
ME 451C: Compressible Turbulence, Spring 2017
Stanford University

Homework 2: Fluctuation Modes in Compressible Turbulence

Due Thursday, May 18, in class.

Guidelines: Please turn in a neat and clean homework that gives all the formulae that you have used
as well as details that are required for the grader to understand your solution. Attach these sheets to
your solutions.

Student’s Name:.......................................................... Student’s ID:.............................

In uniform mean flows with density ρ, pressure P temperature T , and velocity U in the +x direction,
the linearization of the equation of state, the entropy equation, and the entropy transport equation
lead, respectively, to the relations 1
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where ν is the mean kinematic viscosity andD/Dt = ∂/∂t+U∂/∂x is the material derivative. Similarly,
using the linearized momentum equation
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along with (1)-(3), the conservation equation for the pressure fluctuations
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is obtained for a Prandtl number equal to 3/4. Lastly, the curl of the momentum equation yields
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for the vorticity fluctuations. This homework problem focuses on the structure of Kovazsnay’s fluctu-
ation modes in Fourier space. Assume that ν = 1.5 · 10−5 m2/s, γ = 1.4, U = 600 m/s, and a = 340
m/s for all your calculations. Additionally, assume that the disturbance wavelength is 1 mm, as being
created for instance by a small grid in a supersonic wind tunnel (Fig. 1).

1. In Kovasznay’s analysis, the pressure fluctuations P
′

are ascribed to an acoustic mode, which
is denoted by a superindex (p) and corresponds to the solution of Eq. (5). In particular, consider P ′

expressed as a single Fourier wave as

P ′

P
= P̂ (p) exp[j|κ|(n · r − ct)], (7)

1See class notes for details.



where j is the imaginary unit, κ is the wavenumber vector, and c is generally a complex eigenvalue
whose imaginary component represents the propagation velocity of the mode. Similarly, n is the unit
vector in the direction of the wavenumber vector, and r is the position vector in the laboratory frame.

a) Show that the modes (7) can be redefined in terms of C = c − Uκx/|κ| when the problem is
formulated in the reference frame moving at the mean velocity U in the +x direction, where κx is the
projection of κ in that direction.

In the remainder of this homework, we will assume for simplicity that κ is aligned with the x axis
so that C = c−U . We will also use the reference frame moving at speed U , where the position vector
is now r

′, so that all the material derivatives become local time variations ∂/∂t.

b) Substituting (7) into (5), show that C is given by
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where a =
√

γP/ρ is the mean speed of sound. Note that (8) indicates the presence of two modes of

P ′ corresponding to the positive and negative signs preceding the square root.

c) How small must the characteristic disturbance wavelength be for the second (dispersive) term
in the square root in Eq. (8) to become important?

d) What is the characteristic decay time of the acoustic pressure disturbance and how long have the
two modes traveled along the x direction in the laboratory frame before significant decay by viscosity
occurs?

e) Using Eq. (4), find an expression for the amplitude of the acoustic mode of the velocity fluctuation
as a function of P̂ (p) and show that the field is irrotational. This indicates that the acoustic mode is
a longitudinal wave, in that it is parallel to the wavenumber.

2. The entropy conservation equation (3) suggests that the Fourier representation of the entropy
fluctuations can be written as

s′

cp
= ŝ(p) exp[j|κ|(n · r′ − Ct)] + ŝ(s) exp[j|κ|(n · r′ − Cst)], (9)

where the first and second terms on the right-hand side correspond, respectively, to the particular and
homogeneous solutions of (3). In particular, the super-index (s) indicates the entropy mode.

a) The first term on the right-hand side of (9) represents an entropy disturbance generated by
the the viscous diffusion of the acoustic pressure fluctuation (7) and can therefore be ascribed to the
acoustic mode. Obtain a relation between the fluctuation amplitudes ŝ(p) and P̂ (p) by making use of
Eq. (3), and show that ŝ(p) is proportional to the viscosity.

b) On the other hand, the second term on the right-hand side of (9) represents an entropy mode
that does not have an acoustic origin, and which is necessarily related to temperature fluctuations as
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suggested by Eq. (2) and described below. Prove that the value of Cs is a purely imaginary one given
by

Cs = −
4

3
ν|κ|j. (10)

At what speed relative to the laboratory frame does this entropy fluctuation propagate? Compute
the characteristic decay time of this entropy disturbance and the distance it has traveled along the x
direction in the laboratory frame before significant decay by viscosity occurs.

3. In view of Eqs. (1)-(2) and (9), it is convenient to express the temperature and density fluctuations
as a sum of entropic and acoustic components, namely

T ′

T
= T̂ (s) exp[j|κ|(n · r′ − CT t)] + T̂ (p) exp[j|κ|(n · r′ − Ct)], (11)

ρ′

ρ
= ρ̂(s) exp[j|κ|(n · r′ − Cρt)] + ρ̂(p) exp[j|κ|(n · r′ − Ct)]. (12)

a) Compute CT , the corresponding decay time of the entropic component of the temperature fluc-
tuations, and the distance traveled by them along the x direction in the laboratory frame before
significant decay by viscosity occurs. At what speed relative to the laboratory frame does this does
this component of the temperature fluctuations propagate? Obtain relations between T̂ (s) and ŝ(s),
and between T̂ (p) and P̂ (p).

b) Using Eq. (1), compute Cρ, the corresponding decay time of the entropic component of the
density fluctuations, and the distance traveled by them along the x direction in the laboratory frame
before significant decay by viscosity occurs. At what speed relative to the laboratory frame does this
component of the density fluctuations propagate? Derive relations between ρ̂(s) and ŝ(s), and between
ρ̂(p) and P̂ (p).

c) The entropy mode does not include any pressure fluctuations. As a result, Eqs. (1)-(2) suggest
that in this mode the entropy fluctuations are related to the density fluctuations,
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ρ
. (13)

Using (13) along with continuity, Dρ′/Dt = −ρ∇ · u′, obtain an expression for the amplitude of the
entropy mode of the velocity fluctuations as a function of ŝ(s), show that the resulting field is irro-
tational and that the velocities and their divergence induced by the entropy mode are proportional to ν.

4. As indicated above, the acoustic and entropy modes are irrotational. As a result, the vorticity
conservation equation (6) suggests that a separate fluctuation mode for the vorticity exists, which in
wave form may be written as

ω
′ = ω̂

(ω) exp[j|κ|(n · r′ − Cωt)], (14)

where the super-index (ω) indicates the vortical mode.

a) Substituting (14) into (6) find an expression for Cω, compute the corresponding decay time of
the vorticity fluctuations, and the distance traveled by them along the x direction in the laboratory
frame before significant decay by viscosity occurs. At what speed relative to the laboratory frame does
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the vorticity fluctuation propagate?

b) Since the vortical mode does not have any associated fluctuations in pressure, entropy or tem-
perature, prove that the induced velocity field is incompressible and corresponds to a transversal wave
(i.e., a wave that is orthogonal to the wavenumber vector).

5. The effect of viscosity can be neglected at distances from the grid much smaller than the smallest
one of the characteristic streamwise distances computed above for decay of the fluctuations. Describe
how the results obtained above change when ν = 0.

entropy

UNIFORM MEAN FLOW

GRID
x

U

acoustic

vortical

Figure 1: Schematics.
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