appendix A.1

for proof):

Lemma 2.
∫
BdR

xx>dx =
[
R2

d+2vol(Bd
R)
]
Id for any R > 0.

By definition, pX(x) = 1/vol(V ) for all x ∈ V , and vol(Bd
R) = Rdvol(Bd

xmax
)/xdmax.

Applying Lemma 2, we see that condition (c) of Lemma 1 holds with constant λ =

Rd+2/[(d+ 2)xdmax].

2. Truncated Multivariate Gaussian Distribution. Let pX be a multivariate Gaus-

sian distribution N(0d,Σ), truncated to 0 for all ‖x‖2 ≥ xmax. The density after

renormalization is

pX(x) =
exp

(
−1

2x>Σ−1x
)∫

Bdxmax
exp

(
−1

2z>Σ−1z
)

dz
I(x ∈ Bd

xmax
) .

Taking W = Bd
xmax

, conditions (a) and (b) of Lemma 1 follow immediately. Condition

(c) of Lemma 1 holds with constant

λ =
1

(2π)d/2|Σ|d/2
exp

(
− x2

max

2λmin(Σ)

)
x2

max

d+ 2
vol(Bd

xmax
) ,
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as shown in Lemma 12 in Appendix A.1.

3. Gibbs Distributions with Positive Covariance. Consider the set {±1}d ⊂ Rd

equipped with a discrete probability density pX , which satisfies

pX(x) =
1

Z
exp

 ∑
1≤i,j≤d

Jijxixj

 ,

for any x = (x1, x2, . . . , xd) ∈ {±1}d. Here, Jij ∈ R are (deterministic) parameters,

and Z is a normalization term known as the partition function in the statistical physics

literature. We define W = {±1}d, satisfying conditions (a) and (b) of Lemma 1.

Furthermore, condition (c) follows by definition since the covariance of the distribution

is positive-definite. This class of distributions includes the well-known Rademacher

distribution (by setting all Jij = 0).

Finally, note that any product of these distributions would also satisfy our assumptions.

Remark 2.2.2. A special case under which the conditions in Lemma 1 hold is when W

is the entire support of the distribution PX (this is the case in the Gaussian and Gibbs

distributions, where W = Bd
xmax

and W = {±1}d respectively). Now, let X(1) be a random

vector that satisfies this special case and has mean 0. Let X(2) be another vector that is

independent of X(1) and satisfies the general form of Lemma 1. Then it is easy to see that

X = (X(1), X(2)) also satisfies the conditions in Lemma 1. (Parts (a) and (b) clearly hold;

to see why (c) holds, note that the cross diagonal entries in XX> are zero since X(1) has

mean 0.) This construction illustrates how covariate diversity works for distributions that

contain a mixture of discrete and continuous components.

2.3 Greedy Bandit

Notation. Let the design matrix X be the T × d matrix whose rows are Xt. Similarly,

for i ∈ [K], let Yi be the length T vector of potential outcomes X>t βi + εi,t. Since we

only obtain feedback when arm i is played, entries of Yi may be missing. For any t ∈ [T ],

let Si,t = {j | πj = i} ∩ [t] be the set of times when arm i was played within the first t

time steps. We use notation X(Si,t), Y (Si,t), and ε(Si,t) to refer to the design matrix, the

outcome vector, and vector of idiosyncratic shocks respectively, for the observations in time
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periods in Si,t. We estimate βi at time t based on X(Si,t) and Y (Si,t), using ordinary least

squares (OLS) regression that is defined below. We denote this estimator β̂X(Si,t),Y (Si,t), or

β̂(Si,t) for short.

Definition 2 (OLS Estimator). For any X0 ∈ Rn×d and Y0 ∈ Rn×1, the OLS estimator is

β̂X0,Y0 ≡ arg minβ ‖Y0−X0β‖22, which is equal to (X>0 X0)−1X>0 Y0 when X>0 X0 is invertible.

We now describe the greedy algorithm and provide performance guarantees when co-

variate diversity holds.

2.3.1 Algorithm

At each time step, we observe a new context Xt and use the current arm estimates β̂(Si,t−1)

to play the arm with the highest estimated reward, i.e., πt = arg maxi∈[K]X
>
t β̂(Si,t−1).

Upon playing arm πt, a reward Yπt,t = X>t βπt + επt,t is observed. We then update our

estimate for arm πt but we need not update the arm parameter estimates for other arms as

β̂(Si,t−1) = β̂(Si,t) for i 6= πt. The update formula is given by

β̂(Sπt,t) =
[
X(Sπt,t)>X(Sπt,t)

]−1
X(Sπt,t)>Y(Sπt,t) .

We do not update the parameter of arm πt if X(Sπt,t)>X(Sπt,t) is not invertible. The

pseudo-code for the algorithm is given in Algorithm 1.

Algorithm 1 Greedy Bandit

Initialize β̂(Si,0) = 0 ∈ Rd for i ∈ [K]
for t ∈ [T ] do

Observe Xt ∼ pX
πt ← arg maxiX

>
t β̂(Si,t−1) (break ties randomly)

Sπt,t ← Sπt,t−1 ∪ {t}
Play arm πt, observe Yπt,t = X>t βπt + επt,t
If X(Sπt,t)>X(Sπt,t) is invertible∗, update the arm parameter β̂(Sπt,t) via

β̂(Sπt,t)←
[
X(Sπt,t)>X(Sπt,t)

]−1
X(Sπt,t)>Y(Sπt,t)

end for
*In practice, until X(Sπt,t)

>X(Sπt,t) becomes non-singular, using ridge regression or pseudo inverse for
estimating β̂(Sπt,t) may reduce the regret. See also Remark 2.3.2.
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2.3.2 Regret Analysis of Greedy Bandit with Covariate Diversity

We establish an upper bound of O(log T ) on the cumulative expected regret of the Greedy

Bandit for the two-armed contextual bandit when covariate diversity is satisfied.

Theorem 1. If K = 2 and Assumptions 1-3 are satisfied, the cumulative expected regret of

the Greedy Bandit at time T ≥ 3 is at most

RT (π) ≤ 128C0C̄x
4
maxσ

2d(log d)3/2

λ2
0

log T

+ C̄

(
128C0x

4
maxσ

2d(log d)3/2

λ2
0

+
160bmaxx

3
maxd

λ0
+ 2xmaxbmax

)
(2.3.1)

≤ CGB log T = O (log T ) ,

where the constant C0 is defined in Assumption 2 and

C̄ =

(
1

3
+

7

2
(log d)−0.5 +

38

3
(log d)−1 +

67

4
(log d)−1.5

)
∈ (1/3, 52) . (2.3.2)

We prove an analogous result for the greedy algorithm in the case where arm rewards

are given by generalized linear models (see Appendix 2.3.4 and Proposition 1 for details).

Remark 2.3.1. Goldenshluger and Zeevi (2013) established a lower bound of O(log T ) for

any algorithm in a two-armed contextual bandit. While they do not make Assumption 3,

the distribution used in their proof satisfies Assumption 3; thus their result applies to our

setting. Combined with our upper bound (Theorem 1), we conclude that the Greedy Bandit

is rate optimal.

2.3.3 Proof Strategy

Notation. Let Ri =
{
x ∈ X : x>βi ≥ maxj 6=i x

>βj
}

denote the true set of contexts where

arm i is optimal. Then, let R̂πi,t =
{

x ∈ X : x>β̂(Si,t−1) ≥ maxj 6=i x
>β̂(Sj,t−1)

}
denote the

estimated set of contexts at time t where arm i appears optimal; in other words, if the

context Xt ∈ R̂πi,t, then the greedy policy will choose arm i at time t. (since we assume

without loss of generality that ties are broken randomly as selected by π and thus, {Ri}Ki=1

and {R̂πi,t}Ki=1 partition the context space X .)

For any t ∈ [T ], let Ht−1 = σ (X1:t, π1:t−1, Y1(S1,t−1), Y2(S2,t−1), . . . , YK(SK,t−1)) denote

the σ-algebra containing all observed information up to time t before taking an action; thus,
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our policy πt is Ht−1-measurable. Furthermore, let H−t−1 be the σ-algebra containing all ob-

servations before time t, i.e.,H−t−1 = σ (X1:t−1, π1:t−1, Y1(S1,t−1), Y2(S2,t−1), . . . , YK(SK,t−1)).

Define Σ̂(Si,t) = X(Si,t)>X(Si,t) as the sample covariance matrix for observations from

arm i up to time t. We may compare this to the expected covariance matrix for arm i under

the greedy policy, defined as Σ̃i,t =
∑t

k=1 E
[
XkX

>
k I[Xk ∈ R̂πi,k] | H

−
k−1

]
.

Proof Strategy. Intuitively, covariate diversity (Assumption 3) guarantees that there

is sufficient randomness in the observed contexts, which creates natural “exploration.” In

particular, no matter what our current arm parameter estimates {β̂ (S1,t) , β̂ (S2,t)} are at

time t, each arm will be chosen by the greedy policy with at least some constant probability

(with respect to pX) depending on the observed context. We formalize this intuition in the

following lemma.

Lemma 3. Given Assumptions 1 and 3, the following holds for any u ∈ Rd:

PX [x>u ≥ 0] ≥ λ0

x2
max

.

Proof. For any observed context x, note that xx> � x2
maxId by Assumption 1. Re-stating

Assumption 3 for each u ∈ Rd, we can write

λ0Id �
∫

xxT I(x>u ≥ 0)pX(x)dx � x2
maxId

∫
I(x>u ≥ 0)pX(x)dx = x2

maxPX [x>u ≥ 0]Id,

since the indicator function and pX are both nonnegative.

Taking u = β̂ (S1,t)−β̂ (S2,t), Lemma 3 implies that arm 1 will be pulled with probability

at least λ0/x
2
max at each time t; the claim holds analogously for arm 2. Thus, each arm will

be played at least λ0T/x
2
max = O(T ) times in expectation. However, this is not sufficient

to guarantee that each arm parameter estimate β̂i converges to the true parameter βi. In

Lemma 4, we establish a sufficient condition for convergence.

First, we show that covariate diversity guarantees that the minimum eigenvalue of each

arm’s expected covariance matrix Σ̃i,t under the greedy policy grows linearly with t. This

result implies that not only does each arm receive a sufficient number of observations under

the greedy policy, but also that these observations are sufficiently diverse (in expectation).

Next, we apply a standard matrix concentration inequality (see Lemma 14 in Appendix

A.2) to show that the minimum eigenvalue of each arm’s sample covariance matrix Σ̂(Si,t)
also grows linearly with t. This will guarantee the convergence of our regression estimates
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for each arm parameter.

Lemma 4. Take C1 = λ0/(40x2
max). Given Assumptions 1 and 3, the following holds for

the minimum eigenvalue of the empirical covariance matrix of each arm i ∈ [2]:

P
[
λmin

(
Σ̂(Si,t)

)
≥ λ0t/4

]
≥ 1− exp(log d− C1t) .

Remark 2.3.2. Note that the above lemma in particular implies that, the probability that the

matrix Σ̂(Si,t) = X(Si,t)>X(Si,t) is singular, is upper bounded by exp(log d−C1t). Hence, as

t grows, this probability vanishes at an exponential rate, ensuring that its contribution to the

final regret is at most a constant. In fact, The second term in the regret upper bound stated

in Lemma 6 captures this term. Therefore, in practice, using ridge regression or pseudo

inverse until X(Si,t)>X(Si,t) becomes non-singular may reduce the final regret by a constant

(which may depend on d). However, this would not alter the final regret of O(log T ).

Proof. Without loss of generality, take i = 1. For any k ≤ t, let uk = β̂(S1,k)− β̂(S2,k); by

the greedy policy, we pull arm 1 if X>k uk−1 > 0 and arm 2 if X>k uk−1 < 0 (ties are broken

randomly using a fair coin flip Wk). Thus, the estimated set of optimal contexts for arm 1

is

R̂1,k =
{

x ∈ X : x>uk−1 > 0
}
∪
{

x ∈ X : x>uk−1 = 0,Wk = 0
}
.

First, we seek to bound the minimum eigenvalue of the expected covariance matrix Σ̃1,t =∑t
k=1 E

[
XkX

>
k I[Xk ∈ R̂1,k] | H−k−1

]
. Expanding one term in the sum, we can write

E
[
XkX

>
k I[Xk ∈ R̂1,k] | H−k−1

]
= E

[
XkX

>
k

(
I[X>k uk−1 > 0] + I[X>k uk−1 = 0,Wk = 0

)
| H−k−1

]
= EX

[
XX>

(
I[X>uk−1 > 0] +

1

2
I[X>uk−1 = 0]

)]
≥ λ0/2 ,

where the last line follows from Assumption 3. Since the minimum eigenvalue function
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λmin(·) is concave over positive semi-definite matrices, we can write

λmin

(
Σ̃1,t

)
= λmin

(
t∑

k=1

E
[
XX>I[X ∈ R̂1,k] | H−k−1

])

≥
t∑

k=1

λmin

(
E
[
XX>I[X ∈ R̂1,k] | H−k−1

])
≥ λ0t

2
.

Next, we seek to use matrix concentration inequalities (Lemma 14 in Appendix A.2) to

bound the minimum eigenvalue of the sample covariance matrix Σ̂(S1,t). To apply the

concentration inequality, we also need to show an upper bound on the maximum eigenvalue

of XkX
>
k ; this follows trivially from Assumption 1 using the Cauchy-Schwarz inequality:

λmax(XkX
>
k ) = max

u

‖XkX
>
k u‖2

‖u‖2
≤ ‖Xk‖22‖u‖2

‖u‖2
≤ x2

max.

We can apply Lemma 14, taking the finite adapted sequence {Xk} to be
{
XkX

>
k I[Xk ∈ R̂1,k]

}
,

so that Y = Σ̂(S1,t) and W = Σ̃1,t. We also take R = x2
max and γ = 1/2. Thus, we have

PX
[
λmin

(
Σ̂(S1,t)

)
≤ λ0t

4
and λmin

(
Σ̃1,t

)
≥ λ0t

2

]
≤ d

(
e−0.5

0.50.5

) λ0
4x2max

t

≤ exp

(
log d− 0.1λ0

4x2
max

t

)
,

using the fact −0.5−0.5 log(0.5) ≤ −0.1. As we showed earlier, PX
(
λmin

(
Σ̃1,t

)
≥ λ0t

2

)
= 1.

This proves the result.

Next, Lemma 5 guarantees with high probability that each arm’s parameter estimate

has small `2 error with respect to the true parameter if the minimum eigenvalue of the

sample covariance matrix Σ̂(Si,t) has a positive lower bound. Note that we cannot directly

use results on the convergence of the OLS estimator since the set of samples Si,t from arm i

at time t are not i.i.d. (we use the arm estimate β̂(Si,t−1) to decide whether to play arm i at

time t; thus, the samples in Si,t are correlated.). Instead, we use a Bernstein concentration

inequality to guarantee convergence with adaptive observations.

Lemma 5. Taking C2 = λ2/(2dσ2x2
max) and n ≥ |Si,t|, we have for all λ, χ > 0,

P
[
‖β̂(Si,t)− βi‖2 ≥ χ and λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ 2d exp

(
−C2t

2χ2/n
)
.
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Proof of Lemma 5. We begin by noting that if the event λmin

(
Σ̂(Si,t)

)
≥ λt holds, then

‖β̂(Si,t)− βi‖2 = ‖
(
X(Si,t)>X(Si,t)

)−1
X(Si,t)>ε(Si,t)‖2

≤ ‖
(
X(Si,t)>X(Si,t)

)−1
‖2‖X(Si,t)>ε(Si,t)‖2 ≤

1

λt
‖X(Si,t)>ε(Si,t)‖2.

As a result, we can write

P
[
‖β̂(Si,t)− βi‖2 ≥ χ and λmin

(
Σ̂(Si,t)

)
≥ λt

]
= P

[
‖β̂(Si,t)− βi‖2 ≥ χ | λmin

(
Σ̂(Si,t)

)
≥ λt

]
P
[
λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ P

[
‖X(Si,t)>ε(Si,t)‖2 ≥ χtλ | λmin

(
Σ̂(Si,t)

)
≥ λt

]
P
[
λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ P

[
‖X(Si,t)>ε(Si,t)‖2 ≥ χtλ

]
≤

d∑
r=1

P
[
|ε(Si,t)>X(Si,t)(r)| ≥ λt · χ√

d

]
,

where X(r) denotes the rth column of X. We can expand

ε(Si,t)>X(Si,t)(r) =
t∑

j=1

εjXj,rI [j ∈ Si,j ] .

For simplicity, define Dj = εjXj,rI [j ∈ Si,j ]. First, note that Dj is (xmaxσ)-subgaussian,

since εj is σ-subgaussian and |Xj,r| ≤ xmax. Next, note that Xj,r and I [j ∈ Si,j ] are both

Hj−1 measurable; taking the expectation gives E[Dj | Hj−1] = Xj,rI [j ∈ Si,j ]E[εj | Hj−1] =

0. Thus, the sequence {Dj}tj=1 is a martingale difference sequence adapted to the filtration

H1 ⊂ H2 ⊂ · · · ⊂ Ht. Applying a standard Bernstein concentration inequality (see Lemma

13 in Appendix A.2), we can write

P

∣∣∣ t∑
j=1

Dj

∣∣∣ ≥ λt · χ√
d

 ≤ 2 exp

(
− t2λ2χ2

2dσ2x2
maxn

)
,

where n is an upper bound on the number of nonzero terms in above sum, i.e., an upper

bound on |Si,t|. This yields the desired result.

To summarize, Lemma 4 provides a lower bound (with high probability) on the minimum
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eigenvalue of the sample covariance matrix. Lemma 5 states that if such a bound holds on

the minimum eigenvalue of the sample covariance matrix, then the estimated parameter

β̂(Si,t) is close to the true βi (with high probability). Having established convergence of the

arm parameters under the Greedy Bandit, one can use a standard peeling argument (as in

Goldenshluger and Zeevi (2013)) to bound the instantaneous expected regret of the Greedy

Bandit algorithm.

Lemma 6. Define Fλi,t =
{
λmin

(
X(Si,t)>X(Si,t)

)
≥ λt

}
. Then, the instantaneous expected

regret of the Greedy Bandit at time t ≥ 2 satisfies

rt(π) ≤ 4(K − 1)C0C̄x
2
max(log d)3/2

C3

1

t− 1
+ 4(K − 1)bmaxxmax

(
max
i

P[Fλ0/4i,t−1]

)
,

where C3 = λ2
0/(32dσ2x2

max), C0 is defined in Assumption 2, and C̄ is defined in Theorem

1.

Note that P[Fλ0/4i,t−1] can be upper bounded using Lemma 4. Substituting this in the

upper bound derived on rt(π) in Lemma 6, and using RT (π) =
∑T

t=1 rt(π) finishes the

proof of Theorem 1.

2.3.4 Generalized Linear Rewards

In this section, we discuss how our results generalize when the arm rewards are given by a

generalized linear model (GLM). Now, upon playing arm i after observing context Xt, the

decision-maker realizes a reward Yi,t with expectation E[Yi,t] = µ(X>t βi), where µ is the

inverse link function. For instance, in logistic regression, this would correspond to a binary

reward Yi,t with µ(z) = 1/(1 + exp(−z)); in Poisson regression, this would correspond to an

integer-valued reward Yi,t with µ(z) = exp(z); in linear regression, this would correspond

to µ(z) = z.

In order to describe the greedy policy in this setting, we give a brief overview of the

exponential family, generalized linear model, and maximum likelihood estimation.

Exponential family. A univariate probability distribution belongs to the canonical ex-

ponential family if its density with respect to a reference measure (e.g., Lebesgue measure)

is given by

pθ(z) = exp [zθ −A(θ) +B(z)] , (2.3.3)
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where θ is the underlying real-valued parameter, A(·) and B(·) are real-valued functions,

and A(·) is assumed to be twice continuously differentiable. For simplicity, we assume

the reference measure is the Lebesgue measure. It is well known that if Z is distributed

according to the above canonical exponential family, then it satisfies E[Z] = A′(θ) and

Var[Z] = A′′(θ), where A′ and A′′ denote the first and second derivatives of the function A

with respect to θ, and A is strictly convex (see e.g., Lehmann and Casella 1998).

Generalized linear model (GLM). The natural connection between exponential fam-

ilies and GLMs is provided by assuming that the density of Yi,t for the context Xt and arm

i is given by gβi(Yi,t | Xt) = pX>t βi
(Yi,t). where p is defined in (2.3.3). In other words, the

reward upon playing arm i for context Xt is Yi,t with density

exp
[
Yi,tX

>
t βi −A(X>t βi) +B(Yi,t)

]
.

Using the aforementioned properties of the exponential family, E[Yi,t] = A′(X>t βi), i.e., the

link function µ = A′. This implies that µ is continuously differentiable and its derivative is

A′′. Thus, µ is strictly increasing since A is strictly convex.

Maximum likelihood estimation. Suppose that we have n samples {(Xi, Yi)}ni=1 from

a distribution with density gβ(Y | X). The maximum likelihood estimator of β based on

this sample is given by

arg max
β

n∑
`=1

log gβ(Y` | X`) = arg max
β

n∑
`=1

[
Y`X

>
` β −A(X>` β) +B(Y`)

]
. (2.3.4)

Since A is strictly convex (so −A is strictly concave), the solution to (2.3.4) can be obtained

efficiently (see e.g., McCullagh and Nelder 1989). It is not hard to see that whenever X>X

is positive definite, this solution is unique (see Appendix A.5.1 for a proof). We denote this

unique solution by hµ(X,Y).

Now we are ready to generalize the Greedy Bandit algorithm when the arm rewards

are given by a GLM. Using similar notation as in the linear reward case, given the esti-

mates
{
β̂(Si,t−1)

}
i∈[K]

at time t, the greedy policy plays the arm that maximizes expected

estimated reward, i.e.,

πt = arg max
i∈[K]

µ
(
X>t β̂(Si,t−1)

)
.
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Since µ is a strictly increasing function, this translates to πt = arg maxi∈[K]X
>
t β̂(Si,t−1).

Algorithm 2 Greedy Bandit for Generalized Linear Models

Input parameters: inverse link function µ
Initialize β̂(Si,0) = 0 for i ∈ [K]
for t ∈ [T ] do

Observe Xt ∼ pX
πt ← arg maxiX

>
t β̂(Si,t−1) (break ties randomly)

Play arm πt, observe Yi,t = µ(X>t βπt) + επt,t
Update β̂(Sπt,t)← hµ (X(Sπt,t),Y(Sπt,t)), where hµ(X,Y) is the solution to the max-

imum likelihood estimation in Equation (2.3.4)
end for

Next, we state the following result (proved in Appendix A.5.1) that Algorithm 2 achieves

logarithmic regret when K = 2 and the covariate diversity assumption holds.

Proposition 1. Consider arm rewards given by a GLM with σ-subgaussian noise εi,t =

Yi,t−µ(X>t βi). Define mθ = min {µ′(z) : z ∈ [−(bmax + θ)xmax, (bmax + θ)xmax]}. If K = 2

and Assumptions 1-3 are satisfied, the cumulative expected regret of Algorithm 2 at time T

is at most

RT (π) ≤ 128C0C̄µLµx
4
maxσ

2d

λ20
log T + C̄µLµ

(
128

C0x
4
maxσ

2d

λ20
+ 160

bmaxx
3
maxd

λ0
+ 2xmaxbmax

)
= O (log T ) ,

where the constant C0 is defined in Assumption 2, Lµ is the Lipschitz constant1 of the func-

tion µ(·) on the interval [−xmaxbmax, xmaxbmax], and C̄µ is defined as C̄µ = 1
3

(√
log 4d

mbmax
+ 1
)3

+

3
2

(√
log 4d

mbmax
+ 1
)2

+ 8
3

(√
log 4d

mbmax
+ 1
)

+ 1
m3
bmax

((√
log 4d

mbmax
+ 1
)
mbmax

2 + 1
4

)
+ 1

m2
bmax

+ 1
2mbmax

.

2.3.5 Regret Analysis of Greedy Bandit without Covariate Diversity

Thus far, we have shown that the greedy algorithm is rate optimal when there are only

two arms and in the presence of covariate diversity in the observed context distribution.

However, when these additional assumptions do not hold, the greedy algorithm may fail

to converge to the true arm parameters and achieve linear regret. We now show that a

greedy approach achieves rate optimal performance with some probability even when these

assumptions do not hold. This result will motivate the design of the Greedy-First algorithm

in Appendix 2.4.

1Exists by continuity of µ′ = A′′.
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Assumptions. For the rest of the chapter, we allow the number of arms K > 2, and

remove Assumption 3 on covariate diversity. Instead, we will make the following weaker

Assumption 4, which is typically made in the contextual bandit literature (see e.g., Gold-

enshluger and Zeevi 2013, Bastani and Bayati 2015), which allows for multiple arms, and

relaxes the assumption on observed contexts (e.g., allowing for intercept terms in the arm

parameters).

Assumption 4 (Positive-Definiteness). Let Kopt and Ksub be mutually exclusive sets that

include all K arms. Sub-optimal arms i ∈ Ksub satisfy x>βi < maxj 6=i x
>βj − h for some

h > 0 and every x ∈ X . On the other hand, each optimal arm i ∈ Kopt, has a corresponding

set Ui = {x | x>βi > maxj 6=i x
>βj + h}. Define Σi ≡ E

[
XX>I(X ∈ Ui)

]
for all i ∈ Kopt.

Then, there exists λ1 > 0 such that for all i ∈ Kopt, λmin (Σi) ≥ λ1 > 0.

Remark 2.3.3. This assumption is slightly different as stated than the assumptions made in

prior literature; however, these assumptions are equivalent for bounded context distributions

pX (Assumption 1). We discuss the comparison in Appendix A.4 for completeness.

Algorithm. We consider a small modification of the Greedy Bandit (Algorithm 1),

by initializing each arm parameter estimate with m > 0 random samples. Note that OLS

requires at least d samples for an arm parameter estimate to be well-defined, and Algorithm

1 does not update the arm parameter estimates from the initial ad-hoc value of 0 until

this stage is reached (i.e., the covariance matrix X(Si,t)>X(Si,t) for a given arm i becomes

invertible); thus, all actions up to that point are essentially random. Consequently, we argue

that initializing each arm parameter with m = d samples at the beginning is qualitatively no

different than Algorithm 1. We consider general values of m to study how the probabilistic

guarantees of the greedy algorithm vary with the number of initial samples.

Remark 2.3.4. We note that there is a class of explore-then-exploit bandit algorithms that

follow a similar strategy of randomly sampling each arm for a length of time and using those

estimates for the remaining horizon (Bubeck and Cesa-Bianchi 2012). However, (i) m is a

function of the horizon length T in these algorithms (typically m =
√
T ) while we consider

m to be a (small) constant with respect to T , and (ii) these algorithms do not follow a greedy

strategy since they do not update the parameter estimates after the initialization phase.

Result. The following theorem shows that the Greedy Bandit converges to the correct

policy and achieves rate optimal performance with at least some problem-specific probabil-

ity.
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Theorem 2. Under Assumptions 1, 2, and 4, Greedy Bandit achieves logarithmic cumula-

tive regret with probability at least

Sgb(m,K, σ, xmax, λ1, h) := 1− inf
γ∈(0,1),δ>0,p≥Km+1

L(γ, δ, p) , (2.3.5)

where the function L(γ, δ, p) is defined as

L(γ, δ, p) := 1− P
[
λmin(X>1:mX1:m) ≥ δ

]K
+ 2Kd P

[
λmin(X>1:mX1:m) ≥ δ

]
exp

{
− h2δ

8dσ2x2
max

}
+

p−1∑
j=Km+1

2d exp

{
− h2δ2

8d(j − (K − 1)m)σ2x4
max

}
+
d exp (−D1(γ)(p−m|Ksub|))

1− exp(−D1(γ))

+
2d exp (−D2(γ)(p−m|Ksub|))

1− exp(−D2(γ))
. (2.3.6)

Here X1:m denotes the matrix obtained by drawing m random samples from distribution pX

and the constants are

D1(γ) =
λ1(γ + (1− γ) log(1− γ))

x2
max

, (2.3.7)

D2(γ) =
λ2

1h
2(1− γ)2

8dσ2x4
max

. (2.3.8)

Proof Strategy. The proof of Theorem 2 is provided in Appendix A.7. We observe

that if all arm parameter estimates remain within a Euclidean distance of θ1 = h/(2xmax)

from their true values for all time periods t > m, then the Greedy Bandit converges to the

correct policy and is rate optimal. We derive lower bounds on the probability that this event

occurs using Lemma 5, after proving suitable lower bounds on the minimum eigenvalue of

the covariance matrices. The key steps are as follows:

1. Assuming that the minimum eigenvalue of the sample covariance matrix for each arm

is above some threshold value δ > 0, we derive a lower bound on the probability

that after initialization, each arm parameter estimates lie within a ball of radius

θ1 = h/(2xmax) centered around the true arm parameter.

2. Next, we derive a lower bound on the probability that these estimates remain within

this ball after p ≥ Km+ 1 rounds for some choice of p.
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3. We use the concentration result in Lemma 14 to derive a lower bound on the prob-

ability that the minimum eigenvalue of the sample covariance matrix of each arm in

Kopt is above (1− γ)λ1(t−m|Ksub|) for any t ≥ p.

4. We derive a lower bound on the probability that the estimates ultimately remain

inside the ball with radius θ1. This ensures that no sub-optimal arm is played for any

t ≥ Km.

5. Summing up these probability terms implies Theorem 2. The parameters γ, δ, and p

can be chosen arbitrarily and we optimize over their choice.

The following Proposition 2 illustrates some of the properties of the function Sgb in Theorem

2 with respect to problem-specific parameters. The proof is provided in Appendix A.7.

Proposition 2. The function Sgb(m,K, σ, xmax, λ1, h) defined in Equation (2.3.5) is non-

increasing with respect to σ and K; it is non-decreasing with respect to m, λ1 and h.

Furthermore, the limit of this function when σ goes to zero is

P
[
λmin(X>1:mX1:m) > 0

]K
.

In other words, the greedy algorithm is more likely to succeed when there is less noise

and when there are fewer arms; it is also more likely to succeed with additional initialization

samples, when the optimal arms each have a larger probability of being the best arm under

pX , and when the sub-optimal arms are worse than the optimal arms by a larger margin.

Intuitively, these conditions make it easier for the Greedy Bandit to avoid “dropping a good

arm” early on, which would result in its convergence to the wrong policy. As the noise goes

to zero, the greedy algorithm always succeeds as long as the sample covariance matrix for

each of the K arms is positive definite after the initialization periods.

In Corollary 1, we simplify the expression in Theorem 2 for better readability. However,

the simplified expression leads to poor tail bounds when m is close to d, while the general

expression in Theorem 2 works when m = d as demonstrated later in §2.4.3 (see Figure

2.1).

Corollary 1. Under the assumptions of Theorem 2, Greedy Bandit achieves logarithmic

cumulative regret with probability at least

1− 3Kd exp(−Dmin|Kopt|m)

1− exp(−Dmin)
,
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where function Dmin is defined as Dmin = min
{

0.153λ1
x2max

,
λ21h

2

32dσ2x4max

}
.

To summarize, these probabilistic guarantees on the success of Greedy Bandit suggest

that a greedy approach can be effective and rate optimal in general with at least some

probability. Therefore, in the next section, we introduce the Greedy-First algorithm which

executes a greedy strategy and only resorts to forced exploration when the observed data

suggests that the greedy updates are not converging. This helps eliminate unnecessary

exploration with high probability.

2.4 Greedy-First Algorithm

As noted in Theorem 1, the optimality of the Greedy Bandit requires that there are only

two arms and that the context distribution satisfies covariate diversity. The latter condition

rules out some standard settings, e.g., the arm rewards cannot have an intercept term (since

the addition of a one to every context vector would violate Assumption 3). While there

are many examples that satisfy these conditions (see §2.2.2), the decision-maker may not

know a priori whether a greedy algorithm is appropriate for her particular setting. Thus,

we introduce the Greedy-First algorithm (Algorithm 3), which is rate optimal without these

additional assumptions, but seeks to use the greedy algorithm without forced exploration

when possible.

2.4.1 Algorithm

The Greedy-First algorithm has two inputs λ0 and t0. It starts by following the greedy

algorithm up to time t0, after which it iteratively checks whether all the arm parameter

estimates are converging to their true values at a suitable rate. A sufficient statistic for

checking this is simply the minimum eigenvalue of the sample covariance matrix of each

arm; if this value is above the threshold of λ0t/4, then greedy estimates are converging with

high probability. On the other hand, if this condition is not met, the algorithm switches to

a standard bandit algorithm with forced exploration. We choose the OLS Bandit algorithm

(introduced by Goldenshluger and Zeevi (2013) for two arms and extended to the general

setting by Bastani and Bayati (2015)), which is provided in Appendix A.4 for completeness.

Remark 2.4.1. Greedy-First can switch to any contextual bandit algorithm (e.g., OFUL by

Abbasi-Yadkori et al. (2011) or Thompson sampling by Agrawal and Goyal (2013), Russo
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Algorithm 3 Greedy-First Bandit

Input parameters: λ0, t0
Initialize β̂(Si,0) at random for i ∈ [K]
Initialize switch to R = 0
for t ∈ [T ] do

if R 6= 0 then break
end if
Observe Xt ∼ pX
πt ← arg maxiX

>
t β̂(Si,t−1) (break ties randomly)

Sπt,t ← Sπt,t−1 ∪ {t}
Play arm πt, observe Yi,t = X>t βπt + επt,t

Update arm parameter β̂(Sπt,t) =
[
X(Sπt,t)>X(Sπt,t)

]−1
X(Sπt,t)>Y(Sπt,t)

Compute covariance matrices Σ̂(Si,t) = X(Si,t)>X(Si,t) for i ∈ [K]

if t > t0 and mini∈[K] λmin

(
Σ̂(Si,t)

)
< λ0t

4 then

Set R = t
end if

end for
Execute OLS Bandit for t ∈ [R+ 1, T ]

and Van Roy (2014a)) instead of the OLS Bandit. Then, the assumptions used in the

theoretical analysis would be replaced with analogous assumptions required by that algorithm.

Our proof naturally generalizes to adopt the assumptions and regret guarantees of the new

algorithm when Greedy Bandit fails.

In practice, λ0 may be an unknown constant. Thus, we suggest the following heuristic

routine to estimate this parameter:

1. Execute Greedy Bandit for t0 time steps.

2. Estimate λ0 using the observed data via λ̂0 = 1
2t0

mini∈[K] λmin

(
Σ̂(Si,t0)

)
.

3. If λ̂0 = 0, this suggests that one of the arms is not receiving sufficient samples,

and thus, Greedy-First will switch to OLS Bandit immediately. Otherwise, execute

Greedy-First for t ∈ [t0 + 1, T ] with λ0 = λ̂0.

The pseudo-code for this heuristic is given in Appendix A.4. The regret guarantees of

Greedy-First (given in the next section) are always valid, but the choice of the input pa-

rameters may affect the empirical performance of Greedy-First and the probability with

which it remains exploration-free. For example, if t0 is too small, then Greedy-First may
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incorrectly switch to OLS Bandit even when a greedy algorithm will converge; thus, choosing

t0 � Kd is advisable.

2.4.2 Regret Analysis of Greedy-First

As noted in §2.3.5, we replace the more restrictive assumption on covariate diversity (As-

sumption 3) with a more standard assumption made in the bandit literature (Assumption

2). Theorem 3 establishes an upper bound of O(log T ) on the expected cumulative regret

of Greedy-First. Furthermore, we establish that Greedy-First remains purely greedy with

high probability when there are only two arms and covariate diversity is satisfied.

Theorem 3. The cumulative expected regret of Greedy-First at time T is at most

C log T + 2t0xmaxbmax , ,

where C = (K − 1)CGB +COB, CGB is the constant defined in Theorem 1, and COB is the

coefficient of log(T ) in the upper bound of the regret of the OLS Bandit algorithm.

Furthermore, if Assumption 3 is satisfied (with the specified parameter λ0) and K = 2,

then the Greedy-First algorithm will purely execute the greedy policy (and will not switch to

the OLS Bandit algorithm) with probability at least 1− δ, where δ = 2d exp[−t0C1]/C1, and

C1 = λ0/40x2
max. Note that δ can be made arbitrarily small since t0 is an input parameter

to the algorithm.

The key insight to this result is that the proof of Theorem 1 only requires Assumption

3 in the proof of Lemma 4. The remaining steps of the proof hold without the assumption.

Thus, if the conclusion of Lemma 4, mini∈[K] λmin(Σ̂(Si,t)) ≥ λ0t
4 holds at every t ∈ [t0+1, T ],

then we are guaranteed at most O (log T ) regret by Theorem 1, regardless of whether

Assumption 3 holds.

Proof. fProof of Theorem 3. First, we will show that Greedy-First achieves asymptotically

optimal regret. Note that the expected regret during the first t0 rounds is upper bounded

by 2xmaxbmaxt0. For the period [t0 + 1, T ] we consider two cases: (1) the algorithm pursues

a purely greedy strategy, i.e., R = 0, or (2) the algorithm switches to the OLS Bandit

algorithm, i.e., R ∈ [t0 + 1, T ].

Case 1: By construction, we know that mini∈[K] λmin

(
Σ̂(Si,t)

)
≥ λ0t/4, for all t > t0.

This is because Greedy-First only switches when the minimum eigenvalue of the sample
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covariance matrix for some arm is less than λ0t/4. Therefore, if the algorithm does not

switch, it implies that the minimum eigenvalue of each arm’s sample covariance matrix is

greater that or equal to λ0t/4 for all values of t > t0. Then, the conclusion of Lemma 4

holds in this time range (Fλi,t holds for all i ∈ [K]). Consequently, even if Assumption 3 does

not hold and K 6= 2, Lemma 6 holds and provides an upper bound on the expected regret

rt. This implies that the regret bound of Theorem 1, after multiplying by (K − 1), holds

for Greedy-First. Therefore, Greedy-First is guaranteed to achieve (K− 1)CGB log (T − t0)

regret in the period [t0 + 1, T ] for some constant CGB that depends only on pX , b and σ.

Hence, the regret in this case is upper bounded by 2xmaxbmaxt0 + (K − 1)CGB log T .

Case 2: Once again, by construction, we know that mini∈[K] λmin

(
Σ̂(Si,t)

)
≥ λ0t/4

for all t ∈ [t0 + 1, R] before the switch. Then, using the same argument as in Case 1,

Theorem 1 guarantees that we achieve at most (K − 1)CGB log (R− t0) regret for some

constant CGB over the interval [t0 + 1, R]. Next, Theorem 2 of Bastani and Bayati (2015)

guarantees that, under Assumptions 1, 2 and 2, the OLS Bandit’s cumulative regret in the

interval t ∈ [R+ 1, T ] is upper bounded by COB log (T −R) for some constant COB. Thus,

the total regret is at most 2xmaxbmaxt0 + ((K − 1)CGB + COB) log T . Note that although

the switching time R is a random variable, the upper bound on the cumulative regret

2xmaxbmaxt0 + ((K − 1)CGB + COB) log T holds uniformly regardless of the value of R.

Thus, the Greedy-First algorithm always achieves O(log T ) cumulative regret. Next,

we prove that when Assumption 3 holds and K = 2, the Greedy-First algorithm maintains

a purely greedy policy with high probability. In particular, Lemma 4 states that if the

specified λ0 satisfies λmin

(
EX
[
XX>I(X>u ≥ 0)

])
≥ λ0 for each vector u ∈ Rd, then at

each time t,

P
[
λmin

(
Σ̂(Si,t)

)
≥ λ0t

4

]
≥ 1− exp [log d− C1t] ,

where C1 = λ0/40x2
max. Thus, by using a union bound over all K = 2 arms, the probability

that the algorithm switches to the OLS Bandit algorithm is at most

K

T∑
t=t0+1

exp [log d− C1t] ≤ 2

∫ ∞
t0

exp [log d− C1t] dt =
2d

C1
exp [−t0C1] .

This concludes the proof.

32



2.4.3 Probabilistic Guarantees for Greedy-First Algorithm

The key value proposition of Greedy-First is to reduce forced exploration when possible.

Theorem 2 established that Greedy-First eliminates forced exploration entirely with high

probability when there are only two arms and when covariate diversity holds. However, a

natural question might be the extent to which Greedy-First reduces forced exploration in

general problem instances.

To answer this question, we leverage the probabilistic guarantees we derived for the

greedy algorithm in §2.3.5. Note that unlike the greedy algorithm, Greedy-First always

achieves rate optimal regret. We now study the probability with which Greedy-First is

purely greedy under an arbitrary number of arms K and the less restrictive Assumption 2.

However, we impose that all K arms are optimal for some set of contexts under pX , i.e.,

Kopt = [K],Ksub = ∅. This is because Greedy-First always switches to the OLS Bandit

when an arm is sub-optimal across all contexts. In order for any algorithm to achieve

logarithmic cumulative regret, sub-optimal arms must be assigned fewer samples over time

and thus, the minimum eigenvalue of the sample covariance matrices of those arms cannot

grow sufficiently fast; as a result, the Greedy-First algorithm will switch with probability

1. This may be practically desirable as the decision-maker can decide whether to “drop”

the arm and proceed greedily or to use an exploration-based algorithm when the switch

triggers.

Theorem 4. Let Assumptions 1, 2, and 4 hold and suppose that Ksub = ∅. Then, with

probability at least

Sgf(m,K, σ, xmax, λ1, h) = 1− inf
γ≤1−λ0/(4λ1),δ>0,Km+1≤p≤t0

L′(γ, δ, p) , (2.4.1)

Greedy-First remains purely greedy (does not switch to an exploration-based bandit algo-

rithm) and achieves logarithmic cumulative regret. The function L′ is closely related to the

function L from Theorem 2, and is defined as

L′(γ, δ, p) = L(γ, δ, p) + (K − 1)
d exp(−D1(γ)p)

1− exp(−D1(γ))
. (2.4.2)

The proof of Theorem 4 is provided in Appendix A.7. The steps followed are similar to

that of the proof of Theorem 2. In the third step of the proof strategy of Theorem 2 (see

§2.3.5), we used concentration results to derive a lower bound on the probability that the
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minimum eigenvalue of the sample covariance matrix of all arms in Kopt are above (1−γ)λ1t

for any t ≥ p (note that we are assuming Ksub = ∅ in this section). For Greedy Bandit, this

result was only required for the played arm; in contrast, for Greedy-First to remain greedy,

all arms are required to have the minimum eigenvalues of their sample covariance matrices

above (1− γ)λ1t. This causes the difference in L and L′ since we need a union bound over

all K arms. The additional constraints on p ensure that the Greedy-First algorithm does

not switch,

The following Proposition 3 illustrates some of the properties of the function Sgf in

Theorem 4 with respect to problem-specific parameters. The proof is provided in Appendix

A.7.

Proposition 3. The function Sgf(m,K, σ, xmax, λ1, h) defined in Equation (2.4.1) is non-

increasing with respect to σ and K; it is non-decreasing with respect to λ1 and h. Further-

more, the limit of this function when σ goes to zero is

P
[
λmin(X>1:mX1:m) > 0

]K
− Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))
,

where γ∗ = 1− λ0/(4λ1).

