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I. ABSTRACT

An expander graph G = (V,E) is a bipartite graph that having the property that every “small” set on the left

has a relatively “large” neighbor. This property is desirable because it helps constructing good source and channel

codes, and it also has nice locality properties when used to construct locally decodable codes. This report focuses

on the application of expander graph in locally decodable source codes.

In the first section, we introduce the existence and basic properties of expander graphs, and how they are applied

in channel coding. The second section is devoted to the order-optimal compression of sparse sequences with locality

constraint, where the expander graph can be used to achieve a non-adaptive scheme of locally decodable source

codes. The last section shows that for general sources with positive entropy, any additive redundancy can be achieved

with a bounded locality.

II. INTRODUCTION

A. Expander Graph

We inherit notations in graph theory, where V denote the set of vertices and E the set of edges. For a bipartite

graph, we use L to denote the set of nodes that are on the left, and similarly R the set of nodes on the right. A

d left-regular graph is a bipartite graph where every left node has degree d. The neighbors of a set of node S is

denoted as N(S), which are the set of nodes adjacent to S.

Definition 1. (Expander Graph) [1]: A bipartite graph G = (L ∪R,E) is a (n,m,D, γ, α)-expander graph if

1) G is D left-regular;

2) |L| = n, |R| = m;

3) Any S ⊂ L with |S| ≤ γn, |N(S)| ≥ α|S|.

The following theorem establishes the existence of such graphs. Moreover, it gives a probabilistic bound on a

random construction. Specifically, this theorem states that for a randomly constructed regular bipartite graph, the

probability of such graph being a expander graph, with suitable expander parameters, is close to 1 exponentially.
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Theorem 1. Let G be a randomly constructed bipartite graph, with |L| = n, |R| = m which in addition is D

left-regular, and the edges are independently added. For any α ∈ (0, 1), with high probability, the graph G is a

(n,m,D, γ, α(γ)) expander graph, where

α(γ) =
m

n
(1− e−Dγn/m)−

√
2γDh2(γ)/ log 2

Proof. Fix any set S ⊂ L with |S| = γn. First, the probability that x is not a neighbor of S is bounded by

P(x 6∈ N(S)) ≤ (1− 1

m
)D|S|

The expected size of its neighbor can then be bounded by

E[|N(S)|] =
∑
x∈R

P(x ∈ N(S)) ≥ m(1− (1− 1

m
)D|S|) ≥ m(1− e−Dγn/m)

The next step is to show that the size of N(S) concentrated around its mean. To achieve that, we construct a

Doob martingale and show it has bounded increment. Then we can apply Azuma’s inequality to get the desired

concentration property. Let E(S) = {E1, · · · , ED|S|} be the set of random edges connected to S and let

Xi = E[|N(S)||E1, · · · , Ei]

be the conditional expectation of the size of N(S) given the first i edges. The following lemma shows Xi is a

martingale with bounded difference.

Lemma 1. Xi = E[|N(S)||E1, · · · , Ei] is a martingale with bounded difference 1.

Proof. First it’s easy to see

E[Xi+1|E1, · · · , Ei] = E[E[|N(S)||E1, · · · , Ei+1]|E1, · · · , Ei] = E[|N(S)||E1, · · · , Ei] = Xi

which establishes Xi is a martingale with respect to the filtration σ({E1, · · · , Ei}). Secondly, we show that this

martingale has bounded difference. Consider

|Xi+1 −Xi| =|E[|N(S)||Ei1, Ei+1]− E[|N(S)||Ei1]|
(a)
= |

∑
e
D|S|
i+2

P(E
D|S|
i+2 = e

D|S|
i+2 )(E[|N(S)||Ei1, Ei+1, E

D|S|
i+2 = e

D|S|
i+2 ]

−
∑
e′

D|S|
i+1

P(E
D|S|
i+1 = e′

D|S|
i+1 )E[|N(S)||Ei1, E

D|S|
i+1 = e′

D|S|
i+1 ])|

(b)
= |

∑
e′i+1,e

D|S|
i+2

P(Ei+1 = e′i+1)P(E
D|S|
i+2 = e′

D|S|
i+2 )

∗ (E[|N(S)||Ei1, Ei+1, E
D|S|
i+2 = e′

D|S|
i+2 ]− E[|N(S)||Ei1, Ei+1 = e′i+1, E

D|S|
i+2 = e′

D|S|
i+2 ])|

≤
∑

e′i+1,e
D|S|
i+2

P(Ei+1 = e′i+1)P(E
D|S|
i+2 = e′

D|S|
i+2 )