These relationships mirror those in Proposition 2, i.e., Greedy-First is more likely to re-

main exploration-free when Greedy Bandit is more likely to succeed. In particular, Greedy-

First is more likely to avoid exploration entirely when there is less noise and when there are

fewer arms; it is also more likely to avoid exploration with additional initialization samples

and when the optimal arms each have a larger probability of being the best arm under pX .

Intuitively, these conditions make it easier for the greedy algorithm to avoid “dropping” an

arm, so the minimum eigenvalue of each arm’s sample covariance matrix grows at a suitable

rate over time, allowing Greedy-First to remain greedy.

In Corollary 2, we simplify the expression in Theorem 4 for better readability. However,

the simplified expression leads to poor tail bounds when m is close to d, while the general

expression in Theorem 4 works when m = d as demonstrated in Figure 2.1.

Corollary 2. Under the assumptions made in Theorem 4, Greedy-First remains purely

greedy and achieves logarithmic cumulative regret with probability at least

1− 3Kd exp(−DminKm)

1− exp(−Dmin)
,
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where the function Dmin is defined in Corollary 1.

We now illustrate the probabilistic bounds given in Theorems 2 and 4 through a simple

example.

Example 2.4.1. Let K = 3 and d = 2. Suppose that arm parameters are given by β1 =

(1, 0), β2 = (−1/2,
√

3/2) and β3 = (−1/2,−
√

3/2). Furthermore, suppose that the distribu-

tion of covariates pX is the uniform distribution on the unit ball B2
1 = {x ∈ R2 | ‖x‖ ≤ 1},

implying xmax = 1. The constants h and λ1 are chosen to satisfy Assumption 4; here,

we choose h = 0.3, and λ1 ≈ 0.025. We then numerically plot our lower bounds on the

probability of success of the Greedy Bandit (Theorem 2) and on the probability that Greedy-

First remains greedy (Theorem 4) via Equations (2.3.5) and (2.4.1) respectively. Figure 2.1

depicts these probabilities as a function of the noise σ for several values of initialization

samples m.

Figure 2.1: Lower (theoretical) bound on the probability of success for Greedy Bandit and Greedy-First. For m =
20, t0 = 1000, the performance of Greedy-First for λ0 ∈ {0.01, 0.0001} are similar and indistinguishable.

We note that our lower bounds are very conservative, and in practice, both Greedy

Bandit and Greedy-First succeed and remain exploration-free respectively with much larger

probability. For instance, as observed in Example 2.4.1, one can optimize over the choice

of λ1 and h. In the next section, we verify via simulations that both Greedy Bandit and

Greedy-First are successful with a higher probability than our lower bounds may suggest.
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2.5 Simulations

We now validate our theoretical findings on synthetic and real datasets.

2.5.1 Synthetic Data

Linear Reward. We compare Greedy Bandit and Greedy-First with state-of-the-art con-

textual bandit algorithms. These include:

1. OFUL by Abbasi-Yadkori et al. (2011), which builds on the original upper confidence

bound (UCB) approach of Lai and Robbins (1985),

2. Prior-dependent TS by Russo and Van Roy (2014b), which builds on the original

Thompson sampling approach of Thompson (1933),

3. Prior-free TS by Agrawal and Goyal (2013), which builds on the original Thompson

sampling approach of Thompson (1933), and

4. OLS Bandit by Goldenshluger and Zeevi (2013), which builds on ε-greedy methods.

Remark 2.5.1. Prior-dependent TS requires knowledge of the prior distribution of arm

parameters βi, while prior-free TS does not. All algorithms above require knowledge of an

upper bound on the noise variance σ.

Following the setup of (Russo and Van Roy 2014b), we consider Bayes regret over

randomly-generated arm parameters. In particular, for each scenario, we generate 1000

problem instances and sample the true arm parameters {βi}Ki=1 independently. At each

time step within each instance, new context vectors are drawn i.i.d. from a fixed context

distribution pX . We then plot the average Bayes regret across all these instances, along

with the 95% confidence interval, as a function of time t with a horizon length T = 10, 000.

We take K = 2 and d = 3 (see Appendix A.6 for simulations with other values of K and

d). The noise variance σ2 = 0.25.

We consider four different scenarios, varying (i) whether covariate diversity holds, and

(ii) whether algorithms have knowledge of the true prior. The first condition allows us to ex-

plore how the performance of Greedy Bandit and Greedy-First compare against benchmark

bandit algorithms when conditions are favorable / unfavorable for the greedy approach.

The second condition helps us understand how knowledge of the prior distribution and
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noise variance affects the performance of benchmark algorithms relative to Greedy Bandit

and Greedy-First (which do not require this knowledge). When the correct prior is provided,

we assume that OFUL and both versions of TS know the noise variance.

Context vectors: For scenarios where covariate diversity holds, we sample the context

vectors from a truncated Gaussian distribution, i.e., 0.5 × N(0d, Id) truncated to have `∞

norm at most 1. For scenarios where covariate diversity does not hold, we generate the

context vectors the same way but we add an intercept term.

Arm parameters and prior: For scenarios where the algorithms have knowledge of the

true prior, we sample the arm parameters {βi} independently from N(0d, Id), and provide

all algorithms with knowledge of σ, and prior-dependent TS with the additional knowledge

of the true prior distribution of arm parameters. For scenarios where the algorithms do

not have knowledge of the true prior, we sample the arm parameters {βi} independently

from a mixture of Gaussians, i.e., they are sampled from the distribution 0.5 × N(1d, Id)

with probability 0.5 and from the distribution 0.5× N(−1d, Id) with probability 0.5. How-

ever, prior-dependent TS is given the following incorrect prior distribution over the arm

parameters: 10 × N(0d, Id). None of the algorithms in this scenario are given knowledge

of σ; rather, this parameter is sequentially estimated over time using past data within the

algorithm. Parameters of OLS Bandit are chosen according to h = 5, q = 1, that are also

used for Greedy-First when it switches to OLS Bandit. For Greedy-First, t0 = 4Kd in all

experiments.

Results. Figure 2.2 shows the cumulative Bayes regret of all the algorithms for the four

different scenarios discussed above (with and without covariate diversity, with and without

the true prior). When covariate diversity holds (a-b), the Greedy Bandit is the clear fron-

trunner, and Greedy-First achieves the same performance since it never switches to OLS

Bandit. However, when covariate diversity does not hold (c-d), we see that the Greedy

Bandit performs very poorly (achieving linear regret), but Greedy-First is the clear fron-

trunner. This is because the greedy algorithm succeeds a significant fraction of the time

(Theorem 2), but fails on other instances. Thus, always following the greedy algorithm

yields poor performance, but a standard bandit algorithm like the OLS Bandit explores

unnecessarily in the instances where a greedy algorithm would have sufficed. Greedy-First

leverages this observation by only exploring (switching to OLS Bandit) when the greedy
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algorithm has failed (with high probability), thereby outperforming both Greedy Bandit

and OLS Bandit. Thus, Greedy-First provides a desirable compromise between avoiding

exploration and learning the true policy.

Logistic Reward. We now move beyond linear rewards and explore how the per-

formance of Greedy Bandit (Algorithm 2) compares to other bandit algorithms for GLM

rewards when covariate diversity holds. We compare to the state-of-the-art GLM-UCB

algorithm (Filippi et al. 2010), which is designed to handle GLM reward functions unlike

the bandit algorithms from the previous section. Our reward is logistic, i.e, Yit = 1 with

probability 1/[1 + exp(−X>t βi)] and is 0 otherwise.

We again consider Bayes regret over randomly-generated arm parameters. For each

scenario, we generate 10 problem instances (due to the computational burden of solving a

maximum likelihood estimation step in each iteration) and sample the true arm parameters

{βi}Ki=1 independently. At each time step within each instance, new context vectors are

drawn i.i.d. from a fixed context distribution pX . We then plot the average Bayes regret

across all these instances, along with the 95% confidence interval, as a function of time t with

a horizon length T = 2, 000. Once again, we sample the context vectors from a truncated

Gaussian distribution, i.e., 0.5 × N(0d, Id) truncated to have `2 norm at most xmax. Note

that this context distribution satisfies covariate diversity. We take K = 2, and we sample

the arm parameters {βi} independently from N(0d, Id). We consider two different scenarios

for d and xmax. In the first scenario, we take d = 3, xmax = 1; in the second scenario, we

take d = 10, xmax = 5.

Results: Figure 2.3 shows the cumulative Bayes regret of the Greedy Bandit and GLM-

UCB algorithms for the two different scenarios discussed above. As is evident from these

results, the Greedy Bandit far outperforms GLM-UCB. We suspect that this is due to the

conservative construction of confidence sets in GLM-UCB, particularly for large values of

d and xmax. In particular, the radius of the confidence set in GLM-UCB is proportional

to (infz∈C µ
′(z))−1 where C = {z | z ∈ [−xmaxbmax, xmaxbmax]}. Hence, the radius of the

confidence set scales as exp(xmaxbmax), which is exponentially large in xmax. This can be

seen from the difference in Figure 2.3 (a) and (b); in (b),xmax is much larger, causing

GLM-UCB’s performance to severely degrade. Although the same quantity appears in the

theoretical analysis of Greedy Bandit for GLM (Proposition 1), the empirical performance

of Greedy Bandit appears much better.
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(a) Correct prior and covariate diversity.
(b) Incorrect prior and covariate diver-
sity.

(c) Correct prior and no covariate diver-
sity.

(d) Incorrect prior and no covariate di-
versity.

Figure 2.2: ]

Expected regret of all algorithms on synthetic data in four different regimes for the
covariate diversity condition and whether OFUL and TS are provided with correct or
incorrect information on true prior distribution of the parameters. Out of 1000 runs of

each simulation Greedy-First never switched in (a) and (b) and switched only 69 times in
(c) and 139 times in (d).
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(a) d = 3, xmax = 1 (b) d = 10, xmax = 5

Figure 2.3: Expected regret of GLM-GB and GLM-UCB on synthetic data for logistic reward

Additional Simulations. We explore the performance of Greedy Bandit as a function

of K and d; we find that the performance of Greedy Bandit improves dramatically as

the dimension d increases, while it degrades with the number of arms K (as predicted by

Proposition 2). We also study the dependence of the performance of Greedy-First on the

input parameters t0 (which determines when to switch) and h, q (which are inputs to OLS

Bandit after switching); we find that the performance of Greedy-First is quite robust to the

choice of inputs. Note that Greedy Bandit is entirely parameter-free. These simulations

can be found in Appendix A.6.

2.5.2 Simulations on Real Datasets

We now explore the performance of Greedy and Greedy-First with respect to competing al-

gorithms on real datasets. As mentioned earlier, Bietti et al. (2018) performed an extensive

empirical study of contextual bandit algorithms on 524 datasets that are publicly available

on the OpenML platform, and found that the greedy algorithm outperforms a wide range

of bandit algorithms in cumulative regret on more that 400 datasets. We take a closer look

at 3 healthcare-focused datasets ((a) EEG, (b) Eye Movement, and (c) Cardiotocography)

among these. We also study the (d) warfarin dosing dataset (Consortium 2009), a pub-

licly available patient dataset that was used by Bastani and Bayati (2015) for analyzing
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contextual bandit algorithms.

Setup: These datasets all involve classification tasks using patient features. Accordingly,

we take the number of decisions K to be the number of classes, and consider a binary

reward (1 if we output the correct class, and 0 otherwise). The dimension of the features

for datasets (a)-(d) is 14, 27, 35 and 93 respectively; similarly, the number of arms is 2, 3,

3, and 3 respectively.

Remark 2.5.2. Note that we are now evaluating regret rather than Bayes regret. This is

because our arm parameters are given by the true data, and are not simulated from a known

prior distribution.

We compare to the same algorithms as in the previous section, i.e., OFUL, prior-

dependent TS, prior-free TS, and OLS Bandit. As an additional benchmark, we also include

an oracle policy, which uses the best linear model trained on all the data in hindsight; thus,

one cannot perform better than the oracle policy using linear models on these datasets.

Results: In Figure 2.4, we plot the regret (averaged over 100 trials with randomly per-

muted patients) as a function of the number of patients seen so far, along with the 95%

confidence intervals. First, in both datasets (a) and (b), we observe that Greedy Bandit

and Greedy-First perform the best; Greedy-First recognizes that the greedy algorithm is

converging and does not switch to an exploration-based strategy. In dataset (c), the Greedy

Bandit gets “stuck” and does not converge to the optimal policy on average. Here, Greedy-

First performs the best, followed closely by the OLS Bandit. This result is similar to our

results in Fig 2.2 (c-d), but in this case, exploration appears to be necessary in nearly

all instances, explaining the extremely close performance of Greedy-First and OLS Bandit.

Finally, in dataset (d), we see that the Greedy Bandit performs the best, followed by Greedy-

First. An interesting feature of this dataset is that one arm (high dose) is optimal for a

very small number of patients; thus, dropping this arm entirely leads to better performance

over a short horizon than attempting to learn its parameter. In this case, Greedy Bandit

is not converging to the optimal policy since it never assigns any patient the high dose.

However, Greedy-First recognizes that the high-dose arm is not getting sufficient samples

and switches to an exploration-based algorithm. As a result, Greedy-First performs worse

than the Greedy Bandit. However, if the horizon were to be extended2, Greedy-First and

2Our horizon is limited by the number of patients available in the dataset.
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(a) EEG dataset (b) Eye Movement dataset

(c) Cardiotocography dataset (d) Warfarin dataset

Figure 2.4: Expected regret of all algorithms on four real healthcare datasets
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the other bandit algorithms would eventually overtake the Greedy Bandit. Alternatively,

for non-binary reward functions (e.g., when cost of a mistake for high-dose patients is larger

than for other patients) Greedy Bandit would perform poorly.

Looking at these results as a whole, we see that Greedy-First is a robust frontrunner.

When exploration is unnecessary, it matches the performance of the Greedy Bandit; when

exploration is necessary, it matches or outperforms competing bandit algorithms.

2.6 Conclusions and Discussions

In this chapter, we prove that a greedy algorithm can be rate optimal in cumulative re-

gret for a two-armed contextual bandit as long as the contexts satisfy covariate diversity.

Greedy algorithms are significantly preferable when exploration is costly (e.g., result in lost

customers for online advertising or A/B testing) or unethical (e.g., personalized medicine or

clinical trials). Furthermore, the greedy algorithm is entirely parameter-free, which makes it

desirable in settings where tuning is difficult or where there is limited knowledge of problem

parameters. Despite its simplicity, we provide empirical evidence that the greedy algorithm

can outperform standard contextual bandit algorithms when the contexts satisfy covari-

ate diversity. Even when the contexts do not satisfy covariate diversity, we prove that a

greedy algorithm is rate optimal with some probability, and provide lower bounds on this

probability.

However, in many scenarios, the decision-makers may not know whether their problem

instance is amenable to a greedy approach, and may still wish to ensure that their algorithm

provably converges to the correct policy. In this case, the decision-maker may under-explore

by using a greedy algorithm, while a standard bandit algorithm may over-explore (since the

greedy algorithm converges to the correct policy with some probability in general). Con-

sequently, we propose the Greedy-First algorithm, which follows a greedy policy in the

beginning and only performs exploration when the observed data indicate that exploration

is necessary. Greedy-First is rate optimal without the covariate diversity assumption. More

importantly, it remains exploration-free when covariate diversity is satisfied, and may prov-

ably reduce exploration even when covariate diversity is not satisfied. Our empirical results

suggest that Greedy-First outperforms standard bandit algorithms (e.g., UCB, Thompson

Sampling, and ε-greedy methods) by striking a balance between avoiding exploration and

converging to the correct policy.
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Chapter 3

Treatment Effect Estimation in

Panel Models

3.1 Introduction

In this chapter we develop new methods for estimating average causal effects in settings with

panel or longitudinal data, where a subset of units is exposed to a binary treatment during a

subset of periods, and we observe the realized outcome for each unit in each time period. To

estimate the (average) effect of the treatment on the treated units in this setting, we focus on

imputing the missing potential outcomes. The statistics and econometrics literatures have

taken two general approaches to this problem. The literature on unconfoundedness (Rosen-

baum and Rubin (1983), Imbens and Rubin (2015)) imputes missing potential outcomes

using observed outcomes for units with similar values for observed outcomes in previous

periods. The synthetic control literature (Abadie and Gardeazabal (2003), Abadie et al.

(2010, 2015), Doudchenko and Imbens (2016)) imputes missing control outcomes for treated

units by finding weighted averages of control units that match the treated units in terms of

lagged outcomes. Although at first sight similar, the two approaches are conceptually quite

different in terms of the patterns in the data they exploit to impute the missing potential

outcomes. The unconfoundedness approach estimates patterns over time that are assumed

to be stable across units, and the synthetic control approach estimates patterns across units

that are assumed to be stable over time. Both sets of methods also primarily focus on set-

tings with different structures on the missing data or assignment mechanism. In the case

of the unconfoundedness literature typically the assumption is that the treated units are
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all treated in the same periods, typically only the last period, and there are a substantial

number of control units. The synthetic control literature has primarily focused on the case

where one or a small number of treated units are observed prior to the treatment over a

substantial number of periods.

In this study we also draw on the econometric literature on factor models and interactive

fixed effects, and the computer science and statistics literatures on matrix completion, to

take an approach to imputing the missing potential outcomes that is different from the

unconfoundedness and synthetic control approaches. In the literature on factor models

and interactive effects (Bai and Ng (2002), Bai (2003)) researchers model the observed

outcome, in a balanced panel setting, as the sum of a linear function of covariates and

an unobserved component that is a low rank matrix plus noise. Estimates are typically

based on minimizing the sum of squared errors given the rank of the matrix of unobserved

components, sometimes with the rank estimated. Xu (2017) applies this to causal settings

where a subset of units is treated from common period onward, so that the complete data

methods for estimating the factors and factor loadings can be used. The matrix completion

literature (Candès and Recht (2009), Candès and Plan (2010), Mazumder et al. (2010))

focuses on imputing missing elements in a matrix assuming the complete matrix is the sum

of a low rank matrix plus noise and the missingness is completely at random. The rank of

the matrix is impliclty determined by the regularization through the addition of a penalty

term to the objective function. Especially with complex missing data patterns using the

nuclear norm as the regularizer is attractive for computational reasons.

We make two contributions in this chapter. First, we generalize the methods from the

matrix completetion literature to settings where the missing data patterns are not com-

pletely at random. In particular we allow for the possibility of staggered adoption (Athey

and Imbens (2018)), where units are treated from some initial adoption date onwards, but

the adoption dates vary. Compared to the factor model literature the proposed estimator fo-

cuses on nuclear norm regularization to avoid the computational difficulties associated with

imputation that would arise for complex missing data patterns with the fixed-rank methods

in Bai and Ng (2002) and Xu (2017), similar to the way LASSO (`1 regularization, Tib-

shirani (1996)) is computationally attractive relative to subset selection (`0 regularization)

in linear regression models. The second contribution is to show that the synthetic con-

trol and unconfoundedness approaches, as well as our proposed method, can all be viewed

as matrix completion methods based on matrix factorization, all with the same objective
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function based on the Fröbenius norm for the difference between the latent matrix and the

observed matrix. Given the objective function the unconfoundedness and synthetic control

approaches impose different sets of restrictions on the factors in the matrix factorization,

whereas the proposed method does not impose any restrictions but uses regularization to

define the estimator.

3.2 Set Up

Consider an N × T matrix Y of outcomes with typical element Yit. We only observe

Yit for some units and some time periods. We define M to be the set of pairs of indices

(i, t), i ∈ {1, . . . , N}, t ∈ {1, . . . , T}, corresponding to the missing outcomes and O to be the

observed outcomes: Yit is missing if (i, t) ∈M and observed if (i, t) ∈ O. We wish to impute

the missing Yit. Our motivation for this problem arises from a causal potential outcome

setting (e.g., Rubin (1974), Imbens and Rubin (2015)), where for each of N units and T

time periods there exists a pair of potential outcomes, Yit(0) and Yit(1), with unit i exposed

in period t to treatment Wit ∈ {0, 1}, and the realized outcome equal to Yit = Yit(Wit). In

that case the primary object of interest may be the average causal effect of the treatment,

τ =
∑

i,t[Yit(1)−Yit(0)]/(NT ), or some other average treatment effect. In order to estimate

such average treatment effects, one approach is to impute the missing potential outcomes.

In this chapter, we focus directly on the problem of imputing the missing entries in the

Y(1) matrix for treated units with Wit = 0.

In addition to partially observing the matrix Y, we may also observe covariate matrices

X ∈ RN×P and Z ∈ RT×Q where columns of X are unit-specific covariates, and columns of

Z are time-specific covariates. We may also observe unit/time specific covariates Vit ∈ RJ .

Putting aside the covariates for the time being, the data can be thought of as consisting

of two N × T matrices, one incomplete and one complete,

Y =



Y11 Y12 ? . . . Y1T

? ? Y23 . . . ?

Y31 ? Y33 . . . ?
...

...
...

. . .
...

YN1 ? YN3 . . . ?


, and W =



1 1 0 . . . 1

0 0 1 . . . 0

1 0 1 . . . 0
...

...
...

. . .
...

1 0 1 . . . 0


,
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where

Wit =

{
0 if (i, t) ∈M,

1 if (i, t) ∈ O,

is an indicator for Yit being observed.

3.3 Panel Configurations

In this section, we discuss a number of particular configurations of the matrices Y and

W that are the focus of parts of the general literature. This serves to put in context

the problem, and to motivate previously developed methods from the literature on causal

inference under unconfoundedness, the synthetic control literature, and the interactive fixed

effect literature, and subsequently to develop formal connections between all three. First,

we consider patterns of missing data. Second, we consider different shapes of the matrices

Y and W. Third, we consider a number of specific analyses that focus on particular

combinations of missing data patterns and shapes of the matrices.

3.3.1 Patterns of Missing Data

In the statistics literature on matrix completion the focus is on settings with randomly miss-

ing values, allowing for general patterns on the matrix of missing data indicators (Candès

and Tao (2010), Recht (2011)). In many social science applications, however, there is a

specific structure on the missing data, in the form of restrictions on the values of W.

Block Structure

A leading example is a block structure, with a subset of the units treated during every

period from a particular point in time onwards.

YN×T =



X X X X . . . X

X X X X . . . X

X X X X . . . X

X X X ? . . . ?

X X X ? . . . ?
...

...
...

...
. . .

...

X X X ? . . . ?


.
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There are two special cases of the block structure. Much of the literature on estimating

average treatment effects under unconfoundedness focuses on the case where T0 = T , so

that the only treated units are in the last period. We will refer to this as the single-treated-

period block structure. In contrast, the synthetic control literature focuses on the case of

with a single treated unit which are treated for a number of periods from period T0 onwards,

the single-treated-unit block structure:

Y =



X X X . . . X X

X X X . . . X X

X X X . . . X ?
...

...
...

. . .
...

...

X X X . . . X ?

↑
treated period


and Y =



X X X . . . X

X X X . . . X

X X X . . . X
...

...
...

. . .
...

X X X . . . X

X X ? . . . ? ← treated unit


.

Staggered Adoption

Another setting that has received attention is characterized by staggered adoption of the

treatment (Athey and Imbens (2018)). Here units may differ in the time they are first

exposed to the treatment, but once exposed they remain in the treatment group forever

after. This naturally arises in settings where the treatment is some new technology that

units can choose to adopt (e.g., Athey and Stern (2002)). Here:

YN×T =



X X X X . . . X (never adopter)

X X X X . . . ? (late adopter)

X X ? ? . . . ?

X X ? ? . . . ? (medium adopter)
...

...
...

...
. . .

...

X ? ? ? . . . ? (early adopter)


.

3.3.2 Thin and Fat Matrices

A second classification concerns the shape of the matrix Y. Relative to the number of

time periods, we may have many units, few units, or a comparable number. These data

configurations may make particular analyses more attractive. For example, Y may be a
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thin matrix, with N � T , or a fat matrix, with N � T , or an approximately square matrix,

with N ≈ T :

Y =



? X ?

X ? X

? ? X

X ? X

? ? ?
...

...
...

? ? X


(thin) Y =


? ? X X X . . . ?

X X X X ? . . . X

? X ? X ? . . . X

 (fat),

or

Y =



? ? X X . . . ?

X X X X . . . X

? X ? X . . . X

X X ? X . . . X
...

...
...

...
. . .

...

? ? X X . . . X


(approximately square).

3.3.3 Horizontal and Vertical Regressions

Two special combinations of missing data patterns and the shape of the matrices deserve

particular attention because they are the focus of substantial separate literatures.

Horizontal Regression and the Unconfoundedness Literature

The unconfoundedness literature focuses primarily on the single-treated-period block struc-

ture with a thin matrix, and imputes the missing potential outcomes in the last period

using control units with similar lagged outcomes. A simple version of that approach is to

regress the last period outcome on the lagged outcomes and use the estimated regression

to predict the missing potential outcomes. That is, for the units with (i, T ) ∈ M, the

predicted outcome is

ŶiT = β̂0 +
T−1∑
s=1

β̂sYis, where β̂ = arg min
β

∑
i:(i,T )∈O

(
YiT − β0 −

T−1∑
s=1

βsYis

)2

. (3.3.1)
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We refer to this as a horizontal regression, where the rows of the Y matrix form the units

of observation. A more flexible, non-parametric, version of this estimator would correspond

to matching where we find for each treated unit i a corresponding control unit j with Yjt

approximately equal to Yit for all pre-treatment periods t = 1, . . . , T − 1.

Vertical Regression and the Synthetic Control Literature

The synthetic control literature focuses primarily on the single-treated-unit block structure

with a fat or approximately square matrix. Doudchenko and Imbens (2016) discuss how

the Abadie-Diamond-Hainmueller synthetic control method can be interpreted as regressing

the outcomes for the treated unit prior to the treatment on the outcomes for the control

units in the same periods. That is, for the treated unit in period t, for t = T0, . . . , T , the

predicted outcome is

ŶNt = γ̂0 +
N−1∑
i=1

γ̂iYit, where γ̂ = arg min
γ

∑
t:(N,t)∈O

(
YNt − γ0 −

N−1∑
i=1

γiYit

)2

. (3.3.2)

We refer to this as a vertical regression, where the columns of the Y matrix form the units

of observation. As shown in Doudchenko and Imbens (2016) this is a special case of the

Abadie et al. (2015) estimator, without imposing their restrictions that the coefficients are

nonnegative and that the intercept is zero.

Although this does not appear to have been pointed out previously, a matching version

of this estimator would correspond to finding, for each period t where unit N is treated, a

corresponding period s ∈ {1, . . . , T0 − 1} such that Yis is approximately equal to YNs for

all control units i = 1, . . . , N − 1. This matching version of the synthetic control estimator

clarifies the link between the treatment effect literature under unconfoundedness and the

synthetic control literature.

Suppose that there is only a single treated unit/time period combination, i.e. M =

{(N,T )}. In that case if we estimate the horizontal regression in (3.3.1), it is still the case

that ŶNT is linear in Y1T , . . . , YN−1,T , just with different weights than those obtained from

the vertical regression in (3.3.2). Similarly, if we estimate the vertical regression in (3.3.2),

it is still the case that ŶNT is linear in YN1, . . . , YN,T−1, just with different weights from the

horizontal regression.
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3.3.4 Fixed Effects and Factor Models

The horizontal regression focuses on a pattern in the time path of the outcome Yit, specifi-

cally the relation between YiT and the lagged Yit for t = 1, . . . , T − 1, and assumes that is

stable across units. The vertical regression focuses on a pattern across units that is stable

over time. However, by focusing on only one of these patterns these approaches ignore

alternative patterns that may help in imputing the missing values. An alternative is to

consider approaches that allow for the exploitation of both stable patterns over time, and

stable patterns accross units. Such methods have a long history in the panel data liter-

ature, including the literature on fixed effects, and more generally, factor and interactive

fixed effect models (e.g., Chamberlain (1984), Arellano and Honoré (2001), Liang and Zeger

(1986), Bai (2003, 2009), Pesaran (2006), Moon and Weidner (2015, 2017)). In the absence

of covariates (although in this literature the coefficients on these covariates are typically the

primary focus of the analyses), such models can be written as

Yit =
R∑
r=1

γirδtr + εit, or Y = UV> + ε, (3.3.3)

where U is N × R and V is T × R. Most of the early literature, Anderson (1958) and

Goldberger (1972)), focused on the thin matrix case, with N � T , where asymptotic

approximations are based on letting the number of units increase with the number of time

periods fixed. In the modern part of this literature researchers allow for more complex

asymptotics with both N and T increasing, at rates that allow for consistent estimation of

the factors V and loading sV after imposing normalizations. In this literature it is typically

assumed that the number of factors R is fixed, although not necessarily known. Methods for

estimating the rank R are discussed in Bai and Ng (2002) and Moon and Weidner (2015).

Xu (2017) implements this interactive fixed effect approach to the matrix completion

problem in the special case with blocked assignment, with additional applications in Gobil-

lon and Magnac (2013), Kim and Oka (2014) and Hsiao et al. (2012). Suppose the first NC

units are in the control group, and the last NT = N −NC units are in the treatment group.

The treatment group is exposed to the control treatment in the first T0 − 1 pre-treatment

periods, and exposed to the active treatment in the post-treatment periods T0, . . . , T . In

51



that case we can partition U and V accordingly and write

UV> =

(
UC

UT

)(
Vpre

Vpost

)>
.

Using the data from the control group pre and post, and the pre data only for the treatment

group, we have

YC = UC

(
Vpre

Vpost

)>
+ εC , and YT,pre = UTV>pre + εT,pre

where the first equation can be used to estimate UC , Vpre, and Vpost, and the second is

used to estimate UT , both by least squares after normalizing U and V. Note that this is

not necessarily efficient, because YT,pre is not used to estimate Vpre.

Independently, a closely related literature has emerged in machine learning and statistics

on matrix completion (Srebro et al. (2005), Candès and Recht (2009), Candès and Tao

(2010), Keshavan et al. (2010a,b), Gross (2011), Recht (2011), Rohde et al. (2011), Negahban

and Wainwright (2011, 2012), Koltchinskii et al. (2011), Klopp (2014)). In this literature the

starting point is an incompletely observed matrix, and researchers have proposed matrix-

factorization approaches to matrix completion, similar to (3.3.3). The focus is not on

estimating U and V consistently, only on imputing the missing elements of Y. Instead of

fixing the rank of the underlying matrix, estimators rely on regularization, and in particular

nuclear norm regularization.

3.4 The Nuclear Norm Matrix Completion Estimator

In the absence of covariates we model the matrix of outcomes Y as

Y = L∗ + ε, where E[ε|L∗] = 0 . (3.4.1)

The εit can be thought of as measurement error. The goal is to estimate the N × T matrix

L∗.

To facilitate the characterization of the estimator, define for any matrix A, and given a
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set of pairs of indices O, the two matrices PO(A) and P⊥O(A) with typical elements:

PO(A)it =

{
Ait if (i, t) ∈ O ,
0 if (i, t) /∈ O ,

and P⊥O(A)it =

{
0 if (i, t) ∈ O ,
Ait if (i, t) /∈ O .

A critical role is played by various matrix norms, summarized in Table 3.1. Some of these

depend on the singular values, where, given the Singular Value Decomposition (SVD)

LN×T = SN×NΣN×TR>T×T , the singular values σi(L) are the ordered diagonal elements

of Σ.

Table 3.1: Matrix Norms for Matrix L

Schatten Norm ‖L‖p (
∑

i σi(L)p)1/p

Fröbenius Norm ‖L‖F
(∑

i σi(L)2
)1/2

=
(∑N

i=1

∑T
t=1 L

2
it

)1/2

Rank Norm ‖L‖0
∑

i 1σi(L)>0

Nuclear Norm ‖L‖∗
∑

i σi(L)
Operator Norm ‖L‖op maxi σi(L) = σ1(L)
Max Norm ‖L‖max max1≤i≤N,1≤t≤T |Lit|

Now consider the problem of estimating L. Directly minimizing the sum of squared

differences,

min
L

∑
(i,t)∈O

(Yit − Lit)2 = min
L
‖PO(Y − L)‖2F , (3.4.2)

does not lead to a useful estimator: if (i, t) ∈M the objective function does not depend on

Lit, and for other pairs (i, t) the estimator would simply be Yit. Instead, we regularize the

problem by adding a penalty term λ‖L‖, for some choice of the norm ‖ · ‖.

The estimator: The general form of our proposed estimator for L∗ is (Mazumder et al.

(2010))

L̂ = arg min
L

{
‖PO(Y − L)‖2F + λ‖L‖∗

}
, (3.4.3)

with the penalty factor λ chosen through cross-validation that will be described at the end

of this section. We will call this the Matrix-Completion with Nuclear Norm Minimization

(MC-NNM) estimator. Some Schatten norms would not work as well. For example, the

Fröbenius norm on the penalty term would not have been suitable for estimating L∗ in
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the case with missing entries because the solution for Lit for (i, t) ∈ M is always zero

(which follows directly from the representation of ‖L‖F =
∑

i,t L
2
it). The rank norm is not

computationally feasible for large N and T if the cardinality of the set M is substantial.

Formally, the problem is NP-hard. In contrast, a major advantage of using the nuclear norm

is that the resulting estimator can be computed using fast convex optimization programs,

e.g. the SOFT-IMPUTE algorithm by Mazumder et al. (2010) that will be described next.

Calculating the Estimator: The algorithm for calculating our estimator (in the case

without additional covariates) goes as follows. Given the SVD for A, A = SΣR>, with

singular values σ1(A), . . . , σmin(N,T )(A), define the matrix shrinkage operator

shrinkλ(A) = SΣ̃R> , (3.4.4)

where Σ̃ is equal to Σ with the i-th singular value σi(A) replaced by max(σi(A) − λ, 0).

Now start with the initial choice L1(λ,O) = PO(Y). Then for k = 1, 2, . . . , define,

Lk+1(λ,O) = shrinkλ

{
PO(Y) + P⊥O

(
Lk(λ)

)}
, (3.4.5)

until the sequence {Lk(λ)}k≥1 converges. The limiting matrix L̂(λ,O) = limk→∞ Lk(λ) is

our estimator given the regularization parameter λ.

Cross-validation: The optimal value of λ is selected through cross-validation. We choose

K (e.g., K = 5) random subsets Ok ⊂ O with cardinality b|O|2/NT c to ensure that

the fraction of observed data in the cross-validation data sets, |Ok/|O|, is equal to that

in the original sample, |O|/(NT ). We then select a sequence of candidate regularization

parameters

λ1 > · · · > λL = 0 .

with a large enough λ1, and for each subset Ok calculate

L̂(λ1,Ok), . . . , L̂(λL,Ok)

and evaluate the average squared error on O \ Ok. The value of λ that minimizes the

average squared error (among the K produced estimators corresponding to that λ) is the

one choosen.
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It is worth noting that one can expedite the computation by using L̂(λi,Ok) as a warm-

start initialization for calculating L̂(λi+1,Ok) for each i and k.

3.5 Theoretical Bounds for the Estimation Error

In this section we focus on the case that there are no covariates and provide theoretical

results for the estimation error. Let Lmax be a positive constant such that ‖L∗‖max ≤ Lmax

(recall that ‖L∗‖max = maxi,t |L∗it|). We also assume that L∗ is a deterministic matrix.

Then consider the following estimator for L∗ that is motivated by the low-rank assumption

on L∗.

L̂ = arg min
L:‖L‖max≤Lmax

{
‖PO(Y − L)‖2F + λ‖L‖∗

}
. (3.5.1)

3.5.1 Additional Notation

First, we start by introduction some new notation. For each positive integer n let [n] be

the set of integers {1, 2, . . . , n}. In addition, for any pair of integers i, n with i ∈ [n] define

ei(n) to be the n dimensional column vector with all of its entries equal to 0 except the ith

entry that is equal to 1. In other words, {e1(n), e2(n), . . . , en(n)} forms the standard basis

for Rn. For any two matrices A,B of the same dimensions define the inner product

〈A,B〉 ≡ trace(A>B) .

Note that with this definition, 〈A,A〉 = ‖A‖2F .

Next, we describe a random observation process that defines the set O. Consider N

independent random variables t1, . . . , tN on [T ] with distributions π(i). Specifically, for

each (i, t) ∈ [N ] × [T ], define π
(i)
t ≡ P[ti = t]. We also use the short notation Eπ when

taking expectation with respect to all distributions π(1), . . . , π(N). Now, O can be written

as

O =

N⋃
i=1

{
(i, 1), (i, 2), . . . , (i, ti)

}
.

Also, for each (i, t) ∈ O, we use the notation Ait to refer to ei(N)et(T )> which is a N by

T matrix with all entries equal to zero except the (i, t) entry that is equal to 1. The data
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generating model can now be written as

Yit = 〈Ait,L
∗〉+ εit , ∀ (i, t) ∈ O ,

where noise variables εit are independent σ-sub-Gaussian random variables that are also

independent of Ait. Recall that a random variable ε is σ-sub-Gaussian if for all real numbers

t we have E[exp(tε)] ≤ exp(σ2t2/2).

Note that the number of control units (Nc) is equal to the number of rows that have all

entries observed (i.e., Nc =
∑N

i=1 Iti=T ). Therefore, the expected number of control units

can be written as Eπ[Nc] =
∑N

i=1 π
(i)
T . Defining

pc ≡ min
1≤i≤N

π
(i)
T ,

we expect to have (on average) at least Npc control units. The parameter pc will play an

important role in our main theoretical results. In particular, assuming N and T are of the

same order, we will show that the average per entry error (i.e., ‖L̂−L∗‖F /
√
NT ) converges

to 0 if pc grows larger than log3/2(N)/
√
N up to a constant. To provide some intuition for

such assumption on pc, assume L∗ is a matrix that is zero everywhere except in its ith

row. Such L∗ is clearly low-rank. But recovering the entry L∗iT is impossible when it < T .

Therefore, π
(i)
T cannot be too small. Since i is arbitrary, in general pc cannot be too small.

Remark 3.5.1. It is worth noting that the sources of randomness in our observation process

O are the random variables {ti}Ni=1 that are assumed to be independent of each other. But

we allow that distributions of these random variables to be functions of L∗. We also assume

that the noise variables {εit}it∈[N ]×[T ] are independent of each other and are independent of

{ti}Ni=1. In §3.9 we discuss how our results could generalize to the cases with correlations

among these noise variables.

Remark 3.5.2. The estimator (3.5.1) penalizes the error terms (Yit−Lit)2, for (i, t) ∈ O,

equally. But probability of missing entries in each row decreases as t increases. In §3.9.2,

we discuss how the estimator can be modified by considering a weighted loss function based

on propensity scores for the missing entries.
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3.5.2 Main Result

The main result of this section is the following theorem (proved in §B.1.1) that provides an

upper bound for ‖L∗ − L̂‖F /
√
NT , the root-mean-squared-error (RMSE) of the estimator

L̂. In literature on theoretical analysis of empirical risk minimization this type of upper

bound is called an oracle inequality. The proof is provided in Appendix B.1.

Theorem 5. If rank of L∗ is R, then there is a constant C such that with probability greater

than 1− 2(N + T )−2,

‖L∗ − L̂‖F√
NT

≤ C max

Lmax

√
log(N + T )

N p2
c

, σ

√
R log(N + T )

T p2
c

, σ

√
R log3(N + T )

N p2
c

 ,
(3.5.2)

when the parameter λ is a constant multiple of

σmax
[√

N log(N + T ),
√
T log3/2(N + T )

]
|O|

.

Interpretation of Theorem 5: Since our goal is to show that the RMSE of L̂ converges

to zero as N and T grow, it is important to see when the right hand side of (3.5.2) converges

to zero as N and T grow. One such situation is when L∗ is low-rank (R is constant) and

pc � log3/2(N + T )/
√

min(N,T ). A sufficient condition for the latter, when N and T are

of the same order, is that the lower bound for the average number of control units (Npc)

grows larger than a constant times
√
N log3/2(N). In §3.9 we will discuss how the estimator

L̂ should be modified to obtain a sharper result that would hold for a smaller number of

control units.

Comparison with existing theory on matrix-completion: Our estimator and its

theoretical analysis are motivated by and generalize existing research on matrix-completion

in machine learning and statistics literature Srebro et al. (2005), Mazumder et al. (2010),

Candès and Recht (2009), Candès and Tao (2010), Keshavan et al. (2010a,b), Gross (2011),

Recht (2011), Rohde et al. (2011), Negahban and Wainwright (2011, 2012), Koltchinskii

et al. (2011), Klopp (2014). The main difference is in our observation model O. Existing

papers assume that entries (i, t) ∈ O are independent random variables whereas we allow

for a dependency structure including staggered adoption where if (i, t) ∈ O then (i, t′) ∈ O
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for all t′ < t.

3.6 The Relationship with Horizontal and Vertical Regres-

sions

In the second contribution we discuss the relation between the matrix completion estimator

and the horizontal (unconfoundedness) and vertical (synthetic control) approaches. To fa-

ciliate the discussion, we focus on the case withM containing a single pair, unit N in period

T , so thatM contains a single element,M = {(N,T )}. In that case the various previously

proposed versions of the vertical and horizontal regressions are directly applicable.

The observed data are Y, an N × T matrix that can be partitioned as

Y =

(
Ỹ y1

y>2 ?

)
,

where Ỹ is (N − 1)× (T − 1), y1 is (N − 1)× 1, and y2 is (T − 1)× 1.

The matrix completion solution to imputing YN,T can be characterized, for a given

regularization parameter λ, as

Lmc−nnm(λ) = arg min
L

{
‖PO (Y − L)‖2F + λ‖L‖∗

}
. (3.6.1)

The predicted value for the missing entry YNT is then

Ŷ mc−nnm
N,T = Lmc−nnm

N,T (λ). (3.6.2)

We are interested in comparing this estimator to horizontal regression estimator. Let

us initially assume that the horizontal regression is well defined, without regularization, so

that N > T . First define

β̂hr =
(
Ỹ>Ỹ

)−1 (
Ỹ>y1

)
.

Then the horizontal regression based prediction is

Ŷ hr
NT = y>2 β̂

hr = y>2

(
Ỹ>Ỹ

)−1 (
Ỹ>y1

)
.
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For the vertical (synthetic control) regression, initially assuming T > N , we start with

γ̂vt =
(
ỸỸ>

)−1 (
Ỹy2

)
,

leading to the horizontal regression based prediction

Ŷ vt
NT = y>1 γ̂

hr = y>1

(
ỸỸ>

)−1 (
Ỹy2

)
.

The original (Abadie et al. (2010)) synthetic control estimator imposes the additional re-

strictions γi ≥ 0, and
∑N−1

i=1 γi = 1, leading to

γ̂sc−adh = arg min
γ

∥∥∥y2 − Ỹγ
∥∥∥2

F
, subject to ∀i γi ≥ 0,

N−1∑
i=1

γi = 1.

Then the synthetic control based prediction is

Ŷ sc−adh
NT = y>1 γ̂

sc−adh.

The Doudchenko and Imbens (2016) modification allows for the possibility that N ≥ T

and regularizes the estimator for γ. Focusing here on an elastic net regularization, their

proposed estimator is

γ̂vt−en = arg min
γ

{∥∥∥y2 − Ỹγ
∥∥∥2

F
+ λ

(
α ‖γ‖1 +

1− α
2
‖γ‖2F

)}
.