∗ |E[|N(S)||Ei1, Ei+1, E
D|S|
i+2 = e′

D|S|
i+2 ]− E[|N(S)||Ei1, Ei+1 = e′i+1, E

D|S|
i+2 = e′

D|S|
i+2 ]|

(c)

≤
∑

e′i+1,e
D|S|
i+2

P(Ei+1 = e′i+1)P(E
D|S|
i+2 = e′

D|S|
i+2 ) = 1
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Where (a), (b) are because of independence, (c) is because that |N(S)| as a function of {E1, .., ED|S|} is edge

Lipschitz; when only one edge in {E1, .., ED|S|} changes, |N(S)| will differ by at most 1. In the above proof, for

clarity purpose, we suppressed the dependency of E[|N(S)||E1, .., Ei+1] on ω = (e1, .., eD|S|).

Now that we established the lemma, it is straightforward to apply Azuma’s inequality.

P(|N(S)| − E[|N(S)|] > λ
√
γDn)

≤P(|N(S)| − E[|N(S)|] > λ
√
D|S|) ≤ exp(−λ2/2)

Apply a union bound, we get

P(|N(S)| − E[|N(S)|] > λ
√
D|S| for some S with |S| = γn)

≤Vol(n, γn) exp(−λ2/2)

≤2nh2(γ) exp(−λ2/2)

So we can pick λ =
√

(2 + ε)nh2(γ)/ log 2 for any positive ε (say, ε = 0.5). The final inequality becomes

P(|N(S)| − E[|N(S)|] >
√

(2 + ε)γDh2(γ)/ log 2 for some S with |S| = γn)

=P(|N(S)| − E[|N(S)|] >
√

(2 + ε)nh2(γ)/ log 2
√
γDn for some S with |S| = γn)

≤2−εh2(γ)n → 0

The above theorem gives a probabilistic argument on the existence of such expander graphs. Explicit constructions

are also given recently (2002), which will be stated in the next theorem.

Theorem 2. [4] Explicit construction of a (n,m,D, γ,D(1− ε)) expander graph exists for any ε ∈ (0, 1).

Combining theorem 1 and 2, we can say that expander graphs are objects that are within our reach; not only

do we know that they exists with high probability, but also can we construct some of them explicitly. The next

subsection will then switch to an application of expander graph in coding theory, which also serves as a motivation

for our application in source codes with locality.

B. Motivation: an Application in Channel coding

The parity check matrix of a linear code is often represented as a bipartite graph. The left nodes are the bits in

the codeword, and nodes on the right represent the constraints. Below is a graph showing a codeword with n = 6

and 4 parity check bits. The rate for the code is 0.6. Note the graph is also a (6, 4, 2, 13 ,
3
2 ) expander.
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x6

x5

x4

x3

x2

x1

f4 x6 + x4 + x3 = 0

f3 x5 + x3 + x2 = 0

f2 x6 + x2 + x1 = 0

f1 x5 + x4 + x1 = 0

(a)

An important notion is the unique neighbor, which is formally defined as follows:

Definition 2. For any S ⊂ L, the unique neighbor U(S) is the set of nodes that are adjacent to exactly one node

in S.

Suppose for a graph G = (L∪R,E) representing a linear code C, if any set S ⊂ L with |S| < γn has non-empty

unique neighbors, then we can immediately conclude that:

C has relative distance at least γ

The reason for the above claim is, suppose c is the codeword with the minimum weight, and let S be the set of

indices of 1’s in c. If U(S) 6= ∅, then a constraint in U(S) is adjacent to exactly one non-zero bit, which violates

the constraint which says the bits it is adjacent to should sum up to 0.

Theorem 3. (unique neighbor property of expander graphs) [1] Let G be a (n,m,D, γ,D(1−ε)) expander graph.

If ε < 0.5 then for any S ⊂ L with |S| < γn, U(S) is non-empty.

Proof. Count number of the edges, e, between S and N(S). First start with S. Because G is D left-regular,

e = D|S|. Second, start with N(S). Due to the expander property, |N(S)| ≥ D(1− ε)|S|. For nodes in N(S), if

it is a unique neighbor, the there is one edge between this node and S. Otherwise, there are at least two edges.

Hence we have e ≥ |U(S)|+ 2(D(1− ε)|S| − |U(S)|). Compare and rearrange terms, we get

|U(S)| ≥ D(1− 2ε)|S| > 0.