Then the elastic net / synthetic control based prediction is

Ŷ vt−en
NT = y>1 γ̂

vt−en.

We can modify the horizontal regression in the same way to allow for restrictions on the β,

and regularization, although such methods have not been used in practice.

The question in this section concerns the relation between the various predictors, Ŷ mc−nnm
NT ,

Ŷ hr
NT , Ŷ vt

NT , Ŷ sc−adh
NT , and Ŷ vt−en

NT . The first result states that all these estimators can be

viewed as particular cases of matrix factorization estimators, with the difference coming in

the way the estimation of the components of the matrix factorization is carried out.

Theorem 6. All five estimators Ŷ mc−nnm
NT , Ŷ hr

NT , Ŷ vt
NT , Ŷ sc−adh

NT , and Ŷ vt−en
NT , can be written
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in the form Ŷ est
NT = L̂est

NT , for est ∈ {mc− nnm,hr, vt, sc− adh, vt− en}, where

L̂est = AestBest>,

with L, A, and B N ×T , N ×R and T ×R dimensional matrices, and A and B estimated

as (
Aest,Best

)
= arg min

A,B

{∥∥∥PO (Y −AB>
)∥∥∥2

F
+ penalty terms on (A,B)

}
,

subject to restrictions on A and B, with the penalty terms and the restrictions specific to

the estimator.

Theorem 6 follows from the following result.

Theorem 7. We have,

(i) (nuclear norm matrix completion)

(Amc−nnm
λ ,Bmc−nnm

λ ) = arg min
A,B

∥∥∥PO (Y −AB>
)∥∥∥2

F
+ λ‖A‖2F + λ‖B‖2F ,

(ii) (horizontal regression, defined if N > T ), R = T − 1

(Ahr,Bhr) = lim
λ↓0

arg min
A,B

{∥∥∥PO (Y −AB>
)∥∥∥2

F
+ λ‖A‖2F + λ‖B‖2F

}
,

subject to Ahr =

(
Ỹ

y>2

)
,

(iii) (vertical regression, defined if T > N), R = N − 1

(Avt,Bvt) = lim
λ↓0

arg min
A,B

{∥∥∥PO (Y −AB>
)∥∥∥2

F
+ λ‖A‖2F + λ‖B‖2F

}
,

subject to

Bvt =

(
Ỹ>

y>1

)
.

(iv) (synthetic control), R = N − 1

(Asc−adh,Bsc−adh) = lim
λ↓0

arg min
A,B

{∥∥∥PO (Y −AB>
)∥∥∥2

F
+ λ‖A‖2F + λ‖B‖2F

}
,
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subject to

Bsc−adh =

(
Ỹ>

y>1

)
, ∀ i, AiT ≥ 0,

N−1∑
i=1

AiT = 1,

(v) (elastic net), R = N − 1

(Avt−en,Bvt−en) = lim
λ↓0

arg min
A,B

∥∥∥PO (Y −AB>
)∥∥∥2

F
+ λ

1− α
2

∥∥∥∥∥
(

a2

a3

)∥∥∥∥∥
2

F

+ α

∥∥∥∥∥
(

a2

a3

)∥∥∥∥∥
1

 ,

subject to

Bvt−en =

(
Ỹ>

y>1

)
, where A =

(
Ã a1

a>2 a3

)
.

Comment 1. For nuclear norm matrix completion, if rank of L̂ is R̂, the solution for A

and B is given by

A = SΣ1/2 , B = RΣ1/2

where L̂ = SN×R̂ΣR̂×R̂R>
T×R̂ is singular value decomposition of L̂. The proof of this fact

is provided in Mazumder et al. (2010).

Comment 2. For the horizontal regression the solution for B is

Bhr =



1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1

β̂1 β̂2 . . . β̂T−1


,

and similarly for the vertical regression the solution for A is

Avt =



1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1

γ̂1 γ̂2 . . . γ̂N−1


.

The regularization in the elastic net version only affects the last row of this matrix, and

replaces it with a regularized version of the regression coefficients. �
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Comment 3. The horizontal and vertical regressions are fundamentally different approaches,

and they cannot easily be nested. Without some form of regularization they cannot be ap-

plied in the same setting, because the non-regularized versions require N > T or N < T

respectively. As a result there is also no direct way to test the two methods against each

other. Given a particular choice for regularization, however, one can use cross-validation

methods to compare the two approaches. �

3.7 Three Illustrations

The objective of this section is to compare the accuracy of imputation for the matrix

completion method with previously used methods. In particular, in a real data matrix Y

where no unit is treated, we choose a subset of units as hypothetical treatment units and

aim to predict their values (for time periods following a randomly selected initial time).

Then, we report the average root-mean-squared-error (RMSE) of each algorithm on values

for the treated (time, period) pairs. In these cases there is not necessarily a single right

algorithm. Rather, we wish to assess which of the algorithms generally performs well, and

which ones are robust to a variety of settings, including different adoption regimes and

different configurations of the data.

We compare the following estimators:

• DID: Difference-in-differences based on regressing the observed outcomes on unit and

time fixed effects and a dummy for the treatment.

• VT-EN: The vertical regression with elastic net regularization, relaxing the restric-

tions from the synthetic control estimator.

• HR-EN: The horizontal regression with elastic net regularization, similar to uncon-

foundedness type regressions.

• SC-ADH: The original synthetic control approach by Abadie et al. (2010), based on

the vertical regression with Abadie-Diamond-Hainmueller restrictions.

• MC-NNM: Our proposed matrix completion approached via nuclear norm minimiza-

tion, explained in Section 2 above.

The comparison between MC-NNM and the two versions of the elastic net estimator,

HR-EN and VT-EN, is particularly salient. In much of the literature researchers choose
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ex ante between vertical and horizontal type regressions. The MC-NNM method allows

one to sidestep that choice in a data-driven manner.

3.7.1 The Abadie-Diamond-Hainmueller California Smoking Data

We use the control units from the California smoking data studied in Abadie et al. (2010)

with N = 38, T = 31. Note that in the original data set there are 39 units but one of them

(state of California) is treated which will be removed in this section since the untreated

values for that unit are not available. We then artificially designate some units and time

periods to be treated, and compare predicted values for those unit/time-periods to the

actual values.

We consider two settings for the treatment adoption:

• Case 1: Simultaneous adoption where Nt units adopt the treatment in period T0 + 1,

and the remaining units never adopt the treatment.

• Case 2: Staggered adoption where Nt units adopt the treatment in some period after

period T , with the actual adoption date varying among these units.

In each case, the average RMSE for different ratios T0/T is reported in Figure 3.1. For

clarity of the figures, for each T0/T , while all confidence intervals of various methods are

calculated using the same ratio T0/T , in the figure they are slightly jittered to the left

or right. In the simultaneous adoption case the VT-EN method is very sensitive to the

number of treated periods, with its performance very poor if T0/T is small, and superior to

the others when T0/T is close to one. DID generally does poorly, suggesting that the data

are rich enough to support more complex models. The HR-EN, SC-ADH and MC-NNM

methods generally do well in the simultaneous adoption case. With the staggered adoption

the EN-T (horizontal regression) method does very poorly. Again our proposed MC-NNM

method is always among the top performers, with SC-ADH and DID being competitive

with few pre-treatment observations, but not with many pre-treatment observations, and

VT-EN being competitive in the setting with many pre-treatment observations but not with

few pre-treatment observations.
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(a) Simultaneous adoption, Nt = 8 (b) Staggered adoption, Nt = 35

Figure 3.1: California Smoking Data

3.7.2 Stock Market Data

In the next illustration we use a financial data set – daily returns for 2453 stocks over 10

years (3082 days). Since we only have access to a single instance of the data, in order to

observe statistical fluctuations of the RMSE, for each N and T we create 50 sub-samples

by looking at the first T daily returns of N randomly sampled stocks for a range of pairs of

(N,T ), always with N × T = 4900, ranging from very thin to very fat, (N,T ) = (490, 10),

. . ., (N,T ) = (70, 70), . . ., (N,T ) = (10, 490), with in each case the second half the entries

missing for a randomly selected half the units (so 25% of the entries missing overall), in

a block design. Here we focus on the comparison between the horizontal and vertical

regression and the matrix completion estimator as the shape of the matrix changes. To

make the horizontal and vertical estimators well defined we use the elastic net regularized

versions. We report the average RMSE. Figure 3.2 shows the results.
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Figure 3.2: Stock Market Data

In the T � N case the vertical estimator does poorly, not suprisingly because it attempts

to do the vertical regression with too few time periods to estimate that well. When N � T ,

the horizontal estimator does poorly. The most interesting finding is that the proposed

MC-NNM method adapts well to both regimes and does as well as the best estimator in

both settings, and better than both in the approximately square setting.

3.7.3 Synthetic Data: Planted Hidden Confounder

In this illustration, we investigate the performance of different algorithms under the presence

of confounding factors. We create (unobserved) dependency between the treatment and

outcome and compare the performance of algorithms in estimating the average treatment

effect. More precisely, suppose that N = T = 20 and R = 3, and matrices Y(0) and Y(1)
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are generated according to

Y(0) = RΣS> + ε

Y(1) = Y(0) + 0.2N×T ,

where R ∈ RN×R = [α,
1N×1√
N
,uN×1], S ∈ RT×R = [

1T×1√
T
, γ,vN×1], and Σ = diag(10, 10, 5)

is the SVD of the low rank (rank 3) component. Here, entries of vectors α,u, γ and v

have been generated according to N(0, 1), normalized and orthogonalized to achieve a valid

SVD decomposition (meaning that columns of R and S are orthonormal). Also, ε has

i.i.d. entries generated from N(0, 0.001). The dependency between outcomes Y(·) and W

is created as follows: we sort units (rows) based on values of u, pick the 14 largest ones,

and treat these units after random starting points. In other words, units with larger values

of ui are treated. Similar to the setting of this paper, we assume to have access to Y(W)

and W. As it can be observed, this creates an unobserved dependency between outcomes

and treatments. The following figure depicts the above data generating process.

YitWit ∈ {0, 1}
τ : Treatment Effect

αi γt

ui

Figure 3.3: Data Generating Process with Confounding Effects

We repeat the above process for 100 times, and compare the performance of DID, SC-

ADH, MC-NNM, and VT-EN with the true treatment effect which is τ = 0.2. Figure

3.4 illustrates the achieved empirical distribution of estimates for these four algorithms.

According to this figure, MC-NNM is the clear frontrunner and has the smallest bias and

variance in estimating τ ; it is capable of capturing the hidden factor ui and it performs

well. In contrast, DID is unable to capture this hidden effect and it leads to negative ATE

in almost all problem instances. SC-ADH and VT-EN generally perform better, but they
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both have large variances.

Figure 3.4: Planted Hidden Confounder Simulation Results

3.8 The General Model with Covariates

In Section 3.2 we described the basic model, and discussed the specification and estimation

for the case without covariates. In this section we extend that to the case with unit-specific,

time-specific, and unit-time specific covariates. For unit i we observe a vector of unit-specific

covariates denoted by Xi, and X denoting the N×P matrix of covariates with ith row equal

to X>i . Similarly, Zt denotes the time-specific covariates for period t, with Z denoting the

T ×Q matrix with tth row equal to Z>t . In addition we allow for a unit-time specific J by

1 vector of covariates Vit.
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The model we consider is

Yit = L∗it +

P∑
p=1

Q∑
q=1

XipH
∗
pqZqt + γ∗i + δ∗t + V >it β

∗ + εit . (3.8.1)

the εit is random noise. We are interested in estimating the unknown parameters L∗, H∗,

γ∗, δ∗ and β∗. This model allows for traditional econometric fixed effects for the units (the

γ∗i ) and time effects (the δ∗t ). It also allows for fixed covariate (these have time varying

coefficients) and time covariates (with individual coefficients) and time varying individual

covariates. Note that although we can subsume the unit and time fixed effects into the

matrix L∗, we do not do so because we regularize the estimates of L∗, but do not wish to

regularize the estimates of the fixed effects.

The model can be rewritten as

Y = L∗ + XH∗Z> + Γ∗1>T + 1N (∆∗)> +
[
V >it β

∗
]
it

+ ε . (3.8.2)

Here L∗ is in RN×T , H∗ is in RP×Q, Γ∗ is in RN×1 and ∆∗ is in RT×1. An slightly richer

version of this model that allows linear terms in covariates can be defined as by

Y = L∗ + X̃H̃∗Z̃> + Γ∗1>T + 1N (∆∗)> +
[
V >it β

∗
]
it

+ ε (3.8.3)

where X̃ = [X|IN×N ], Z̃ = [Z|IT×T ], and

H̃∗ =

[
H∗X,Z H∗X

H∗Z 0

]

where H∗XZ ∈ RP×Q, H∗Z ∈ RN×Q, and H∗X ∈ RP×T . In particular,

Y = L∗ + X̃H̃∗X,ZZ̃> + H̃∗ZZ̃> + XH̃∗X + Γ∗1>T + 1N (∆∗)> +
[
V >it β

∗
]
it

+ ε (3.8.4)

From now on, we will use the richer model (3.8.4) but abuse the notation and use notation

X,H∗,Z instead of X̃, H̃∗, Z̃. Therefore, the matrix H∗ will be in R(N+P )×(T+Q).
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We estimate H∗, L∗, δ∗, γ∗, and β∗ by solving the following convex program,

min
H,L,δ,γ,β

 ∑
(i,t)∈O

Yit − Lit − P∑
p=1

Q∑
q=1

XipHpqZqt − γi − δt − Vitβ

2

+ λL‖L‖∗ + λH‖H‖1,e

 .
Here ‖H‖1,e =

∑
i,t |Hit| is the element-wise `1 norm. We choose λL and λH through

cross-validation.

Solving this convex program is similar to the covariate-free case. In particular, by using

a similar operator to shrinkλ, defined in §3.2, that performs coordinate descent with respect

to H. Then we can apply this operator after each step of using shrinkλ. Coordinate descent

with respect to γ, δ, and β is performed similarly but using a simpler operation since the

function is smooth with respect to them.

3.9 Generalizations

Here we provide a brief discussion on how our estimator or its analysis should be adapted

to more general settings.

3.9.1 Autocorrelated Errors

One drawback of MC-NNM is that it does not take into account the time series nature of

the observations. It is likely that the columns of ε exhibit autocorrelation. We can take this

into account by modifying the objective function. Let us consider this in the case without

covariates, and, for illustrative purposes, let us use an autoregressive model of order one.

Let Yi· and Li· be the ith row of Y and L respectively. The original objective function for

O = [N ]× [T ] is

N∑
i=1

N∑
t=1

(Yit − Lit)2 + λL‖L‖∗ =
N∑
i=1

(Yi· − Li·)(Yi· − Li·)> + λL‖L‖∗.

We can modify this to

N∑
i=1

(Yi· − Li·)Ω−1(Yi· − Li·)> + λL‖L‖∗,
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where the choice for the T × T matrix Ω would reflect the autocorrelation in the εit. For

example, with a first order autoregressive process, we would use

Ωts = ρ|t−s| ,

with ρ an estimate of the autoregressive coefficient. Similarly, for the more general version

O ⊂ [N ]× [T ], we can use the function

∑
(i,t)∈O

∑
(i,s)∈O

(Yit − Lit)[Ω−1]ts(Yis − Lis)> + λL‖L‖∗ .

3.9.2 Weighted Loss Function

Another limitation of MC-NNM is that it puts equal weight on all elements of the difference

Y − L (ignoring the covariates). Ultimately we care solely about predictions of the model

for the missing elements of Y, and for that reason it is natural to emphasize the fit of the

model for elements of Y that are observed, but that are similar to the elements that are

missing. In the program evaluation literature this is often achieved by weighting the fit by

the propensity score, the probability of outcomes for a unit being missing.

We can do so in the current setting by modelling this probability in terms of the covari-

ates and a latent factor structure. Let the propensity score be eit = P(Wit = 1|Xi, Zt, Vit),

and let E be the N × T matrix with typical element eit. Let us again consider the case

without covariates. In that case we may wish to model the assignment W as

WN×T = EN×T + ηN×T .

We can estimate this using the same matrix completion methods as before, now without

any missing values:

Ê = arg min
E

1

NT

∑
(i,t)

(Wit − eit)2 + λL‖E‖∗ .

Given the estimated propensity score we can then weight the objective function for esti-

mating L∗:

L̂ = arg min
L

∑
(i,t)∈O

êit
1− êit

(Yit − Lit)2 + λL‖L‖∗ .
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3.9.3 Relaxing the Dependence of Theorem 5 on pc

Recall from §3.5.1 that the average number of control units is
∑N

i=1 π
(i)
T . Therefore, the

fraction of control units is
∑N

i=1 π
(i)
T /N . However, the estimation error in Theorem 5 de-

pends on pc = min1≤i≤N π
(i)
T rather than

∑N
i=1 π

(i)
T /N . The reason for this, as discussed

in §3.5.1 is due to special classes of matrices L∗ where most of the rows are nearly zero

(e.g, when only one row is non-zero). In order to relax this constraint we would need to

restrict the family of matrices L∗. An example of such restriction is given by Negahban and

Wainwright (2012) where they assume L∗ is not too spiky. Formally, they assume the ratio

‖L∗‖max/‖L∗‖F should be of order 1/
√
NT up to logarithmic terms. To see the intuition

for this, in a matrix with all equal entries this ratio is 1/
√
NT whereas in a matrix where

only the (1, 1) entry is non-zero the ratio is 1. While both matrices have rank 1, in the

former matrix the value of ‖L∗‖F is obtained from most of the entries. In such situations,

one can extend our results and obtain an upper bound that depends on
∑N

i=1 π
(i)
T /N .

3.9.4 Nearly Low-rank Matrices

Another possible extension of Theorem 5 is to the cases where L∗ may have high rank, but

most of its singular values are small. More formally, if σ1 ≥ · · · > σmin(N,T ) are singular

values of L∗, one can obtain upper bounds that depend on k and
∑min(N,T )

r=k+1 σr for any

k ∈ [min(N,T )]. One can then optimize the upper bound by selecting the best k. In the

low-rank case such optimization leads to selecting k equal to R. This type of more general

upper bound has been proved in some of prior matrix completion literature, e.g. Negahban

and Wainwright (2012). We expect their analyses would be generalize-able to our setting

(when entries of O are not independent).

3.9.5 Additional Missing Entries

In §3.5.1 we assumed that all entries (i, t) of Y for t ≤ ti are observed. However, it may

be possible that some such values are missing due to lack of data collection. This does not

mean that any treatment occurred in the pre-treatment period. Rather, such scenario can

occur when measuring outcome values is costly and can be missed. In this case, one can
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extend Theorem 5 to the setting with

O =

[
N⋃
i=1

{
(i, 1), (i, 2), . . . , (i, ti)

}]
\ Omiss .

where each (i, t) ∈ ∪Ni=1{(i, 1), (i, 2), . . . , (i, ti)} can be in Omiss, independently, with proba-

bility p for p that is not too large.

3.10 Conclusions

We develop a new estimator for the interactive fixed effects model in settings where the

interest is in average causal effects. The proposed estimator has superior computational

properties in settings with large N and T , and allows for a relatively large number of

factors. We show how this set up relates to the program evaluation and synthetic control

literatures. In illustrations we show that the method adapts well to different configurations

of the data, and find that generally it outperforms the synthetic control estimators from

Abadie et al. (2010) and the elastic net estimators from Doudchenko and Imbens (2016).
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Chapter 4

Non-Parametric Inference in High

Dimensions

4.1 Introduction

Many non-parametric estimation problems in econometrics and causal inference can be

formulated as finding a parameter vector θ(x) ∈ Rp that is a solution to a set of conditional

moment equations:

E[ψ(Z; θ(x))|X = x] = 0 , (4.1.1)

when given n i.i.d. samples (Z1, . . . , Zn) from the distribution of Z, where ψ : Z×Rp → Rp

is a known vector valued moment function, Z is an arbitrary data space, X ∈ X ⊂ RD

is the feature vector that is included in Z. Examples include non-parametric regression1,

quantile regression2, heterogeneous treatment effect estimation3, instrumental variable re-

gression4, local maximum likelihood estimation5 and estimation of structural econometric

models (see, e.g., Reiss and Wolak 2007) and examples in Chernozhukov et al. (2016), Cher-

nozhukov et al. (2018)). The study of such conditional moment restriction problems has

a long history in econometrics (see, e.g., Newey 1993, Ai and Chen 2003, Chen and Pouzo

2009, Chernozhukov et al. 2015). However, the majority of the literature assumes that the

conditioning variable X is low dimensional, i.e. D is a constant as the sample size n grows

1Z = (X,Y ), where Y ∈ Rp is the dependent variable, and ψ(Z; θ(x)) = Y − θ(x).
2Z = (X,Y ) and ψ(Z; θ(x)) = 1{Y ≤ θ(x)} − α, for some α ∈ [0, 1] that denotes the target quantile.
3Z = (X,T, Y ), where T ∈ Rp is a vector of treatments, and ψ(Z; θ(x)) = (Y − 〈θ(x), T 〉)T .
4Z = (X,T,W, Y ), where T ∈ R is a treatment, W ∈ R an instrument and ψ(Z; θ(x)) = (Y − θ(x)T )W .
5Where the distribution of Z admits a known density f(z; θ(x)) and ψ(Z; θ(x)) = ∇θ log(f(Z; θ(x)).
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(see, e.g., Athey et al. 2019). High dimensional variants have primarily been analyzed under

parametric assumptions on θ(x), such as sparse linear forms (see, e.g., Chernozhukov et al.

2018). There are some papers that address the fully non-parametric setup (see, e.g., Laf-

ferty and Wasserman 2008, Dasgupta and Freund 2008, Kpotufe 2011, Biau 2012, Scornet

et al. 2015) but those are focused on the estimation problem, and do not address inference

(i.e., constructing asymptotically valid confidence intervals).

The goal of this work is to address estimation and inference in conditional moment

models with a high-dimensional conditioning variable. As is obvious without any further

structural assumptions on the problem, the exponential in dimension rates of approximately

n1/D (see, e.g., Stone 1982) cannot be avoided. Thereby, estimation is infeasible even if

D grows very slowly with n. Our work, follows a long line of work in machine learning

(Dasgupta and Freund 2008, Kpotufe 2011, Kpotufe and Garg 2013), which is founded on

the observation that in many practical applications, even though the variable X is high-

dimensional (e.g. an image), one typically expects that the coordinates of X are highly

correlated. The latter intuition is formally captured by assuming that the distribution of

X has a small doubling measure around the target point x.

We refer to the latter notion of dimension, as the intrinsic dimension of the problem.

Such a notion has been studied in the statistical machine learning literature, so as to

establish fast estimation rates in high-dimensional kernel regression settings (Dasgupta and

Freund 2008, Kpotufe 2011, Kpotufe and Garg 2013, Xue and Kpotufe 2018, Chen and

Shah 2018, Kim et al. 2018, Jiang 2017). However, these works solely address the problem

of estimation and do not characterize the asymptotic distribution of the estimates, so as

to enable inference, hypothesis testing and confidence interval construction. Moreover,

they only address the regression setting and not the general conditional moment problem

and consequently do not extend to quantile regression, instrumental variable regression or

treatment effect estimation.

From the econometrics side, pioneering works of Wager and Athey (2018), Athey et al.

(2019) address estimation and inference of conditional moment models with all the afore-

mentioned desiderata that are required for the application of such methodologies to social

sciences, albeit in the low dimensional regime. In particular, Wager and Athey (2018) con-

sider regression and heterogeneous treatment effect estimation with a scalar θ(x) and prove

n1/D-asymptotic normality of a sub-sampled random forest based estimator and Athey et al.

(2019) extend it to the general conditional moment settings.
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These results have been extended and improved in multiple directions, such as improved

estimation rates through local linear smoothing Friedberg et al. (2018), robustness to nui-

sance parameter estimation error Oprescu et al. (2018) and improved bias analysis via

sub-sampled nearest neighbor estimation Fan et al. (2018). However, they all require low

dimensional setting and the rate provided by the theoretical analysis is roughly n−1/D, i.e.

to get a confidence interval of length ε or an estimation error of ε, one would need to collect

O(ε−D) samples which is prohibitive in most target applications of machine learning based

econometrics.

Hence, there is a strong need to provide theoretical results that justify the success of ma-

chine learning estimators for doing inference, via their adaptivity to some low dimensional

hidden structure in the data. Our work makes a first step in this direction and provides esti-

mation and asymptotic normality results for the general conditional moment problem, where

the rate of estimation and the asymptotic variance depend only on the intrinsic dimension,

independent of the explicit dimension of the conditioning variable.

Our analysis proceeds in four parts. First, we extend the results by Wager and Athey

(2018), Athey et al. (2019) on the asymptotic normality of sub-sampled kernel estimators

to the high-dimensional, low intrinsic dimension regime and to vector valued parameters

θ(x). Concretely, when given a sample S = (Z1, . . . , Zn), our estimator is based on the

approach proposed in Athey et al. (2019) of solving a locally weighted empirical version of

the conditional moment restriction

θ̂(x) solves :

n∑
i=1

K(x,Xi, S)ψ(Zi; θ) = 0 , (4.1.2)

where K(x,Xi, S) captures proximity of Xi to the target point x. The approach dates back

to early work in statistics on local maximum likelihood estimation (Fan et al. 1998, Newey

1994, Stone 1977, Tibshirani and Hastie 1987). As in Athey et al. (2019), we consider

weights K(x,Xi, S) that take the form of an average over B base weights: K(x,Xi, S) =
1
B

∑B
b=1K(x,Xi, Sb) 1{i ∈ Sb}, where each K(x,Xi, Sb) is calculated based on a randomly

drawn sub-sample Sb of size s < n from the original sample. We will typically refer to the

function K as the kernel. In Wager and Athey (2018), Athey et al. (2019) K(x,Xi, Sb) is

calculated by building a tree on the sub-sample, while in Fan et al. (2018) it is calculated

based on the 1-NN rule on the sub-sample.

Our main results are general estimation rate and asymptotic normality theorems for
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the estimator θ̂(x) (see Theorems 8 and 9), which are stated in terms of two high-level

assumptions, specifically an upper bound ε(s) on the rate at which the kernel “shrinks” and

a lower bound η(s) on the “incrementality” of the kernel. Notably, the explicit dimension

of the conditioning variable D does not enter the theorem, so it suffices in what follows to

show that ε(s) and η(s) depend only on d rather than D.

The shrinkage rate ε(s) is defined as the `2-distance between the target point x and the

furthest point on which the kernel places positive weight Xi, when trained on a data set of

s samples, i.e.,

ε(s) = E [sup{‖Xi − x‖2 : i ∈ Sb,K(x,Xi, Sb) > 0, |Sb| = s}] . (4.1.3)

The shrinkage rate of the kernel controls the bias of the estimate (small ε(s) implies low

bias). The sub-sampling size s is a lever to trade off bias and variance; larger s achieves

smaller bias, since ε(s) is smaller, but increases the variance, since for any fixed x the weights

K(x,Xi, Sb) will tend to concentrate on the same data points, rather than averaging over

observations. Both estimation and asymptotic normality results require the bias to be

controlled through the shrinkage rate.

Incrementality of a kernel describes how much information is revealed about the weight

of a sample i solely by knowledge of Xi, and is captured by the second moment of the

conditional expected weight

η(s) = E
[
E [K(x,Xi, Sb) | Xi]

2
]
. (4.1.4)

The incrementality assumption is used in the asymptotic normality proof to argue that

the weights have sufficiently high variance that all data points have some influence on

the estimate. From the technical side, we use the Hájek projection to analyze our U -

statistic estimator. Incrementality ensures that there is sufficiently weak dependence in the

weights across a sequence of sub-samples and hence the central limit theorem applies. As

discussed, the sub-sampling size s can be used to control the variance of the weights, and so

incrementality and shrinkage are related. We make this precise, proving that incrementality

can be lower bounded as a function of kernel shrinkage, so that having a sufficiently low

shrinkage rate enables both estimation and inference. These general results could be of

independent interest beyond the scope of this work.

For the second part of our analysis, we specialize to the case where the base kernel is the
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k-NN kernel, for some constant k. We prove that both shrinkage and incrementality depend

only on the intrinsic dimension d, rather than the explicit dimension D. In particular, we

show that ε(s) = O(s−1/d) and η(s) = Θ(1/s). These lead to our main theorem that

the sub-sampled k-NN estimate achieves an estimation rate of order n1/(d+2) and is also

n1/(d+2)-asymptotically normal.

In the third part, we provide a closed form characterization of the asymptotic variance

of the sub-sampled k-NN estimate, as a function of the conditional variance of the moments,

which is defined as σ2(x) = Var (ψ(Z; θ) | X = x). For example, for the 1-NN kernel, the

asymptotic variance is given by

Var(θ̂(x)) =
σ2(x)s2

n(2s− 1)
.

This strengthens prior results of Fan et al. (2018) and Wager and Athey (2018), which

only proved the existence of an asymptotic variance without providing an explicit form

(and thereby relied on bootstrap approaches for the construction of confidence intervals).

Our tight characterization enables an easy construction of plugin normal-based intervals

that only require a preliminary estimate of σ(x). Our Monte Carlo study shows that such

intervals provide very good finite sample coverage in a high dimensional regression setup

(see Figure 4.1)6.

Finally in the last part, we discuss an adaptive data-driven approach for picking the

sub-sample size s so as to achieve estimation or asymptotic normality with rates that only

depend on the unknown intrinsic dimension. This allows us to achieve near-optimal rates

while adapting to the unknown intrinsic dimension of data (see Propositions 4 and 5).

Figure 4.2 depicts the performance of our adaptive approach compared to two benchmarks,

one constructed based on theory for intrinsic dimension d which may be unknown, and the

other one constructed näıvely based on the known but sub-optimal extrinsic dimension D.

As it can be observed from this figure, setting s based on intrinsic dimension d allows us to

build more accurate and smaller confidence intervals, which is crucial for drawing inference

in the high-dimensional finite sample regime. Our adaptive approach uses samples to pick

s very close to the value suggested by our theory and therefore leads to a compelling finite

sample coverage7. Such estimators address the curse of dimensionality by adapting to a

6See Appendix C.1 for detailed explanation of our simulations.
7A preliminary implementation of our code is available via http://github.com/khashayarkhv/np inference intrinsic.
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priori unknown latent structure in the data.
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Figure 4.1: Left: distribution of estimates over 1000 Monte Carlo runs for k = 1, 2, 5. Right: the quantile-quantile plot
when comparing to the theoretical asymptotic normal distribution of estimates stemming from our characterization,
whose means are 0.676, 0.676, and 0.676 for k = 1, 2, 5, respectively. Standard deviations are 0.058, 0.055, and 0.049
for k = 1, 2, 5 respectively. n = 20000, D = 20, d = 2, E[Y |X] = 1

1+exp{−3X[0]} , σ = 1. Test point: x[0] ≈ 0.245,

E[Y |X = x] ≈ 0.676.
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Figure 4.2: Confidence interval and true values for 100 randomly sampled test points on a single run for k = 1, 2, 5 and
when (1) left: s = sζ is chosen adaptively using Proposition 5 with ζ = 0.1, (2) second from the left: s = n1.05d/(d+2),

and (3) middle: s = n1.05D/(D+2). Second from the right: coverage over 1000 runs for three different methods
described. Right: average value of sζ chosen adaptively using Proposition 5 for ζ = 0.1 for different test points

compared to the theoretical value s = n1.05d/(d+2). Here n = 20000, D = 20, d = 2, E[Y |X] = 1
1+exp{−3X[0]} , σ = 1.

Nominal coverage: 0.98.
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4.1.1 Related Work

Average Treatment Effect Estimation. There exists a vast literature on average treat-

ment effect estimation in high-dimensional settings. The key challenge in such settings is

the problem of overfitting which is usually handled by adding regularization terms. How-

ever, this leads to a shrinked estimate for the average treatment effect and therefore not

desirable. The literature has taken various approaches to solve this issue. For instance, Bel-

loni et al. (2014a,b) used a two-step method for estimating average treatment effect where

in the first step feature-selection is accomplished via a lasso and then treatment effect is es-

timated using selected features. Athey et al. (2018) studied approximate residual balancing

where a combination of weight balancing and regression adjustment is used for removing

undesired bias and for achieving a double robust estimator. Chernozhukov et al. (2016,

2018) considered a more general semi-parametric framework and studied debiased/double

machine learning methods via first order Neyman orthogonality condition. Mackey et al.

(2017) extended this result to higher order moments. Please refer to Athey and Imbens

(2017), Mullainathan and Spiess (2017), Belloni et al. (2017) for a review on this literature.

Conditional Treatment Effect Estimation. However, in many applications, researchers

are interested in estimating conditional treatment effect on various sub-populations. One

effective solution is to use one of the methods described in previous paragraph to estimate

problem parameters and then project such estimations onto the sub-population of interest.

However, these approaches usually perform poorly when there is a model mis-specification,

i.e., when the true underlying model does not belong to the parametric search space. Con-

sequently, researchers have studied non-parametric estimators such as k-NN estimators,

kernel estimators, and random forests. While these non-parametric estimators are very

robust to model mis-specification and work well under mild assumptions on the function

of interest, they suffer from the curse of dimensionality (see, e.g., Bellman 1961, Robins

and Ritov 1997, Friedman et al. 2001). Therefore, for applying these estimators in high-

dimensional settings it is necessary to design and study non-parametric estimators that are

able to overcome curse of dimensionality when possible.

The seminal work of Wager and Athey (2018) utilized random forests originally intro-

duced by Breiman (2001) and adapted them nicely for estimating heterogeneous treatment

effect. In particular, the authors demonstrated how the recursive partitioning idea, ex-

plained in Athey and Imbens (2016) for estimating heterogeneity in causal settings, can be
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further analyzed to establish asymptotic properties of such estimators. The main premise of

random forests is that they are able to adaptively select nearest neighbors and that is very

desirable in high-dimensional settings where discarding uninformative features is necessary

for combating the curse of dimensionality. In a follow-up work, they extended these results

and introduced Generalized Random Forests for more general setting of solving generalized

moment equations (Athey et al. 2019). There has been some interesting developments of

such ideas to other settings. Fan et al. (2018) introduced Distributional Nearest Neighbor

(DNN) where they used 1-NN estimators together with sub-sampling and explained that

by precisely combining two of these estimators for different sub-sampling sizes, the first

order bias term can be efficiently removed. Friedberg et al. (2018) paired this idea with a

local linear regression adjustment and introduced Local Linear Forests in order to improve

forest estimations for smooth functions. Oprescu et al. (2018) incorporated the double ma-

chine learning methods of Chernozhukov et al. (2018) into GMM framework of Athey et al.

(2019) and studied Orthogonal Random Forests in partially linear regression models with

high-dimensional controls. Although forest kernels studied in Wager and Athey (2018) and

Athey et al. (2019) seem to work well in high-dimensional applications, to the best of our

knowledge, there still does not exists a theoretical result supporting it. In fact, all existing

theoretical results suffer from the curse of dimensionality as they depend on the dimension

of problem D.

Estimation Adaptive to Intrinsic Dimension. The literature on machine learning

and non-parametric statistics has recently studied how these worst-case performances can

be avoided when the intrinsic dimension of problem is smaller than D. Please refer to Cutler

(1993) for different notions of intrinsic dimension in metric spaces. Dasgupta and Freund

(2008) studied random projection trees and showed that the structure of these trees do not

depend on the actual dimension D, but rather on the intrinsic dimension d. They used

the notion of Assouad Dimension, introduced by Assouad (1983), and proved that using

random directions for splitting, the number of levels required for halving the diameter of

any leaf scales as O(d log d). The follow-up work (Verma et al. 2009) generalized these

results for some other notions of dimension. Kpotufe and Dasgupta (2012) extended this

idea to the regression setting and proved integrated risk bounds for random projection

trees that were only dependent on intrinsic dimension. Kpotufe (2011), Kpotufe and Garg

(2013) studied this in the context of k-NN and kernel estimations and established uniform
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point-wise risk bounds only depending on the local intrinsic dimension. They also provided

data-driven approaches for choosing k in the case of k-NN, and bandwidth in case of kernel

estimators, so that they can adapt to the unknown intrinsic dimension and also smoothness

of non-parametric function of interest.

k-NN and Generalized Method of Moments. Our work is deeply rooted in the

literature on intrinsic dimension explained above, literature on k-NN estimators (see, e.g.,

Mack 1981, Samworth 2012, Györfi et al. 2006, Biau and Devroye 2015, Berrett et al. 2019,

Fan et al. 2018), and generalized method of moments (see, e.g., Tibshirani and Hastie 1987,

Staniswalis 1989, Fan et al. 1998, Hansen 1982, Stone 1977, Lewbel 2007, Mackey et al.

2017). We adapt the framework of Athey et al. (2019) and Oprescu et al. (2018) and solve

a generalized moment problem using a sub-sampled k-NN estimator, originally studied by

Fan et al. (2018). In particular, the authors studied the problem of heterogeneous treatment

effect estimation under unconfoundedness using sub-sampled 1-NN estimator, which they

refer to as DNN estimator. Our work complements the work of Fan et al. (2018) and extends

it to the generalized method of moment setting and also allows for general k-NN estimators.

Also, we establish that these DNN estimators are able to adapt to intrinsic dimension of

problem d and hence do not suffer from the curse of dimensionality.

Our result differs from existing literature on intrinsic dimension (e,g., Dasgupta and

Freund 2008, Kpotufe 2011, Kpotufe and Garg 2013) since in addition to estimation guar-

antees for the regression setting, we also allow valid inference in solving conditional moment

equations. Our asymptotic normality result is different from existing results for k-NN (see,

e.g., Mack 1981), generalized method of moments (see, e.g., Lewbel 2007). Indeed, these

papers only establish the asymptotic distribution of these estimators without providing a

data-driven way for constructing confidence intervals.

We also provide the exact expression for the asymptotic variance of DNN estimator built

using a k-NN kernel, which enables plug-in construction of confidence intervals, rather than

the bootstrap method of (Efron 1982) which was used by (Wager and Athey 2018, Athey

et al. 2019, Fan et al. 2018). While establishing consistency and asymptotic normality of

our estimator, we also provide more general bounds on kernel shrinkage rate and also incre-

mentality which can be useful for establishing asymptotic properties in other applications.

One such application is given in high-dimensional settings where the exact nearest neighbor

search is computationally expensive and Approximate Nearest Neighbor (ANN) search is
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often replaced in order to reduce this cost. Our flexible result allows us to use the state-of-

the-art ANN algorithms (see, e.g., Andoni et al. 2017, 2018) while maintaining consistency

and asymptotic normality.

Conditional Stochastic Optimization and Newsvendor Problem. Finally, there

are technical parallels between our analysis and the literature on conditional stochastic

optimization (see, e.g., Ban and Rudin 2018, Bertsimas and Kallus 2014b, Hannah et al.

2010, Hanasusanto and Kuhn 2013). In particular, this literature focuses on estimating

z∗(x) = arg minz E[c(z;Y ) | X = x], where z is the decision variable, Y is the uncertain

quantity of interest, X = x is the set of observed features, and c(z;Y ) is the uncertain

cost associated with decision z. Ban and Rudin (2018) study feature-based newsvendor

problem and consider two empirical minimization risk (ERM) approaches together with a

non-parametric kernel estimation method for solving this problem. Bertsimas and Kallus

(2014b) study the problem of conditional stochastic optimization problem with a general

cost function, apply various non-parametric machine learning estimators such as k-NN,

random forests, and Nadaraya-Watson’s kernel regression (Nadaraya 1964, Watson 1964),

and provide asymptotic consistency results for them. The main focus of this literature is

in providing a decision ẑ(x) such that the expected cost under this decision is close to the

optimal decision z∗(x) (or ẑ(x) itself is close to z∗(x)). However, we are mainly interested on

the task of inference which in this setting translates to providing valid confidence intervals

for ẑ(x). While our techniques are mainly designed for solving the conditional moment

equations, i.e., finding θ(x) that solves E[ψ(Z; θ) | X = x] = 0, with a slight change, our

techniques are also applicable to the conditional stochastic optimization setting.

4.1.2 Main Contributions and Organization of This Chapter

In §4.2, we explain the problem that we study in this chapter and provide preliminary

definitions. In §4.2.1, we explain the general sub-sampled kernel estimation. In particular,

given a general kernel K, Algorithm 4 explains how the parameter of interest θ(x) is esti-

mated. In §4.2.2, we apply this algorithm to the special case of k-NN kernel (see Algorithm

5). In §4.2.3, we explain the notion of intrinsic dimension defined using locally low doubling

measures and provide examples of spaces with low intrinsic dimension in §4.2.4. In §4.3, we

state other assumptions that we need for our analysis.
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Our analysis starts in §4.4, where we provide general estimation (Theorem 8) and infer-

ence results (Theorem 9) for kernels that satisfy shrinkage and incrementality conditions.

In particular, assuming that the local intrinsic dimension around target point x is equal

to d, we prove that the finite sample estimation error of order n−1/(d+2) together with

n1/(d+2)-asymptotically normality result of general sub-sampled kernel estimator for solv-

ing the generalized moment problem regardless of how big the actual dimension D. While

an upper bound on the shrinkage rate is sufficient for providing estimation guarantees, for

asymptotic normality we also require the incrementality to decay at an appropriate rate. In

many situations, it is easier to establish kernel shrinkage. Therefore, for making the asymp-

totic normality more applicable, in Lemma 7, we prove a lower bound on the incrementality

based on the kernel shrinkage.

In §4.5, we establish appropriate shrinkage and incerementality rates for the k-NN kernel

and combining this with the results of §4.4, we prove estimation (Theorem 10) and inference

rates (Theorem 12) for the k-NN kernel that only depend on the intrinsic dimension d. Along

the way of establishing such results, in Theorem 11, we provide the exact expression for the

asymptotic variance of sub-sampled k-NN estimator, which enables plug-in construction of

confidence intervals.

The sub-sampling size required for achieving these results depends on the intrinsic di-

mension d, which may be unknown in many applications. In §4.5.3, we explain a data-driven

way for choosing the sub-sampling size. In Propositions 4 and 5, we also prove that this

method is guaranteed to achieve the optimal rates (depending on d) and therefore it is adap-

tive. Our simulations (see Figures 4.1 and 4.2) demonstrate that this adaptive algorithm

works very well and provides valid finite-sample confidence intervals in high-dimensional,

intrinsically low dimensional settings.

Finally, we conclude in §4.6 and defer a discussion on the extension to heterogeneous

treatment effect estimation to Appendix C.2 and the technical proofs to Appendix C.3.

4.2 Preliminaries

Suppose we have a data set M of n observations Z1, Z2, . . . , Zn drawn independently from

some distribution D over the observation domain Z. We focus on the case that Zi = (Xi, Yi),

where Xi is the vector of features and Yi is the outcome. In Appendix C.2, we briefly discuss

how our results can be extended to the setting where nuisance parameters and treatments
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are included in the model.

Suppose that the covariate space X ⊂ RD is contained in a ball with unknown diameter

∆X . Denote the marginal distribution of X by µ and the empirical distribution of X on

n sample points by µn. Let B(x, r) =
{
z ∈ RD : ‖x− z‖2 < r

}
be the `2-ball centered at

x with radius r and denote the standard basis for Rp by {e1, e2, . . . , ep}. Finally, for any

integer n, we let [n] = {1, 2, . . . , n}.
Let ψ : Z×Rp → Rp be a score function that maps observation Z and parameter θ ∈ Rp

to a p-dimensional score ψ(Z; θ). For x ∈ X and θ ∈ Rp define the expected score as

m(x; θ) = E[ψ(Z; θ) | X = x] .

The goal is to estimate the quantity θ(x) via local moment condition, i.e.

θ(x) solves: m(x; θ) = E[ψ(Z; θ) | X = x] = 0.

4.2.1 Sub-Sampled Kernel Estimation

Base Kernel Learner. Our learner Lk takes a data set S containing m observations as

input and a realization of internal randomness ω, and outputs a kernel weighting function

Kω : X×X×Zm → [0, 1]. In particular, given any target feature x and the set S, the weight

of each observation Zi in S with feature vector Xi is Kω(x,Xi, S). Define the weighted score

on a set S with internal randomness ω as ΨS(x; θ) =
∑

i∈SKω(x,Xi, S)ψ(Zi; θ). When it

is clear from context we will omit ω from our notation for succinctness and essentially

treat K as a random function. For the rest of this chapter, we are going to use notations

αS,ω(Xi) = Kω(x,Xi, S) interchangeably.

Averaging over B Sub-Samples of Size s. Suppose that we consider B random and

independent draws from all
(
n
s

)
possible subsets of size s and internal randomness variables

ω and look at their average. Index these draws by b = 1, 2, . . . , B where Sb contains samples

in bth draw and ωb is the corresponding draw of internal randomness. We can define the

weighted score as

Ψ(x; θ) =
1

B

B∑
b=1

ΨSb,ωb(x; θ) =
1

B

B∑
b=1

∑
i∈Sb

αSb,ωb(Xi)ψ(Zi; θ) . (4.2.1)
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Estimating θ(x). We estimate θ(x) as a vanishing point of Ψ(x; θ). Letting θ̂ be this

point, then Ψ(x; θ̂) = 1
B

∑B
b=1

∑n
i=1 αSb,ωb(Xi)ψ(Zi; θ̂) = 0. This procedure is explained in

Algorithm 4.

4.2.2 Sub-Sampled k-NN Estimation

We specially focus on the case that the weights are distributed across the k-NN of x.

In other words, given a data set S, the weights are given according to Kω(x,Xi, S) =

1 {Xi ∈ Hk(x, S)} /k, where Hk(x, S) are k-NN of x in the set S. The pseudo-code for this

can be found in Algorithm 5.

Complete U-Statistic. The expression in Equation (4.2.1) is an incomplete U -statistic.

Complete U -statistic is obtained if we allow each subset of size s from n samples to be

included in the model exactly once. In other words, this is achieved if B =
(
n
s

)
, all subsets

S1, S2, . . . , SB are distinct, and we also take expectation over the internal randomness ω.

Denoting this by Ψ0(x; θ), we have

Ψ0(x; θ) =

(
n

s

)−1 ∑
S∈[n]:|S|=s

Eω

[∑
i∈S

αS,ω(Xi)ψ(Zi; θ)

]
. (4.2.2)

Note in the case of k-NN estimator we can also represent Ψ0 in terms of order statistics, i.e.,

Ψ0 is an L-statistics (see, e.g., Serfling 2009). By sorting samples in X = {X1, X2, . . . , Xn}
based on their distance with x as ‖X(1)−x‖ ≤ ‖X(2)−x‖ ≤ · · · ≤ ‖X(n)−x‖, we can write

Ψ0(x; θ) =
∑n

i=1 α(X(i))ψ(Z(i); θ) where the weights are given by

α(X(i)) =


1
k

(
n
s

)−1 (n−i
s−1

)
if i ≤ k

1
k

(
n
s

)−1 ∑k−1
j=0

(
i−1
j

)(
n−i
s−1−j

)
if i ≥ k + 1 .

Remark 4.2.1. Note that both algorithms assume that the equation Ψ(x; θ) = 0 is solvable.

This has only been made for simplicity and can be replaced with milder assumptions. In fact,

similar to Athey et al. (2019), we can allow for settings that Ψ(x; θ) is only approximately

solvable. In such settings, we put an assumption on the existence of an optimization oracle
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that, given weights α(Xi), can solve for θ̂ satisfying

‖Ψ(x; θ)‖2 ≤ Coracle max
i∈[n]

α(Xi) ,

where Coracle is a constant. It is not hard to see that for sub-sampling with size s, if B is

large enough, α(Xi) ≤ 2s/n for all i with a very high probability. Therefore, the error due

to this approximate solution of the optimization oracle is at most O(s/n). We can allow

for this amount of error in all our theorems as this is a lower order term compared to the

variance which is roughly O(
√
s/n).

Algorithm 4 Sub-Sampled Kernel Estima-
tion

1: Input. Data {Zi = (Xi, Yi)}ni=1, mo-
ment ψ, kernel K, sub-sampling size s,
number of iterations B

2: Initialize. α(Xi) = 0, 1 ≤ i ≤ n
3: for b← 1, B do
4: Sub-sampling. Draw set Sb by

sampling s points from Z1, Z2, . . . , Zn
without replacement.

5: Weight Updates. α(Xi) ←
α(Xi) +Kωb(x,Xi, Sb)

6: end for
7: Weight Normalization. α(Xi) ←
α(Xi)/B

8: Estimation. Denote θ̂ as a solution of
Ψ(x; θ) =

∑n
i=1 α(Xi)ψ(Zi; θ) = 0

Algorithm 5 Sub-Sampled k-NN Estima-
tion

1: Input. Data {Zi = (Xi, Yi)}ni=1, mo-
ment ψ, sub-sampling size s, number of
iterations B, number of neighbors k

2: Initialize. α(Xi)← 0, 1 ≤ i ≤ n
3: for b← 1, B do
4: Sub-sampling. Draw set Sb by

sampling s points from Z1, Z2, . . . , Zn
without replacement

5: Weight Updates. α(Xi) ←
α(Xi) + 1 {Xi ∈ Hk(x, Sb)} /k

6: end for
7: Weight Normalization. α(Xi) ←
α(Xi)/B

8: Estimation. Denote θ̂ as a solution of
Ψ(x; θ) =

∑n
i=1 α(Xi)ψ(Zi; θ) = 0

4.2.3 Local Intrinsic Dimension

We are interested in settings that the distribution of X has some low dimensional structure

on a ball around the target point x. The following notions are adapted from Kpotufe (2011),

which we present here for completeness.

Definition 3. The marginal µ is called doubling measure if there exists a constant

Cdb > 0 such that for any x ∈ X and any r > 0 we have µ(B(x, r)) ≤ Cdbµ(B(x, r/2)).

An equivalent definition of this notion is that, the measure µ is doubling measure if

there exists C, d > 0 such that for any x ∈ X , r > 0, and θ ∈ (0, 1) we have µ(B(x, r)) ≤
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Cθ−dµ(B(x, θr)). In this definition, d acts as dimension.

A very simple example of doubling measure is Lebesgue measure on the Euclidean

space Rd. In particular, for any r > 0, θ ∈ (0, 1) we have vol(B(x, θr)) = vol(B(x, r))θd.

Building upon this, we can construct doubling probability measures on RD. Let X ∈ RD

be a subset of d-dimensional hyperplane and suppose that for any ball B(x, r) in X we

have vol(B(x, r) ∩ X ) = Θ(rd). If µ is approximately uniform, then we can translate this

volume approximation to the probability measure µ. In fact, under this condition, we have

µ(B(x, θr))/µ(B(x, r)) = Θ(θd).

Unfortunately, the global notion of doubling dimension is very restrictive and many

probability measures are globally complex. Rather, once restricted to local neighborhoods,

the probability measure becomes lower dimensional and intrinsically less complex. The

following definition captures this local notion of dimension more appropriately.

Definition 4. Fix x ∈ X and r > 0. The marginal µ is (C, d)-homogeneous on B(x, r)

if for any θ ∈ (0, 1) we have µ(B(x, r)) ≤ Cθ−dµ(B(x, θr)).

Intuitively, this definition requires the marginal µ to have a local support that is intrin-

sically d-dimensional. This definition covers low-dimensional manifolds, mixture distribu-

tions, d-sparse data, and also any combination of these examples.

4.2.4 Examples of Spaces with Small Intrinsic Dimension

In this section we provide examples of metric spaces that have small local intrinsic di-

mension. Our first example covers the setting where the distribution of data lies on a

low-dimensional manifold (see, e.g., Roweis and Saul 2000, Tenenbaum et al. 2000, Belkin

and Niyogi 2003). For instance, this happens for image inputs. Even though images are

often high-dimensional (e.g., 4096 in the case of 64 by 64 images), all these images belong

intrinsically to a 3-dimensional manifold.

Example 4.2.1 (Low-Dimensional Manifold (Adapted from Kpotufe (2011))). Consider a

d-dimensional submanifold X ⊂ RD and let µ have lower and upper bounded density on X .

The local intrinsic dimension of µ on B(x, r) is d, provided that r is chosen small enough and

some conditions on curvature hold. In fact, Bishop-Gromov theorem (see, e.g., Carmo 1992)

implies that under such conditions, the volume of ball B(x, r) ∩ X is Θ(rd). This together

with the lower and upper bound on the density implies that µ(B(x, r)∩X )/µ(B(x, θr)∩X ) =

Θ(θd), i.e. µ is (C, d)-homogeneous on B(x, r) for some C > 0.

88



Another example which happens in many applications, is sparse data. For example, in

the bag of words representation of text documents, we usually have a vocabulary consisting

of D words. Although D is usually large, each text document contains only a small number

of these words. In this application, we expect our data (and measure) to have smaller

intrinsic dimension. Before stating this example, let us discuss a more general example

about mixture distributions.

Example 4.2.2 (Mixture distributions (adapted from Kpotufe (2011))). Consider any mix-

ture distribution µ =
∑

i πiµi, with each µi defined on X with potentially different supports.

Consider a point x and note that if x 6∈ supp(µi), then there exists a ball B(x, ri) such that

µi(B(x, ri)) = 0. This is true since the support of any probability measure is always closed,

meaning that its complement is an open set. Now suppose that r is chosen small enough

such that for any i satisfying x ∈ supp(µi), µi is (Ci, di)-homogeneous on B(x, r), while for

any i satisfying x 6∈ supp(µi) we have µi(B(x, r)) = 0. Then,

µ(B(x, r)) =
∑
i

πiµi(B(x, r)) =
∑

i:µi(B(x,r))=0

πiµi(B(x, r)) +
∑

i:µi(B(x,r))>0

πiµi(B(x, r))

≤ Cθ−d
∑

i:µi(B(x,r))>0

πiµi(B(x, θr)) = Cθ−d
∑
i

πiµi(B(x, θr) = Cθ−dµ(B(x, θr)) ,

where C = maxi:µi(B(x,r))>0Ci, d = maxi:µi(B(x,r))>0 di, and we used the fact that if µi(B(x, r)) =

0 then µi(B(x, θr)) = 0. Therefore, µ is (C, d)-homogeneous on B(x, r).

This result applies to the case of d-sparse data and is explained in the following example.

Example 4.2.3 (d-Sparse Data). Suppose that X ⊂ RD is defined as

X =

{
(x1, x2, . . . , xD) ∈ RD :

D∑
i=1

1 {xi 6= 0} ≤ d

}
.

Let µ be a probability measure on X . In this case, we can write X as the union of k =
(
D
d

)
, d-

dimensonal hyperplanes in RD. In fact,

X = ∪1≤i1<i2<···id≤D
{

(x1, x2, · · · , xD) ∈ RD : xj = 0, j 6∈ {i1, i2, . . . , id}
}
.

Letting µi1,i2,...,id be the probability measure restricted to the hyperplane defined by xj =

0, j 6∈ {i1, i2, . . . , id}, we can express µ =
∑

1≤i1<i2<···id≤D πi1,i2,...,idµi1,i2,...,id. Therefore,
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the result of Example 4.2.2 implies that for any x ∈ X , for r that is small enough µ is

(C, d)-homogeneous on B(x, r).

Our final example is about the product measure. This allows us to prove that any

concatenation of spaces with small intrinsic dimension has a small intrinsic dimension as

well.

Example 4.2.4 (Concatenation under the Product Measure). Suppose that µi is a prob-

ability measure on Xi ⊂ RDi , i = 1, 2. Define X = {(z1, z2) | z1 ∈ X1, z2 ∈ X2} and let

µ = µ1 × µ2 be the product measure on X , i.e., µ(E1 × E2) = µ1(E1) × µ2(E2) for Ei

that is µi-measurable, i = 1, 2. Suppose that µi is (Ci, di)-homogeneous on B(xi, ri) and let

x = (x1, x2). Then, µ is (C, d)-homogeneous on B(x, r), where d = d1 +d2, r = min {r1, r2}
and C = (C1C2 r

−(d1+d2) 2(d1+d2)/2)/(r−d11 r−d22 ). To establish this, let r = min {r1, r2} and

note that for any θ ∈ (0, 1) we have

µ (B(x, r)) ≤ µ (B(x1, r)×B(x2, r)) = µ1 (B(x1, r))× µ2 (B(x2, r))

≤ µ1 (B(x1, r1))× µ2 (B(x2, r2))

≤

[
C1

(
rθ

r1

√
2

)−d1
µ1

(
B

(
x1,

rθ√
2

))]
×

[
C2

(
rθ

r2

√
2

)−d2
µ2

(
B

(
x2,

rθ√
2

))]

=
C1C2 r

−(d1+d2)

r−d11 r−d22

√
2
−(d1+d2)

θ−d1−d2µ
(
B(x1, rθ/

√
2)×B(x2, rθ/

√
2)
)

≤ C1C2 r
−(d1+d2) 2(d1+d2)/2

r−d11 r−d22

θ−(d1+d2)µ (B(x, rθ)) ,

where we used two simple inequalities that ‖(z1, z2) − (x1, x2)‖2 ≤ r implies ‖zi − xi‖2 ≤
r, i = 1, 2, and further ‖zi − xi‖2 ≤ r/

√
2, i = 1, 2, implies ‖(z1, z2)− (x1, x2)‖2 ≤ r.

4.3 Assumptions

The bias of non-parametric estimator is tightly connected to the kernel shrinkage, as noted

by Athey et al. (2019), Wager and Athey (2018), Oprescu et al. (2018).

Definition 5 (Kernel Shrinkage in Expectation). The kernel weighting function output by

learner Lk when it is given s i.i.d. observations drawn from distribution D satisfies

E [sup {‖x−Xi‖2 : K(x,Xi, S) > 0}] = ε(s) .
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Definition 6 (Kernel Shrinkage with High Probability). The kernel weighting function

output by learner Lk when it is given s i.i.d. observations drawn from distribution D w.p.

1− δ over the draws of the s samples satisfies

sup {‖x−Xi‖2 : K(x,Xi, S) > 0} ≤ ε(s, δ) .

As shown in Wager and Athey (2018), for trees that satisfy some regularity conditions,

ε(s) ≤ s−c/D for a constant c. We are interested in shrinkage rates that scale as s−c/d, where

d is the local intrinsic dimension of µ on B(x, r). Similar to Oprescu et al. (2018), Athey

et al. (2019), we rely on the following assumptions on the moment and score functions. We

divide our assumptions into two parts. While the first part is sufficient for establishing

estimation guarantees, for asymptotic normality results we require both.

Assumption 5.

1. The moment m(x; θ) corresponds to the gradient w.r.t. θ of a λ-strongly convex loss

L(x; θ). This also means that the Jacobian M0 = ∇θm(x; θ(x)) has minimum eigen-

value at least λ.

2. For any fixed parameters θ, m(x; θ) is a Lm-Lipschitz function in x for some constant

Lm.

3. There exists a bound ψmax such that for any observation z and any θ, ‖ψ(z; θ)‖∞ ≤
ψmax.

4. The bracketing number N[](F , ε, L2) of the function class: F = {ψ(·; θ) : θ ∈ Θ},
satisfies log(N[](F , ε, L2)) = O(1/ε).

Assumption 6.

1. For any coordinate j of the moment vector m, the Hessian Hj(x; θ) = ∇2
θθmj(x; θ)

has eigenvalues bounded above by a constant LH for all θ.

2. Maximum eigenvalue of M0 is upper bounded by LJ .

3. Second moment of ψ(x; θ) defined as Var (ψ(Z; θ) | X = x) is Lmm-Lipschitz in x, i.e.,

‖Var (ψ(Z; θ) | X = x)−Var
(
ψ(Z; θ) | X = x′

)
‖F ≤ Lmm‖x− x′‖2 .
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4. Variogram is Lipschitz: supx∈X ‖Var(ψ(Z; θ)− ψ(Z; θ′) | X = x)‖F ≤ Lψ‖θ − θ′‖2.

Note that our assumption on strong convexity of the moment m(x; θ) has been made

to make the presentation easier. This assumption allows us to establish consistency and

convergence rate together in a single analysis. However, once this assumption is removed,

the analysis of consistency and establishing the rate of convergence is still feasible, but

needs to be divided in two parts (see, e.g., Athey et al. 2019, Oprescu et al. 2018).

The condition on variogram always holds for a ψ that is Lipschitz in θ. This larger class

of functions ψ allows estimation in more general settings such as α-quantile regression that

involves a ψ which is non-Lipschitz in θ. Similar to Athey and Imbens (2016), Athey et al.

(2019), we require kernel K to be honest and symmetric.

Assumption 7. The kernel K, built using samples {Z1, Z2, . . . , Zs}, is honest if the weight

of sample i given by K(x,Xi, {Zj}sj=1) is independent of Yj conditional on Xj for any j ∈ [s].

Assumption 8. The kernel K, built using samples {Z1, Z2, . . . , Zs}, is symmetric if for

any permutation π : [s]→ [s], the distribution of K(x,Xi, {Zj}sj=1) and K(x,Xπ(i),
{
Zπ(j)

}s
j=1

)

are equal. In other words, the kernel weighting distribution remains unchanged under per-

mutations.

For a deterministic kernel K, the above condition implies that K(x,Xi, {Zj}sj=1) =

K(x,Xi, {Zπ(j)}sj=1), for any i ∈ [s]. In the next section, we provide general estimation and

inference results for a general kernel based on the its shrinkage and incrementality rates.

Our estimation guarantees require kernel K to be honest (Theorem 8), while for asymptotic

normality we also require K to be symmetric (Theorem 9).

4.4 Guarantees for Sub-Sampled Kernel Estimators

Our first result establishes estimation rates, both in expectation and high probability, for

kernels based on their shrinkage rates. The proof of this theorem is deferred to Appendix

C.3.

Theorem 8 (Finite Sample Estimation Rate). Let Assumptions 5 and 7 hold. Suppose

that Algorithm 4 is executed with B ≥ n/s. If the base kernel K satisfies kernel shrinkage

in expectation, with rate ε(s), then w.p. 1− δ

‖θ̂ − θ(x)‖2 ≤
2

λ

(
Lmε(s) +O

(
ψmax

√
p s

n
(log log(n/s) + log(p/δ))

))
. (4.4.1)
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Moreover,√
E
[
‖θ̂ − θ(x)‖22

]
≤ 2

λ

(
Lmε(s) +O

(
ψmax

√
p s

n
log log(p n/s)

))
. (4.4.2)

The next result establishes asymptotic normality of sub-sampled kernel estimators. In

particular, it provides coordinate-wise asymptotic normality of our estimate θ̂ around its

true underlying value θ(x). The proof of this theorem is deferred to Appendix C.3.

Theorem 9 (Asymptotic Normality). Let Assumptions 5, 6, 7, and 8 hold. Suppose that

Algorithm 4 is executed with B ≥ (n/s)5/4 and the base kernel K satisfies kernel shrinkage,

with rate ε(s, δ) in probability and ε(s) in expectation. Let η(s) be the incrementality of

kernel K defined in Equation (4.1.4) and s grow at a rate such that s → ∞, nη(s) → ∞,

and ε(s, η(s)2) → 0. Consider any fixed coefficient β ∈ Rp with ‖β‖ ≤ 1 and define the

variance as

σ2
n,β(x) =

s2

n
Var

[
E

[
s∑
i=1

K(x,Xi, {Zj}sj=1)
〈
β,M−1

0 ψ(Zi; θ(x))
〉
| Z1

]]
.

Then it holds that σn,β(x) = Ω
(
s
√
η(s)/n

)
. Moreover, suppose that

max

(
ε(s), ε(s)1/4

( s
n

log log(n/s)
)1/2

,
( s
n

log log(n/s)
)5/8

)
= o(σn,β(x)) . (4.4.3)

Then, 〈
β, θ̂ − θ(x)

〉
σn,β(x)

→d N(0, 1) .

Remark 4.4.1. Our notion of incrementality is slightly different from that of Wager and

Athey (2018), as there the incrementality is defined as Var
[
E
[
K(x,X1, {Zj}sj=1) | X1

]]
.

However, using the tower law of expectations

E
[
E[K(x,X1, {Zj}sj=1) | X1]2

]
−Var

[
E[K(x,X1, {Zj}sj=1) | X1]

]
= E

[
E
[
K(x,X1, {Zj}sj=1) | X1

]]2
= E

[
K(x,X1, {Zj}sj=1)

]2
.

For a symmetric kernel the term E
[
K(x,X1, {Zj}sj=1)

]2
is equal to 1/s2 and is asymp-

totically negligible compared to Var
[
E
[
K(x,X1, {Zj}sj=1) | X1

]]
, which usually decays at a

slower rate.
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Theorems 8 and 9 generalize existing estimation and asymptotic normality results of

Athey et al. (2019), Wager and Athey (2018), Fan et al. (2018) to an arbitrary kernel that

satisfies appropriate shrinkage and incrementality rates. These general theorems could be

of independent interest beyond the scope of this work. Following this approach, the main

steps would be deriving shrinkage and incrementality rates of the kernel of interest. The

following lemma relates these two and provides a lower bound on the incrementality in

terms of kernel shrinkage. The proof uses the Paley-Zygmund inequality and is deferred to

Appendix C.3.

Lemma 7. For any symmetric kernel K (Assumption 8) and for any δ ∈ [0, 1]:

ηs = E
[
E
[
K(x,X1, {Zj}sj=1) | X1

]2] ≥ (1− δ)2 (1/s)2

infρ>0 (µ(B(x, ε(s, ρ))) + ρ s/δ)
.

Thus if µ(B(x, ε(s, 1/(2s2)))) = O(log(s)/s), then picking ρ = 1/(2s2) and δ = 1/2 implies

that E[E[K(x,X1, {Zj}sj=1)|X1]2] = Ω(1/s log(s)).

This result has the following immediate corollary. The proof is left for Appendix C.3.

Corollary 3. If ε(s, δ) = O((log(1/δ)/s)1/d) and µ satisfies a two-sided version of the

doubling measure property on B(x, r), defined in Definition 4, i.e., the existence of two con-

stants c and C such that µ(B(x, θr)) ≥ Cθ−dµ(B(x, r)) and µ(B(x, θr)) ≤ cθ−dµ(B(x, r)),

for any θ ∈ (0, 1). Then, E[E[K(x,X1, {Zj}sj=1)|X1]2] = Ω(1/(s log(s))).

Even without this extra assumption, we can still characterize the incrementality rate of

the k-NN estimator, as we observe in the next section.

4.5 Main Theorem: Adaptivity of the Sub-Sampled k-NN

Estimator

In this section, we provide estimation guarantees and asymptotic normality of the k-NN

estimator by using Theorems 8 and 9. We first establish shrinkage and incrementality rates

for this kernel.

4.5.1 Estimation Guarantees for the Sub-Sampled k-NN Estimator

We start by providing shrinkage results for the k-NN kernel. As observed in Theorem 8,

shrinkage rates are sufficient for bounding the estimation error. The shrinkage result that

94



we present here would only depend on the local intrinsic dimension of µ on B(x, r).

Lemma 8 (High Probability Shrinkage for the k-NN Kernel). Suppose that the measure µ

is (C, d)-homogeneous on B(x, r). Then, for any δ satisfying 2 exp (−µ(B(x, r))s/(8C)) ≤
δ ≤ 1

2 exp(−k/2), w.p. at least 1− δ we have

‖x−X(k)‖2 ≤ εk(s, δ) = O

(
log(1/δ)

s

)1/d

.

We can easily turn this into a shrinkage rate in expectation. In fact, by the very

convenient choice of δ = s−1/d combined with the fact that X has diameter ∆X , we can

establish O
(
(log(s)/s)1/d

)
rate on expected kernel shrinkage. However, a more careful

analysis would help us to remove the log(s) dependency in the bound and is stated in the

following corollary:

Corollary 4 (Expected Shrinkage for the k-NN Kernel). Suppose that the conditions of

Lemma 8 hold. Let k be a constant and εk(s) be the expected shrinkage for the k-NN kernel.

Then, for any s larger than some constant we have εk(s) = E
[
‖x−X(k)‖2

]
= O

(
1
s

)1/d
.

We are now ready to state our estimation result for the k-NN kernel, which is honest

and symmetric. Therefore, we can substitute the expected shrinkage rate, established in

Corollary 4, in Theorem 8 to derive estimation rates for this kernel.

Theorem 10 (Estimation Guarantees for the k-NN Kernel). Suppose that µ is (C, d)-

homogeneous on B(x, r), Assumption 5 holds and that Algorithm 5 is executed with B ≥ n/s.
Then, w.p. 1− δ:

‖θ̂ − θ(x)‖2 ≤
2

λ

(
O
(
s−1/d

)
+O

(
ψmax

√
p s

n
(log log(n/s) + log(p/δ))

))
, (4.5.1)

and √
E
[
‖θ̂ − θ(x)‖22

]
≤ 2

λ

(
O
(
s−1/d

)
+O

(
ψmax

√
p s log log(p n/s)

n

))
. (4.5.2)

By picking s = Θ
(
nd/(d+2)

)
and B = Ω

(
n2/(d+2)

)
we get

√
E
[
‖θ̂ − θ(x)‖22

]
= Õ

(
n−1/(d+2)

)
.
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4.5.2 Asymptotic Normality of the Sub-sampled k-NN Estimator

In this section we prove asymptotic normality of k-NN estimator. We start by provide

bounds on the incrementality of the k-NN kernel.

Lemma 9 (k-NN Incrementality). Let K be the k-NN kernel and let ηk(s) denote the

incrementality rate of this kernel. Then, the following holds:

ηk(s) = E
[
E
[
K(x,X1, {Zj}sj=1) | X1

]2]
=

1

(2s− 1) k2

(
2k−2∑
t=0

at
bt

)
,

where sequences {at}2k−2
t=0 and {bt}2k−2

t=0 are defined as

at =

min{t,k−1}∑
i=max{0,t−(k−1)}

(
s− 1

i

)(
s− 1

t− i

)
and bt =

t∑
i=0

(
s− 1

i

)(
s− 1

t− i

)
.

Remark 4.5.1. Note that bt =
(

2s−2
t

)
since we can view bt as follows: how many different

subsets of size t can we create from a set of 2s−2 elements if we pick a number i = {0, . . . , t}
and then choose i elements from the first half of these elements and t− i elements from the

second half. This process creates all possible sets of size t from among the 2s− 2 elements,

which is equal to
(

2s−2
t

)
.

Furthermore, for 0 ≤ t ≤ k − 1, at = bt and for any k ≤ t ≤ 2k − 2, after some algebra,

we have
2k − 1− t
t+ 1

≤ at
bt
≤ 1 .

This implies that the summation appeared in Lemma 34 satisfies

k +

2k−2∑
t=k

2k − 1− t
t+ 1

≤
2k−2∑
t=0

at
bt
≤ 2k − 1 .

Note that the above remark implies that the summation at/bt that appeared on Lemma

9 always belongs to the interval [k, 2k−1], and therefore it is known up to a factor 2. As we

observe later, the same term would appear on the characterization of asymptotic variance

of the k-NN estimator. The following lemma shows that when s → ∞, we can exactly

characterize this summation up to a lower order term of 1/s.
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Lemma 10. Suppose that s→∞ and k is fixed. Then

2k−2∑
t=0

at
bt

= ζk +O(1/s) ,

where ζk = k +
∑2k−2

t=k 2−t
∑k−1

i=t−k+1

(
t
i

)
.

We can substitute ηk(s) in Theorem 9 to prove asymptotic normality of the k-NN es-

timator. Before doing that, we establish the asymptotic variance of this estimator, i.e.

σn,j(x), up to the smaller order terms. The proof of this Lemma is deferred to Appendix

C.3.

Theorem 11 (Asymptotic Variance of the Sub-Sampled k-NN Estimator). Let j ∈ [p] be

one of coordinates. Suppose that k is constant while s→∞. Then, for the k-NN kernel

σ2
n,j(x) =

s2

n

σ2
j (x)

k2 (2s− 1)
ζk + o(s/n) , (4.5.3)

where σ2
j (x) = Var

[〈
ej ,M

−1
0 ψ(Z; θ(x))

〉
| X = x

]
and ζk = k +

∑2k−2
t=k 2−t

∑k−1
i=t−k+1

(
t
i

)
.

Combining results of Theorem 9, Theorem 11, Corollary 4, and Lemma 9 we have:

Theorem 12 (Asymptotic Normality of the Sub-Sampled k-NN Estimator). Suppose that

µ is (C, d)-homogeneous on B(x, r). Let Assumptions 5, 6 hold and suppose that Algorithm

5 is executed with B ≥ (n/s)5/4 iterations. Suppose that s grows at a rate such that s→∞,

n/s → ∞, and also s−1/d(n/s)1/2 → 0. Let j ∈ [p] be one of coordinates and σ2
n,j(x) be

defined in Equation (4.5.3). Then,

θ̂j(x)− θj(x)

σn,j(x)
→ N(0, 1) .

Finally, if s = nβ and B ≥ n
5
4

(1−β) with β ∈ (d/(d+ 2), 1). Then,

θ̂j(x)− θj(x)

σn,j(x)
→ N(0, 1) .

Plug-In Confidence Intervals. Observe that the Theorem 11 implies that if we define

σ̃2
n,j(x) = s2

n

σ2
j (x)

2s−1
ζk
k2

as the leading term in the variance, then
σ2
n,j(x)

σ̃2
n,j(x)

→p 1. Thus, due to
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Slutsky’s theorem
θ̂j − θj
σ̃2
n,j(x)

=
θ̂j − θj
σ2
n,j(x)

σ2
n,j(x)

σ̃2
n,j(x)

→d N(0, 1) . (4.5.4)

Hence, we have a closed form solution to the variance in our asymptotic normality theorem.

If we have an estimate σ̂2
j (x) of the variance of the conditional moment around x, then

we can build plug-in confidence intervals based on the normal distribution with variance
s2

n

σ̂2
j (x)

2s−1
ζk
k2

. Note that ζk can be calculated easily for desired values of k. For instance,

we have ζ1 = 1, ζ2 = 5
2 , ζ3 = 33

8 , and for k = 1, 2, 3 the asymptotic variance becomes
s2

n

σ̂2
j (x)

2s−1 ,
5
8
s2

n

σ̂2
j (x)

2s−1 ,
11
24
s2

n

σ̂2
j (x)

2s−1 respectively.

4.5.3 Adaptive Sub-Sample Size Selection

According to Theorem 10, picking s = Θ(nd/(d+2)) would trade-off between bias and variance

terms. Also, according to Theorem 12, picking s = nβ with d/(d+ 2) < β < 1 would result

in asymptotic normality of the estimator. However, both choices depend on the unknown

intrinsic dimension of µ on the ball B(x, r). Inspired by Kpotufe (2011), we explain a

data-driven way for choosing s.

Adaptive Selection for s. Suppose that δ > 0 is given. Let Cn,p,δ = 2 log(2pn/δ) and

pick ∆ ≥ ∆X . For any k ≤ s ≤ n, let H(s) be the U -statistic estimator for ε(s) defined as

H(s) =
∑

S∈[n]:|S|=s maxXi∈Hk(x,S) ‖x −Xi‖2/
(
n
s

)
. Each term in the summation computes

the distance of x to its k-nearest neighbor on S and H(s) is the average of these numbers

over all
(
n
s

)
possible subsets S. Define Gδ(s) = ∆

√
Cn,p,δps/n. Iterate over s = n, · · · , k.

Let s2 be the smallest s for which we have H(s) > 2Gδ(s) and let s1 = s2 + 1. Note

that εk(s) is decreasing in s and Gδ(s) is increasing in s. Therefore, there exists a unique

1 ≤ s∗ ≤ n such that εk(s
∗) ≤ Gδ(s

∗) and εk(s
∗ − 1) > Gδ(s

∗ − 1). We have the following

Lemma.

Lemma 11. Consider the selection process described above and let s1 be its output. Then,

w.p. 1− δ we have
s∗ − 1

9
≤ s1 ≤ s∗ .

Having this lemma in hand, it is now easy to provide adaptive estimation and asymptotic

normality results. In particular, choosing s∗ = 9s1 + 1 ensures that s∗ ∈ [s∗, 10s∗] and

therefore we are able to trade-off nicely between the bias εk(s) and variance (which is

roughly at the same order as Gδ(s)). Note that constant numbers would only increase our

98



bounds by constant factors. Furthermore, choosing s∗ = (9s1 + 1)nζ for any ζ > 0 ensures

that we fall in the region where εk(s) = o(σn,j(x)) and therefore it leads to the asymptotic

normality of this estimator.

Proposition 4 (Adaptive Estimation). Let Assumptions of Theorem 10 hold. Suppose

that s1 is the output of the above process. Let s∗ = 9s1 + 1 and suppose that Algorithm 5 is

executed with s = s∗ and B ≥ n/s∗. Then w.p. at least 1− 2δ we have

‖θ̂ − θ(x)‖2 = O(Gδ(s
∗)) = O

((
n

p log(2pn/δ)

)−1/(d+2)
)
.

Furthermore, for δ = 1/n we have√
E
[
‖θ̂ − θ(x)‖22

]
= Õ

(
n−1/(d+2)

)
.

Proposition 5 (Adaptive Asymptotic Normality). Let Assumptions of Theorem 12 hold.

Suppose that s1 is the output of the above process when δ = 1/n and s∗ = 9s1 + 1. For any

ζ ∈ (0, (log(n)− log(s1)− log log2(n))/ log(n))) define sζ = s∗n
ζ . Suppose that Algorithm 5

is executed with s = sζ and B ≥ (n/sζ)
5/4, then for any coordinate j ∈ [p], we have

θ̂j(x)− θj(x)

σn,j(x)
→ N(0, 1) .

Remark 4.5.2. Note that although computation of H(s) may look complex as it involves the

calculation of distance of x to its k-nearest neighbor on all
(
n
s

)
subsets, there is a closed form

expression for H(s) according to its representation based on L-statistic. In fact, by sorting

samples (X1, X2, . . . , Xn) based on their distance to x, i.e, ‖x − X(1)‖2 ≤ ‖x − X(2)‖2 ≤
. . . ≤ ‖x−X(n)‖2, we have

H(s) =

(
n

s

)−1 n−s+k∑
i=k

(
i− 1

k − 1

)(
n− i
s− k

)
‖x−X(i)‖2 .

Therefore, after sorting all training samples based on their distance with x, we can compute

values of H(s) very efficient and fast.

99



4.6 Conclusions and Discussions

In this chapter, we studied estimation and inference for conditional moment equations in

the presence of high-dimensional conditioning variable which has a low intrinsic dimension

locally. We proved that by combining sub-sampling techniques and non-parametric esti-

mators, we can achieve both estimation accuracy and also asymptotic normality which is

crucial for building confidence intervals and drawing inference about quantities of inter-

est. In particular, letting D and d be the extrinsic and intrinsic dimension respectively,

we proved that finely tuned sub-sampled k-NN estimators are able to adapt to unknown

intrinsic dimension of the problem and provide Õ(n−1/(d+2)) estimation accuracy and also

are n1/(d+2)-asymptotically normal.

Our results shed some light on the importance of using adaptive machine learning based

estimators, such as nearest neighbor based estimates, when performing estimation and

inference in high-dimensional settings. Such estimators address the curse of dimensionality

by adapting to a priori unknown latent structure in the data. Moreover, coupled with

the powerful sub-sampling based averaging approach, such estimators can maintain their

adaptivity, while also satisfying asymptotic normality and thereby enabling asymptotically

valid inference; a property that is crucial for embracing such approaches in econometrics

and causal inference.
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Appendix A

Supplementary Materials for

Chapter 2

A.1 Properties of Covariate Diversity

Proof of Lemma 1. Since for all u ∈ Rd at least one of x>u ≥ 0 or −x>u ≥ 0 holds, and

using conditions (a), (b), and (c) of Lemma 1 we have:∫
xx>I(x>u ≥ 0)pX(x)dx �

∫
W

xx>I(x>u ≥ 0)pX(x)dx

=
1

2

∫
W

xx>
[
I(x>u ≥ 0)pX(x) + I(−x>u ≥ 0)pX(−x)

]
dx

� 1

2

∫
W

xx>
[
I(x>u ≥ 0) +

a

b
I(x>u ≤ 0)

]
pX(x)dx

� a

2b

∫
W

xx>pX(x)dx

� aλ

2b
Id .

Here, the first inequality follows from the fact that xx> is positive semi-definite, the first

equality follows from condition (a) and a change of variable (x→ −x), the second inequality

is by condition (b), the third inequality uses a ≤ b which follows from condition (b), and

the last inequality uses condition (c).

We now state the proofs of lemmas that were used in §2.2.2.
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Proof of Lemma 2. First note that Bd
R is symmetric with respect to each axis, therefore the

off-diagonal entries in
∫
BdR

xx>dx are zero. In particular, the (i, j) entry of the integral is

equal to
∫
BdR

xixjdx which is zero when i 6= j using a change of variable xi → −xi that has

the identity as its Jacobian and keeps the domain of integral unchanged but changes the

sign of xixj . Also, by symmetry, all diagonal entry terms are equal. In other words,

∫
BdR

xx>dx =

(∫
BdR

x2
1dx

)
Id . (A.1.1)

Now for computing the right hand side integral, we introduce the spherical coordinate

system as

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

...

xd−1 = r sin θ1 sin θ2 . . . sin θd−2 cos θd−1,

xd = r sin θ1 sin θ2 . . . sin θd−2 sin θd−1,

and the determinant of its Jacobian is given by

det J(r,θ) = det

[
∂x

∂r∂θ

]
= rd−1 sind−2 θ1 sind−3 θ2 . . . sin θd−2.

Now, using symmetry, and summing up equation (A.1.1) with x2
i used instead of x2

1 for all

i ∈ [d], we obtain

d

∫
BdR

xx>dx =

∫
BdR

(
x2

1 + x2
2 + . . .+ x2

d

)
dx1dx2 . . . dxd

=

∫
θ1,...,θd−1

∫ R

r=0
rd+1 sind−2 θ1 sind−3 θ2 . . . sin θd−2 dr dθ1 . . . dθd−1 .

Comparing this to

vol(Bd
R) =

∫
θ1,...,θd−1

∫ R

r=0
rd−1 sind−2 θ1 sind−3 θ2 . . . sin θd−2 dr dθ1 . . . dθd−1 ,
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we obtain that ∫
BdR

xx>dx =

[ ∫ R
0 rd+1dr

d
∫ R

0 rd−1dr
vol(Bd

R)

]
Id

=

[
R2

d+ 2
vol(Bd

R)

]
Id .

Proof of Lemma 12. We can lower-bound the density pX,trunc by the uniform density as

follows. Note that we have x>Σ−1x ≤ ‖x‖22λmax

(
Σ−1

)
and as a result for any x satisfying

‖x‖2 ≤ xmax we have

pX,trunc(x) ≥ pX(x) =
1

(2π)d/2|Σ|d/2
exp

(
−1

2
x>Σ−1x

)
≥

exp
(
− x2max

2λmin(Σ)

)
(2π)d/2|Σ|d/2

= pX,uniform-lb .

Using this we can derive a lower bound on the desired covariance as following∫
Bdxmax

xx>pX,trunc(x)dx �
∫
Bdxmax

xx>pX,uniform-lb(x)dx

=
1

(2π)d/2|Σ|d/2
exp

(
− x2

max

2λmin(Σ)

)∫
Bdxmax

xx>dx

=
1

(2π)d/2|Σ|d/2
exp

(
− x2

max

2λmin(Σ)

)
x2

max

d+ 2
vol(Bd

xmax
)Id

= λuniId ,

where we used Lemma 2 in the third line. This concludes the proof.

Lemma 12. The following inequality holds∫
Bdxmax

xx>pX,trunc(x)dx � λuniId ,

where λuni ≡ 1
(2π)d/2|Σ|d/2 exp

(
− x2max

2λmin(Σ)

)
x2max
d+2 vol(Bd

xmax
).

Proof. We can lower-bound the density pX,trunc by the uniform density as follows. Note

that we have x>Σ−1x ≤ ‖x‖22λmax

(
Σ−1

)
and as a result for any x satisfying ‖x‖2 ≤ xmax
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we have

pX,trunc(x) ≥ pX(x) =
1

(2π)d/2|Σ|d/2
exp

(
−1

2
x>Σ−1x

)
≥

exp
(
− x2max

2λmin(Σ)

)
(2π)d/2|Σ|d/2

= pX,uniform-lb .

Using this we can derive a lower bound on the desired covariance as following∫
Bdxmax

xx>pX,trunc(x)dx �
∫
Bdxmax

xx>pX,uniform-lb(x)dx

=
1

(2π)d/2|Σ|d/2
exp

(
− x2

max

2λmin(Σ)

)∫
Bdxmax

xx>dx

=
1

(2π)d/2|Σ|d/2
exp

(
− x2

max

2λmin(Σ)

)
x2

max

d+ 2
vol(Bd

xmax
)Id

= λuniId ,

where we used Lemma 2 in the third line. This concludes the proof.

A.2 Useful Concentration Results

Lemma 13 (Bernstein Concentration). Let {Dk,Hk}∞k=1 be a martingale difference se-

quence, and let Dk be σk-subgaussian. Then, for all t > 0 we have

P

[∣∣∣ n∑
k=1

Dk

∣∣∣ ≥ t] ≤ 2 exp

{
− t2

2
∑n

k=1 σ
2
k

}
.

Proof. See Theorem 2.3 of Wainwright (2016) and let bk = 0 and νk = σk for all k.

Lemma 14 (Theorem 3.1 of Tropp (2011)). Let H1 ⊂ H2 ⊂ · · · be a filtration and consider

a finite adapted sequence {Xk} of positive semi-definite matrices with dimension d, adapted

to this filtration. Suppose that λmax(Xk) ≤ R almost surely. Define the series Y ≡
∑

kXk

and W ≡
∑

k E[Xk | Hk−1]. Then for all µ ≥ 0, γ ∈ [0, 1) we have:

P [λmin(Y ) ≤ (1− γ)µ and λmin(W ) ≥ µ] ≤ d
(

e−γ

(1− γ)1−γ

)µ/R
.
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A.3 Proof of Regret Guarantees for Greedy Bandit

We first prove a lemma on the instantaneous regret of the Greedy Bandit using a standard

peeling argument. The proof here is adapted from Bastani and Bayati (2015) with a few

modifications; we present it here for completeness.