As a result of the above theorem, if we have a “good” expander graph, the code corresponding to it has “good”

relative distance (γ) and “good” rate (1 − m
n ). This helps us to find good linear codes. This procedure can be

generalized to construct Tanner codes, which maps a small code into a larger one using expander graphs. In the

next few sections, we will go beyond the intuitions discussed here and use expander graphs to construct source

codes with local decodability, both in the sparse case and constant rate case.
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III. COMPRESSION OF SPARSE SEQUENCES USING EXPANDER GRAPH

In this section we consider the compression problem of a sparse sequence under locality constraints: given a

binary sequence xn = (x1, · · · , xn) with Hamming weight at most s, we would like to compress this sequence

losslessly into c(xn) such that it only requires probing t bits of the compressed sequence c(xn) to decode each bit

of the original sequence xn. Formally, we have the following definition for a locally decodable (n, s,R, t) code.

Definition 3 (Locally Decodable (n, s,R, t) Code). A (fixed-length) (n, s,R, t) locally decodable code consists of

a mapping

c :

(
[n]

≤ s

)
→ {0, 1}nR

and subsets S1, · · · , Sn, mappings f1, · · · , fn which may depend on R but not on xn such that |Si| ≤ t, xi =

fi(cSi
(xn)) for any i ∈ [n] and xn ∈

(
[n]
≤s
)
. Here

(
[n]
≤s
)

denotes the set of all possible binary sequences of length

n and Hamming weight at most s, and zS , (zi)i∈S denotes the subsequence indexed by S for any sequence z.

We note that there can also be some variable-length variant of the above definition by imposing some probability

distribution on
(
[n]
≤s
)
, and we will discuss this variant later.

The locally decodable sourcing coding problem has various applications in practice and we list two of them.

The first example is the static membership problem: given a subset S of at most s keys, store it so that queries of

the form “Is x in S?” can be answered quickly. This is a fundamental data structure problem with a long history.

Yao [8] showed that if the data structure consists of a table with s cells where the keys are stored explicitly and

the univese from which the set S is chosen is large enough, then the sorted table with binary search is optimal.

In order to study data structures where elements of the set S are not stored explicitly, [8] proposed the cell probe

model. In this model, the set S is stored as a table of cells, each capable of holding one element of the universe;

that is, if the universe has size |S| being a power of two, then each cell holds log2 |S| bits. The queries are to be

answered by probing the table adaptively; that is, each probe can depend on the results of earlier probes and the

query element x. The goal is to process membership queries with as few probes as possible, and at the same time

keep the size of the table small.

The second application is in bioinformatics [9], in which a DNA sequence is stored as a binary string with

relation to a reference sequence, with 1s representing single nucleotide polymorphisms (SNPs) at those positions.

In SNP calling, we are interested in learning whether there is a SNP at position i. Since we are not interested in

any other information about the sequence, we would ideally like to accomplish this by accessing few bits in the

compressed representation of the DNA sequence. In this specific instance, local decodability is strongly motivated,

since decompressing the whole genome can be prohibitively expensive from a memory standpoint.

The most general problem in studying the locally decodable source code can be determining the entire region of

all achievable (n, s,R, t). For the sake of simplicity and brevity, here we only consider the case where the sequence

is sparse, i.e., s = δn with δ = on(1), and the rate R is competitive to the optimal compression rate without the
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locality constraint. Specifically, by a simple counting argument we know that without the locality constraint, the

optimal rate is given by

1

n
log2

nδ∑
i=0

(
n

i

)
= δ log2(

1

δ
) · (1 + on(1))

and thus we require that R = O(δ log2( 1
δ )). Now our question becomes: what is the minimum locality t we can

achieve given s = δn and R = O(δ log2( 1
δ ))? Despite the great simplification, we remark that many key ideas will

be reflected in studying this simple problem, and the correct answer here is t = Θ(log(1
δ )) [10]:

Theorem 4. There exists a (fixed-length) locally decodable (n, δn,O(δ log2( 1
δ )), t) code iff t = Ω(log( 1

δ )).

The variable-length variant was also proved in [11] with the same answer. We also remark that there exists a

non-adaptive scheme (i.e., choose the positions of all probed bits in advance) which achieves this bound, and this

bound is also non-beatable even with adaptive approaches (i.e., one is allowed to choose the positions of probed

bits based on all available history). Next we will prove Theorem 4 by showing the achievability and the converse

parts separately.