Notation. We define the following events to simplify notation. For any λ, χ > 0, let

Fλi,t =
{
λmin

(
X(Si,t)>X(Si,t)

)
≥ λt

}
(A.3.1)

Gχi,t =
{
‖β̂(Si,t)− βi‖2 < χ

}
. (A.3.2)

Proof of Lemma 6. We can decompose the regret as rt(π) = E[Regrett(π)] =
∑K

i=1 E[Regrett(π) |
Xt ∈ Ri] · P(Xt ∈ Ri). Now we can expand each term as

E[Regrett(π) | Xt ∈ Rl] = E
[
X>t (βl − βπt) | Xt ∈ Rl

]
,

For each 1 ≤ i, l ≤ K satisfying i 6= l, let us define the region where arm i is superior over

arm l

R̂i≥l,t :=
{

x ∈ X : x>β̂(Si,t−1) ≥ x>β̂(Sl,t−1)
}
,

Note that we may incur a nonzero regret ifX>t β̂(Sπt,t−1) > X>t β̂(Sl,t−1) or ifX>t β̂(Sπt,t−1) =

X>t β̂(Sl,t−1) and the tie-breaking random variable Wt indicates an action other than l as

the action to be taken. It is worth mentioning that in the case X>t β̂(Sπt,t−1) = X>t β̂(Sl,t−1)

we do not incur any regret if Wt indicates arm l as the action to be taken. Nevertheless, as
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regret is a non-negative quantity, we can write

E[Regrett(π) |Xt ∈ Rl] ≤ E
[
I(X>t β̂(Sπt,t−1) ≥ X>t β̂(Sl,t−1))X>t (βl − βπt) | Xt ∈ Rl

]
≤
∑
i 6=l

E
[
I(X>t β̂(Si,t−1) ≥ X>t β̂(Sl,t−1))X>t (βl − βi) | Xt ∈ Rl

]
=
∑
i 6=l

E
[
I(Xt ∈ R̂i≥l,t)X>t (βl − βi) | Xt ∈ Rl

]

≤
∑
i 6=l

{
E
[
I(R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1)X>t (βl − βi) | Xt ∈ Rl

]
+ E

[
I(Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1)X>t (βl − βi) | Xt ∈ Rl

]
+ E

[
I(Xt ∈ R̂i≥l,t,F

λ0/4
i,t−1)X>t (βl − βi) | Xt ∈ Rl

]}

where in the second line we used a union bound. Using the fact that Fλ0/4i,t−1 and Fλ0/4l,t−1 are

independent of the event Xt ∈ Rl which only depends on Xt, together with the Cauchy-

Schwarz inequality implying X>t (βl − βi) ≤ 2bmaxxmax, we have

E[Regrett(π) | Xt ∈ Rl] ≤
∑
i 6=l

{
E
[
I(Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1)X>t (βl − βi) | Xt ∈ Rl

]
+ 2bmaxxmax

(
P(Fλ0/4l,t−1) + P(Fλ0/4i,t−1)

)}
∑
i 6=l

E
[
I(Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1)X>t (βl − βi) | Xt ∈ Rl

]
+ 4(K − 1)bmaxxmax max

i
P(Fλ0/4i,t−1) . (A.3.3)

Hence, we need to bound the first term in above. Fix i and note that when we include events

Fλ0/4i,t−1 and Fλ0/4l,t−1, we can use Lemma 5 which proves sharp concentrations for β̂(Sl,t−1) and

β̂(Si,t−1). Let us now define the following set

Ih = {x ∈ X : x>(βl − βi) ∈ (2δxmaxh, 2δxmax(h+ 1)]},

where δ = 1/
√

(t− 1). Note that since X>t (βl − βi) is bounded above by 2bmaxxmax, the

set Ih only needs to be defined for h ≤ hmax = dbmax/δe. We can now expand the first term
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in Equation (A.3.3) for i, by conditioning on Xt ∈ Ih as following

E
[
I(Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1)X>t (βl − βi) | Xt ∈ Rl

]
=
hmax∑
h=0

E
[
I(Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1)X>t (βl − βi) | Xt ∈ Rl ∩ Ih

]
P[Xt ∈ Ih]

≤
hmax∑
h=0

2δxmax(h+ 1)E
[
I(Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1) | Xt ∈ Rl ∩ Ih

]
P[Xt ∈ Ih]

≤
hmax∑
h=0

2δxmax(h+ 1)E
[
I(Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1) | Xt ∈ Rl ∩ Ih

]
× P[X>t (βl − βi) ∈ (0, 2δxmax(h+ 1)]]

≤
hmax∑
h=0

4C0δ
2x2

max(h+ 1)2P
[
Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1 | Xt ∈ Rl ∩ Ih

]
, (A.3.4)

where in the first inequality we used the fact that conditioning on Xt ∈ Ih, X>t (βl − βi)
is bounded above by 2δxmax(h + 1), in the second inequality we used the fact that the

event Xt ∈ Ih is a subset of the event X>t (βl − βi) ∈ (0, 2δxmax(h + 1)], and in the last

inequality we used the margin condition given in Assumption 2. Now we reach to the final

part of the proof, where conditioning on Fλ0/4l,t−1,F
λ0/4
i,t−1, and Xt ∈ Ih we want to bound

the probability that we pull a wrong arm. Note that conditioning on Xt ∈ Ih, the event

X>t

(
β̂(Si,t−1)− β̂(Sl,t−1)

)
≥ 0 happens only when at least one of the following two events:

i) X>t (βl − β̂(Sl,t−1)) ≥ δxmaxh or ii) X>t (β̂(Si,t−1) − βi) ≥ δxmaxh happens. This is true

according to

0 ≤ X>t
(
β̂(Si,t−1)− β̂(Sl,t−1)

)
= X>t (β̂(Si,t−1)− βi) +X>t (βi − βl) +X>t (βl − β̂(Sl,t−1))

≤ X>t (β̂(Si,t−1)− βi)− 2δxmaxh+X>t (βl − β̂(Sl,t−1)) .
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Therefore,

P
[
I(Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1) | Xt ∈ Rl ∩ Ih

]
≤ P

[
X>t (βl − β̂(Sl,t−1)) ≥ δxmaxh,Fλ0/4l,t−1,F

λ0/4
i,t−1 | Xt ∈ Rl ∩ Ih

]
+ P

[
X>t (β̂(Si,t−1)− βi) ≥ δxmaxh,Fλ0/4l,t−1,F

λ0/4
i,t−1 | Xt ∈ Rl ∩ Ih

]
≤ P

[
X>t (βl − β̂(Sl,t−1)) ≥ δxmaxh,Fλ0/4l,t−1 | Xt ∈ Rl ∩ Ih

]
+ P

[
X>t (β̂(Si,t−1)− βi) ≥ δxmaxh,Fλ0/4i,t−1 | Xt ∈ Rl ∩ Ih

]
≤ P

[
‖βl − β̂(Sl,t−1)‖2 ≥ δh,Fλ0/4l,t−1 | Xt ∈ Rl ∩ Ih

]
+ P

[
‖β̂(Si,t−1)− βi‖2 ≥ δh,Fλ0/4i,t−1 | Xt ∈ Rl ∩ Ih

]
, (A.3.5)

where in the third line we used P (A,B | C) ≤ P (A | C), in the fourth line we used

Cauchy-Schwarz inequality. Now using the notation described in Equation (A.3.2) this can

be rewritten as

P
[
Gδhl,t−1,F

λ0/4
l,t−1 | Xt ∈ Rl ∩ Ih

]
+ P

[
Gδhi,t−1,F

λ0/4
i,t−1 | Xt ∈ Rl ∩ Ih

]
= P

[
Gδhl,t−1,F

λ0/4
l,t−1

]
+ P

[
Gδhi,t−1,F

λ0/4
i,t−1

]
≤ 4d exp

(
−C3(t− 1)(δh)2

)
= 4d exp(−h2),

in the fifth line we used the fact that bothRl and Ih only depend on Xt which is independent

of β̂(Sq,t−1) for all q, and in the sixth line we used Lemma 5. We can also bound this

probability by 1, which is better than 4d exp(−h2) for small values of h. Hence, using
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∑K
l=1 P[Rl] = 1 we can write the regret as

E[Regrett(π)] =
K∑
l=1

E[Regrett(π) | Xt ∈ Rl] · P(Xt ∈ Rl)

≤
K∑
l=1

∑
i 6=l

hmax∑
h=0

[
4C0δ

2x2
max(h+ 1)2 min{1, 4d exp(−h2)}

]
+ 4(K − 1)bmaxxmax max

i
P(Fλ0/4i,t−1)


× P(Xt ∈ Rl)

≤ 4(K − 1)C0δ
2x2

max

(
hmax∑
h=0

(h+ 1)2 min{1, 4d exp(−h2)}

)
+ 4(K − 1)bmaxxmax max

i
P(Fλ0/4i,t−1)

≤ 4(K − 1)

C0δ
2x2

max

 h0∑
h=0

(h+ 1)2 +
hmax∑

h=h0+1

4d(h+ 1)2 exp(−h2)

+ bmaxxmax max
i

P(Fλ0/4i,t−1)

 ,

(A.3.6)

where we take h0 = b
√

log 4dc + 1. Note that functions f(x) = x2 exp(−x2) and g(x) =

x exp(−x2) are both decreasing for x ≥ 1 and therefore

hmax∑
h=h0+1

(h+ 1)2 exp(−h2) =
hmax∑

h=h0+1

(h2 + 2h+ 1) exp(−h2)

=
hmax∑

h=h0+1

h2 exp(−h2) + 2
hmax∑

h=h0+1

h exp(−h2) +
hmax∑

h=h0+1

exp(−h2)

≤
∫ ∞
h0

h2 exp(−h2)dh+

∫ ∞
h0

2h exp(−h2)dh+

∫ ∞
h0

exp(−h2)dh.

(A.3.7)

Computing the above terms using integration by parts and using the inequality
∫∞
t exp(−x2)dx ≤
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exp(−t2)/(t+
√
t2 + 4/π) yields

h0∑
h=0

(h+ 1)2 + 4d

hmax∑
h=h0+1

(h+ 1)2 exp(−h2) =
(h0 + 1)(h0 + 2)(2h0 + 3)

6
+ d(2h0 + 7) exp(−h2

0)

≤ 1

3
h3

0 +
3

2
h2

0 +
13

6
h0 + 1 + d(2h0 + 7)

1

4d

≤ 1

3

(√
log 4d+ 1

)3
+

3

2

(√
log 4d+ 1

)2
+

8

3

(√
log 4d+ 1

)
+

11

4

≤
(√

log d+ 2
)3

+
3

2

(√
log d+ 2

)2
+

8

3

(√
log d+ 2

)
+

11

4

=
1

3
(log d)3/2 +

7

2
log d+

38

3
(log d)1/2 +

67

4
= (log d)3/2C̄

where C̄ is defined as (2.3.2). Plugging δ = 1/
√

(t− 1)C3 and substituting in (A.3.6)

implies

rt(π) = E[Regrett(π)] ≤ 4(K − 1)C0C̄x
2
max(log d)3/2

C3

1

t− 1
+4(K−1)bmaxxmax

(
max
i

P[Fλ0/4i,t−1]

)
as desired.

Proof of Theorem 1. The expected cumulative regret is the sum of expected regret for times

up to time T . As the regret term at time t = 1 is upper bounded by 2xmaxbmax and as

K = 2, by using Lemma 4 and Lemma 6 we can write

RT (π) =

T∑
t=1

rt(π)

≤ 2xmaxbmax +

T∑
t=2

[
4C0C̄x

2
max(log d)3/2

C3

1

t− 1
+ 4bmaxxmaxd exp(−C1(t− 1))

]

= 2xmaxbmax +

T−1∑
t=1

[
4C0C̄x

2
max(log d)3/2

C3

1

t
+ 4bmaxxmaxd exp(−C1t)

]

≤ 2xmaxbmax +
4C0C̄x

2
max(log d)3/2

C3
(1 +

∫ T

1

1

t
dt) + 4bmaxxmaxd

∫ ∞
1

exp(−C1t)dt

= 2xmaxbmax +
4C0C̄x

2
max(log d)3/2

C3
(1 + log T ) +

4bmaxxmaxd

C1

=
128C0C̄x

4
maxσ

2d(log d)3/2

λ2
0

log T +

(
2xmaxbmax +

128C0C̄x
4
maxσ

2d(log d)3/2

λ2
0

+
160bmaxx

3
maxd

λ0

)
,
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finishing up the proof.

A.4 Greedy-First Assumptions and Its Heuristic Implemen-

tation

We present the pseudo-code for OLS-Bandit and also the the heuristic for Greedy-First that

were not presented in §2.4 due to space limitations. The OLS bandit algorithm is introduced

by Goldenshluger and Zeevi (2013) and generalized by Bastani and Bayati (2015). Here,

we describe the more general version that applies to more than two arms where some arms

may be uniformly sub-optimal. For more details, we defer to the aforementioned papers.

As mentioned earlier, in addition to Assumptions 1 and 2, OLS bandit needs two additional

assumptions as follows:

Assumption 9 (Arm optimality). . Let Kopt and Ksub be mutually exclusive sets that

include all K arms. Sub-optimal arms i ∈ Ksub satisfy X>βi < maxj 6=iX
>βj − h for

some h > 0 and every X ∈ X . On the other hand, each optimal arm i ∈ Kopt, has a

corresponding set Ui = {X | X>βi > maxj 6=iX
>βj + h} We assume there exists p∗ > 0

such that mini∈Kopt Pr [Ui] ≥ p∗.

Assumption 10 (Conditional Positive-Definiteness). Define Σi ≡ E
[
XX> | X ∈ Ui

]
for

all i ∈ Kopt. Then, there exists λ1 > 0 such that for all i ∈ Kopt, λmin (Σi) ≥ λ1 > 0.

The OLS Bandit algorithm requires definition of forced-sample sets. In particular, let us

prescribe a set of times when we forced-sample arm i (regardless of the observed covariates

Xt):

Ti ≡
{

(2n − 1) ·Kq + j
∣∣∣ n ∈ {0, 1, 2, ...} and j ∈ {q(i− 1) + 1, q(i− 1) + 2, ..., iq}

}
.

(A.4.1)

Thus, the set of forced samples from arm i up to time t is Ti,t ≡ Ti ∩ [t] = O(q log t).

We also need to define all-sample sets Si,t =
{
t′
∣∣ πt′ = i and 1 ≤ t′ ≤ t

}
that are the

set of times we play arm i up to time t. Note that by definition Ti,t ⊂ Si,t. The algorithm

proceeds as follows. During any forced sampling time t ∈ Ti, the corresponding arm (arm i)

is played regardless of observed covariates Xt. However, for other times, the algorithm uses

two different estimations of arm parameters in order to make decision. First, it estimates

arm parameters via OLS applied only on the forced samples set and discards each arm that
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is sub-optimal by a margin at least equal to h/2. Then, it applies OLS to all-sample sets

and picks the arm with the highest estimated reward among the remaining arms. Algorithm

6 explains the pseudo-code for OLS Bandit.

Algorithm 6 OLS Bandit

Input parameters: q, h
Initialize β̂(Ti,0) and β̂(Si,0) by 0 for all i in [K]
Use q to construct force-sample sets Ti using Eq. (A.4.1) for all i in [K]
for t ∈ [T ] do

Observe Xt ∈ PX
if t ∈ Ti for any i then

πt ← i
else
K̂ =

{
i ∈ K

∣∣ XT
t β̂(Ti,t−1) ≥ maxj∈K X

T
t β̂(Tj,t−1)− h/2

}
πt ← arg maxi∈K̂X

T
t β̂(Si,t−1)

end if
Sπt,t ← Sπt,t−1 ∪ {t}
Play arm πt, observe Yi,t = XT

t βπt + εi,t
end for

The pseudo-code for Heuristic Greedy-First bandit is as follows.

Algorithm 7 Heuristic Greedy-First Bandit

Input parameters: t0
Execute Greedy Bandit for t ∈ [t0]

Set λ̂0 = 1
2t0

mini∈[K] λmin

(
Σ̂(Si,t0)

)
if λ̂0 6= 0 then

Execute Greedy-First Bandit for t ∈ [t0 + 1, T ] with λ0 = λ̂0

else
Execute OLS Bandit for t ∈ [t0 + 1, T ]

end if

A.5 Extensions to Generalized Linear Rewards and α-margin

Conditions

A.5.1 Generalized Linear Rewards

Uniqueness of solution of Equation (2.3.4). We first prove that the solution to maxi-

mum likelihood equation in Equation (2.3.4) is unique whenever the design matrix X>X is
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positive definite. The first order optimality condition in Equation (2.3.4) implies that

n∑
`=1

X`

(
Y` −A′(X>` β̂)

)
=

n∑
`=1

X`

(
Y` − µ(X>` β̂)

)
= 0 . (A.5.1)

Now suppose that there are two solutions to the above equation, namely β̂1 and β̂2. Then,

we can write
n∑
`=1

X`

(
µ(X>` β̂1)− µ(X>` β̂2)

)
= 0.

Using the mean-value theorem, for each 1 ≤ i ≤ n we have

µ(X>` β̂2)− µ(X>` β̂1) = µ′(X>` β̃`)
(
X>` (β̂2 − β̂1)

)
,

where β̃` belongs to the line connecting β̂1, β̂2. Replacing this in above equation implies

that

n∑
`=1

X`

(
µ′(X>` β̃`)

(
X>` (β̂2 − β̂1)

))
=

(
n∑
`=1

µ′(X>` β̃`)X`X
>
`

)
(β̂2 − β̂1) = 0. (A.5.2)

Note that µ is strictly increasing meaning that µ′ is always positive. Therefore, letting

m = min1≤l≤n

{
µ′(X>` β̃`)

}
, we have that

n∑
`=1

µ′(X>` β̃`)X`X
>
` � mXX>.

Therefore, if the design matrix XX> is positive definite, then so is
∑n

`=1 µ
′(X>` β̃`)X`X

>
` .

Hence, Equation (A.5.2) implies that β̂1 = β̂2.

Proof of Proposition 1. For proving this, we first state and prove a Lemma that will

be used later to prove this result.

Lemma 15. Consider the generalized linear model with the inverse link function µ. Sup-

pose that we have samples (X1, Y1), (X2, Y2), . . . , (Xn, Yn), where Yi = µ(X>i β0) + εi, where

‖Xi‖2 ≤ xmax and ‖β0‖2 ≤ bmax. Furthermore, assume that the design matrix X>X =∑n
i=1XiX

>
i is positive definite. Let β̂ = hµ(X,Y) be the (unique) solution to the Equa-

tion (A.5.1). Let θ > 0 be arbitrary and define mθ := min {µ′(z) : |z| ≤ (θ + bmax)xmax}.
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Suppose ‖(X>X)−1X>ε‖2 ≤ θmθ, then

‖β̂ − β0‖2 ≤
‖(X>X)−1X>ε‖2

mθ
.

Proving the above Lemma is adapted from Chen et al. (1999). For completeness, we

provide a proof here as well. We need the following Lemma which was proved in Chen et al.

(1999).

Lemma 16. Let H be a smooth injection from Rd to Rd with H(x0) = y0. Define

Bδ(x0) =
{
x ∈ Rd : ‖x− x0‖ ≤ δ

}
and Sδ(x0) = ∂Bδ(x0) =

{
x ∈ Rd : ‖x− x0‖ = δ

}
.

Then, infx∈Sδ(x0) ‖H(x)− y0‖ ≥ r implies that

(i) Br(y0) =
{
y ∈ Rd : ‖y − y0‖ ≤ r

}
⊂ H(Bδ(x0)),

(ii) H−1(Br(y0)) ⊂ Bδ(x0)

Proof of Lemma 15. Note that β̂ is the solution to the Equation (A.5.1) and therefore

n∑
i=1

(
µ(X>i β̂)− µ(X>i β0)

)
Xi =

n∑
i=1

Xiεi. (A.5.3)

Using the mean-value theorem for any β ∈ Rd and 1 ≤ i ≤ n we have

µ(X>i β)− µ(X>i β0) = µ′(X>i β
′
i)
(
X>i (β − β0)

)
,

where β′i is a point that lies on the line segment between β and β0. Define

G(β) =

(
n∑
i=1

XiX
>
i

)−1( n∑
i=1

(
µ(X>i β)− µ(X>i β0)

)
Xi

)

=

(
n∑
i=1

XiX
>
i

)−1( n∑
i=1

µ′(X>i β
′
i)
(
X>i (β − β0)

)
Xi

)

=

(
n∑
i=1

XiX
>
i

)−1( n∑
i=1

µ′(X>i β
′
i)XiX

>
i

)
(β − β0)

As µ′(·) > 0, G(β) is an injection from Rd to Rd satisfying G(β0) = 0. Consider the sets

Bθ(β0) =
{
β ∈ Rd : ‖β − β0‖2 ≤ θ

}
and Sθ(β0) =

{
β ∈ Rd : ‖β − β0‖ = θ

}
. If β ∈ Bθ(β0),

for each i, β′i lies on the line segment between β and β0 and therefore we have |X>i β′i| ≤
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max
(
X>i β0, X

>
i β
)
≤ xmax(bmax + θ) according to the Cauchy-Schwarz inequality. Then for

each β ∈ Bθ(β0)

‖G(β)‖22 = ‖G(β)−G(β0)‖22

= (β − β0)>

(
n∑
i=1

µ′(X>i β
′
i)XiX

>
i

)(
n∑
i=1

XiX
>
i

)−2( n∑
i=1

µ′(X>i β
′
i)XiX

>
i

)
(β − β0)

= m2
θ(β − β0)>

(
n∑
i=1

µ′(X>i β
′
i)

mθ
XiX

>
i

)(
n∑
i=1

XiX
>
i

)−2( n∑
i=1

µ′(X>i β
′
i)

mθ
XiX

>
i

)
(β − β0)

≥ m2
θ(β − β0)>

(
n∑
i=1

XiX
>
i

)(
n∑
i=1

XiX
>
i

)−2( n∑
i=1

XiX
>
i

)
(β − β0)

= m2
θ‖(β − β0)‖22 , (A.5.4)

or in other words ‖G(β)‖2 ≥ mθ‖β − β0‖2. In particular, for any β ∈ Sθ(β0) we have

G(β) ≥ θmθ. Therefore, letting γ = θmθ, Lemma 16 implies that G−1 (Bγ(0)) ⊂ Bθ(β0).

Note that if we let z =
(
X>X

)−1
X>ε, then by the assumption of lemma z ∈ Bγ(0) and

hence there exists β̃, ‖β̃−β0‖ ≤ θ satisfying G−1(z) = β̃, i.e., G(β̃) = z. Now we claim that

β̃ = β̂. The is not very difficult to prove. In particular, according to Equation (A.5.3) we

know that

n∑
i=1

(
µ(X>i β̂)− µ(X>i β0)

)
Xi =

n∑
i=1

Xiεi =⇒ G(β̂) =

(
n∑
i=1

XiX
>
i

)−1( n∑
i=1

Xiεi

)
= z.

Since the function G(·) is injective, it implies that β̂ = β̃. As a result, β̂ ∈ Bθ(β0) and

G(β̂) = z. The desired inequality follows according to Equation (A.5.4).

Having this we can prove a Corollary of Lemma 5 for the generalized linear models.

Corollary 5. Consider the generalized linear model with the link function µ. Consider

the contextual multi-armed bandit problem, in which upon playing arm i for the context

Xt, we observe a reward equal to Yt satisfying E[Yt] = µ(X>t βi). Furthermore, suppose

that the noise terms εit = Yt − µ(X>t βi) are σ-subgaussian for some σ > 0. Let β̂(Si,t) =

hµ (X(Si,t),Y(Si,t)) be the estimated parameter of arm i. Taking C2 = λ2/(2dσ2x2
max) and

n ≥ |Si,t|, we have for all λ, χ > 0,

P
[
‖β̂(Si,t)− βi‖2 ≥ χ and λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ 2d exp

(
−C2t

2(χmχ)2/n
)
.
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Proof. Note that if the design matrix Σ̂(Si,t) = X(Si,t)>X(Si,t) is positive definite, then

the event
{
‖β̂(Si,t)− βi‖2 ≥ χ

}
is the subset of the event

{
‖Σ̂(Si,t)−1X(Si,t)>ε(Si,t)‖ ≥ χmχ

}
.

The reason is very simple. Suppose the contrary, i.e., the possibility of having ‖β̂(Si,t) −
βi‖2 ≥ χ while ‖Σ̂(Si,t)−1X(Si,t)>ε(Si,t)‖2 < χmχ. By using the Lemma 16 for θ = χ we

achieve that

‖β̂(Si,t)− βi‖2 ≤
‖Σ̂(Si,t)−1X(Si,t)>ε(Si,t)‖2

mχ
<
χmχ

mχ
= χ,

which is a contradiction. Therefore,

P
[
‖β̂(Si,t)− βi‖2 ≥ χ and λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ P

[
‖Σ̂(Si,t)−1X(Si,t)>ε(Si,t)‖2 ≥ χmχ and λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ 2d exp

(
−C2t

2(χmχ)2/n
)
,

where the last inequality follows from the Lemma 5.

Now we are ready to prove a Lemma following the same lines of idea as Lemma 6. This

lemma can help us to prove the result for the generalized linear models.

Lemma 17. Recall that Fλi,t =
{
λmin

(
X(Si,t)>X(Si,t)

)
≥ λt

}
. Suppose that Assumptions

1 and 2 hold. Then, the instantaneous expected regret of the Greedy Bandit for GLMs

(Algorithm 2) at time t ≥ 2 satisfies

rt(π) ≤ 4(K − 1)LµC0C̄µx
2
max

C3

1

t− 1
+ 4(K − 1)bmaxxmax

(
max
i

P[Fλ0/4i,t−1]

)
,

where C3 = λ2
0/(32dσ2x2

max), C0 is defined in Assumption 2, Lµ is the Lipschitz constant of

the function µ(·) on the interval [−xmaxbmax, xmaxbmax], and C̄µ is defined in Proposition 1.

Proof. The proof is very similar to the proof of Lemma 6. We can decompose the regret as

rt(π) = E[Regrett(π)] =
∑K

i=1 E[Regrett(π) | Xt ∈ Ri] · P(Xt ∈ Ri). Now we can expand
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each term as

E[Regrett(π) | Xt ∈ Rl] = E
[
µ
(
X>t βl

)
− µ

(
X>t βπt

)
| Xt ∈ Rl

]
≤ LµE

[
X>t (βl − βπt) | Xt ∈ Rl

]
,

as µ is Lµ Lipschitz over the interval [−xmaxbmax, xmaxbmax] and |X>t βj | ≤ xmaxbmax for all

j ∈ [K]. Now one can follow all the arguments in Lemma 6 up to the point that we use

concentration results for βj − β̂j . In particular, Equation (A.3.5) reads as

P
[
I(Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1) | Xt ∈ Rl ∩ Ih

]
≤ P

[
‖βl − β̂(Sl,t−1)‖2 ≥ δh,Fλ0/4l,t−1 | Xt ∈ Rl ∩ Ih

]
+ P

[
‖β̂(Si,t−1)− βi‖2 ≥ δh,Fλ0/4i,t−1 | Xt ∈ Rl ∩ Ih

]
.

Using the concentration result on Corollary 5, and noting that Xt is independent of β̂(Sj,t−1)

for all j, the right hand side of above equation turns into

P
[
‖βl − β̂(Sl,t−1)‖2 ≥ δh,Fλ0/4l,t−1

]
+ P

[
‖β̂(Si,t−1)− βi‖2 ≥ δh,Fλ0/4i,t−1

]
≤ 4d exp

(
−C3(t− 1)(δh)2m2

δh

)
= 4d exp(−h2m2

δh).

Now note that δh is at most equal to bmax (since x>(βi−βl) is upper bounded by 2xmaxbmax).

As mθ := min {µ′(z) : z ∈ [−(bmax + θ)xmax, (bmax + θ)xmax]}, therefore if θ2 > θ1, then

mθ2 ≤ mθ1 . Hence, for all values of 0 ≤ h ≤ hmax.

4d exp(−h2m2
δh) ≤ 4d exp(−h2m2

bmax
).

We can simply use 1 whenever this number is larger than one as this is the probability of
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an event. Therefore,

E[Regrett(π)] ≤
K∑
l=1

LµE
[
X>t (βl − βπt) | Xt ∈ Rl

]
× P(Xt ∈ Rl)

≤
K∑
l=1

Lµ

(∑
i 6=l

hmax∑
h=0

[
4C0δ

2x2
max(h+ 1)2 min{1, 4d exp(−h2m2

bmax
)}
]

+ 4(K − 1)bmaxxmax max
i

P(Fλ0/4i,t−1)

)

≤ 4(K − 1)Lµ

C0δ
2x2

max

(
hmax∑
h=0

(h+ 1)2 min{1, 4d exp(−h2m2
bmax

)}

)

+ bmaxxmax max
i

P(Fλ0/4i,t−1)


≤ 4(K − 1)Lµ

C0δ
2x2

max

 h0∑
h=0

(h+ 1)2 +
hmax∑

h=h0+1

4d(h+ 1)2 exp(−h2m2
bmax

)


+ bmaxxmax max

i
P(Fλ0/4i,t−1)

,
where we take h0 = b

√
log 4d

mbmax
c + 1. Note that functions f(x) = x2 exp(−m2

bmax
x2) and

g(x) = x exp(−m2
bmax

x2) are both decreasing for x ≥ 1/mbmax and therefore

hmax∑
h=h0+1

(h+ 1)2 exp(−h2m2
bmax

) ≤
∫ ∞
h0

h2 exp(−h2m2
bmax

)dh

+

∫ ∞
h0

2h exp(−h2m2
bmax

)dh+

∫ ∞
h0

exp(−h2m2
bmax

)dh.

Using the change of variable h′ = mbmaxh, integration by parts, and the inequality
∫∞
t exp(−x2)dx ≤
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exp(−t2)/(t+
√
t2 + 4/π), we obtain that

h0∑
h=0

(h+ 1)2 + 4d

hmax∑
h=h0+1

(h+ 1)2 exp(−h2)

=
(h0 + 1)(h0 + 2)(2h0 + 3)

6
+ 4d

(
h0

mbmax
2 + 1

4

m3
bmax

+
1

m2
bmax

+
1

2mbmax

)
exp(−h2

0m
2
bmax

)

≤ 1

3
h3

0 +
3

2
h2

0 +
13

6
h0 + 1 + 4d

(
h0

mbmax
2 + 1

4

m3
bmax

+
1

m2
bmax

+
1

2mbmax

)
1

4d

≤ 1

3

(√
log 4d

mbmax

+ 1

)3

+
3

2

(√
log 4d

mbmax

+ 1

)2

+
8

3

(√
log 4d

mbmax

+ 1

)
+

1

m3
bmax

((√
log 4d

mbmax

+ 1

)
mbmax

2
+

1

4

)
+

1

m2
bmax

+
1

2mbmax

= C̄µ

By replacing this in the regret equation above and substituting δ = 1/
√

(t− 1)C3 we get

rt(π) = E[Regrett(π)] ≤ 4(K − 1)LµC0C̄µx
2
max

C3

1

t− 1
+4(K−1)Lµbmaxxmax

(
max
i

P[Fλ0/4i,t−1]

)
as desired.

Now we are ready to finish up the proof of Proposition 1. The only other result that we

need is an upper bound on the probability terms P[Fλ0/4i,t−1]. The key here is again Lemma 4.

Note that in the case of GLMs this lemma again holds. The reason is simply because of the

fact that the greedy decision does not change in the presence of the inverse link function

µ. In other words, as arg maxi∈[K] µ
′(X>t βi) = arg maxi∈[K]X

>
t βi, the minimum eigenvalue

of each of the covariance matrices is above tλ0/4 with a high probability and that implies

what we exactly want.

Remark A.5.1. The result of Lemma 4 remains true for the generalized linear models.

Therefore, we can use this observation to finish the proof of Proposition 1. This consists

of summing up the regret terms up to time T .

Proof of Proposition 1. The expected cumulative regret is the sum of expected regret for

times up to time T . As the regret term at time t = 1 is upper bounded by 2Lµxmaxbmax
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and as K = 2, by using Lemma 4 and Lemma 17 we can write

RT (π) =

T∑
t=1

rt(π)

≤ 2Lµxmaxbmax +

T∑
t=2

Lµ

[
4C0C̄µx

2
max

C3

1

t− 1
+ 4bmaxxmaxd exp(−C1(t− 1))

]

= 2Lµxmaxbmax +

T−1∑
t=1

Lµ

[
4C0C̄µx

2
max

C3

1

t
+ 4bmaxxmaxd exp(−C1t)

]
≤ 2Lµxmaxbmax + Lµ

4C0C̄µx
2
max

C3
(1 +

∫ T

1

1

t
dt) + 4Lµbmaxxmaxd

∫ ∞
1

exp(−C1t)dt

= 2Lµxmaxbmax + Lµ
4C0C̄µx

2
max

C3
(1 + log T ) + Lµ

4bmaxxmaxd

C1

= Lµ

(
128C0C̄µx

4
maxσ

2d

λ2
0

log T +

(
2xmaxbmax +

128C0C̄µx
4
maxσ

2d

λ2
0

+
160bmaxx

3
maxd

λ0

))
,

finishing up the proof.

A.5.2 Regret bounds for More General Margin Conditions

While the assumed margin condition in Assumption 2 holds for many well-known distribu-

tions, one can construct a distribution with a growing density near the decision boundary

that violates Assumption 2. Therefore, it is interesting to see how regret bounds would

change if we assume other type of margin conditions. Similar to what proposed in Weed

et al. (2015), we assume that the distribution of contexts pX satisfies a more general α-

margin condition as following.

Assumption 11 (α-Margin Condition). For α ≥ 0, we say that the distribution pX satisfies

the α-margin condition, if there exists a constant C0 > 0 such that for each κ > 0:

∀ i 6= j : PX
[
0 < |X>(βi − βj)| ≤ κ

]
≤ C0κ

α .

Although it is straightforward to verify that any distribution pX satisfies the 0-margin

condition, it is easy to construct a distribution violating the α-margin condition, for an

arbitrary α > 0. In addition, if pX satisfies the α-margin condition, then for any α′ < α it

also satisfies the α′-margin condition. In the case that there exists some gap between arm

131



rewards, meaning the existence of κ0 > 0 such that

∀ i 6= j : PX
[
0 < |X>(βi − βj)| ≤ κ0

]
= 0,

the distribution pX satisfies the α-margin condition for all α ≥ 0.

Having this definition in mind, we can prove the following result on the regret of Greedy

Bandit algorithm when pX satisfies the α-margin condition:

Corollary 6. Let K = 2 and suppose that pX satisfies the α-margin condition. Further-

more, assume that Assumptions 1 and 3 hold, then we have the following asymptotic bound

on the expected cumulative regret of Greedy Bandit algorithm

RT (π) =


O
(
T (1−α)/2

)
if 0 ≤ α < 1,

O (log T ) if α = 1,

O(1) if α > 1,

(A.5.5)

This result shows that if the distribution pX satisfies the α-margin condition for α > 1,

then the Greedy Bandit algorithm is capable of learning the parameters βi while incurring

a constant regret in expectation.

Proof. This corollary can be easily implied from Lemma 6 and Theorem 1 with a very slight

modification. Note that all the arguments in Lemma 6 hold and the only difference is where

we want to bound the probability P[Xt ∈ Ih] in Equation (A.3.4). In this Equation, if we

use the α-margin bound as

P[X>t (βl − βi) ∈ (0, 2δxmax(h+ 1)]] ≤ C0 (2δxmax(h+ 1))α ,

we obtain that

E
[
I(Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1)X>t (βl − βi) | Xt ∈ Rl

]
≤

hmax∑
h=0

21+αC0δ
1+αx1+α

max(h+ 1)1+α + P
[
Xt ∈ R̂i≥l,t,F

λ0/4
l,t−1,F

λ0/4
i,t−1 | Xt ∈ Rl ∩ Ih

]
,
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which turns the regret bound in Equation (A.3.6) into

rt(π) ≤ (K − 1)
[
C021+αδ1+αx1+α

max

( h0∑
h=0

(h+ 1)1+α +

hmax∑
h=h0+1

4d(h+ 1)1+α exp(−h2)
)]

(A.5.6)

+ 4(K − 1)bmaxxmax max
i

P(Fλ0i,t−1),

Now we claim that the above summation has an upper bound that only depends on d and

α. If we prove this claim, the dependency of the regret bound with respect to t can only

come from the term δ1+α and therefore we can prove the desired asymptotic bounds. For

proving this claim, consider the summation above and let h1 = d
√

3 + αe. Note that for

each h ≥ h2 = max(h0, h1) using h2 ≥ (3 + α)h ≥ (3 + α) log h we have

(h+ 1)1+α exp(−h2) ≤ (2h)1+α exp(−h2) ≤ 21+α exp(−h2 + (1 + α) log h) ≤ 21+α

h2
.

Furthermore, all the terms corresponding to h ≤ h2 = max(h0, h1) have an upper bound

equal to (h + 1)1+α (remember that for h ≥ h0 + 1 we have 4d exp(−h2) ≤ 1). Therefore,

the summation in (A.5.6) is bounded above by

h0∑
h=0

(h+ 1)1+α +

hmax∑
h=h0+1

4d(h+ 1)1+α exp(−h2) ≤
h2∑
h=0

(h+ 1)1+α +

∞∑
h=h2+1

1

h2

≤ (1 + h2)2+α +
π2

6
:= g(d, α)

for some function g. This is true according to the fact that h2 is the maximum of h0, that

only depends on d, and h1 that only depends on α. Replacing δ = 1/
√

(t− 1)C3 in the

Equation (A.5.6) and absorbing all the constants we reach to

rt(π) = (K − 1)g1(d, α, C0, xmax, σ, λ0)(t− 1)−(1+α)/2 + 4(K − 1)bmaxxmax

(
max
i

P[Fλ0i,t ]

)
for some function g1.

The last part of the proof is summing up the instantaneous regret terms for t =

1, 2, . . . , T . Note that K = 2, and using Lemma 4 for i = 1, 2, we can bound the probabilities
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P[Fλ0i,t−1] by d exp(−C1(t− 1)) and therefore

RT (π) ≤ 2xmaxbmax +
T∑
t=2

g1(d, α, C0, xmax, σ, λ0)(t− 1)−(1+α)/2 + 4bmaxxmaxd exp(−C1(t− 1))

≤ 2xmaxbmax +
T−1∑
t=1

g1(d, α, C0, xmax, σ, λ0)t−(1+α)/2 + 4bmaxxmaxd exp(−C1t)

≤ 2xmaxbmax + g1(d, α, C0, xmax, σ, λ0)

[
1 +

(∫ T

t=1
t−(1+α)/2dt

)]
+ 4dbmaxxmax

∫ ∞
0

exp(−C1t)dt

= 2xmaxbmax + g1(d, α, C0, xmax, σ, λ0)

[
1 +

(∫ T

t=1
t−(1+α)/2dt

)]
+

4bmaxxmaxd

C1
.

Now note that the integral of t−(1+α)/2 over the interval [1, T ] satisfies

∫ T

t=1
t−(1+α)/2 ≤


T (1−α)/2

(1−α)/2 if 0 ≤ α < 1,

log T if α = 1,

1
(α−1)/2 if α > 1,

which yields the desired result.

A.6 Additional Simulations

A.6.1 More than Two Arms (K > 2)

For investigating the performance of the Greedy-Bandit algorithm in presence of more than

two arms, we run Greedy Bandit algorithm for K = 5 and d = 2, 3, . . . , 10 while keeping

the distribution of covariates as 0.5×N(0d, Id) truncated at 1. We assume that βi is again

drawn from N(0d, Id). For having a fair comparison, we scale the noise variance by d so as

to keep the signal-to-noise ratio fixed (i.e., σ = 0.25
√
d). For small values of d, it is likely

that Greedy Bandit algorithm drops an arm due to the poor estimations and as a result

its regret becomes linear. However, for large values of d this issue is resolved and Greedy

Bandit starts to perform very well.
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(a) Regret for t = 1, . . . , 10000.
(b) Distribution of regret at T = 10000.

Figure A.1: These figures show a sharp change in the performance of Greedy Bandit for K = 5 arms as d increases.

We then repeat the simulations of §3.7 for K = 5 and d ∈ {3, 7} while keeping the

other parameters as in §3.7. In other words, we assume that βi is drawn from N(0d, Id).

Also, X is drawn from 0.5 × N(0d, Id) truncated to have its `∞ norm at most one. We

create 1000 problem instances and plot the average cumulative regret of algorithms for

T ∈ {1, 2, . . . , 10000}. We use the correct prior regime for OFUL and TS. The results,

as shown in Figure A.2, demonstrate that Greedy-First nearly ties with Greedy Bandit as

the winner when d = 7. However for d = 3 that Greedy Bandit performs poorly, while

Greedy-First performs very close to the best algorithms.

A.6.2 Sensitivity to Parameters

In this section, we will perform a sensitivity analysis to demonstrate that the choice of

parameters h, q, and t0 has a small impact on performance of Greedy First. The sensitivity

analysis is performed with the same problem parameters as in Figure 2.2 for the case that

covariate diversity does not hold. As it can be observed from Figure A.3, the choice of

parameters h, q, and t0 does have a very small impact on the performance of the Greedy-

First algorithm, which verifies the robustness of Greedy-First algorithm to the choice of

parameters.
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(a) K = 5, d = 3 (b) K = 5, d = 7

Figure A.2: Simulations for K > 2 arms.

(a) Sensitivity with respect to
h.

(b) Sensitivity with respect to
q.

(c) Sensitivity with respect to
t0.

Figure A.3: Sensitivity analysis for the expected regret of Greedy-First algorithm with respect to the input parameters
h, q, and t0.
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A.7 Proofs of Probabilistic Results

Proof of Proposition 2. We first start by proving monotonicity results:

• Let σ1 < σ2. Note that only the second, the third, and the last term of L(γ, δ, p),

defined in Equation (2.3.6), depend on σ. As for any positive number χ, the function

exp(−χ/σ2) is increasing with respect to σ, second and third terms are increasing

with respect to σ. Furthermore, the last term can be expressed as

2d exp (−D2(γ)(p−m|Ksub|))
1− exp(−D2(γ))

= 2d
∞∑

t=p−m|Ksub|

exp

(
−λ

2
1h

2(1− γ)2

8dσ2x4
max

t

)
.

Each term in above sum is increasing with respect to σ. Therefore, the function L is

increasing with respect to σ. As Sgb is one minus the infimum of L taken over the

possible parameter space of γ, δ, and p, that is also non-increasing with respect to σ,

yielding the desired result.

• Let m1 < m2 and suppose that we use the superscript L(i) for the function L(·, ·, ·)
when m = mi, i = 1, 2. We claim that for all γ ∈ (0, 1), δ > 0, and p ≥ Km1 + 1,

conditioning on L(1)(γ, δ, p) ≤ 1 we have L(1)(γ, δ, p) ≥ L(2)(γ, δ, p + K(m2 − m1)).