A. Achievability via Expander Graph

We adopt a graph-theoretic viewpoint of this problem: consider a bipartite graph G = (VL∪VR, E) with |VL| = n

representing source bits and |VR| = nR representing compressed bits, then viewing the pair of source bit and probed

bit as an edge, a non-adaptive locally decodable (n, s, nR, t) code corresponds to such a bipartite graph with all

left-degrees at most t. Given a realization of the original sequence and compressed sequence, we call a node in

VL as 1-code if the source bit corresponding to this node is 1 in this realization, and 0-node otherwise. Now we

introduce the definition of (p, q)-colorable graph:

Definition 4 ((p, q)-colorable graph). The bipartite graph G = (VL ∪ VR, E) is called (p, q)-colorable iff we can

color VR in two colors {0, 1} such that each 1-node in VL is connected to at least p nodes in VR colored in 1,

and each 0-node is connected to at least q nodes colored in 0.

Assuming the existence of a (p, q)-colorable graph, we can use the following simple non-adaptive encoding and

decoding rules:

• Fix some suitable bipartite graph first and reveal it to both the encoder and decoder;

• In the encoding process, for each source realization we simply find a (p, q)-coloring and compress into a binary

sequence consisting of the colors of the right nodes VR;

• In the decoding process for each source bit, probe the colors of the nodes connected to it. If there are at least

p nodes colored as one, decode the source bit as one; if there are at least q nodes colored as zero, decode it

as zero; if neither of the above happens, decode arbitrarily.

It is easy to see that the decoding rule always returns the correct answer if p+q > t, and we arrive at the following

reduction of the achievability part:
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Lemma 2. There exists a non-adaptive locally decodable (n, s,R, t) code if for any subset S of 1-nodes in VL

with |S| ≤ s, there exists a (d t+1
2 e, d

t+1
2 e)-coloring.

Based on the previous lemma, it suffices to construct a bipartite graph G such that this graph is (d t+1
2 e, d

t+1
2 e)-

colorable for each legal source realization. The main result of this subsection is that a suitable expander graph

satisfies this property. By Theorem 1, there exists a (n,O(nδ log2( 1
δ )), t = O(log2( 1

δ )), 2δ, (1 − ε)t) expander

graph G with some ε ∈ (0, 14 ). Now for each subset of 1-codes in VL with cardinality at most δn, we consider the

following coloring algorithm:

1) Initially, all nodes in VR are not colored;

2) If some node in VR is only connected to 1-nodes, color it as 1; if some node in VR is only connected to

0-nodes, color it as 0; use an arbitrary order if there are multiple choices;

3) If some node in VL have more than half of its neighbors colored, remove this node and all associated edges

from the graph; use an arbitrary order if there are multiple choices;

4) Repeat the previous two steps until convergence.

This algorithm has the following performance guarantee:

Lemma 3. For each subset of 1-codes in VL with cardinality at most δn, the previous coloring algorithm yields a

(d t+1
2 e, d

t+1
2 e)-coloring.

Proof. It is easy to see that the (p, q)-colorable condition is not violated during the process of this algorithm, so it

suffices to prove that this algorithm can make progress (color one node in VR or remove one node in VL) as long

as the resulting graph is non-empty. Assuming the contrary, and let S1, S0 be the set of 1-nodes and 0-nodes in VL,

respectively, and T be the remaining uncolored node in VR. If |S1| ≤ |S0|, we arbitrarily pick a subset S′0 ⊂ S0 of

size |S1| and consider S = |S1 ∪ S′0|. For any x ∈ S′0, since x cannot be removed, we have

|N(x) ∩ T c| ≤ t

2
.

Summing over x ∈ S′0 yields

|N(S′0) ∩ T c| ≤
∑
x∈S′

0

|N(x) ∩ T c| ≤ t|S1|
2

.

Now using N(S) = N(S1) ∪ (N(S′0)\T ), we have

|N(S)| ≤ N(S1) + |N(S′0) ∩ T c| ≤ t|S1|+
t|S1|

2
=

3t

2
|S1|.

However, on the other hand we have |S| = 2|S1| ≤ 2δn, by the property of expander graph we know that

|N(S)| ≥ t(1− ε)|S| = 2(1− ε)t|S1|.

By our choice, ε < 1
4 , then comparing the previous two inequalities yields the desired contradiction. The case where

|S0| ≤ |S1| can also be dealt with analogously.

Combining all previous parts concludes the achievability of Theorem 4.
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B. Converse via LYM Inequality

Next we show that even for an adaptive scheme, the locality t = o(log2( 1
δ )) cannot be achieved. The proof here

is combinatorial: for any source coding scheme, define the set

A(xn) = {(i, ci(xn)) : position i ∈ [Rn] is probed to decode some bit j ∈ [n] where xj = 1}.

We restrict our attention to all source realizations xn with Hamming weight exactly δn, and have the following

observations:

• A(xn) ⊂ [Rn]× {0, 1} ≡ T , where |T | = 2Rn;

• |A(xn)| ≤ t · δn: obvious from definition since there are nδ ones in the source sequence and decoding each

of them only requires probing t bits;

• A(x1,n) * A(x2,n) for x1,n 6= x2,n: consider decoding the position where x1,n is one and x2,n is zero. Then

suppose that the true source is x2,n and A(x1,n) ⊂ A(x2,n), the decoder will observe (part of) A(x1,n) which

is a subset of A(x2,n), and it will incorrectly decode into one, a contradiction.

These properties suffice to give a lower bound on the locality t. In fact, if we simply use that A(x1,n) 6= A(x2,n)

which is weaker than the third point, we immediately have(
n

δn

)
= |{A(xn) : |xn|0 = δn}| ≤

∣∣∣∣( [|T |]
≤ t · δn

)∣∣∣∣ =

t·δn∑
i=0

(
2Rn

i

)
≤ 2tδn

(
2Rn

tδn

)
and plugging in R = O(δ log2( 1

δ )) gives t = Ω(log2( 1
δ )). However, fully exploiting the third observation will yield

to a tighter bound, which is crucial in the general (n, s,R, t) case and the variable-length source coding case [11].

We begin with the LYM inequality characterizing the property of the family of sets which are not subsets of each

other.

Theorem 5 (LYM inequality [12]). Suppose A1, · · · , Am ⊂ T are not subsets of each other, then
m∑
k=1

(
|T |
|Ak|

)−1
≤ 1.

Proof. For each k ∈ [m], we map Ak to a subset of permutations of T : this subset contains all permutations of T in

which the first |Ak| elements are just a permutation of Ak. Now it is straightforward to verify that our assumption

implies that different Ak cannot be mapped to a common permutation. Since each Ak generates |Ak|!(|T | − |Ak|)!

permutations, we conclude that
m∑
k=1

|Ak|!(|T | − |Ak|)! ≤ |T |!.

A rearrangement of the previous inequality gives the LYM inequality.

The following corollary is immediate.

Corollary 1 (Sperner’s Theorem). Suppose A1, · · · , Am ⊂ T are not subsets of each other and |Ak| ≤ r ≤ |T |2
for any k ∈ [m], then

m ≤
(
|T |
r

)
.
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Proof. Just invoke Theorem 5 to conclude that

m

(
|T |
r

)−1
=

m∑
k=1

(
|T |
r

)−1
≤

m∑
k=1

(
|T |
|Ak|

)−1
≤ 1.

Now applying the Corollary to our case, we either have t · δn ≥ |T |2 = Rn, or have(
n

δn

)
= |{A(xn) : |xn|0 = δn}| ≤

(
|T |
t · δn

)
=

(
2Rn

tδn

)
.

Plugging into R = O(δ log2( 1
δ )), both cases give t = Ω(log2( 1

δ )), as desired.

C. Further Discussions

Theorem 4 is only devoted to the sparse competitive case where s = nδ and R = O(δ log2( 1
δ )), while there are

also some other interesting scenarios. For example, people may favor a small locality at the expense of an increasing

rate or some error probability in practice. The achievability part based on expander graph still sheds light on the

general case: for example, (n, δn,O(δ log2( 1
δ )), 1) is possible if we allow some error probability [10]. In fact, after

our construction of (p, q)-colorable graph, instead of probing all neighbors and use a “majority vote” rule, we can

also randomly probe one neighbor and declare its color. As ε→ 0 in the construction of expander graph, we can let

p, q → t which yields to a vanishing error probability. Moreover, if we are restricted to use a deterministic rule, we

can also use an expander graph with a small left-degree (say, 4). However, Theorem 1 is an asymptotic result and

cannot be used in this case, and one should verify carefully whether the desired expander graph exists or not (our

construction involves an O(·) notation). Fortunately, this is still doable and it was shown that all t = 2, 3, 4 can

yield some non-trivial compression rate [13], where it was also shown that the (p, q)-colorable graph is intrinsically

related to its expander property. For example, an expansion factor of r is sufficient and necessary if t = 2r − 1

and we seek an (r, r)-coloring, and an expansion factor of 8
3 is sufficient and necessary for t = 4 and a (3, 2)-

coloring [13]. The lower bound argument can also be applied to these general cases. For an intensive overview of

achievability and converse results in the sparse compression case, we refer to [14].

Another interesting case is the non-sparse case where the Hamming weight s = δn may be linear in n, where the

major difference is that here the optimal compression rate h2(δ) without the locality constraint is bounded away

from zero and can be quite significant. As a result, a rate C ·h2(δ) can be significantly worse than h2(δ) and cannot

be called “competitive”, and we look for some small-locality code with rate h2(δ) + ε. However, this problem with

an additive redundancy is considerably harder than the previous one with a multiplicative redundancy, as will be

discussed in the following section.