Note that the region for which L(1)(γ, δ, p) > 1 does not matter as it leads to a

negative probability of success in the formula Sgb = 1− infγ,δ,p L(γ, δ, p), and we can

only restrict our attention to the region for which L(1)(γ, δ, p) ≤ 1. To prove the

claim let θi = P
[
λmin(X>1:mi

X1:mi) ≥ δ
]
, i = 1, 2 and define f(θ) = 1 − θK + QKθ

for the constant Q = 2d exp
(
−(h2δ)/(8dσ2x2

max)
)
. Note that f(θi) is equal to to

the first two terms of L(i)(γ, δ, p) in Equation (2.3.6). As we later going to replace

θ = θi we only restrict our attention to θ ≥ 0. The derivative of f is equal to

f ′(θ) = −KθK−1 + QK which is negative when θK−1 > Q. Note that if θK−1 ≤ Q

and if we drop the third, fourth, and fifth term in L (see Equation (2.3.6)) that are all

positive, we obtain L(i)(γ, δ, p) > 1− θK +QKθ > 1− θK +Qθ ≥ 1, leaving us in the

unimportant regime. Therefore, on the important regime the derivative is negative

and f is decreasing. It is not very difficult to see that θ1 ≤ θ2. Returning to our

original claim, if we calculate L(1)(γ, δ, p) − L(2)(γ, δ, p + K(m2 −m1)) it is easy to
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observe that the third term cancels out and we end up with

L(1)(γ, δ, p)− L(2)(γ, δ, p+K(m2 −m1)) = f(θ1)− f(θ2)

+
exp (−D1(γ)(p−m1|Ksub|))− exp (−D1(γ)(p−m2|Ksub|+K(m2 −m1)))

1− exp(−D1(γ))

+
exp (−D2(γ)(p−m1|Ksub|))− exp (−D2(γ)(p−m2|Ksub|+K(m2 −m1)))

1− exp(−D2(γ))
≥ 0 ,

where we used the inequality (p−m1|Ksub|)−(p−m2|Ksub|+K(m2 −m1)) = |Kopt|(m2−
m1) ≥ 0. This proves our claim. Note that whenever when p varies in the range

[Km1 + 1,∞), the quantity p+K(m2 −m1) covers the range [Km2 + 1,∞). There-

fore, we can write that

Sgb(m1,K, σ, xmax, λ1, h) = 1− inf
γ∈(0,1),δ,p≥Km1+1

L(1)(γ, δ, p)

≤ 1− inf
γ∈(0,1),δ,p≥Km1+1

L(1)(γ, δ, p+K(m2 −m1))

= 1− inf
γ∈(0,1),δ,p′≥Km2+1

L(2)(γ, δ, p′)

= Sgb(m2,K, σ, xmax, λ1, h),

as desired.

• Let h1 < h2. In this case it is very easy to check that the first, fourth and fifth terms in

L (see Equation (2.3.6)) do not depend on h. Dependency of second and third terms

are in the form exp(−Qh2) for some constant Q, which is decreasing with respect h.

Therefore, if we use the superscript L(i) for the function L(·, ·, ·) when h = hi, i = 1, 2,

we have that L(1)(γ, δ, p) ≥ L(2)(γ, δ, p) which implies

Sgb(m,K, σ, xmax, λ1, h1) = 1− inf
γ∈(0,1),δ,p≥Km+1

L(1)(γ, δ, p)

≤ 1− inf
γ∈(0,1),δ,p≥Km+1

L(2)(γ, δ, p)

= 1− inf
γ∈(0,1),δ,p′≥Km+1

L(2)(γ, δ, p′)

= Sgb(m,K, σ, xmax, λ1, h2),

as desired.
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• Similar to the previous part, it is easy to observe that the first, second, and third term

in L, defined in Equation (2.3.6) do not depend on λ1. The dependency of last two

terms with respect to λ1 is of the form exp(−Q1λ1) and exp(−Q2λ
2
1) which both are

decreasing functions of λ1. The rest of argument is similar to the previous part and

by replicating it with reach to the conclusion that Sgb is non-increasing with respect

to λ1.

• Let us suppose that K1m1 = K2m2, |K1sub |m1 = |K2sub |m2, and K1 < K2. Sim-

ilar to before, we use superscript L(i) to denote the function L(·, ·, ·) when m =

mi,K = Ki,Ksub = Kisub . Then it is easy to check that the last three terms in

L(1) and L(2) are the same. Therefore, for comparing Sgb(m1,K1, σ, xmax, λ1) and

Sgb(m2,K2, σ, xmax, λ1) one only needs to compare the first two terms. Letting

P
[
λmin(X>1:mi

X1:mi) ≥ δ
]

= θi, i = 1, 2 and Q = 2d exp
(
− h2δ

8dσ2x2max

)
we have

L(1)(γ, δ, p)− L(2)(γ, δ, p) = θK2
2 − θK1

1 +QK1θ1 −QK2θ2.

Similar to the proof of second part, it is not very hard to prove that on the reasonable

regime for the parameters the function g(θ) = −θK1+QK1θ is decreasing and therefore

L(1)(γ, δ, p)−L(2)(γ, δ, p) = θK2
2 −θ

K1
1 +QK1θ1−QK2θ2 ≤ θK2

2 −θ
K1
2 +QK1θ2−QK2θ2 < 0,

as θ1 ≥ θ2 ∈ [0, 1] and K2 > K1. Taking the infimum implies the desired result.

Now let us derive the limit of L when σ → 0. For each σ < (1/Km)2, define γ(σ) =

1/2, δ(σ) =
√
σ, and p(σ) = d1/

√
σe. Then, by computing the function L for these specific

choices of parameters and upper bounding the summation in Equation (2.3.6) with its

maximum times the number of terms we get

L(γ(σ), δ(σ), p(σ)) ≤ 1−
(
P
[
λmin(X>1:mX1:m) ≥

√
σ
])K

+ 2KdP
[
λmin(X>1:mX1:m) ≥

√
σ
]

exp
(
−Q1/σ

3/2
)

+
2d√
σ

exp
(
−Q2/

√
σ
)

+ d
exp (−Q3/

√
σ)

1− exp(−Q3)
+ 2d

exp
(
−Q4/σ

5/2
)

1− exp (−Q4/σ2)
:= J(σ),
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for positive constants Q1, Q2, Q3, and Q4 that do not depend on σ. Note that for σ > 0,

inf
γ∈(0,1),δ>0,p≥Km+1

L(γ, δ, p) ≤ J(σ).

Therefore, by taking limit with respect to σ we get

lim
σ↓0

Sgb(m,K, σ, xmax, λ1, h) = 1− lim
σ↓0

L(γ, δ, p)

≥ lim
σ↓0

(1− J(σ)) = 1−
{

1−
(
P
[
λmin(X>1:mX1:m) > 0

])K}
= P

[
λmin(X>1:mX1:m) > 0

]K
,

proving one side of the result. For achieving the desired result we need to prove that

P
[
λmin(X>1:mX1:m) > 0

]K ≥ limσ↓0 S
gb(m,K, σ, xmax, λ1, h) which is the easier way. Note

that the function L always satisfies

L(γ, δ, p) ≥ 1−
(
P
[
λmin(X>1:mX1:m) ≥ δ

])K
≥ 1−

(
P
[
λmin(X>1:mX1:m) > 0

])K
.

As a result, for any σ > 0 we have

Sgb(m,K, σ, xmax, λ1, h) ≤ 1−
(

1− P
[
λmin(X>1:mX1:m) > 0

])K
= P

[
λmin(X>1:mX1:m) > 0

]K
.

By taking limits we reach to the desired conclusion.

Proof of Proposition 3. We omit proofs regarding to the monotonicity results as they are

very similar to those provided in Proposition 2.

For deriving the limit when σ → 0, define γ(σ) = γ∗, δ(σ) =
√
σ, and p(σ) = t0. Then,

by computing the function L′ for these specific values we have

L′(γ(σ), δ(σ), p(σ)) ≤ 1−
(
P
[
λmin(X>1:mX1:m) ≥

√
σ
])K

+ 2KdP
[
λmin(X>1:mX1:m) ≥

√
σ
]

exp

(
−Q′1
σ3/2

)
+ 2dt0 exp

{
−Q

′
2

σ

}
+
Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))
+ 2d

exp
(
−Q′3t0/σ2

)
1− exp (−Q′3/σ2)

:= J ′(σ),
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for positive constants Q′1, Q
′
2, and Q′3 that do not depend on σ. Note that for σ > 0,

inf
γ≤γ∗,δ>0,Km+1≤p≤t0

L′(γ, δ, p) ≤ J ′(σ).

Therefore, by taking limit with respect to σ we get

lim
σ↓0

Sgf(m,K, σ, xmax, λ1, h) = 1− lim
σ↓0

L′(γ, δ, p)

≥ lim
σ↓0

(
1− J ′(σ)

)
= P

[
λmin(X>1:mX1:m) > 0

]K
− Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))
,

proving one side of the result. For achieving the desired result we need to prove that the

other side of this inequality. Note that the function L′ always satisfies

L′(γ, δ, p) ≥ 1−
(
P
[
λmin(X>1:mX1:m) ≥ δ

])K
+
Kd exp(−D1(γ)p)

1− exp(−D1(γ))
. (A.7.1)

Note that the function D1(γ) is increasing with respect to γ. This is easy to verify as the

first derivative of D1(γ) with respect to γ is equal to

∂D1

∂γ
=

λ1

x2
max

{1− log(1− γ)− 1} = − λ1

x2
max

log(1− γ),

which is increasing for γ ∈ [0, 1). Therefore, by using p ≤ t0 and γ ≤ γ∗ we have

Kd exp(−D1(γ)p)

1− exp(−D1(γ))
≥ Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))
.

Substituting this in Equation (A.7.1) implies that

Sgf(m,K, σ, xmax, λ1, h) ≤ 1−
{(

1− P
[
λmin(X>1:mX1:m) > 0

])K
+
Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))

}
= P

[
λmin(X>1:mX1:m) > 0

]K
− Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))
.

By taking limits we reach to the desired conclusion.
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Proofs of Theorems 2 and 4

Let us first start by introducing two new notations and recalling some others. For each

δ > 0 define

Hδi :=
{
λmin

(
X(Si,Km)>X(Si,Km)

)
≥ δ
}

J λi,t =
{
λmin

(
X(Si,t)>X(Si,t)

)
≥ λt−m|Ksub|

}
,

and recall that

Fλi,t =
{
λmin

(
X(Si,t)>X(Si,t)

)
≥ λt

}
Gχi,t =

{
‖β̂(Si,t)− βi‖2 < χ

}
.

Note that whenever |Ksub| = 0, the sets J and F coincide. We first start by proving some

lemmas that will be used later to prove Theorems 2 and 4.

Lemma 18. Let i ∈ [K] be arbitrary. Then

P
[
Hδi ∩ G

θ1
i,Km

]
≤ 2dP

{
λmin

(
X>1:mX1:m

)
≥ δ
}

exp

{
− θ2

1δ

2dσ2

}
Remark A.7.1. Note that Lemma 5 provides an upper bound on the same probability

event described above. However, those results are addressing the case that samples are highly

correlated due to greedy decisions. In the first Km rounds that m rounds of random sampling

are executed for each arm, samples are independent and we can use sharper tail bounds. This

would help us to get better probability guarantees for the Greedy Bandit algorithm.

Proof. Note that we can write

P
[
Hδi ∩ G

θ1
i,Km

]
= P

[
λmin

(
X(Si,Km)>X(Si,Km)

)
≥ δ, ‖β̂(SKm,t)− βi‖2 ≥ θ1

]
. (A.7.2)

Note that if λmin

(
X(Si,Km)>X(Si,Km)

)
≥ δ > 0, this means that the covariance matrix is
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invertible. Therefore, we can write

β̂(SKm,t)− βi =
[
X(Si,Km)>X(Si,Km)

]−1
X(Si,Km)>Y (Si,Km)− βi

=
[
X(Si,Km)>X(Si,Km)

]−1
X(Si,Km)> [X(Si,Km)βi + ε(Si,Km)]− βi

=
[
X(Si,Km)>X(Si,Km)

]−1
X(Si,Km)>ε(Si,Km) .

To avoid clutter, we drop the term Si,Km in equations from here onwards. Letting M =[
X(Si,Km)>X(Si,Km)

]−1
X(Si,Km) the probability in Equation (A.7.2) turns into

P
[
Hδi ∩ G

θ1
i,Km

]
= P

[
λmin

(
X>X

)
≥ δ, ‖Mε‖2 ≥ θ1

]
= P

λmin

(
X>X

)
≥ δ,

d∑
j=1

|m>j ε| ≥ θ1


≤ P

[
λmin

(
X>X

)
≥ δ, ∃j ∈ [d], |m>j ε| ≥ θ1/

√
d
]

≤
d∑
j=1

P
[
λmin

(
X>X

)
≥ δ, |m>j ε| ≥ θ1/

√
d
]

=
d∑
j=1

PXPε|X
[
λmin

(
X>X

)
≥ δ, |m>j ε| ≥ θ1/

√
d | X = X0

]
, (A.7.3)

where in the second inequality we used a union bound. Note that in above PX means

the probability distribution over the matrix X, which can also be thought as the multi-

dimensional probability distribution of pX , or alternatively pmX . Now fixing X = X0, the

matrix M only depends on X0 and we can use the well-known Chernoff bound for subgaus-

sian random variables to achieve

P[λmin

(
X>0 X0

)
≥ δ, |m>j ε| ≥

θ1√
d
| X = X0] = I

[
λmin

(
X>0 X0

)
≥ δ
]
P[|m>j ε| ≥

θ1√
d
| X = X0]

≤ 2I
[
λmin

(
X>0 X0

)
≥ δ
]

exp

{
− θ2

1

2dσ2‖mj‖22

}

Now note that when λmin

(
X>0 X0

)
≥ δ we have

max
j∈[d]
‖mj‖22 = max

(
diag

(
MM>

))
= max

(
diag

(
X>X

−1
))
≤ λmax

(
X>X

−1
)
≤ 1

δ
,
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Hence,

Pε|X
[
λmin

(
X>X

)
≥ δ, |m>j ε| ≥ θ1/

√
d | X = X0

]
≤ 2I

[
λmin

(
X>0 X0

)
≥ δ
]

exp

{
− θ2

1δ

2dσ2

}
.

Putting this back in Equation (A.7.3) gives

P
[
Hδi ∩ G

θ1
i,Km

]
≤ 2dPX

[(
λmin

(
X>X

))
≥ δ
]

exp

{
− θ2

1δ

2dσ2

}
= 2dP

{
λmin

(
X>1:mX1:m

)
≥ δ
}

exp

{
− θ2

1δ

2dσ2

}
,

as desired. In above we use the fact that PX

[
λmin

(
X>X

)
≥ δ
]

is equal to P
{
λmin

(
X>1:mX1:m

)
≥ δ
}

as they both describe the probability that the minimum eigenvalue of a matrix derived from

m random samples from pX is not smaller than δ.

Lemma 19. For an arbitrary Km+ 1 ≤ t ≤ p− 1 and i ∈ [K] we have

P
[
Hδi ∩ G

θ1
i,t

]
≤ 2d exp

{
− θ2

1δ
2

2d(t− (K − 1)m)σ2x2
max

}
Proof. This is an immediate consequence of Lemma 5. Replace χ = θ1, λ = δ/t and note

that |Si,t| ≤ t− (K − 1)m always holds as (K − 1)m rounds of random sampling for arms

other than i exist in algorithm.

The next step is proving that if all arm estimates are within the ball of radius θ1 around

their true values, the minimum eigenvalue of arms in Kopt grow linearly, while sub-optimal

arms are not picked by Greedy Bandit algorithm. The proof is a general extension of Lemma

4.

Lemma 20. For each t ≥ p, i ∈ Kopt

P
[
J λ1(1−γ)
i,t ∩

(
∩Kl=1 ∩t−1

j=Km G
θ1
l,j

)]
≤ d exp (−D1(γ)(t−m|Ksub|)) .

Furthermore, for each t ≥ Km+ 1 and i ∈ Ksub conditioning on the event ∩Kl=1G
θ1
l,t−1, arm

i would not be played at time t under greedy policy.

Proof. The idea is again using concentration inequality in Lemma 14. Let i ∈ Kopt and
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recall that

Σ̃i,t =
t∑

k=1

E
[
XkX

>
k I
[
Xk ∈ R̂πi,k

]
| H−k−1

]
Σ̂i,t =

t∑
k=1

XkX
>
k I
[
Xk ∈ R̂πi,k

]
,

denote the expected and sample covariance matrices of arm i at time t respectively. The aim

is deriving an upper bound on the probability that minimum eigenvalue of Σ̂i,t is less than

the threshold tλ1(1− γ)−m|Ksub|. Note that Σ̂i,t consists of two different types of terms:

1) random sampling rounds 1 ≤ k ≤ Km and 2) greedy action rounds Km+ 1 ≤ k ≤ t. We

analyze these two types separately as following:

• k ≤ Km. Note that during the first Km periods, each arm receives m random samples

from the distribution pX and therefore using concavity of the function λmin(·) we have

λmin

(
Km∑
k=1

E
[
XkX

>
k I
[
Xk ∈ R̂πi,k

]
| H−k−1

])
≥ mλminE

(
XX>

)
≥ mλmin

 ∑
j∈Kopt

E
(
XX>I

(
X>βj > max

l 6=j
X>βl + h

))
≥ m|Kopt|λ1,

where X is a random sample from distribution pX .

• k ≥ Km+ 1. If Gθ1l,j holds for all l ∈ [K], then

E
[
XkX

>
k I
(
Xk ∈ R̂πi,k

)
| H−k−1

]
� E

[
XX>I

(
X>β̂(Si,k) > max

l 6=i
X>β̂(Sl,k)

)]
� λ1I .

The reason is very simple; basically having ∩Kl=1G
θ1
l,j means that ‖β̂(Sl,k)−βl‖ < θ1 and

therefore for each x satisfying x>βi ≥ maxl 6=i x
>βl + h, using two Cauchy-Schwarz

inequalities we can write

x>β̂(Si,j)− x>β̂(Sl,j) > x>(βi − βl)− 2xmaxθ1 = x>(βi − βl)− h ≥ 0,
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for each l 6= i. Therefore, by taking a maximum over l we obtain x>β̂(Si,j) −
maxi 6=l x

>β̂(Sl,j) > 0. Hence,

E
[
XkX

>
k I
(
X>k β̂(Si,k) > max

l 6=i
X>k β̂(Sl,j)

)
| H−k−1

]
� E

[
XX>I

(
X>βi > max

l 6=i
X>βl + h

)]
� λ1I,

using Assumption 4, which holds for all optimal arms, i.e, i ∈ Kopt.

Putting these two results together and using concavity of λmin(·) over positive semi-definite

matrices we have

λmin

(
Σ̃i,t

)
= λmin

(
t∑

k=1

E
[
XkX

>
k I
[
Xk ∈ R̂πi,k

]
| H−k−1

])

≥
Km∑
k=1

λmin

(
E
[
XkX

>
k I
[
Xk ∈ R̂πi,k

]
| H−k−1

])
+

t∑
k=Km+1

λmin

(
E
[
XkX

>
k I
[
Xk ∈ R̂πi,k

]
| H−k−1

])
≥ m|Kopt|λ1 + (t−Km)λ1 = (t−m|Ksub|)λ1.

Now the rest of the argument is similar to Lemma 4. Note that in the proof of Lemma 4,

we simply put γ = 0.5, however if use an arbitrary γ ∈ (0, 1) together with XkX
>
k � x2

maxI,

which is the result of Cauchy-Schwarz inequality, then Lemma 14 implies that

P
[
λmin

(
Σ̂i,t

)
≤ (t−m|Ksub|)λ1(1− γ) and λmin

(
Σ̃i,t

)
≥ (t−m|Ksub|)λ1

]
≤ d exp (−D1(γ)(t−m|Ksub|)) .

The second event inside the probability event can be removed, as it always holds under(
∩Kl=1 ∩

t−1
j=Km G

θ1
l,j

)
. The first event also can be translated to J λ1(1−γ)

i,t and therefore for all

i ∈ Kopt we have

P
[
J λ1(1−γ)
i,t ∩

(
∩Kl=1 ∩t−1

j=Km G
θ1
l,j

)]
≤ d exp (−D1(γ)(t−m|Ksub|)) ,

as desired.

For a sub-optimal arm i ∈ Ksub using Assumption 4, for each x ∈ X there exist l ∈ [K]

146



such that x>βi ≤ x>βl − h and as a result conditioning on ∩Kl=1G
θ1
l,t−1 by using a Cauchy-

Schwarz inequality we have

x>β̂(Sl,t−1)− x>β̂(Si,t−1) > x>(βl − βi)− 2xmaxθ1 = x>(βl − βi)− h > 0.

This implies that i 6∈ arg maxl∈[K] x
>β̂(Sl,t−1) and therefore arm i is not played for x at

time t (Note that once Km rounds of random sampling are finished the algorithm executes

greedy algorithm). As this result holds for all choices of x ∈ X , arm i becomes sub-optimal

at time t, as desired.

Here, we state the final Lemma, which bounds the probability that the event Gθ1i,t occurs

whenever J λ1(1−γ)
i,t holds for any t ≥ p.

Lemma 21. For each t ≥ p, i ∈ [K]

P
[
Gθ1i,t ∩ J

λ1(1−γ)
i,t

]
≤ 2d exp (−D2(γ)(t−m|Ksub|)) .

Proof. This is again obvious using Lemma 5.

Now we are ready to prove Theorems 2 and 4. As the proofs of these two theorems are very

similar we state and prove a lemma that implies both theorems.

Lemma 22. Let Assumption and 4 hold. Suppose that Greedy Bandit algorithm with m-

rounds of forced sampling in the beginning is executed. Let γ ∈ (0, 1), δ > 0, p ≥ Km + 1.

Suppose that W is an event which can be decomposed as W = ∩t≥pWt, then event(
∩Ki=1 ∩t≥Km G

θ1
i,t

)
∩W

holds with probability at least

1−
(
P
[
λmin(X>1:mX1:m) ≥ δ

])K
+ 2Kd P

[
λmin(X>1:mX1:m) ≥ δ

]
exp

{
− h2δ

8dσ2x2
max

}
+

p−1∑
j=Km+1

2d exp

{
− h2δ2

8d(j − (K − 1)m)σ2x4
max

}
+
∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1πt,t ∪Wt

)]
.
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In above, λmin(X>1:mX1:m) denotes the minimum eigenvalue of a matrix obtained from m

random samples from the distribution pX and constants are defined in Equations (A.3.1)

and (A.3.2).

Proof. One important property to note is the following result on the events:{(
∩Ki=1G

θ1
i,t−1

)
∩
(
∪Ki=1G

θ1
i,t

)}
=
{(
∩Ki=1G

θ1
i,t−1

)
∩ Gθ1πt,t

}
. (A.7.4)

The reason is that the estimates for arms other than arm πt do not change at time t,

meaning that for each i 6= πt,Gθ1i,t−1 = Gθ1i,t . Therefore, the above equality is obvious. This

observation comes handy when we want to avoid using a union bound over different arms

for the probability of undesired event. For deriving a lower bound on the probability of

desired event we have

P
[(
∩Ki=1 ∩t≥Km G

θ1
i,t

)
∩W

]
= 1− P

[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]
.

Therefore, we can write

P
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]
≤ P

[
∪Ki=1Hδi

]
+ P

[(
∩Ki=1Hδi

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
.

The first term is equal to 1−
(
P
[
λmin(X>1:mX1:m) ≥ δ

])K
. The reason is simple; probability

of each Hδi , i ∈ [K] is given by P
[
λmin(X>1:mX1:m) ≥ δ

]
and these events are all independent

due to the random sampling. Therefore, the probability that at least one of them does not

happen is given by the mentioned expression. In addition, the probability of the second

event can be upper bounded by

P
[(
∩Ki=1Hδi

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
≤

K∑
l=1

P
[(
∩Ki=1Hδi

)
∩ Gθ1l,Km

]
+ P

[(
∩Ki=1Hδi

)
∩
(
∩Ki=1G

θ1
i,Km

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
≤

K∑
l=1

P
[
Hδl ∩ G

θ1
l,Km

]
+ P

[(
∩Ki=1Hδi

)
∩
(
∩Ki=1G

θ1
i,Km

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
≤ 2KdP

{
λmin

(
X>1:mX1:m

)
≥ δ
}

exp

{
− θ2

1δ

2dσ2

}
+ P

[(
∩Ki=1Hδi

)
∩
(
∩Ki=1G

θ1
i,Km

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
,

148



where we used Lemma 18 together with a union bound. For finding an upper bound on the

the second probability, we treat terms t ∈ [Km+ 1, p− 1] and t ≥ p differently. Basically,

for the first interval we have guarantees when ∩Ki=1Hδi holds (Lemma 19) and for the second

interval the guarantee comes from having the event ∩Kl=1∩
t−1
j=KmG

θ1
l,j (Lemma 20). Following

this path leads to

P
[(
∩Ki=1Hδi

)
∩
(
∩Ki=1G

θ1
i,Km

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
≤

p−1∑
t=Km+1

P
[(
∩Ki=1Hδi

)
∩
(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
∪Ki=1G

θ1
i,t

)]
+
∑
t≥p

P
[(
∩Ki=1Hδi

)
∩
(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
∪Ki=1G

θ1
i,t ∪Wt

)]

≤
p−1∑

t=Km+1

P
[(
∩Ki=1Hδi

)
∩
(
∩Ki=1G

θ1
i,t−1

)
∩ Gθ1πt,t

]
+
∑
t≥p

P
[(
∩Ki=1Hδi

)
∩
(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1πt,t ∪Wt

)]

≤
p−1∑

t=Km+1

P
[(
∩Ki=1Hδi

)
∩ Gθ1πt,t

]
+
∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1πt,t ∪Wt

)]
.

using Equation (A.7.4) and carefully breaking down the event
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]
.

Note that by using the second part of Lemma 20, if the event ∩Ki=1G
θ1
i,t−1 holds, then π

is equal to one of the elements in Kopt and sub-optimal arms in Ksub will not be pulled.

Therefore, with further reduction the first term is upper bounded by

p−1∑
t=Km+1

∑
l∈Kopt

P [πt = l]P
[(
∩Ki=1Hδi

)
∩ Gθ1l,t

]

≤
p−1∑

t=Km+1

∑
l∈Kopt

P [πt = l] 2d exp

{
− θ2

1δ
2

2d(t− (K − 1)m)σ2x2
max

}

≤
p−1∑

t=Km+1

2d exp

{
− θ2

1δ
2

2d(t− (K − 1)m)σ2x2
max

}
,

using uniform upper bound provided in Lemma 19 and
∑

l∈Kopt P [πt = l] = 1. This con-

cludes the proof.

149



Proof of Theorem 2. The proof consists of using Lemma 22. Basically, if we know that

the events Gθ1i,t for i ∈ [K] and t ≥ Km all hold, we have derived a lower bound on the

probability that greedy succeeds. The reason is pretty simple here, if the distance of true

parameters βi and β̂i is at most θ1 for each t, we can easily ensure that the minimum

eigenvalue of covariance matrices of optimal arms are growing linearly, and sub-optimal

arms remain sub-optimal for all t ≥ Km+ 1 using Lemma 20. Therefore, we can prove the

optimality of Greedy Bandit algorithm and also establish its logarithmic regret. Therefore,

in this case we need not use any W in Lemma 22, we simply put Wt =W = Ω, where Ω is

the whole probability space. Then we have

P
[
∩Ki=1 ∩t≥Km G

θ1
i,t

]
≥ 1−

(
P
[
λmin(X>1:mX1:m) ≥ δ

])K
+ 2Kd P

[
λmin(X>1:mX1:m) ≥ δ

]
exp

{
− h2δ

8dσ2x2
max

}
+

p−1∑
j=Km+1

2d exp

{
− h2δ2

8d(j − (K − 1)m)σ2x4
max

}
+
∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩ Gθ1πt,t

]
.

The upper bound on the last term can be derived as following

∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
∪Ki=1G

θ1
πt,t

)]
=
∑
t≥p

∑
l∈Kopt

P[πt = l]P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
∪Ki=1G

θ1
l,t

)]
≤
∑
t≥p

∑
l∈Kopt

P[πt = l]

{
P
[
J λ1(1−γ)
l,t ∩

(
∩Ki=1 ∩t−1

j=Km G
θ1
i,j

)]
+ P

[
Gθ1l,t ∩ J

λ1(1−γ)
l,t

]}
,

which by using Lemmas 20 and 21 can be upper bounded by

∑
t≥p

∑
l∈Kopt

P[πt = l] {d exp (−D1(γ)(t−m|Ksub|)) + 2d exp (−D2(γ)(t−m|Ksub|))}

=
∑
t≥p

exp (−D1(γ)(t−m|Ksub|)) +
∑
t≥p

2d exp (−D2(γ)(t−m|Ksub|))

=
d exp (−D1(γ)(p−m|Ksub|))

1− exp(−D1(γ))
+

2d exp (−D2(γ)(p− |Ksub|))
1− exp(−D2(γ))

.
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Summing up all these term yields the desired upper bound. Now note that this upper

bound is algorithm-independent and holds for all values of γ ∈ (0, 1), δ ≥ 0, and p ≥ Km

and therefore we can take the supremum over these values for our desired event (or infimum

over undesired event). This concludes the proof.

For proving Theorem 4 the steps are very similar, the only difference is that the desired

event happens if all events Gθ1i,t , i ∈ [K], t ≥ Km hold, and in addition to that, events

Fλi,t, i ∈ [K], t ≥ t0 all need to hold for some λ > λ0/4. Recall that in Theorem 4, Ksub = ∅
and therefore we can use the notations J and F interchangeably. For Greedy-First, we

defineW = ∩i∈[K]∩t≥pFλi,t for some λ. This basically, means we need to takeWt = ∩i∈[K]Fλi,t
for some λ.

Proof of Theorem 4. The proof is very similar to proof of Theorem 2. For arbitrary γ, δ, p

we want to derive a bound on the probability of the event

P
[(
∩Ki=1 ∩t≥Km G

θ1
i,t

)
∩
(
∩Ki=1 ∩t≥p F

λ1(1−γ)
i,t

)]
.

Note that if p ≤ t0 and γ ≤ 1 − λ0/(4λ1), then having events Fλ1(1−γ)
i,t , i ∈ [K], t ≥ p

implies that the events Fλ0/4i,t , i ∈ [K], t ≥ t0 all hold. In other words, Greedy-First does not

switch to the exploration-based algorithm and is able to achieve logarithmic regret. Let us

substitute Wt = ∩Ki=1F
λ1(1−γ)
i,t which implies that W = ∩Ki=1 ∩t≥p F

λ1(1−γ)
i,t . Lemma 22 can

be used to establish a lower bound on the probability of this event as

P
[(
∩Ki=1 ∩t≥Km G

θ1
i,t

)
∩
(
∩Ki=1 ∩t≥p F

λ1(1−γ)
i,t

)]
≥ 1−

(
P
[
λmin(X>1:mX1:m) ≥ δ

])K
+ 2Kd P

[
λmin(X>1:mX1:m) ≥ δ

]
exp

{
− h2δ

8dσ2x2
max

}
+

p−1∑
j=Km+1

2d exp

{
− h2δ2

8d(j − (K − 1)m)σ2x4
max

}

+
∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1πt,t ∪

(
∩Ki=1F

λ1(1−γ)
i,t

))]
.

Hence, we only need to derive an upper bound on the last term. By expanding this based
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on the value of πt we have

∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1πt,t ∪

(
∩Ki=1F

λ1(1−γ)
i,t

))]

=
∑
t≥p

K∑
l=1

P[πt = l]P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1l,t ∪

(
∪Ki=1F

λ1(1−γ)
i,t

))]

≤
∑
t≥p

K∑
l=1

P[πt = l]

{
K∑
w=1

(
P
[(
∩Ki=1 ∩t−1

j=Km G
θ1
i,j

)
∩ Fλ1(1−γ)

w,t

])
+ P

[
Gθ1l,t ∩ F

λ1(1−γ)
l,t

]}
,

using a union bound and the fact that the space Fλ1(1−γ)
l,t has already been included in the

first term, so its complement can be included in the second term. Now, using Lemmas 20

and 21 this can be upper bounded by

∑
t≥p

∑
l∈Kopt

P[πt = l] {Kd exp(−D1(γ)t) + 2d exp(−D2(γ)t)}

=
∑
t≥p

Kd exp(−D1(γ)t) +
∑
t≥p

2d exp(−D2(γ)t)

=
Kd exp(−D1(γ)p)

1− exp(−D1(γ))
+

2d exp(−D2(γ)p)

1− exp(−D2(γ))
.

As mentioned earlier, we can take supremum on parameters p, γ, δ as long as they satisfy

p ≤ t0, γ ≤ 1 − λ0/(4λ1), and δ > 0. They would lead to the same result only with the

difference that the infimum over L should be replaced by L′ and these two functions satisfy

L′(γ, δ, p) = L(γ, δ, p) + (K − 1)
d exp(−D1(γ)p)

1− exp(−D1(γ))
,

which yields the desired result.

Proof of Corollary 1. We want to use the result of Theorem 2. In this theorem, let us

substitute γ = 0.5, p = Km+ 1, and δ = 0.5λ1m|Kopt|. After this substitution, Theorem 2
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implies that the Greedy Bandit algorithm succeeds with probability at least

P
[
λmin(X>1:mX1:m) ≥ 0.5λ1m|Kopt|

]K
− 2Kd P

[
λmin(X>1:mX1:m) ≥ 0.5λ1m|Kopt|

]
exp

{
−0.5h2λ1m|Kopt|

8dσ2x2
max

}
− d exp {−D1(0.5)(Km+ 1−m|Ksub|)}

1− exp {−D1(0.5)}

− 2d exp {−D2(0.5)(Km+ 1−m|Ksub|)}
1− exp {−D2(0.5)}

.

For deriving a lower bound on the first term let us use the concentration inequality in

Lemma 14. Note that here the samples are drawn i.i.d. from the same distribution pX .

Therefore, by applying this Lemma we have

P
[
λmin(X>1:mX1:m) ≤ 0.5λ1m|Kopt|) and E[λmin(X>1:mX1:m)] ≥ λ1m|Kopt|

]
≤ d

(
e−0.5

0.50.5

)λ1m|Kopt|/x2max

= d exp

{
−λ1m|Kopt|

x2
max

(−0.5− 0.5 log(0.5))

}
≥ d exp

(
−0.153

λ1m|Kopt|
x2

max

)
.

Note that the second event, i.e. E[λmin(X>1:mX1:m)] ≥ λ1m|Kopt| happens with probability

one. This is true according to

E[λmin(X>1:mX1:m)] = E[λmin(
m∑
l=1

XlX
>
l )]

≥ E[
m∑
l=1

λmin(XlX
>
l )] =

m∑
l=1

E[λmin(XlX
>
l )]

= mE[λmin(XX>)],

where X ∼ pX and the inequality is true according to the Jensen’s inequality for the concave
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function λmin(·). Now note that, this expectation can be bounded by

E[λmin(XX>)] ≥ E

[
λmin

(
K∑
i=1

XX>I(X>βi ≥ max
j 6=i

X>βj + h)

)]

≥
K∑
i=1

E
[
λmin

(
XX>I(X>βi ≥ max

j 6=i
X>βj + h)

)]
≥ |Kopt|λ1,

according to Assumption 4 and another use of Jensen’s inequality for the function λmin(·).
Note that this part of proof was very similar to Lemma 20. Thus, with a slight modification

we get

P
[
λmin(X>1:mX1:m) ≥ 0.5λ1m|Kopt|

]
≥ 1− d exp

(
−0.153

λ1m|Kopt|
x2

max

)
.

After using this inequality together with the inequality (1 − x)K ≥ 1 − Kx, and after

replacing values of D1(0.5) and D2(0.5), the lower bound on the probability of success of

Greedy Bandit reduces to

1−Kd exp

(
−0.153λ1m|Kopt|

x2
max

)
− 2Kd exp

(
−h

2λ1m|Kopt|
16dσ2x2

max

)
− d

∞∑
l=(K−|Ksub|)m+1

exp

(
−0.153λ1

x2
max

l

)
− 2d

∞∑
l=(K−|Ksub|)m+1

exp

(
− λ2

1h
2

32dσ2x4
max

l

)
.

In above we used the expansion 1/(1− x) =
∑∞

l=0 x
l. In order to finish the proof note that

by a Cauchy-Schwarz inequality λ1 ≤ x2
max. Furthermore, K−|Ksub| = |Kopt| and therefore

the above bound is greater than or equal to

1−Kd
∞∑

l=m|Kopt|

exp

(
−0.153λ1

x2
max

l

)
− 2Kd

∞∑
l=m|Kopt|

exp

(
− λ2

1h
2

32dσ2x4
max

l

)

≥ 1− 3Kd exp(−Dminm|Kopt|)
1− exp(−Dmin)

,

as desired.

Proof of Corollary 2. Proof of this corollary is very similar to the previous corollary. Extra
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conditions of the corollary ensure that both γ = 0.5, p = Km + 1 lie on their accepted

region. For avoiding clutter, we skip the proof.
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Appendix B

Supplementary Materials for

Chapter 3

B.1 Proofs

B.1.1 Proof of Theorem 5

First, we will discuss three main steps that are needed for the proof.

Step 1: We show an upper bound for the sum of squared errors for all (i, t) ∈ O in terms of

the regularization parameter λ, rank of L∗, ‖L∗−L̂‖F , and ‖E‖op where E ≡
∑

(i,t)∈O εitAit.

Lemma 23 (Adapted from Negahban and Wainwright (2011)). For all λ ≥ 3‖E‖op/|O|,

∑
(i,t)∈O

〈Ait,L
∗ − L̂〉2

|O|
≤ 10λ

√
R ‖L∗ − L̂‖F . (B.1.1)

This type of result has been shown before by Recht (2011), Negahban and Wainwright

(2011), Koltchinskii et al. (2011), Klopp (2014). Similar results also appear in the analysis of

LASSO type estimators (for example see Bühlmann and Van De Geer (2011) and references

therein).

Step 2: The upper bound provided by Lemma 23 contains λ and also requires the con-

dition λ ≥ 3‖E‖op/|O|. Therefore, in order to have a tight bound, it is important to show
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an upper bound for ‖E‖op that holds with high probability. Next lemma provides one such

result.

Lemma 24. There exist a constant C1 such that

‖E‖op ≤ C1σmax
[√

N log(N + T ),
√
T log3/2(N + T )

]
,

with probability greater than 1− (N + T )−2.

This result uses a concentration inequality for sum of random matrices to find a bound

for ‖E‖op. We note that existing papers Recht (2011), Negahban and Wainwright (2011),

Koltchinskii et al. (2011), Klopp (2014), contain a similar step but in their caseO is obtained

by independently sampling elements of [N ] × [T ]. However, in our case observations from

each row of the matrix are correlated. Therefore, prior results do not apply. In fact, the

correlation structure deteriorates the type of upper bound that can be obtained for ‖E‖op.

Step 3: The last main step is to show that, with high probability, the random vari-

able on the left hand side of (B.1.1) is larger than a constant fraction of ‖L̂ − L∗‖2F . In

high-dimensional statistics literature this property is also referred to as Restricted Strong

Convexity, Negahban et al. (2012), Negahban and Wainwright (2011, 2012). The following

Lemma states this property for our setting and its proof that is similar to the proof of

Theorem 1 in (Negahban and Wainwright 2012) or Lemma 12 in (Klopp 2014) is omitted.

Lemma 25. If the estimator L̂ defined above satisfies ‖L̂−L∗‖F ≥ κ for a positive number

κ, then,

Pπ

pc2 ‖L̂− L∗‖2F ≤
∑

(i,t)∈O

〈Ait, L̂− L∗〉2
 ≥ 1− exp

(
− p2

cκ
2

32T L2
max

)
.

Now we are equipped to prove the main theorem.

Proof of Theorem 5. Let ∆ = L∗ − L̂. Then using Lemma 24 and selecting λ equal to

3‖E‖op/|O| in Lemma 23, with probability greater than 1− (N + T )−2, we have

∑
(i,t)∈O

〈Ait,∆〉2

|O|
≤

30C1σ
√
Rmax

[√
N log(N + T ),

√
T log3/2(N + T )

]
|O|

‖∆‖F . (B.1.2)
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Now, we use Lemma 25 to find a lower bound for the left hand side of (B.1.2). But first

note that if p2
c‖∆‖2F /(32T L2

max) ≤ 2 log(N + T ) then

‖∆‖F√
NT

≤ 8Lmax

√
log(N + T )

N p2
c

holds which proves Theorem 5. Otherwise, using Lemma 25 for κ = (8Lmax/pc)
√
T log(N + T ),

P

1

2
pc‖∆‖2F ≤

∑
(i,t)∈O

〈Ait,∆〉2
 ≥ 1− 1

(N + T )2
. (B.1.3)

Combining this result, (B.1.2), and union bound we have, with probability greater than

1− 2(N + T )−2,

‖∆‖2F ≤ 60C1σ
√
Rmax

(
σ

√
N log(N + T )

p2
c

,

√
T

p2
c

log3/2(N + T )

)
‖∆‖F .

The main result now follows after dividing both sides with
√
NT‖∆‖F .

B.1.2 Proof of Lemma 23

Variants of this Lemma for similar models have been proved before. But for completeness

we include its proof that is adapted from Negahban and Wainwright (2011).

Proof of Lemma 23. Let

f(L) ≡
∑

(i,t)∈O

(Yit − Lit)2

|O|
+ λ‖L‖∗ .

Now, using the definition of L̂,

f(L̂) ≤ f(L∗) ,

which is equivalent to

∑
(i,t)∈O

〈L∗ − L̂,Ait〉2

|O|
+ 2

∑
(i,t)∈O

εit〈L∗ − L̂,Ait〉
|O|

+ λ‖L̂‖∗ ≤ λ‖L∗‖∗ . (B.1.4)
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Now, defining ∆ ≡ L∗ − L̂ and using the definition of E, the above equation gives

∑
(i,t)∈O

〈∆,Ait〉2

|O|
≤ − 2

|O|
〈∆,E〉+ λ‖L∗‖∗ − λ‖L̂‖∗ (B.1.5)

(a)

≤ 2

|O|
‖∆‖∗‖E‖op + λ‖L∗‖∗ − λ‖L̂‖∗ (B.1.6)

≤ 2

|O|
‖∆‖∗‖E‖op + λ‖∆‖∗ (B.1.7)

(b)

≤ 5

3
λ‖∆‖∗ . (B.1.8)

Here, (a) uses inequality |〈A,B〉| ≤ ‖A‖op‖B‖max which is due to the fact that operator

norm is dual norm to nuclear norm, and (b) uses the assumption λ ≥ 3‖E‖op/|O|. Before

continuing with the proof of Lemma 23 we state the following Lemma that is proved later

in this section.

Lemma 26. Let ∆ ≡ L∗ − L̂ for λ ≥ 3‖E‖op/|O| Then there exist a decomposition ∆ =

∆1 + ∆2 such that

(i) 〈∆1,∆2〉 = 0.

(ii) rank(∆1) ≤ 2r.

(iii) ‖∆2‖∗ ≤ 3‖∆1‖∗.

Now, invoking the decomposition ∆ = ∆1 + ∆2 from Lemma 26 and using the triangle

inequality, we obtain

‖∆‖∗
(c)

≤ 4‖∆1‖∗
(d)

≤ 4
√

2r‖∆1‖F
(e)

≤ 4
√

2r‖∆‖F . (B.1.9)

where (c) uses Lemma 26(iii), (d) uses Lemma 26(ii) and Cauchy-Schwarz inequality, and

(e) uses Lemma 26(i). Combining this with (B.1.8) we obtain

B
∑

(i,t)∈O

〈∆,Ait〉2

|O|
≤ 10λ

√
r ‖∆‖F , (B.1.10)

which finishes the proof of Lemma 23.

Proof of Lemma 26. Let L∗ = UN×rSr×r(VT×r)
> be the singular value decomposition for

the rank r matrix L∗. Let PU be the projection operator onto column space of U and let
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PU⊥ be the projection operator onto the orthogonal complement of the column space of U.

Let us recall a few linear algebra facts about these projection operators. If columns of U are

denoted by u1, . . . , u0, since U is unitary, PU =
∑r

i=1 uiu
>
i . Similarly, PU⊥ =

∑N
i=r+1 uiu

>
i

where u1, . . . , u0, ur+1, . . . , uN forms an orthonormal basis for RN . In addition, the projector

operators are idempotent (i.e., P2
U = PU ,P

2
U⊥

= PU⊥), PU + PU⊥ = IN×N .

Define PV and PV ⊥ similarly. Now, we define ∆1 and ∆2 as follows:

∆2 ≡ PU⊥∆PV ⊥ , ∆1 ≡∆−∆2 .

It is easy to see that

∆1 = (PU + PU⊥)∆(PV + PV ⊥)−PU⊥∆PV ⊥ (B.1.11)

= PU∆ + PU⊥∆PV . (B.1.12)

Using this fact we have

〈∆1,∆2〉 = trace
(
∆>PUPU⊥∆PV ⊥ + PV ∆>PU⊥PU⊥∆PV ⊥

)
(B.1.13)

= trace
(
PV ∆>PU⊥∆PV ⊥

)
(B.1.14)

= trace
(
∆>PU⊥∆PV ⊥PV

)
= 0 (B.1.15)

that gives part (i). Note that we used trace(AB) = trace(BA).

Looking at (B.1.12), part (ii) also follows since both PU and PV have rank r and sum

of two rank r matrices has rank at most 2r.

Before moving to part (iii), we note another property of the above decomposition of

∆ that will be needed next. Since the two matrices L∗ and ∆2 have orthogonal singular

vectors to each other,

‖L∗ + ∆2‖∗ = ‖L∗‖∗ + ‖∆2‖∗ . (B.1.16)
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On the other hand, using inequality (B.1.6), for λ ≥ 3‖E‖op/|O| we have

λ
(
‖L̂‖∗ − ‖L∗‖∗

)
≤ 2

|O|
‖∆‖∗‖E‖op

≤ 2

3
λ‖∆‖∗

≤ 2

3
λ (‖∆1‖∗ + ‖∆2‖∗) . (B.1.17)

Now, we can use the following for the left hand side

‖L̂‖∗ − ‖L∗‖∗ = ‖L∗ + ∆1 + ∆2‖∗ − ‖L∗‖∗

≥ ‖L∗ + ∆2‖∗ − ‖∆1‖∗ − ‖L∗‖∗
(f)
= ‖L∗‖∗ + ‖∆2‖∗ − ‖∆1‖∗ − ‖L∗‖∗

= ‖∆2‖∗ − ‖∆1‖∗ .

Here (f) follows from (B.1.16). Now, combining the last inequality with (B.1.17) we get

‖∆2‖∗ − ‖∆1‖∗ ≤
2

3
(‖∆1‖∗ + ‖∆2‖∗) .

That finishes proof of part (iii).

B.1.3 Proof of Lemma 24

First we state the matrix version of Bernstein inequality for rectangular matrices (see Tropp

(2012) for a derivation of it).

Proposition 6 (Matrix Bernstein Inequality). Let Z1, . . . ,ZN be independent matrices in

Rd1×d2 such that E[Zi] = 0 and ‖Zi‖op ≤ D almost surely for all i ∈ [N ] and a constant R.

Let σZ be such that

σ2
Z ≥ max


∥∥∥∥∥
N∑
i=1

E[ZiZ
>
i ]

∥∥∥∥∥
op

,

∥∥∥∥∥
N∑
i=1

E[Z>i Zi

∥∥∥∥∥
op

 .

Then, for any α ≥ 0

P


∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

≥ α

 ≤ (d1 + d2) exp

[
−α2

2σ2
Z + (2Dα)/3

]
. (B.1.18)
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Proof of Lemma 24. Our goal is to use Proposition 6. Define the sequence of independent

random matrices B1, . . . ,BN as follows. For every i ∈ [N ], define

Bi =

ti∑
t=1

εitAit .

By definition, E =
∑N

i=1 Bi and E[Bi] = 0 for all i ∈ [N ]. Define the bound D ≡
C2σ

√
log(N + T ) for a large enough constant C2. For each (i, t) ∈ O define ε̄it = εitI|εit|≤D.

Also define Bi =
∑ti

t=1 ε̄itAit for all i ∈ [N ].

Using union bound and the fact that for σ-sub-Gaussian random variables εit we have

P(|εit| ≥ t) ≤ 2 exp{−t2/(2σ2)} gives, for each α ≥ 0,

P{ ‖E‖op ≥ α} ≤ P


∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+
∑

(i,t)∈O

P{|εit| ≥ D}

≤ P


∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+ 2|O| exp

{
−D2

2σ2

}

≤ P


∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≥ α

+
1

(N + T )3
. (B.1.19)

Now, for each i ∈ [N ], define Zi ≡ Bi − E[Bi]. Then,

∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≤

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+

∥∥∥∥∥∥E
 ∑

1≤i≤N
Bi

∥∥∥∥∥∥
op

≤

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+

∥∥∥∥∥∥E
 ∑

1≤i≤N
Bi

∥∥∥∥∥∥
F

≤

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+
√
NT

∥∥∥∥∥∥E
 ∑

1≤i≤N
Bi

∥∥∥∥∥∥
max

.

But since each εit has mean zero,

|E[ε̄it]| = |E[εitI|εit|≤D]| = |E[εitI|εit|≥D]| ≤
√
E[ε2

it]P(|εit| ≥ D)

≤
√

2σ2 exp[−D2/(2σ2)]

≤ σ

(N + T )4
.
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Therefore,

√
NT

∥∥∥∥∥∥E
 ∑

1≤i≤N
Bi

∥∥∥∥∥∥
max

≤ σ
√
NT

(N + T )4
≤ σ

(N + T )3
,

which gives ∥∥∥∥∥
N∑
i=1

Bi

∥∥∥∥∥
op

≤

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

+
σ

(N + T )3
. (B.1.20)

We also note that ‖Zi‖op ≤ 2D
√
T for all i ∈ [N ]. The next step is to calculate σZ

defined in the Proposition 6. We have,∥∥∥∥∥
N∑
i=1

E[ZiZ
>
i ]

∥∥∥∥∥
op

≤ max
(i,t)∈O

{
E [(ε̄it − E[ε̄it])

2]
} ∥∥∥∥∥

N∑
i=1

E

[
ti∑
t=1

ei(N)ei(N)>

]∥∥∥∥∥
op

(B.1.21)

≤ 2σ2 max
i∈[N ]

∑
t∈[T ]

tπ
(i)
t

 ≤ 2Tσ2 (B.1.22)

and ∥∥∥∥∥
N∑
i=1

E[Z>i Zi]

∥∥∥∥∥
op

≤ 2σ2

∥∥∥∥∥
N∑
i=1

E

[
ti∑
t=1

et(T )et(T )>

]∥∥∥∥∥
op

(B.1.23)

= 2σ2 max
t∈[T ]

∑
i∈[N ]

T∑
t′=t

π
(i)
t′

 = 2Nσ2 . (B.1.24)

Note that here we used the fact that random variables ε̄it − E[ε̄it] are independent of each

other and centered which means all cross terms of the type E{(ε̄it − E[ε̄it])(ε̄js − E[ε̄js])}
are zero for (i, t) 6= (j, s). Therefore, σ2

Z = 2σ2 max(N,T ) works. Applying Proposition 6,
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we obtain

P


∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

≥ α

 ≤ (N + T ) exp

[
− α2

4σ2 max(N,T ) + (4Dα
√
T )/3

]

≤ (N + T ) exp

[
− 3

16
min

(
α2

σ2 max(N,T )
,

α

D
√
T )

)]
.

Therefore, there is a constant C3 such that with probability greater than 1− exp(−t),∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
op

≤ C3σmax
(√

max(N,T )[t+ log(N + T )],
√
T log(N + T )[t+ log(N + T )]

)
.

Using this for a t that is a large enough constant times log(N + T ), together with (B.1.19)

and (B.1.20), shows with probability larger than 1− 2(N + T )−3

‖E‖op ≤ C1σmax
[√

max(N,T ) log(N + T ),
√
T log3/2(N + T )

]
= C1σmax

[√
N log(N + T ),

√
T log3/2(N + T )

]
,

for a constant C1.
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Appendix C

Supplementary Materials for

Chapter 4

C.1 Simulation Setting

Here we explain the settings for simulations shown in Figures 4.1 and 4.2.

C.1.1 Single Test Point

The data for single test point simulation, shown in Figure 4.1, has been generated as follows.

Here p = 1, D = 20 and d = 2. All the points are generated using Xi = AX low
i , where A ∈

RD×d and entries of A are independently sampled from U [−1, 1]. Components of each X low
i

are also generated independently from U [−1, 1]. We generate a fix test point xtest = Axlow
test

and keep the matrix A throughout all Monte-Carlo iterations fixed. In each Monte-Carlo

iteration, we generate n = 20000 training points as mentioned before. The values of Yi

are generated according to Yi = f(Xi) + εi, where f(X) = 1
1+exp(−3X[0]) , and εi ∼ N(0, σ2

e)

with σe = 1. We are interested in estimating and drawing inference about f(xtest) which is

equivalent to solving for E[ψ(Z; θ(x)) | X = x] = 0 with ψ(Z; θ(x)) = Y − θ(x) at x = xtest.

We run the sub-sampled k-NN estimation (Algorithm 5) for k = 1, 2 and 5 with parameter

s = sζ chosen using Proposition 5 with ζ = 0.1 over 1000 Monte-Carlo iterations and report

the histogram and quantile-quantile plot of estimates compared to theoretical asymptotic

normal distribution of estimates stemming from our characterization. In our simulations,

we considered the complete U -statistic case, i.e., B =
(
n
s

)
.
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C.1.2 Multiple Test Points

The data for the multiple test point simulation, shown in Figure 4.2, has been generated very

similarly to the single test point setting. The only difference is that instead of generating

a single test point we generate 100 test points. These test points together with matrix A

are kept fixed throughout all 1000 Monte-Carlo iterations. We compare the performance of

sub-sampled k-NN estimator (Algorithm 5) with parameter s = sζ chosen using Proposition

5 with ζ = 0.1 with two benchmarks that set sd = n1.05d/(d+2) and sD = n1.05D/(D+2). This

process has been repeated for k = 1, 2 and 5 and the coverage over a single run for all test

points, the empirical coverage over 1000 runs, and chosen sζ versus sd are depicted.

C.2 Nuisance Parameters and Heterogeneous Treatment Ef-

fects

Using the techniques of Oprescu et al. (2018), our work also easily extends to the case where

the moments depend on, potentially infinite dimensional, nuisance components h0, that also

need to be estimated, i.e.,

θ(x) solves: m(x; θ, h0) = E[ψ(Z; θ, h0) | x] = 0. (C.2.1)

If the moment m is orthogonal with respect to h and assuming that h0 can be estimated

on a separate sample with a conditional MSE rate of

E[(ĥ(z)− h0(z))2|X = x] = op(ε(s) +
√
s/n) , (C.2.2)

then using the techniques of Oprescu et al. (2018), we can argue that both our finite sample

estimation rate and our asymptotic normality rate, remain unchanged, as the estimation

error only impacts lower order terms. This extension allows us to capture settings like

heterogeneous treatment effects, where the treatment model also needs to be estimated

when using the orthogonal moment as

ψ(z; θ, h0) = (y − q0(x,w)− θ(t− p0(x,w))) (t− p0(x,w)) , (C.2.3)

where y is the outcome of interest, t is a treatment, x,w are confounding variables, q0(x,w) =

E[Y |X = x,W = w] and p0(x,w) = E[T |X = x,W = w]. The latter two nuisance functions
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can be estimated via separate non-parametric regressions. In particular, if we assume that

these functions are sparse linear in w, i.e.:

q0(x,w) = 〈β(x), w〉 , p0(x,w) = 〈γ(x), w〉 . (C.2.4)

Then we can achieve a conditional mean-squared-error rate of the required order by using

the kernel lasso estimator of Oprescu et al. (2018), where the kernel is the sub-sampled

k-NN kernel, assuming the sparsity does not grow fast with n.

C.3 Proofs

C.3.1 Proof of Theorem 8

Lemma 27. For any θ ∈ Θ:

‖θ − θ(x)‖2 ≤
2

λ
‖m(x; θ)‖2 . (C.3.1)

Proof. By strong convexity of the loss L(x; θ) and the fact that m(x; θ(x)) = 0, we have:

L(x; θ)− L(x; θ(x)) ≥ 〈m(x; θ(x)), θ − θ(x)〉+
λ

2
· ‖θ − θ(x)‖22 =

λ

2
· ‖θ − θ(x)‖22 .

By convexity of the loss L(x; θ) we have:

L(x; θ(x))− L(x; θ) ≥ 〈m(x; θ), θ(x)− θ〉 .

Combining the latter two inequalities we get:

λ

2
· ‖θ − θ(x)‖22 ≤ 〈m(x; θ), θ − θ(x)〉 ≤ ‖m(x; θ)‖2 · ‖θ − θ(x)‖2 .

Note that if ‖θ − θ(x)‖2 = 0, then the result is obvious. Otherwise, dividing over by

‖θ − θ(x)‖2 completes the proof of the lemma.

Lemma 28. Let Λ(x; θ) = m(x; θ)−Ψ(x; θ). Then the estimate θ̂ satisfies:

‖m(x; θ̂)‖2 ≤ sup
θ∈Θ
‖Λ(x; θ)‖2 . (C.3.2)
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Proof. Observe that θ̂, by definition, satisfies Ψ(x; θ̂) = 0. Thus:

‖m(x; θ̂)‖2 = ‖m(x; θ̂)−Ψ(x; θ̂)‖2 = ‖Λ(x; θ̂)‖2 ≤ sup
θ∈Θ
‖Λ(x; θ)‖2 .

Lemma 29. Suppose that the kernel is built with sub-sampling at rate s, in an honest

manner (Assumption 7) and with at least B ≥ n/s sub-samples. If the base kernel satisfies

kernel shrinkage in expectation, with rate ε(s), then w.p. 1− δ:

sup
θ∈Θ
‖Λ(x; θ)‖2 ≤ Lmε(s) +O

(
ψmax

√
p s

n
(log log(n/s) + log(p/δ))

)
. (C.3.3)

Proof. Define

µ0(x; θ) = E [Ψ0(x; θ)] ,

where we remind that Ψ0 denotes the complete U -statistic:

Ψ0(x; θ) =

(
n

s

)−1 ∑
Sb⊂[n]:|Sb|=s

Eωb

∑
i∈Sb

αSb,ωb(Xi)ψ(Zi; θ)

 .
Here the expectation is taken with respect to the random draws of n samples. Then, the

following result which is due to Oprescu et al. (2018) holds.

Lemma 30 (Adapted from Oprescu et al. (2018)). For any θ and target x

µ0(x; θ) =

(
n

s

)−1 ∑
Sb⊂[n]:|Sb|=s

E

∑
i∈Sb

αSb,ωb(Xi)m(Xi; θ)

 .
In other words, Lemma 30 states that, in the expression for µ0 we can simply replace

ψ(Zi; θ) with its expectation which is m(Xi; θ). We can then express Λ(x; θ) as sum of kernel

error, sampling error, and sub-sampling error, by adding and subtracting appropriate terms,

as follows:

Λ(x; θ) = m(x; θ)−Ψ(x; θ)

= m(x; θ)− µ0(x; θ)︸ ︷︷ ︸
Γ(x,θ)=Kernel error

+µ0(x; θ)−Ψ0(x; θ)︸ ︷︷ ︸
∆(x,θ)=Sampling error

+ Ψ0(x; θ)−Ψ(x; θ)︸ ︷︷ ︸
Υ(x,θ)=Sub-sampling error
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The parameters should be chosen to trade-off these error terms nicely. We will now bound

each of these three terms separately and then combine them to get the final bound.

Bounding the Kernel error. By Lipschitzness of m with respect to x and triangle

inequality, we have:

‖Γ(x; θ)‖2 ≤
(
n

s

)−1 ∑
Sb⊂[n]:|Sb|=s

E

∑
i∈Sb

αSb,ωb(Xi)‖m(x; θ)−m(Xi; θ)‖


≤ Lm

(
n

s

)−1 ∑
Sb⊂[n]:|Sb|=s

E

∑
i∈Sb

αSb,ωb(Xi)‖x−Xi‖


≤ Lm

(
n

s

)−1 ∑
Sb⊂[n]:|Sb|=s

E [sup{‖x−Xi‖ : αSb,ωb(Xi) > 0}]

≤ Lm ε(s) ,

where the second to last inequality follows from the fact that
∑

i |αSb(Xi)| = 1.

Bounding the Sampling Error. For bounding the sampling error we rely on Lemma

38 and in particular Corollary 8. Observe that for each j ∈ {1, . . . , p}, Ψ0j(x; θ) is a

complete U -statistic for each θ. Thus the sampling error defines a U -process over the

class of symmetric functions conv(Fj) = {fj(·; θ) : θ ∈ Θ}, with fj(Z1, . . . , Zs; θ) =

Eω [
∑s

i=1 αZ1:s,ω(Xi)ψj(Zi; θ)]. Observe that since fj ∈ conv(Fj) is a convex combina-

tion of functions in Fj = {ψj(·; θ) : θ ∈ Θ}, the bracketing number of functions in conv(Fj)
is upper bounded by the bracketing number of Fj , which by our assumption, satisfies

log(N[](Fj , ε, L2)) = O(1/ε). Moreover, by our assumptions on the upper bound ψmax of

ψj(z; θ), we have that supfj∈conv(Fj) ‖fj‖2, supfj∈conv(Fj) ‖fj‖∞ ≤ ψmax. Thus all conditions

of Corollary 8 are satisfied, with η = G = ψmax and we get that w.p. 1− δ/2p:

sup
θ∈Θ
|∆j(x, θ)| = O

(
ψmax

√
s

n
(log log(n/s) + log(2p/δ))

)
. (C.3.4)

By a union bound over j, we get that w.p. 1− δ/2:

sup
θ∈Θ
‖∆j(x, θ)‖2 ≤

√
pmax
j∈[p]

sup
θ∈Θ
|∆j(x, θ)| = O

(
ψmax

√
p s

n
(log log(n/s) + log(p/δ))

)
.

(C.3.5)
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Bounding the Sub-Sampling Error. Sub-sampling error decays as B is increased.

Note that for a fixed set of samples {Z1, Z2, . . . , Zn}, for a set Sb randomly chosen among

all
(
n
s

)
subsets of size s from the n samples, we have:

ESb,ωb

∑
i∈Sb

αSb,ωb(Xi)ψ(Zi; θ)

 = Ψ0(x; θ) .

Therefore, Ψ(x; θ) can be thought as the sum of B i.i.d. random variables each with

expectation equal to Ψ0(x; θ), where expectation is taken over B draws of sub-samples, each

with size s. Thus one can invoke standard results on empirical processes for function classes

as a function of the bracketing entropy. For simplicity, we can simply invoke Corollary 8 in

the Appendix C.3.12 for the case of a trivial U -process, with s = 1 and n = B to get that

w.p. 1− δ/2:

sup
θ∈Θ
|Υ(x; θ)| = O

(
ψmax

√
log log(B) + log(2/δ)

B

)
Thus for B ≥ n/s, the sub-sampling error is of lower order than the sampling error and can

be asymptotically ignored. Putting together the upper bounds on sampling, sub-sampling

and kernel error finishes the proof of the Lemma.

The probabilistic statement of the proof follows by combining the inequalities in the

above three lemmas. The in expectation statement follows by simply integrating the expo-

nential tail bound of the probabilistic statement.

C.3.2 Proof of Theorem 9

We will show asymptotic normality of α̂ =
〈
β, θ̂
〉

for some arbitrary direction β ∈ Rp, with

‖β‖2 ≤ R. Consider the complete multi-dimensional U -statistic:

Ψ0(x; θ) =

(
n

s

)−1 ∑
Sb⊂[n]:|Sb|=s

Eωb

∑
i∈Sb

αSb,ωb(Xi)ψ(Zi; θ)

 . (C.3.6)

Let

∆(x; θ) = Ψ0(x; θ)− µ0(x; θ) (C.3.7)
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where µ0(x; θ) = E [Ψ0(x; θ)] (as in the proof of Theorem 8) and

θ̃ = θ(x)−M−1
0 ∆(x; θ(x)) (C.3.8)

Finally, let

α̃ ,
〈
β, θ̃
〉

= 〈β, θ(x)〉 −
〈
β,M−1

0 ∆(x; θ(x))
〉

(C.3.9)

For shorthand notation let α0 = 〈β, θ(x)〉, ψβ(Z; θ) =
〈
β,M−1

0 (ψ(Z; θ)−m(X; θ))
〉

and

Ψ0,β(x; θ) =
〈
β,M−1

0 ∆(x; θ(x))
〉

=

(
n

s

)−1 ∑
Sb⊂[n]:|Sb|=s

Eωb

∑
i∈Sb

αSb,ωb(Xi)ψβ(Zi; θ)


be a single dimensional complete U -statistic. Thus we can re-write:

α̃ = α0 −Ψ0,β(x; θ(x))

We then have the following lemma which its proof is provided in Appendix C.3.10:

Lemma 31. Under the conditions of Theorem 9:

Ψ0,β(x; θ(x))

σn(x)
→ N(0, 1) ,

for σ2
n(x) = s2

n Var
[
E
[∑s

i=1K(x,Xi, {Xj}sj=1)ψβ(Zi; θ) | X1

]]
= Ω( s

2

n η(s)).

Invoking Lemma 31 and using our assumptions on the kernel, we conclude that:

α̃− α0(x)

σn(x)
→ N(0, 1). (C.3.10)

For some sequence σ2
n which decays at least as slow as s2η(s)/n. Hence, since

α̂− α0

σn(x)
=
α̃− θ(x)

σn(x)
+
α̂− α̃
σn(x)

,

if we show that α̂−α̃
σn(x) →p 0, then by Slutsky’s theorem we also have that:

α̂− α0

σn(x)
→ N(0, 1), (C.3.11)
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as desired. Thus, it suffices to show that:

‖α̂− α̃‖2
σn(x)

→p 0. (C.3.12)

Observe that since ‖β‖2 ≤ R, we have ‖α̂− α̃‖2 ≤ R‖θ̂− θ̃‖2. Thus it suffices to show that:

‖θ̂ − θ̃‖
σn(x)

→p 0.

Lemma 32. Under the conditions of Theorem 9, for σ2
n(x) = Ω

(
s2

n η(s)
)

:

‖θ̂ − θ̃‖
σn(x)

→p 0. (C.3.13)

Proof. Performing a second-order Taylor expansion of mj(x; θ) around θ(x) and observing

that mj(x; θ(x)) = 0, we have that for some θ̄j ∈ Θ:

mj(x; θ̂) =
〈
∇θmj(x; θ(x)), θ̂ − θ(x)

〉
+ (θ̂ − θ(x))>Hj(x; θ̄j)(θ̂ − θ(x))>︸ ︷︷ ︸

ρj

.

Letting ρ = (ρ1, . . . , ρp), writing the latter set of equalities for each j in matrix form,

multiplying both sides by M−1
0 and re-arranging, we get that:

θ̂ = θ(x) +M−1
0 m(x; θ̂)−M−1

0 ρ .

Thus by the definition of θ̃ we have:

θ̂ − θ̃ = M−1
0 · (m(x; θ̂) + ∆(x; θ(x)))−M−1

0 ρ .

By the bounds on the eigenvalues of Hj(x; θ) and M−1
0 , we have that:

‖M−1
0 ρ‖2 ≤

LH
λ
‖θ̂ − θ(x)‖22 . (C.3.14)

Thus we have:

‖θ̂ − θ̃‖2 =
1

λ
‖m(x; θ̂) + ∆(x; θ(x))‖2 +

LH
λ
‖θ̂ − θ(x)‖22 .
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By our estimation error Theorem 8, we have that the expected value of the second term

on the right hand side is of order O
(
ε(s)2, sn log log(n/s)

)
. Thus by the assumptions of the

theorem, both are o(σn). Hence, the second term is op(σn).

We now argue about the convergence rate of the first term on the right hand side.

Similar to the proof of Theorem 8, since Ψ(x; θ̂) = 0 we have:

m(x; θ̂) = m(x; θ̂)−Ψ(x; θ̂) = m(x; θ̂)−Ψ0(x; θ̂) + Ψ0(x; θ̂)−Ψ(x; θ̂)︸ ︷︷ ︸
Sub-sampling error

.

We can further add and subtract µ0 from m(x; θ̂).

m(x; θ̂) = m(x; θ̂)− µ0(x; θ̂) + µ0(x; θ̂)−Ψ0(x; θ̂) + Ψ0(x; θ̂)−Ψ(x; θ̂)

= m(x; θ̂)− µ0(x; θ̂)−∆(x; θ̂) + Ψ0(x; θ̂)−Ψ(x; θ̂) .

Combining we have:

m(x; θ̂) + ∆(x; θ(x)) = m(x; θ̂)− µ0(x; θ̂)︸ ︷︷ ︸
C=Kernel error

+ ∆(x; θ(x))−∆(x; θ̂)︸ ︷︷ ︸
F=Sampling error

+ Ψ0(x; θ̂)−Ψ(x; θ̂)︸ ︷︷ ︸
E=Sub-sampling error

.

Now similar to proof of Theorem 8 we bound different terms separately and combine the

results.

Kernel Error. Term C is a kernel error and hence is upper bounded by ε(s) in expecta-

tion. Since, by assumption s is chosen such that ε(s) = o(σn(x)), we ge that ‖C‖2/σn(x)→p

0.

Sub-Sampling Error. Term E is a sub-sampling error, which can be made arbitrarily

small if the number of drawn sub-samples is large enough and hence ‖E‖2/σn(x) →p 0.

In fact, similar to the part about bounding sub-sampling error in Lemma 29 we have that

that:

ESb

∑
i∈Sb

αSb(Xi)ψ(Zi; θ)

 = Ψ0(x; θ) ,

Therefore, Ψ(x; θ) can be thought as the sum of B independent random variables each with

expectation equal to Ψ0(x; θ). Now we can invoke Corollary 8 in Appendix C.3.12 for the
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trivial U-process, with s = 1, n = B to get that w.p. 1− δ1:

sup
θ∈Θ
‖Ψ0(x; θ)−Ψ(x; θ)‖ ≤ O

(
Ψmax

√
log log(B) + log(1/δ1)

B

)
.

Hence, for B ≥ (n/s)5/4, due to our assumption that (s/n log log(n/s))5/8 = o(σn(x)) we

get ‖E‖2/σn(x)→p 0.

Sampling Error. Thus it suffices that show that ‖F‖2/σn(x)→p 0, in order to conclude

that ‖m(x;θ̂)+Ψ0(x;θ(x))‖2
σn(x) →p 0. Term F can be re-written as:

F = Ψ0(x; θ(x))−Ψ0(x; θ̂)− E
[
Ψ0(x; θ(x))−Ψ0(x; θ̂)

]
. (C.3.15)

Observe that each coordinate j of F , is a stochastic equicontinuity term for U -processes

over the class of symmetric functions conv(Fj) = {fj(·; θ) : θ ∈ Θ}, with fj(Z1, . . . , Zs; θ) =

Eω [
∑s

i=1 αZ1:s,ω(Xi)(ψj(Zi; θ(x))− ψj(Zi; θ))]. Observe that since fj ∈ conv(Fj) is a con-

vex combination of functions in Fj = {ψj(·; θ(x))−ψj(·; θ) : θ ∈ Θ}, the bracketing number

of functions in conv(Fj) is upper bounded by the bracketing number of Fj , which in turn

is upper bounded by the bracketing number of the function class {ψj(·; θ) : θ ∈ Θ}, which

by our assumption, satisfies log(N[](Fj , ε, L2)) = O(1/ε). Moreover, under the variogram

assumption and the lipschitz moment assumption we have that if ‖θ− θ(x)‖ ≤ r ≤ 1, then:

‖fj(·; θ)‖2P,2 = E

( s∑
i=1

αZ1:s(Xi)(ψj(Zi; θ(x))− ψj(Zi; θ)

)2


≤ E

[
s∑
i=1

αZ1:s(Xi) (ψj(Zi; θ(x))− ψj(Zi; θ))2

]
(Jensen’s inequality)

= E

[
s∑
i=1

αZ1:s(Xi)E [ψj(Zi; θ(x))− ψj(Zi; θ)]2 |Xi]

]
(honesty of kernel)

= E

[
s∑
i=1

αZ1:s(Xi)
(

Var(ψ(Z; θ(x))− ψ(Z; θ)|Xi) + (m(Xi; θ(x))−m(Xi; θ))
2
)]

≤ Lψ‖θ − θ(x)‖+ L2
J‖θ − θ(x)‖2 ≤ Lψr + L2

Jr
2 = O(r) .
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Moreover, ‖fj‖∞ ≤ 2ψmax. Thus we can apply Corollary 8, with η =
√
Lψr + L2

Jr
2 =

O(
√
r) and G = 2ψmax to get that if ‖θ̂ − θ(x)‖ ≤ r, then w.p. 1− δ/p:

|Fj | ≤ sup
θ:‖θ−θ(x)‖≤r

∣∣∣Ψ0(x; θ(x))−Ψ0(x; θ̂)− E
[
Ψ0(x; θ(x))−Ψ0(x; θ̂)

]∣∣∣
= O

((
r1/4 +

√
r
√

log(p/δ) + log log(n/(s r))
)√ s

n

)
= O

((
r1/4

√
log(p/δ) + log log(n/s)

)√ s

n

)
, κ(r, s, n, δ) .

Using a union bound this implies that w.p. 1− δ we have

max
j
|Fj | ≤ κ(r, s, n, δ) .

By our MSE theorem and also Markov’s inequality, w.p. 1−δ′: ‖θ̂−θ(x)‖ ≤ ν(s)/δ′, where:

ν(s) =
1

λ

(
Lmε(s) +O

(
ψmax

√
p s

n
log log(p s/n)

))
Thus using a union bound w.p. 1− δ − δ′, we have:

max
j
|Fj | = O

(
κ(ν(s)/δ′, s, n, δ))

)
To improve readability from here we ignore all the constants in our analysis, while we keep

all terms (even log or log log terms) that depend on s and n. Note that we can even ignore

δ and δ′, because they can go to zero at very slow rate such that terms log(1/δ) or even

δ′1/4 appearing in the analysis grow slower than log log terms. Now, by the definition of

ν(s) and κ(r, s, n, δ′), as well as invoking the inequality (a+ b)1/4 ≤ a1/4 + b1/4 for a, b > 0

we have:

max
j
|Fj | ≤ O(κ(ν(s)/δ′, s, n, δ)) ≤ O

(
ε(s)1/4

( s
n

log log(n/s)
)1/2

+
( s
n

log log(n/s)
)5/8

)
,

(C.3.16)

Hence, using our Assumption on the rates in the statement of Theorem 9 we get that both

of the terms above are o(σn(x)). Therefore, ‖F‖2/σn(x) →p 0. Thus, combining all of the

above, we get that:
‖θ̃ − θ̂‖
σn(x)

= op(1)
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as desired.

C.3.3 Proof of Lemma 7

We give a generic lower bound on the quantity E[E[K(x,X1, {Zj}sj=1)|X1]2] that depends

only on the kernel shrinkage. The bound essentially implies that if we know that the

probability that the distribution of X’s assigns to a ball of radius ε(s, 1/2s) around the

target x is of order 1/s, i.e. we should expect at most a constant number of samples to

fall in the kernel shrinkage ball, then the main condition on incrementality of the kernel,

required for asymptotic normality, holds. In some sense, this property states that the kernel

shrinkage behavior is tight in the following sense. Suppose that the kernel was assigning

positive weight to at most a constant number of k samples. Then kernel shrinkage property

states that with high probability we expect to see at least k samples in a ball of radius

ε(s, δ) around x. The above assumption says that we should also not expect to see too

many samples in that radius, i.e. we should also expect to see at most a constant number

K > k of samples in that radius. Typically, the latter should hold, if the characterization

of ε(s, δ) is tight, in the sense that if we expected to see too many samples in the radius,

then most probably we could have improved our analysis on kernel shrinkage and given a

better bound that shrinks faster. The proof of Lemma 7 is as follows.

Proof. By the Paley-Zygmund inequality, for any random variable Z ≥ 0 and for any

δ ∈ [0, 1]:

E[Z2] ≥ (1− δ)2 E[Z]2

Pr[Z ≥ δE[Z]]
.

Let W1 = K(x,X1, {Zj}sj=1). Then, applying the latter to the random variable Z =

E[W1|X1] and observing that by symmetry E[Z] = E[W1] = 1/s, yields:

E
[
E[W1|X1]2

]
≥ (1− δ)2 E[W1]2

Pr[E[W1|X1] > δE[W1]]
=

(1− δ)2 (1/s)2

Pr[E[W1|X1] > δ/s]
.

Moreover, observe that by the definition of ε(s, ρ) for some ρ > 0 we have

Pr[W1 > 0 ∧ ‖X1 − x‖ ≥ ε(s, ρ)] ≤ ρ .

This means that at most a mass ρ s/δ of the support of X1 in the region ‖X1−x‖ ≥ ε(s, ρ)
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can have Pr[W1 > 0|X1] ≥ δ/s. Otherwise the overall probability that W1 > 0 in the region

of ‖X1− x‖ ≥ ε(s, ρ) would be more than ρ. Thus we have that except for a region of mass

ρ s/δ, for each X1 in the region ‖X1 − x‖ ≥ ε(s, ρ): E[W1|X1] ≤ δ/s. Combining the above

we get:

Pr[E[W1|X1] ≤ δ/s] ≥ Pr[‖X1 − x‖ ≥ ε(s, ρ)]− ρ s/δ .

Thus,

Pr[E[W1|X1] > δ/s] ≤ Pr[‖X1 − x‖ ≤ ε(s, ρ)] + ρ s/δ = µ(B(x, ε(s, δ))) + ρ s/δ .

Since ρ was arbitrarily chosen, the latter upper bound holds for any ρ, which yields the

result.

C.3.4 Proof of Corollary 3

Applying Lemma 7 with δ = 1/2 yields

E[E[K(x,X1, {Zj}sj=1)|X1]2] ≥ (1/2s)2

infρ>0 (µ(B(x, ε(s, ρ))) + 2ρ s)
.

Observe that

µ(B(x, ε(s, ρ))) ≤ 1

crd
ε(s, ρ)dµ(B(x, r)) = O

(
log(1/ρ)

s

)
.

Hence,

inf
ρ>0

(µ(B(x, ε(s, ρ))) + 2ρ s) = O

(
inf
ρ>0

(
log(1/ρ)

s
+ 2ρ s

))
= O

(
log(s)

s

)
,

where the last follows by choosing ρ = 1/s2. Combining all the above yields

E[E[K(x,X1, {Zj}sj=1)|X1]2] = Ω

(
1

s log(s)

)
,

as desired.

C.3.5 Proof of Lemma 8

For proving this lemma, we rely on Bernstein’s inequality which is stated below:
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Proposition 7 (Bernstein’s Inequality). Suppose that random variables Z1, Z2, . . . , Zn are

i.i.d., belong to [−c, c] and E[Zi] = µ. Let Z̄n = 1
n

∑n
i=1 Zi and σ2 = Var(Zi). Then, for

any θ > 0,

Pr
(
|Z̄n − µ| > θ

)
≤ 2 exp

(
−nθ2

2σ2 + 2cθ/3

)
.

This also implies that w.p. at least 1− δ the following holds:

|Z̄n − µ| ≤
√

2σ2 log(2/δ)

n
+

2c log(2/δ)

3n
. (C.3.17)

Let A be any µ-measurable set. An immediate application of Bernstein’s inequality

to random variables Zi = 1 {Xi ∈ A}, implies that w.p. 1 − δ over the choice of features

(Xi)
s
i=1, we have:

|µs(A)− µ(A)| ≤
√

2µ(A) log(2/δ)

s
+

2 log(2/δ)

3s
.

In above, we used the fact that Var(Zi) = µ(A)(1 − µ(A)) ≤ µ(A). This result has the

following corollary.

Corollary 7. Define U = 2 log(2/δ)/s and let A be an arbitrary µ-measurable set. Then,

w.p. 1− δ over the choice of training samples, µ(A) ≥ 4U implies µs(A) ≥ U .

Proof. Define U = 2 log(2/δ)/s. Then, Bernstein’s inequality in Proposition 7 implies that

w.p. 1− δ we have

|µs(A)− µ(A)| ≤
√
Uµ(A) +

U

3
.

Assume that µ(A) ≥ 4U , we want to prove that µs(A) ≥ U . Suppose, the contrary, i.e.,

µs(A) < U . Then, by dividing the above equation by µ(A) we get

∣∣∣µs(A)

µ(A)
− 1
∣∣∣ ≤√ U

µ(A)
+

1

3

U

µ(A)
, .

Note that since µs(A) < U < µ(A), by letting z = U/µ(A) ≤ 1/4 the above implies that

1− z ≤
√
z +

z

3
⇒ 4

3
z +
√
z − 1 ≥ 0 ,
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which as z > 0 only holds for

√
z ≥ −3 +

√
57

8
⇒ z ≥ 0.3234 .

This contradicts with z ≤ 1/4, implying the result.

Now we are ready to finish the proof of Lemma 8. First, note that using the definition of

(C, d)-homogeneous measure, for any θ ∈ (0, 1) we have µ(B(x, θr)) ≥ (1/C)θdµ(B(x, r)).

Replace θr = ε in above. It implies that for any ε ∈ (0, r)

µ(B(x, ε)) ≥ 1

C rd
εdµ(B(x, r)) . (C.3.18)

Pick εk(s, δ) according to

εk(s, δ) = r

(
8C log(2/δ)

µ(B(x, r))s

)1/d

.

Note that for having εk(s, δ) ∈ (0, r) we need

log(2/δ) ≤ 1

8C
µ(B(x, r))s⇒ δ ≥ 2 exp

(
− 1

8C
µ(B(x, r)s

)
.

Therefore, replacing this choice of εk(s, δ) in Equation (C.3.18) implies that µ(B(x, εk(s, δ))) ≥
8 log(2/δ)

s . Now we can use the result of Corollary 7 for the choice A = B(x, εk(s, δ)). It

implies that w.p. 1− δ over the choice of s training samples, we have

µs(B(x, εk(s, δ))) ≥
2 log(2/δ)

s
.

Note that whenever δ ≤ exp(−k/2)/2 we have

2 log(2/δ)

s
≥ k

s
.

Therefore, w.p. 1− δ we have

‖x−X(k)‖ ≤ εk(s, δ) = O

(
log(1/δ)

s

)1/d

.
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C.3.6 Proof of Corollary 4

Lemma 8 shows that for any t = εk(s, δ) = r
(

8C log(2/δ)
µ(B(x,r))s

)1/d
, such that t ≤ r and t ≥

r
(

4k C
µ(B(x,r))s

)1/d
, we have that:

Pr[‖x−X(k)‖2 ≥ εk(s, δ)] ≤ δ .

Let ρ = 1
r

(
µ(B(x,r))

8C

)1/d
, which is a constant. Solving for δ in terms of t we get:

Pr[‖x−X(k)‖2 ≥ t] ≤ 2 exp
(
−ρd s td

)
,

for any t ∈
[

(s/k)−1/d

ρ , r
]
. Thus, noting that Xi’s and target x both belong to X that has

diameter ∆X , we can upper bound the expected value of [‖x−X(k)‖2 as:

E
[
‖x−X(k)‖2

]
=

∫ ∆X

0
Pr
[
‖x−X(k)‖2 ≥ t

]
dt

≤ (s/k)−1/d

ρ
+

∫ r

ρ (s/k)−1/d

Pr
[
‖x−X(k)‖2 ≥ t

]
dt+ Pr

[
‖x−X(k)‖2 ≥ r

]
(∆X − r)

≤ (s/k)−1/d

ρ
+

∫ r

ρ (s/k)−1/d

2 exp
{
−ρd s td

}
dt+ 2 exp

{
−ρd rd s

}
(∆X − r) .

Note that for s larger than some constant, we have exp
{
−ρd rd s

}
≤ s−1/d. Thus the first

and last terms in the latter summation are of order
(

1
s

)1/d
. We now show that the same

holds for the middle term, which would complete the proof. By setting u = ρd s td and

doing a change of variables in the integral we get:∫ r

ρ (s/k)1/d
2 exp

{
−ρd s td

}
dt ≤

∫ ∞
0

2 exp
{
−ρd s td

}
dt

=
1

d ρ s1/d

∫ ∞
0

u1/d−1 exp {−u} du =
s−1/d

ρ

1

d
Γ(1/d) .

where Γ is the Gamma function. Since by the properties of the Gamma function zΓ(z) =

Γ(z + 1), the latter evaluates to: s−1/d

ρ Γ((d + 1)/d). Since (d + 1)/d ∈ [1, 2], we have that

Γ((d+ 1)/d) ≤ 2. Thus the middle term is upper bounded by 2s−1/d

ρ , which is also of order(
1
s

)1/d
.
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C.3.7 Proof of Lemma 9

Before proving this lemma we state and prove and auxiliary lemma which comes in handy

in our proof.

Lemma 33. Let P1 denote the mass that the density of the distribution of Xi puts on the

ball around x with radius ‖x−X1‖2, which is a random variable as it depends on X1. Then,

for any s ≥ k the following holds:

E

[
k−1∑
i=0

(
s− 1

i

)
(1− P1)s−1−iP i1

]
= E [E [S1 | X1]] =

k

s
.

Proof. Let S1 = 1{sample 1 is among k nearest neighbors}, then we can write

E [E[S1 | X1]] = E

[
k−1∑
i=0

(
s− 1

i

)
(1− P1)s−1−iP i1

]
,

which simply computes the probability that there are at most k− 1 other points in the ball

with radius ‖x−X1‖. Now, by using the tower law of expectations

E [E[S1 | X1]] = E[S1] =
k

s
,

which holds because of the symmetry. In other words, the probability that sample 1 is

among the k-NN is equal to k/s. Hence, the conclusion follows.

We can finish the proof of Lemma 9. Define S1 = 1{sample 1 is among k nearest neighbors},
then we can write

E
[
E
[
K(x,X1, {Zj}sj=1) | X1

]2]
=

1

k2
E
[
E [S1 | X1]2

]
.