IV. LDSC CODES FOR KNOWN I.I.D SOURCES

The problem of Locally decodable source codes for i.i.d sources has been studied briefly in the literature. [3]

presents a very good argument for the case of rational sources, which is based on LDGM codes. We show a

different proof than that of [3] for the known iid source case, and extend these arguments for any general stationary

& ergodic source.
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Let xn = x1, . . . , xn be a n length sequence generated by a binary i.i.d process X with distribution B(p, 1− p)

and entropy H(X) = h2(p). Our problem is to achieve a rate R < H(X) + δ, while simultaneously having the

local decompressibility to be finite as n→∞. The compression scheme for the sequence xn is explained below.

A. Encoding Scheme

Given the following constraint on the rate: R < H(X) + δ, the compression scheme is:

1) The sequence xn is processed block by block, with each block of size B.

2) There are two output streams Y and U :

a) Let ε < δ. Then, for the input sequence of length n, the stream Y has an associated sequence yL, of

length Ln = n(H(X) + ε). Let LB = B(H(X) + ε)

b) Also, the stream U has an associated sequence un, of length n

3) Each block Bi = x
(i+1)B−1
iB corresponds to the output blocks Yi = y

(i+1)LB−1
iLB

and Ui = u
(i+1)B−1
iB in the

Y and U streams.

4) We define the typical set Tδ(V, n) for a i.i.d process V as :

Tε(V, n) = {vn : 2−n[H(V )+ε] ≤ P (vn) ≤ 2−n[H(V )−ε]} (1)

As, |Tε(V, n)| ≤ 2n[H(V )+ε], thus every sequence vn ∈ Tε(V, n) can be assigned an index I(vn) of size

n[H(V ) + ε]. Also, for a sufficiently large n, (n > N(ε)), P (xn) ∈ Tε(V, n) ≥ 1 − ε. Now that we have

defined these quantities, we proceed to describe the block-by-block encoding procedure:

a) If Bi ∈ Tε(X,B), then: Yi = I(Bi) and Ui = 000 . . . 0.

b) If Bi /∈ Tε(X,B), then: Yi = 000 . . . 0 and Ui = Bi.

5) The yL sequence is encoded as it is (identity map).

6) The uN sequence encoding is as follows:

a) If the sparsity of the un is less than δ > ε1 > ε, then the sequence uN is encoded using the expander

graph based construction of Theorem[4]

b) If not we encode as it is (i.e. without any compression)

c) To differentiate between these cases, we also store a bit Sb. Sb = 1 if the ε sparsity condition is met.

Let the length of the encoded stream be LU .

B. Local Decoding Scheme

We discuss the local decoding scheme below, to access the symbol xr.

1) Let bid = br/Bc, be the index of the block corresponding to xr

2) We read the block Ybid from the Y stream, by accessing LB bits. If Ybid 6= 000 . . . 0, then we output the r

mod (B) bit of the block Ybid, and skip the next step.

3) If Ybid = 000 . . . 0, then:

a) If the sparsity identifier bit Sb is 1, then using the expander graph based retrieval method, we read the

symbol ur from the U stream. This takes O
(
log
(

1
ε1

))
bits of access. We output this symbol ur.

January 9, 2018 DRAFT



11

b) If Sb = 0, then we directly output ur.

C. Performance Analysis

1) Compression performance: We first analyze the compression performance of the scheme. First consider the

probability of sparsity of the un being more than ε. Using the Hoeffding’s inequality, this is upper bounded by (for

a B > N(ε) ):

Pε1 = P (wt(un) > ε1n) ≤ e−2(ε1−ε)
2H(X) n

B ) (2)

As our scheme is block-by-block, the compression rate R, can be found as:

R = (LB + LU )/B

= H(X) + ε+ (1− Pε1)O
(
ε1log

(
1

ε1

)
+ Pε1

)
As, Pε1 → 0 as n → ∞, thus choosing B, ε, ε1 appropriately (B = O

(
1
δ2

)
, ε = δ/2, ε1 = 0.75δ), we can obtain

R < H(X) + δ, as n→∞. Note that this is a perfectly lossless encoding, where all the randomness is absorbed

in the bound on the rate.

2) Random Access Performance: We analyze the random access performance of the scheme. Based on the

encoding section, we understand that, the random access t has a worst case bound of:

t ≤ B(H(X) + ε) + 1 +O
(
log

(
1

ε1

))
(3)

Based on the parameters chosen to satisfy the constraints on the rate, we get the effective local decodability to

be O
(

1
δ2

)
. Note that, although we used typical sequences for block-wise encoding of the source, any other fixed

block-length source code would have resulted in the same performance. This can be seen from the Theorem 12

from [ [16]]:

Theorem 6. Let R(n, d, ε) be defined as the rate distortion function for fixed-blocklength schemes for length n,

distortion d, and the probability of distortion being above d to be ε. Then:

R(n, 0, ε) = H(X) +
C√
n
Q−1(ε) (4)

Thus, for a rate bound R < H(X) + δ, any fixed block length coding can achieve local decodability at the best:

O
(

1
δ2

)
. Finally note that, in practice we rarely know the exact distribution of the i.i.d source. Thus, we next discuss

a slight variation of the problem, where we assume that the process is unknown to the encoder or the decoder.

V. RANDOM ACCESS FOR UNKNOWN I.I.D SOURCES

In practice, we rarely know the exact distribution of the process, and is learned by the encoder and communicated

to the decoder via the codebook. For an i.i.d binary process, the counts n1, n0 of the number of 1’s and 0’s serve as

the sufficient statistics, and are thus communicated by the encoder by storing them using O(log2 n) bits. However,

although this does not affect the rate of compression, this affects the local decodability. Every time we need to read

a bit from the compressed source, we require first to read these O(log2 n) bits to form the codebook. This defeats
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the aim of the problem, which is to have constant time locality as n → ∞. One solution we consider is quantize

the learned probability distribution, based on the allowed margin δ. If we wish to obtain constant random access

performance, we cannot have number of quantized distributions an increasing function of n, and must only be a

function g(δ), for the rate constraint R < H(X) + δ

We first define the quantized set of distributions: Qk(ε) as the set of distributions Q(ε) = {q1, . . . , q|Q|} such

that {∀P ∈Mk,∃qi ∈ Q(ε), D(P ||qi) ≤ ε}

We show the following lemma:

Lemma 4. Let Qopt0 (ε) = argminQ(ε)∈Q0(ε)|Q(ε)|. Then:

|Qopt0 (ε)| ≤ 2

ε
(5)

a) Proof: Consider the quantization levels: q = bpnc+0.5
n .

Also, we define n0 = bpnc, n0 = n− n0, α = pn− n0.

D(p||q) = p(x) log

(
p(x)

q(x)

)
+ p′(x) log

(
p′(x)

q′(x)

)
=

1

n

(
(n0 + α) log

(
n0 + α

n0 + 0.5

)
+ (n1 − α) log

(
n1 − α
n1 − 0.5

))
≤ log2 e

n

(
(n0 + α)

(
α− 0.5

n0 + 0.5

)
+ (n1 − α)

(
0.5− α
n1 − 0.5

))
=

(log2 e)(α− 0.5)2

(n0 + 0.5)(n1 − 0.5)

≤ (4 log2 e)(α− 0.5)2

n

≤ log2 e

n

<
2

n

Thus, for the binary case, |Qopt0 (ε)| ≤
(
2
ε

)
. Hence proved.

As D(p||q) corresponds to the loss incurred by compressing a source with distribution p(X) by a quantized source

with distribution q(x), thus by choosing the quantization level appropriately ( ε < δ), we can achieve constant time

random access as well as R < H(X) + δ. The encoding will be almost the same as the known i.i.d case, however,

the only difference is we also store the index to the quantized distribution using log2 |Q
opt
0 (ε)| ≤ O

(
log2

(
1
ε

))
bits.

Thus, the effective local decodability remains unchanged even for the unknown i.i.d process scenario. We next take

a look at locally decodable source coding for any generic unknown stationary & ergodic sources.

VI. UNIVERSAL RANDOM ACCESS

We now take a look at the scenario of compression of any unknown generic stationary ergodic source X , with

the entropy rate H(X). Our aim is to have a scheme which achieves the rate close to the entropy rate of the process,

R < H(X) + δ, while simultaneously having the random access bounded, as n → n, i.e. t < f(δ). We first start

by showing the existence of such a scheme.
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A. Existence of LDSC

Our first step is to extend the Lemma[4] to general k −Markov processes. The proof is very similar, and we

skip it here.

Lemma 5. minQ(ε)∈Qk(ε) |Q(ε)| = O
(

1
εk

)
.