Recall that P1 denotes the mass that the density of the distribution of Xi puts on the ball

around x with radius ‖x−X1‖2, which is a random variable depending on X1. Therefore,

E [S1 | X1] =
k−1∑
i=0

(
s− 1

i

)
(1− P1)s−1−iP i1 .
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Now we can write

E
[
E [S1 | X1]2

]
= E

(k−1∑
i=0

(
s− 1

i

)
(1− P1)s−1−iP i1

)2


= E

k−1∑
i=0

k−1∑
j=0

(
s− 1

i

)(
s− 1

j

)
(1− P1)2s−2−i−jP i+j1


= E

2k−2∑
t=0

(1− P1)2s−2−tP t1

k−1∑
i=0

k−1∑
j=0

(
s− 1

i

)(
s− 1

j

)
1 {i+ j = t}


= E

2k−2∑
t=0

(1− P1)2s−2−tP t1

min{t,k−1}∑
i=max{0,t−(k−1)}

(
s− 1

i

)(
s− 1

t− i

)
= E

[
2k−2∑
t=0

at (1− P1)2s−2−tP t1

]

Now using Lemma 33 (where s is replaced by 2s − 1) we know that for any value of 0 ≤
r ≤ 2s− 2 we have

E

[
r∑
t=0

bt (1− P1)2s−2−rP r1

]
= E

[
r∑
t=0

(
2s− 2

t

)
(1− P1)2s−2−tP t1

]
=

r + 1

2s− 1
. (C.3.19)

This implies that for any value of r we have E
[
br(1− P1)2s−2−rP r1

]
= 1/(2s−1). The reason

is simple. Note that the above is obvious for r = 0 using Equation (C.3.19). For other values

of r ≥ 1, we can write Equation (C.3.19) for values r and r − 1. Taking their difference

implies the result. Note that this further implies that E
[
(1− P1)2s−2−rP r1

]
= 1/(br (2s−1)),

as br is a constant. Therefore, by plugging this back into the expression of E[E[S1 | X1]2]

we have

E[E[S1|X1]2] = E

[
2k−2∑
t=0

at (1− P1)2s−2−tP t1

]
=

1

2s− 1

(
2k−2∑
t=0

at
bt

)
,

which implies the desired result.
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C.3.8 Proof of Theorem 11

Note that according to Lemma 37, the asymptotic variance σ2
n,j(x) = s2

n Var [Φ1(Z1)], where

Φ1(Z1) = 1
kE[
∑

i∈Hk(x,s)

〈
ej ,M

−1
0 ψ(Zi; θ(x))

〉
| Z1]. Therefore, once we establish an expres-

sion for Var [Φ1(Z1)] we can finish the proof of this theorem. The following lemma provides

such a result.

Lemma 34. Let K be the k-NN kernel and σ2
j (x) = Var

(〈
ej ,M

−1
0 ψ(z; θ(x))

〉
| X = x

)
.

Moreover, suppose that εk(s, 1/s
2)→ 0 for any constant k. Then:

Var [Φ1(Z1)] = σj(x)2 E
[
E
[
K(x,X1, {Zj}sj=1) | X1

]2]
+ o(1/s)

=
σ2
j (x)

(2s− 1)k2

(
2k−2∑
t=0

at
bt

)
+ o(1/s)

where the second equality above holds due to Lemma 9 and sequences at and bt, for 0 ≤ t ≤
2k − 2, are defined in Lemma 9.

Proof. In this proof for simplicity we let Yi =
〈
ej ,M

−1
0 ψ(Zi; θ(x))

〉
and µ(Xi) = E[Yi] =〈

ej ,M
−1
0 m(Xi; θ(x))

〉
. Let Z(i) denote the random variable of the i-th closest sample to x.

For the case of k-NN we have that:

kΦ1(Z1) = E

[
k∑
i=1

Y(i) | Z1

]
.

Let S1 = 1{sample 1 is among k nearest neighbors}. Then we have:

kΦ1(Z1) = E

[
S1

k∑
i=1

Y(i) | Z1

]
+ E

[
(1− S1)

k∑
i=1

Y(i) | Z1

]
.

Let Ỹ(i) denote the label of the i-th closest point to x, excluding sample 1. Then:

kΦ1(Z1) = E

[
S1

k∑
i=1

Y(i) | Z1

]
+ E

[
(1− S1)

k∑
i=1

Ỹ(i) | Z1

]

= E

[
S1

k∑
i=1

(
Y(i) − Ỹ(i)

)
| Z1

]
+ E

[
k∑
i=1

Ỹ(i) | Z1

]
.
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Observe that Ỹ(i) are all independent of Z1. Hence:

kΦ1(Z1) = E

[
S1

k∑
i=1

(
Y(i) − Ỹ(i)

)
| Z1

]
+ E

[
k∑
i=1

Ỹ(i)

]
.

Therefore the variance of Φ(Z1) is equal to the variance of the first term on the right hand

side. Hence:

k2 Var [Φ1(Z1)] = E

E[S1

k∑
i=1

(
Y(i) − Ỹ(i)

)
| Z1

]2
− E

[
S1

k∑
i=1

(
Y(i) − Ỹ(i)

)]2

= E

E[S1

k∑
i=1

(
Y(i) − Ỹ(i)

)
| Z1

]2
+ o(1/s) .

Where we used the fact that:∣∣∣∣∣E
[
S1

k∑
i=1

(
Y(i) − Ỹ(i)

)]∣∣∣∣∣ ≤ E [S1] 2kψmax =
2k2ψmax

s
. (C.3.20)

Moreover, observe that under the event that S1 = 1, we know that the difference between

the closest k values and the closest k values excluding 1 is equal to the difference between

the Y1 and Y(k+1). Hence:

E

[
S1

k∑
i=1

(
Y(i) − Ỹ(i)

)
| Z1

]
= E

[
S1

(
Y1 − Y(k+1)

)
| Z1

]
= E

[
S1

(
Y1 − µ(X(k+1))

)
| Z1

]
.

where the last equation holds from the fact that for any j 6= 1, conditional on Xj , the

random variable Yj is independent of Z1 and is equal to µ(Xj) in expectation. Under the

event S1 = 1, we know that the (k + 1)-th closest point is different from sample 1. We

now argue that up to lower order terms, we can replace µ(X(k+1)) with µ(X1) in the last

equality:

E
[
S1

(
Y1 − µ(X(k+1))

)
| Z1

]
= E [S1 (Y1 − µ(X1)) | Z1]︸ ︷︷ ︸

A

+E
[
S1

(
µ(X1)− µ(X(k+1))

)
| Z1

]︸ ︷︷ ︸
ρ

.
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Observe that:

E
[
E
[
S1

(
Y1 − µ(X(k+1))

)
| Z1

]2]
= E[A2] + E[ρ2] + 2E[Aρ] .

Moreover, by Jensen’s inequality, Lipschitzness of the first moments and kernel shrinkage:

∣∣E[ρ2]
∣∣ = E

[
E
[
S1

(
µ(X1)− µ(X(k+1))

)
| Z1

]2] ≤ E
[
S1

(
µ(X1)− µ(X(k+1))

)2]
≤ 4L2

mεk+1(s, δ)2E[E[S1|X1]] + 4δψ2
max ≤ 4L2

mεk+1(s, δ)2k

s
+ 4δψ2

max .

Hence, for δ = 1/s2, the latter is o(1/s). Similarly:

|E[Aρ]| ≤ E[|A| |ρ|] ≤ ψmaxE
[
E
[
S1

∣∣µ(X1)− µ(X(k+1)

∣∣ | Z1

]]
= ψmaxE

[
S1

∣∣µ(X1)− µ(X(k+1)

∣∣]
≤ ψmaxE[S1]εk+1(s, δ) + 2δψmax = ψmaxεk+1(s, δ)

k

s
+ 2δψmax .

which for δ = 1/s2 is also of order o(1/s). Combining all the above we thus have:

k2 Var [Φ1(Z1)] = E
[
E [S1 (Y1 − µ(X1)) | Z1]2

]
+ o(1/s)

= E
[
E [S1 | X1]2 (Y1 − µ(X1))2

]
+ o(1/s) .

We now work with the first term on the right hand side. By the tower law of expectations

E
[
E[S1 | X1]2 (Y1 − µ(X1))2

]
= E

[
E[S1 | X1]2E

[
Y1 − µ(X1)2 | X1

]]
= E

[
E[S1 | X1]2σ2

j (X1)
]

= E
[
E[S1 | X1]2σ2

j (x)
]

+ E
[
E[S1 | X1]2

(
σ2
j (X1)− σ2

j (x)
)]
.

By Lipschitzness of the second moments, we know that the second part is upper bounded

as:

∣∣E [E[S1 | X1]2
(
σ2
j (X1)− σ2

j (x)
)]∣∣ ≤ ∣∣E [E[S1 | X1]

(
σ2
j (X1)− σ2

j (x)
)]∣∣

≤
∣∣E [S1

(
σ2
j (X1)− σ2

j (x)
)]∣∣

=
∣∣E [S1

(
σ2
j (X(k))− σ2

j (x)
)]∣∣

≤ LmmE [S1] εk(s, δ) + δψ2
max

=
Lmm εk(s, δ) k

s
+ δψ2

max .
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For δ = 1/s2 it is of o(1/s). Thus:

k2 Var [Φ1(Z1)] = E
[
E[S1 | X1]2

]
σ2
j (x) + o(1/s) .

Note that Lemma 9 provides an expression for E
[
E[S1 | X1]2

]
which finishes the proof.

For finishing the proof of Theorem 11 we need to prove that
∑2k−2

t=0
at
bt

is equal to ζk

plus lower order terms. This is stated in Lemma 10 and the proof of this lemma is provided

below.

Proof of Lemma 10. Note that for any 0 ≤ t ≤ k − 1 we have at = bt according to Remark

4.5.1. For any k ≤ t ≤ 2k − 2 we have

at
bt

=

k−1∑
i=t−k+1

(
s−1
i

)(
s−1
t−i
)(

2s−2
t

) =

k−1∑
i=t−k+1

(s−1)(s−2)...(s−i)
i !

(s−1)(s−2)...(s−t+i)
(t−i) !

(2s−2)(2s−3)...(2s−1−t)
t !

=
k−1∑

i=t−k+1

(
t

i

)
(s− 1)(s− 2) . . . (s− i) (s− 1)(s− 2) . . . (s− t+ i)

(2s− 2)(2s− 3) . . . (2s− 1− t)

=

k−1∑
i=t−k+1

(
t

i

)
s− 1

2s− 2

s− 2

2s− 3
· · · s− i

2s− 1− i
s− 1

2s− i
s− 2

2s− i− 1
· · · s− t+ i

2s− 1− t

=
k−1∑

i=t−k+1

2−t
(
t

i

)(
1− 1

2s− 3

)
· · ·
(

1− i− 1

2s− 1− i

) (
1 +

i− 2

2s− i

)
· · ·
(

1 +
i− (i− t+ 1)

2s− 1− t

)

= 2−t
k−1∑

i=t−k+1

(
t

i

)
(1 +O(1/s))

= 2−t
k−1∑

i=t−k+1

(
t

i

)
+O(1/s) ,

where we used the fact that t and i are both bounded above by 2k− 2 which is a constant.

Hence,
2k−2∑
t=0

at
bt

= k +
2k−2∑
t=k

2−t
k−1∑

i=t−k+1

(
t

i

)
+O(1/s) = ζk +O(1/s) ,

as desired.
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C.3.9 Proof of Theorem 12

The goal is to apply Theorem 9. Note that k-NN kernel is both honest and symmetric.

According to Lemma 8, we have that εk(s, δ) = O
(
(log(1/δ)/s)1/d

)
for exp(−Cs) ≤ δ ≤

D, where C and D are constants. Corollary 4 also implies that εk(s) = O((1/s)1/d).

Furthermore, according to Lemma 9, the incrementality ηk(s) is Θ(1/s). Therefore, as s

goes to ∞ we have εk(s, ηk(s)) = O
(
(log(s)/s)1/d

)
→ 0. Moreover, as ηk(s) = Θ(1/s),

we also get that nηk(s) = O(n/s) → ∞. We only need to ensure that Equation (4.4.3) is

satisfied. Note that σn,j(x) = Θ(
√
s/n). Therefore, by dividing terms in Equation (4.4.3)

it suffices that

max

(
s−1/d

(n
s

)1/2
, s−1/4d (log log(n/s))1/2 ,

(n
s

)−1/8
(log log(n/s))5/8

)
= o(1) .

Note that due to our Assumption n/s → ∞, the last term obviously goes to zero. Also,

because of the assumption made in the statement of theorem, the first term also goes to

zero. We claim that if the first term goes to zero, the same also holds for the second term.

Note that we can write

s−1/4d (log log(n/s))1/2 =

(
s−1/d

(n
s

)1/2
)1/4

·
[(n
s

)−1/8
(log log(n/s))1/2

]
,

and since n/s → ∞, our claim follows. Therefore, all the conditions of Theorem 9 are

satisfied and the result follows.

The second part of result is implied by the first part since if s = nβ and β ∈ (d/(d+2), 1)

then s−1/d
√

n
s → 0.

Proofs of Propositions 4 and 5. We first start by proving Lemma 11. For proving this

result, we need one auxiliary lemma, which can be derived from Hoeffding’s inequality for

U -statistics (Hoeffding 1994) that is stated as follows.

Proposition 8. Suppose that X = (X1, X2, . . . , Xn) are i.i.d. and q is a function that has

range [0, 1]. Define Us =
(
n
s

)−1∑
i1<i2<...<is

q(Xi1 , Xi2 , . . . , Xis). Then, for any ε > 0

Pr [|Us − E[Us]| ≥ ε] ≤ 2 exp
(
−bn/scε2

)
.
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Furthermore, for any δ > 0, w.p. 1− δ we have

|Us − E[Us]| ≤

√
1

bn/sc
log(2/δ) .

Lemma 35. Recall H(s) defined in Section 4.5.3 and let Gδ(s) = ∆
√

2ps/n log(2np/δ).

Then, w.p. 1− δ, for all values of k ≤ s ≤ n we have

|H(s)− εk(s)| ≤ Gδ(s) .

Proof. Note that H(s) is the complete U -statistic estimator for εk(s). For each subset S of

size s of {1, 2, . . . , n} we have

E
[

max
Xi∈Hk(x,S)

‖x−Xi‖2
]

= εk(s) .

Further, ‖x−x′‖2 ≤ ∆X ≤ ∆ holds for any x′ ∈ X . Therefore, using Hoeffding’s inequality

for U -statistics stated in Proposition 8, for any fixed s, w.p. 1− δ we have

|H(s)− εk(s)| ≤ ∆

√
1

bn/sc
log(2/δ) .

Note that bzc ≥ z/2 for z ≥ 1 and therefore the above translates to

|H(s)− εk(s)| ≤ ∆

√
2s

n
log(2/δ) .

Taking a union bound over s = k, k + 1, . . . , n, replacing δ = δ/n, and using p ≥ 1, implies

the result.

Proof of Lemma 11. Note that using Lemma 35, w.p. 1 − δ, for all values of s we have

|H(s)− εk(s)| ≤ Gδ(s). Now consider three different cases:

• s1 ≥ s2 ≥ s∗ : Note that based on the choice of s1, s2, we have H(s2) > 2Gδ(s2).

However, H(s2) ≤ εk(s2) + Gδ(s2). Hence, εk(s2) > Gδ(s2) which contradicts with

the assumption that s2 ≥ s∗. Note that this is true since εk(s)−Gδ(s) is non-positive

for s ≥ s∗.

• s1 = s∗, s2 = s∗ − 1 : Obviously s1 ≤ s∗.
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• s2 ≤ s1 ≤ s∗ − 1 : Note that we have

εk(s1)−Gδ(s1) ≤ H(s1) ≤ 2Gδ(s1) .

Hence, Gδ(s
∗ − 1) < εk(s

∗ − 1) ≤ εk(s1) ≤ 3Gδ(s1). This means that Gδ(s
∗ −

1)/Gδ(s1) ≤ 3 which implies
√

(s∗ − 1)/s1 ≤ 3. Therefore, s1 ≥ (s∗ − 1)/9.

Putting together all these cases finishes the proof.

Now we are ready to finalize the proof of Proposition 4.

Proof of Proposition 4. Note that using the result of Lemma 11, w.p. 1− δ, we have

s∗ − 1

9
≤ s1 ≤ s∗ .

This basically means that if s∗ = 9s1 + 1, then s∗ belongs to [s∗, 10s∗]. Hence, we have

εk(s∗) ≤ εk(s
∗) ≤ Gδ(s

∗) and Gδ(s∗) ≤ Gδ(10s∗) =
√

10Gδ(s
∗). Now using Theorem 8, for

B ≥ n/s∗ w.p. 1− δ we have

‖θ̂ − θ(x)‖2 ≤
2

λ

(
Lmε(s∗) +O

(
ψmax

√
p s∗
n

(log log(n/s∗) + log(p/δ))

))
.

Note that Gδ(s∗) = ∆
√

2ps∗
n log(2pn/δ). Therefore,

√
p s∗
n

(log log(n/s∗) + log(p/δ)) ≤ Gδ(s∗) ≤
√

10Gδ(s
∗) .

Replacing this in above equation together with a union bound implies that w.p. at least

1− 2δ we have

‖θ̂ − θ(x)‖2 = O(Gδ(s
∗)) ,

which finishes the first part of the proof. For the second part, note that according to

Corollary 4, for the k-NN kernel ε(s) ≤ Cs−1/d, for a constant C. Note that according to

the definition of s∗, for s = s∗ − 1 we have

∆

√
2ps

n
log(2np/δ) = εk(s) ≤ Cs−1/d ,
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for a constant C. The above implies that

s∗ ≤ 1 +

(
C

∆

)2d/(d+2)( n

2p log(2np/δ)

)d/(d+2)

≤ 2

(
C

∆

)2d/(d+2)( n

2p log(2np/δ)

)d/(d+2)

.

Hence,

Gδ(s
∗) ≤

√
2∆2/(d+2)Cd/(d+2)

(
n

2p log(2np/δ)

)−1/(d+2)

,

which concludes the proof.

Finally, we can use Lemma 11 to also prove Proposition 5.

Proof of Proposition 5. Note that according to Lemma 11, w.p. 1 − 1/n, the output of

process, s1 satisfies
s∗ − 1

9
≤ s1 ≤ s∗ ,

where s∗ is the point for which we have εk(s
∗) = G1/n(s∗). This basically means that

s∗ = 9s1 + 1 ≥ s∗. Note that for the k-NN kernel we have ηk(s) = Θ(1/s). As sζ ≥ nζ , this

also implies that εk(sζ , ηk(sζ)) = O((log(sζ)/sζ)
1/d)→ 0. Also, according to the inequality

ζ < log(n)−log(s∗)−log log2(n)
log(n) we have 1− ζ > (log(s∗) + log log2(n))/ log(n) and therefore

n1−ζ ≥ sζ log2(n)→
sζ
n
≤ 1

log2(n)
,

and hence nηk(sζ) → 0. Finally, note that σn,j(x) = Θ(
√
s/n) and according to Theorem

9 it suffices that

max

(
εk(sζ)

(sζ
n

)−1/2
, εk(sζ)

1/4 (log log(n/sζ))
1/2 ,

(sζ
n

)1/8
(log log(n/sζ))

5/8

)
= o(1) .

Note that for any ζ > 0, sζ ≥ s∗ and therefore εk(sζ) ≤ εk(s
∗) = G1/n(s∗). For the first

term,

εk(sζ)
(sζ
n

)−1/2
≤ G1/n(s∗)

(sζ
n

)−1/2

= ∆

√
2p s∗

n
log(2n2/p)

(sζ
n

)−1/2

= O

(√
s∗

sζ
log(n)

)
.
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Now note that sζ = s∗n
ζ ≥ s∗nζ and hence

√
s∗/sζ log(n) = O(n−ζ/2 log(n))→ 0. For the

second term, note that again sζ ≥ s∗ and therefore εk(sζ) ≤ εk(s
∗) = G1/n(s∗) ≤ G1/n(sζ).

Now note that since sζ/n ≤ 1/ log2(n) hence

εk(sζ)
1/4 log log(n/sζ)

1/2 ≤ G1/n(sζ) log log(n) = O

((
log(n)

log2(n)

)1/8

log log(n)

)
→ 0 .

Finally, for the last term we have sζ/n ≤ 1/ log2(n) and hence

(sζ
n

)1/8
(log log(n/sζ))

5/8 ≤
(

1

log(n)

)1/4

log log(n)→ 0.

This basically means w.p. 1 − 1/n, sζ belongs to the interval for which the asymptotic

normality result in Theorem 9 holds. As n→∞, the conclusion follows.

C.3.10 Proof of Lemma 31

We will argue asymptotic normality of the U -statistic defined as:

Ψ0,β(x; θ(x)) =

(
n

s

)−1 ∑
b⊂[n]:|b|=s

Eωb

∑
i∈Sb

αSb,ωb(Xi)ψβ(Zi; θ(x))


under the assumption that for any subset of indices Sb of size s: E

[
E[αSb,ωb(X1)|X1]2

]
=

η(s) and that the kernel satisfies shrinkage in probability with rate ε(s, δ) such that ε(s, η(s)2)→
0 and nη(s)→∞. For simplicity of notation we let:

Yi = ψβ(Zi; θ(x)) (C.3.21)

and we then denote:

Φ(Z1, . . . , Zs) = Eω

[
s∑
i=1

Kω(x,Xi, {Zj}sj=1)Yi

]
. (C.3.22)

Observe that we can then re-write our U -statistic as:

Ψ0,β(x; θ(x)) =

(
n

s

)−1 ∑
1≤i1≤...≤is≤n

Φ(Zi1 , . . . , Zis) .
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Moreover, observe that by the definition of Yi, E[Yi | Xi] = 0 and also

|Yi| ≤ ‖β‖2‖M−1
0 (ψ(Zi; θ(x))−m(Xi; θ(x))‖22 ≤ R

λ
‖ψ(Zi; θ(x))‖2 ≤ 2

R
√
p

λ
ψmax , ymax .

Invoking Lemma 37, it suffices to show that: Var [Φ1(Z1)] = Ω(η(s)), where Φ1(z1) =

E[Φ(z1, Z2, . . . , Zs)]. The following lemma shows that under our conditions on the kernel,

the latter property holds.

Lemma 36. Suppose that the kernel K is symmetric (Assumption 8), has been built in an

honest manner (Assumption 7) and satisfies:

E
[
E
[
K(x,X1, {Zj}sj=1) | X1

]2]
= η(s) ≤ 1 and ε(s, η(s)2)→ 0 .

Then, the following holds

Var [Φ1(Z1)] ≥ Var(Y | X = x) η(s) + o(η(s)) = Ω (η(s)) .

Proof. Note we can write

Φ1(Z1) = E [Φ(Z1, . . . , Zs) | X1]︸ ︷︷ ︸
A

+E [Φ(Z1, . . . , Zs) | X1, Y1]− E [Φ(Z1, . . . , Zs) | X1]︸ ︷︷ ︸
B

.

Here, B is zero mean conditional on X1 and also A and B are uncorrelated, i.e., E[AB] =

E[A]E[B] = 0. Therefore:

Var [Φ1(Z1)] ≥ Var [B]

= Var

[
s∑
i=1

(
E
[
K(x,Xi, {Zj}sj=1)Yi | X1, Y1

]
− E[K(x,Xi, {Zj}sj=1)Yi | X1]

)]
.

For simplicity of notation let Wi = K(x,X1, {Zj}sj=1) denote the random variable which

corresponds to the weight of sample i. Note that thanks to the honesty of kernel defined

in Assumption 7, Wi is independent of Y1 conditional on X1, for i ≥ 2. Hence all the cor-

responding terms in the summation are zero. Therefore, the expression inside the variance

above simplifies to

E[W1Y1 | X1, Y1]− E[W1Y1 | X1] .

Moreover, by honesty W1 is independent of Y1 conditional on X1. Thus, the above further
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simplifies to:

E[W1 | X1] (Y1 − E[Y1 | X1]) .

Using Var(G) = E[G2]− E[G]2, this can be further rewritten as

Var [Φ1(Z1)] ≥ E
[
E[W1 | X1]2 (Y1 − E[Y1 | X1])2

]
− E [E[W1 | X1](Y1 − E[Y1 | X1])]2 .

Note that Y1 − E[Y1 | X1] is uniformly upper bounded by some ψmax. Furthermore, by the

symmetry of the kernel we have E [E[W1 | X1]] = E[W1] = 1/s.1 Thus the second term in

the latter is of order 1/s2. Hence:

Var [Φ(Z1)] ≥ E
[
E[αb(X1) | X1]2 (Y1 − E[Y1 | X1])2

]
+ o(1/s) .

Focusing on the first term and letting σ2(x) = Var(Y |X = x), we have:

E
[
E[W1 | X1]2 (Y1 − E[Y1 | X1])2

]
=E

[
E[W1 | X1]2σ2(X1)

]
=E

[
E[W1 | X1]2

]
σ2(x) + E

[
E[W1 | X1]2

(
σ2(X1)− σ2(x)

)]
.

The goal is to prove that the second term is o(1/s). For ease of notation let V1 = E [W1 | X1].

Then we can bound the second term as:

∣∣E [V 2
1

(
σ2(X1)− σ2(x)

)]∣∣ ≤ Lmmε(s, δ)E
[
V 2

1 1 {‖x−X1‖2 ≤ ε(s, δ)}
]

+ 2y2
maxE

[
V 2

1 1 {‖x−X1‖2 > ε(s, δ)}
]

≤ Lmmε(s, δ)E
[
V 2

1

]
+ 2y2

maxE
[
V 2

1 1 {‖x−X1‖2 > ε(s, δ)}
]

≤ Lmmε(s, δ)η(s) + 2y2
maxE [V1 1 {‖x−X1‖2 > ε(s, δ)}]

≤ Lmmε(s, δ)η(s) + 2y2
maxE [W1 1 {‖x−X1‖2 > ε(s, δ)}] ,

where we used the fact that V1 ≤ 1, the assumption that σ2(·) is Lmm-Lipschitz, the tower

1Since E[Wi] are all equal to the same value κ and
∑
i E[Wi] = 1, we get κ = 1/s.
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rule and the definition of η(s). Furthermore,

E [W1 1 {‖x−X1‖2 > ε(s, δ)}] ≤ Pr [‖x−X1‖2 ≥ ε(s, δ) and W1 > 0]

≤ Pr

[
sup
i
{‖x−Xi‖2 : Wi > 0} ≥ ε(s, δ)

]
,

which by definition is at most δ. By putting δ = η(s)2 we obtain

∣∣E [E[W1 | X1]2
(
σ2(X1)− σ2(x)

)]∣∣ ≤ Lmmε(s, η(s)2)η(s) + 2y2
maxη(s)2 = o(η(s)) ,

where we invoked our assumption that ε(s, η(s)2)→ 0. Thus we have obtained that:

Var [Φ1(Z1)] ≥ E
[
E[W1 | X1]2

]
σ2(x) + o(η(s)) ,

which is exactly the form of the lower bound claimed in the statement of the lemma. This

concludes the proof.

C.3.11 Hájek Projection Lemma for Infinite Order U-Statistics

The following is a small adaptation of Theorem 2 of Fan et al. (2018), which we present

here for completeness.

Lemma 37 (Fan et al. (2018)). Consider a U -statistic defined via a symmetric kernel Φ:

U(Z1, . . . , Zn) =

(
n

s

)−1 ∑
1≤i1≤...≤is≤n

Φ(Zi1 , . . . , Zis) , (C.3.23)

where Zi are i.i.d. random vectors and s can be a function of n. Let Φ1(z1) = E[Φ(z1, Z2, . . . , Zs)]

and η1(s) = Varz1 [Φ1(z1)]. Suppose that Var Φ is bounded, n η1(s)→∞. Then:

U(Z1, . . . , Zn)− E [U ]

σn
→d N(0, 1) , (C.3.24)

where σ2
n = s2

n η1(s).

Proof. The proof follows identical steps as the one in Fan et al. (2018). We argue about
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the asymptotic normality of a U -statistic:

U(Z1, . . . , Zn) =

(
n

s

)−1 ∑
1≤i1≤...≤is≤n

Φ(Zi1 , . . . , Zis) . (C.3.25)

Consider the following projection functions:

Φ1(z1) = E[Φ(z1, Z2, . . . , Zs)] , Φ̃1(z1) = Φ1(z1)− E [Φ] ,

Φ2(z1, z2) = E[Φ(z1, z2, Z3, . . . , Zs) , Φ̃2(z1, z2) = Φ2(z1, z2)− E [Φ] ,

...

Φs(z1, z2, . . . , zs) = E[Φ(z1, z2, Z3, . . . , Zs) , Φ̃s(z1, z2, . . . , zs) = Φs(z1, z2, . . . , zs)− E [Φ] ,

where E [Φ] = E [Φ(Z1, . . . , Zs)]. Then we define the canonical terms of Hoeffding’s U -

statistic decomposition as:

g1(z1) = Φ̃1(z1) ,

g2(z1, z2) = Φ̃2(z1, z2)− g1(z1)− g2(z2) ,

g3(z1, z2, z3) = Φ̃2(z1, z2, Z3)−
3∑
i=1

g1(zi)−
∑

1≤i<j≤3

g2(zi, zj) ,

...

gs(z1, z2, . . . , zs) = Φ̃s(z1, z2, . . . , zs)−
s∑
i=1

g1(zi)−
∑

1≤i<j≤s
g2(zi, zj)− . . .

...−
∑

1≤i1<i2<...<is−1≤s
gs−1(zi1 , zi2 , . . . , zis−1) .

Subsequently the kernel of the U -statistic can be re-written as a function of the canonical

terms:

Φ̃(z1, . . . , zs) = Φ(z1, . . . , zs)− E [Φ] =

s∑
i=1

g1(zi) +
∑

1≤i<j≤s
g2(zi, zj) + . . .+ gs(z1, . . . , zs) .

(C.3.26)

Moreover, observe that all the canonical terms in the latter expression are un-correlated.
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Hence, we have:

Var [Φ(Z1, . . . , Zn)] =

(
s

1

)
E
[
g2

1

]
+

(
s

2

)
E
[
g2

2

]
+ . . .+

(
s

s

)
E
[
g2
s

]
. (C.3.27)

We can now re-write the U statistic also as a function of canonical terms:

U(Z1, . . . , Zn)− E [U ] =

(
n

s

)−1 ∑
1≤i1<i2<...<is≤n

Φ̃(Zi1 , . . . , Zis)

=

(
n

s

)−1((n− 1

s− 1

) n∑
i=1

g1(Zi) +

(
n− 2

s− 2

) ∑
1≤i<j≤n

g2(Zi, Zj) + . . .

+

(
n− s
s− s

) ∑
1≤i1<i2<...<is≤n

gs(Zi1 , . . . , Zis)

)
.

Now we define the Hájek projection to be the leading term in the latter decomposition:

Û(Z1, . . . , Zn) =

(
n

s

)−1(n− 1

s− 1

) n∑
i=1

g1(Zi) . (C.3.28)

The variance of the Hajek projection is:

σ2
n = Var

[
Û(Z1, . . . , Zn)

]
=
s2

n
Var [Φ1(z1)] =

s2

n
η1(s) . (C.3.29)

The Hájek projection is the sum of independent and identically distributed terms and hence

by the Lindeberg-Levy Central Limit Theorem (see, e.g., Billingsley 2008, Borovkov 2013):

Û(Z1, . . . , Zn)

σn
→d N(0, 1) . (C.3.30)

We now argue that the remainder term: U−E[U ]−Û
σn

vanishes to zero in probability. The

latter then implies that U−E[U ]
σn

→d N(0, 1) as desired. We will show the sufficient condition

of convergence in mean square:
E
[
(U−E[U ]−Û)

2
]

σ2
n

→ 0. From an inequality due to Wager and
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Athey (2018):

E
[(
U − E [U ]− Û

)2
]

=

(
n

s

)−2
{(

n− 2

s− 2

)2(n
2

)
E[g2

2] + . . .+

(
n− s
s− s

)2(n
s

)
E[g2

s ]

}

=

s∑
r=2

{(
n

s

)−2(n− r
s− r

)2(n
r

)
E[g2

r ]

}

=
s∑
r=2

{
s!(n− r)!
n!(s− r)!

(
s

r

)
E[g2

r ]

}

≤ s(s− 1)

n(n− 1)

s∑
r=2

(
s

r

)
E[g2

r ]

≤ s2

n2
Var [Φ(Z1, . . . , Zs)] .

Since Var [Φ(Z1, . . . , Zn)] is bounded by a constant V ∗ and n η1(s)→∞, by our assumption,

we have:

E
[(
U − E [U ]− Û

)2
]

σ2
n

≤
s2

n2V
∗

s2

n η1

=
V ∗

n η1(s)
→ 0 . (C.3.31)

C.3.12 Stochastic Equicontinuity of U-Statistics via Bracketing

We define here some standard terminology on bracketing numbers in empirical process

theory. Consider an arbitrary function space F of functions from a data space Z to R,

equipped with some norm ‖ · ‖. A bracket [a, b] ⊆ F , where a, b : Z → R consists of all

functions f ∈ F , such that a ≤ f ≤ b. An ε-bracket is a bracket [a, b] such that ‖a− b‖ ≤ ε.
The bracketing number N[](ε,F , ‖ · ‖) is the minimum number of ε-brackets needed to cover

F . The functions [a, b] used in the definition of the brackets need not belong to F but

satisfy the same norm constraints as functions in F . Finally, for an arbitrary measure P

on Z, let

‖f‖P,2 =
√
EZ∼P [f(Z)2] ‖f‖P,∞ = sup

z ∈ support(P )
|f(z)| (C.3.32)
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Lemma 38 (Stochastic Equicontinuity for U -Statistics via Bracketing). Consider a func-

tion space F of symmetric functions from some data space Zs to R and consider the U -

statistic of order s, with kernel f over n samples:

Ψs(f, z1:n) =

(
n

s

)−1 ∑
1≤i1≤...≤is≤n

f(zi1 , . . . , zis) (C.3.33)

Suppose supf∈F ‖f‖P,2 ≤ η, supf∈F ‖f‖P,∞ ≤ G and let κ = n/s. Then for κ ≥ G2

logN[](1/2,F ,‖·‖P,2) ,

w.p. 1− δ:

sup
f∈F
|Ψs(f, Z1:n)− E[f(Z1:s)]|

= O

(
inf
ρ>0

1√
κ

∫ 2η

ρ

√
log(N[](ε,F , ‖ · ‖P,2) + η

√
log(1/δ) + log log(η/ρ)

κ
+ ρ

)

Proof. Let κ = n/s. Moreover, wlog we will assume that F contains the zero function, as we

can always augment F with the zero function without changing the order of its bracketing

number. For q = 1, . . . ,M , let Fq = ∪Nqi=1Fqi be a partition of F into brackets of diameter

at most εq = 2η/2q, with F0 containing a single partition of all the functions. Moreover,

we assume that Fq are nested partitions. We can achieve the latter as follows: i) consider a

minimal bracketing cover of F of diameter εq, ii) assign each f ∈ F to one of the brackets

that it is contained arbitrarily and define the partition F̄q of size N̄q = N[](εq,F , ‖ ·‖P,2), by

taking Fqi to be the functions assigned to bracket i, iii) let Fq be the common refinement

of all partitions F̄0, . . . , F̄q. The latter will have size at most Nq ≤
∏M
q=0 N̄q. Moreover,

assign a representative function fqi to each partition Fqi, with the representative for the

single partition at level q = 0 is the zero function.

Chaining Definitions. Consider the following random variables, where the dependence

on the random input Z is hidden:

πqf = fqi, if f ∈ Fqi

∆qf = sup
g,h∈Fqi

|g − h|, if f ∈ Fqi

Bqf = {∆0f ≤ α0, . . . ,∆q−1f ≤ αq−1,∆qf > αq}

Aqf = {∆0f ≤ α0, . . . ,∆qf ≤ αq} ,
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for some sequence of numbers α0, . . . , αM , to be chosen later. By noting that Aq−1f = Aqf+

Bqf and continuously expanding terms by adding and subtracting finer approximations to

f , we can write the telescoping sum:

f − π0f = (f − π0f)B0f + (f − π0f)A0f

= (f − π0f)B0f + (f − π1f)A0f + (π1f − π0f)A0f

= (f − π0f)B0f + (f − π1f)B1f + (f − π1f)A1f + (π1f − π0f)A0f

. . .

=

M∑
q=0

(f − πqf)Bqf +

M∑
q=1

(πqf − πq−1f)Aq−1f + (f − πMf)AMf .

For simplicity let Ps,nf = Ψ(f, Z1:n), Pf = E[f(Z1:s)] and Gs,n denote the U -process:

Gs,nf = Ps,nf − Pf . (C.3.34)

Our goal is to bound ‖Ps,nf‖F = supf∈F |Ps,nf |, with high probability. Observe that since

F0 contains only the zero function, then Gs,nf0 = 0. Moreover, the operator Gs,n is linear.

Thus:

Gs,nf = Gs,n(f − π0f)

=
M∑
q=0

Gs,n(f − πqf)Bqf +
M∑
q=1

Gs,n(πqf − πq−1f)Aq−1f + Gs,n(f − πMf)AMf .

Moreover, by triangle inequality:

‖Gs,nf‖F ≤
M∑
q=0

‖Gs,n(f − πqf)Bqf‖F

+

M∑
q=1

‖Gs,n(πqf − πq−1f)Aq−1f‖F + ‖Gs,n(f − πMf)AMf‖F .

We will bound each term in each summand separately.

Edge Cases. The final term we will simply bound it by 2αM , since |(f − πMf)AMf | ≤
αM , almost surely. Moreover, the summand in the first term for q = 0, we bound as
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follows. Observe that B0f = 1{supf |f | > α0}. But we know that supf |f | ≤ G, hence:

B0f ≤ 1{G > α0}.

Gs,n(f − π0f)B0f = Gs,nfB0f ≤ |Ps,nfB0f |+ |PfB0f | ≤ 2G 1{G > α0} .

Hence, if we assume that α0 is large enough such that α0 > G, then the latter term is

zero. By the setting of α0 that we will describe at the end, the latter would be satisfied if

κ ≥ G2

logN[](1/2,F ,‖·‖P,2) .

Bq Terms. For the terms in the first summand we have by triangle inequality:

|Gs,n(f − πqf)Bqf | ≤ Ps,n|f − πqf |Bqf + P|f − πqf |Bqf

≤ Ps,n∆qfBqf + P∆qfBqf

≤ Gs,n∆qfBqf + 2P∆qfBqf .

Moreover, observe that:

P∆qfBqf ≤ P∆qf1{∆qf > αq} ≤
1

αq
P(∆qf)21{∆qf > αq}

≤ 1

αq
P(∆qf)2 =

1

αq
‖∆qf‖2P,2 ≤

ε2q
αq

,

where we used the fact that the partitions in Fq, have diameter at most εq, with respect

to the ‖ · ‖P,2 norm. Now observe that because the partitions Fq are nested, ∆qf ≤
∆q−1f . Therefore, ∆qfBqf ≤ ∆q−1fBqf ≤ αq−1, almost surely. Moreover, ‖∆qfBqf‖P,2 ≤
‖∆qf‖P,2 ≤ εq. By Bernstein’s inequality for U statistics (see, e.g., Peel et al. 2010) for any

fixed f , w.p. 1− δ:

|Gs,n∆qfBqf | ≤ εq

√
2 log(2/δ)

κ
+ αq−1

2 log(2/δ)

3κ
.

Taking a union bound over the Nq members of the partition, and combining with the bound

on P∆qfBqf , we have w.p. 1− δ:

‖Gs,n(f − πqf)Bqf‖F ≤ εq

√
2 log(2Nq/δ)

κ
+ αq−1

2 log(2Nq/δ)

3κ
+

2ε2q
αq

. (C.3.35)
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Aq Terms. For the terms in the second summand, we have that since the partitions are

nested, |(πqf−πq−1f)Aq−1f | ≤ ∆q−1fAq−1f ≤ αq−1. Moreover, ‖(πqf−πq−1f)Aq−1f‖P,2 ≤
‖∆q−1f‖P,2 ≤ εq−1 ≤ 2εq. Thus, by similar application of Bernstein’s inequality for U -

statistics, we have for a fixed f , w.p. 1− δ:

|Gs,n(πqf − πq−1f)Aq−1f | ≤ εq

√
8 log(2/δ)

κ
+ αq−1

2 log(2/δ)

3κ
.

As f ranges there are at most Nq−1Nq ≤ N2
q different functions (πqf −πq−1f)Aq−1f . Thus

taking a union bound, we have that w.p. 1− δ:

‖Gs,n(πqf − πq−1f)Aq−1f‖F ≤ εq

√
16 log(2Nq/δ)

κ
+ αq−1

4 log(2Nq/δ)

3κ
.

Taking also a union bound over the 2M summands and combining all the above inequal-

ities, we have that w.p. 1− δ:

‖Gs,nf‖F ≤
M∑
q=1

εq

√
32 log(2NqM/δ)

κ
+ αq−1

6 log(2NqM/δ)

3κ
+

2ε2q
αq

.

Choosing αq = εq
√
κ/
√

log(2Nq+1M/δ) for q < M and αM = εM , we have for some constant

C:

‖Gs,nf‖F ≤ C

M∑
q=1

εq

√
log(2NqM/δ)

κ
+ 3εM

≤ C

M∑
q=1

εq

√
log(Nq)

κ
+ C

M∑
q=1

εq

√
log(2M/δ)

κ
+ 3εM

≤ C

M∑
q=1

εq

√
log(Nq)

κ
+ 2Cη

√
log(2M/δ)

κ
+ 3εM .
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Moreover, since log(Nq) ≤
∑q

t=0 log(N[](εq,F , ‖ · ‖P,2), we have:

M∑
q=1

εq

√
log(Nq) ≤

M∑
q=1

εq

q∑
t=0

√
log(N[](εt,F , ‖ · ‖P,2) =

M∑
t=0

√
log(N[](εt,F , ‖ · ‖P,2)

M∑
q=t

εq

≤ 2

M∑
t=0

εt

√
log(N[](εt,F , ‖ · ‖P,2)

≤ 4
M∑
t=0

(εt − εt+1)
√

log(N[](εt,F , ‖ · ‖P,2)

≤ 4

∫ ε0

εM

√
log(N[](ε,F , ‖ · ‖P,2) .

Combining all the above yields the result.

Corollary 8. Consider a function space F of symmetric functions. Suppose that supf∈F ‖f‖P,2 ≤
η and log(N[](ε,F , ‖ · ‖P,2) = O(1/ε). Then for κ ≥ O(G2), w.p. 1− δ:

sup
f∈F
|Ψs(f, Z1:n)− E[f(Z)]| = O

(√
η

κ
+ η

√
log(1/δ) + log log(κ/η)

κ

)
. (C.3.36)

Proof. Applying Lemma 38, we get for every ρ > 0, the desired quantity is upper bounded

by:

O

(
1√
κ

∫ η

ρ

1√
ε

+ η

√
log(1/δ) + log log(η/ρ)

κ
+ ρ

)

= O

(√
η −√ρ
√
κ

+ η

√
log(1/δ) + log log(η/ρ)

κ
+ ρ

)
.

Choosing ρ =
√
η/
√
κ, yields the desired bound.
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