We also define Kγ(X) as:

Kγ(X) = min
k
H(X0|X−1−k) < H(X) + γ (6)

There always exists a finite Kγ(X) for any stationary process by definition of the the entropy rate H(X). In a sense,

k = Kγ(X) represents the level of markovity required to approximate the process by a k−Markov process, so that

after compression we are in the worst γ away from the entropy rate. Thus, we can consider a Kγ(X)−Markov

approximation to the process X , which can be quantized using log2 |Q
opt
k (ε)| ≤ O

(
Kγ(X) log2

(
1
ε

))
bits. As

typical sequences are defined for any stationary ergodic process, thus the same encoding scheme described for i.i.d

processes can be used here to achieve the R < H(X)+δ, and the finite locality constraint, for appropriately chosen

parameters ε, γ. Hence, this shows the existence of the LDSC scheme.

Note that, although the existence is shown, this by no means is a practical scheme as learning the process

distribution, or even the parameter Kγ(X) is difficult. We next present a methodology of a practical universal

compressor with local decodability.

VII. PRACTICAL UNIVERSAL LDSC

Universal schemes like LZ78 [15], can achieve the entropy rate H(X), for any stationary ergodic process X ,

however to retrieve any small part of the data, most of the time the entire previous substring needs to be extracted.

We present a method of modifying any general universal compression scheme into a locally decodable version.

The problem setting remains the same: we are given a length n subsequence xn generate by a stationary ergodic

process X over binary alphabet. We wish to achieve rate R < L̄(xn) + δ, for any individual sequence xn, and

also have finite locality as n → ∞. Here, L̄(xn) is the performance of the universal compressor.We describe the

encoding procedure next. For clarity, we only describe the methodology for LZ78.

A. LZ78 LDSC Encoding

For LZ78, we first state the following result:

Theorem 7. Let L̄ be the average length of compression for the sequence xn by LZ78. ( i.e. 1/n times the length

of the encoding LZ78(xn)). Then:

L̄ ≤ Hk(xn) +
Ck

f(n)
(7)

where: f(n) = log logn
logn , and C is some constant. here, Hk(xn) denotes the kth order empirical entropy of the

sequence xn.

Also, let g(n) be some function such that: limn→∞
g(n)
f(n) = 0 and limn→∞ g(n) =∞.
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Given the following constraint on the rate: R < L̄+ δ, the compression scheme is:

1) The sequence xn is processed block by block, with each block of size B.

2) There are two output streams Y and U :

a) For the input sequence of length n, the stream Y has an associated sequence yL, of length L. Let

LB = LN/B

b) Also, the stream U has an associated sequence un, of length n

3) Each block Bi = x
(i+1)B−1
iB corresponds to the output blocks Yi = y

(i+1)LB−1
iLB

and Ui = u
(i+1)B−1
iB in the

Y and U streams.

4) If LZ78(Bi) corresponds to the LZ78 encoding of the block Bi. Then, the first LB bits of LZ78(Bi) are

stored in the block Yi, and the remaining are stored in the block Ui. Zeros are appended to the encoding, in

case the length of the encoding is smaller than LB +B, and the blocks Yi and Ui are filled accordingly.

5) The yL sequence is encoded as it is (identity map).

6) The uN sequence encoding is as follows:

a) If the sparsity of the un is less than δ > ε1 > ε, then the sequence uN is encoded using the expander

graph based construction of Theorem[4].

b) If not we encode as it is (i.e. without any compression)

c) To differentiate between these cases, we also store a bit Sb. Sb = 1 if the ε sparsity condition is met.

Let the length of the encoded stream be LU .

The encoding scheme is very similar to the iid scenario and is block based. Note that, we have not yet described

yet, how to choose the block length B and LB . For any given sequence xn, B is chosen as follows:

Let kε be defined as:

kε = min

[
g(n), arg min

k

[
Hk(xn) < L̄+

ε

2

]]
(8)

For such a kε, we choose the block length B, and LB are chosen such that:

Ckε
f(B)

<
ε

2

LB = L̄+ ε

The intuition here is that, as limk→∞ limn→∞Hk(xn) = H(X), thus kε is bounded, which makes B finite. It

can then be shown that for a sufficiently large n, the rate constraint R < L̄+ ε is satisfied with a finite locality.

Note that, this is a more practical LDSC as all the decisions are only based on the individual sequence xn.

VIII. CONCLUSION & FURTHER WORK

During the course of the project, we tried to understand the problem of Locally Decodable Source Codes. The

problem of sparse sequence encoding has been studied well in the theoretical CS literature, which we took a look

at in the report. We also presented some ideas which lead to schemes optimal rate with constant locality for general

stationary and ergodic sources.
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As a part of further work, it would be interesting to look at achieving better locality (and not just finite locality).

Another interesting problem would be to look at the best rates achievable for a given locality. We plan to continue

working on these interesting problems.
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